1
|
Khalesi M, Glenn-Davi K, Mohammadi N, FitzGerald RJ. Key Factors Influencing Gelation in Plant vs. Animal Proteins: A Comparative Mini-Review. Gels 2024; 10:575. [PMID: 39330177 PMCID: PMC11431306 DOI: 10.3390/gels10090575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
This review presents a comparative analysis of gelation properties in plant-based versus animal-based proteins, emphasizing key factors such as pH, ionic environment, temperature, and anti-nutritional factors. Gelation, a crucial process in food texture formation, is influenced by these factors in varying ways for plant and animal proteins. Animal proteins, like casein, whey, meat, and egg, generally show stable gelation properties, responding predictably to pH, temperature, and ionic changes. In contrast, plant proteins such as soy, pea, wheat, and oilseed show more variable gelation, often requiring specific conditions, like the presence of NaCl or optimal pH, to form effective gels. Animal proteins tend to gel more reliably, while plant proteins require precise environmental adjustments for similar results. Understanding these factors is crucial for selecting and processing proteins to achieve desired textures and functionalities in food products. This review highlights how changing these key factors can optimize gel properties in both plant- and animal-based proteins.
Collapse
Affiliation(s)
- Mohammadreza Khalesi
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland (N.M.); (R.J.F.)
| | | | | | | |
Collapse
|
2
|
Pranata J, Hoyt H, Drake M, Barbano DM. Effect of dipotassium phosphate addition and heat on proteins and minerals in milk protein beverages. J Dairy Sci 2024; 107:695-710. [PMID: 37709031 DOI: 10.3168/jds.2023-23768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Our objective was to determine the effects of dipotassium phosphate (DKP) addition, heat treatments (no heat, high temperature, short time [HTST]: 72°C for 15 s, and direct steam injection UHT: 142°C for 2.3 s), and storage time on the soluble protein composition and mineral (P, Ca, K) concentration of the aqueous phase around casein micelles in 7.5% milk protein-based beverages made with liquid skim milk protein concentrate (MPC) and micellar casein concentrate (MCC). Milk protein concentrate was produced using a spiral wound polymeric membrane, and MCC was produced using a 0.1-µm ceramic membrane by filtration at 50°C. Two DKP concentrations were used (0% and 0.15% wt/wt) within each of the 3 heat treatments. All beverages had no other additives and ran through heat treatment without coagulation. Ultracentrifugation (2-h run at 4°C) supernatants of the beverages were collected at 1, 5, 8, 12, and 15-d storage at 4°C. Phosphorus, Ca, and K concentrations in the beverages and supernatants were measured using inductively coupled plasma spectrometry. Protein composition of supernatants was measured using Kjeldahl and sodium dodecyl sulfate-PAGE. Micellar casein concentrate and MPC beverages with 0.15% DKP had higher concentrations of supernatant protein, Ca, and P than beverages without DKP. Protein, Ca, and P concentrations were higher in MCC supernatant than in MPC supernatant when DKP was added, and these concentrations increased over storage time, especially when lower heat treatments (HTST or no heat treatment) had been applied. Dipotassium phosphate addition caused the dissociation of αS-, β-, and κ-casein, and casein proteolysis products out of the casein micelles, and DKP addition explained over 70% of the increase in supernatant protein, P, and Ca concentrations. Dipotassium phosphate could be removed from 7.5% of protein beverages made with fresh liquid MCC and MPC (containing a residual lactose concentration of 0.6% to 0.7% and the proportional amount of soluble milk minerals), as these beverages maintain heat-processing stability without DKP addition.
Collapse
Affiliation(s)
- Joice Pranata
- Northeast Dairy Food Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Hayden Hoyt
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing and Nutritional Sciences, North Carolina State University, Raleigh, NC 27695
| | - MaryAnne Drake
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing and Nutritional Sciences, North Carolina State University, Raleigh, NC 27695
| | - David M Barbano
- Northeast Dairy Food Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
3
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
4
|
Dudi K, Khatkar SK. Development of highly soluble and functional buffalo milk protein concentrate 60 by modifying ionic environment and characterisation thereof. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kuldeep Dudi
- By‐products Utilization Lab, Department of Dairy Technology, College of Dairy Science and Technology Guru Angad Dev Veterinary and Animal Sciences University (GADVASU) Ludhiana Punjab India
| | - Sunil Kumar Khatkar
- By‐products Utilization Lab, Department of Dairy Technology, College of Dairy Science and Technology Guru Angad Dev Veterinary and Animal Sciences University (GADVASU) Ludhiana Punjab India
| |
Collapse
|
5
|
Zhang Z, Ma R, Xu Y, Chi L, Li Y, Mu G, Zhu X. Investigation of the Structure and Allergic Potential of Whey Protein by Both Heating Sterilization and Simulation with Molecular Dynamics. Foods 2022; 11:foods11244050. [PMID: 36553793 PMCID: PMC9778632 DOI: 10.3390/foods11244050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
As the main allergens in milk, whey proteins are heat-sensitive proteins and are widespread in dairy products and items in which milk proteins are involved as food additives. The present work sought to investigate the effect of heating sterilization on the allergenicity of α-lactalbumin (α-LA) and β-lactoglobulin (β-LG), the main composite and allergen in whey protein isolate (WPI), by combining molecular dynamics with experimental techniques for detecting the spatial structure and IgE binding capacity. The structure of WPI was basically destroyed at heat sterilization conditions of 95 °C for 5 min and 65 °C for 30 min by SDS-PAGE analysis and spectroscopic analysis. In addition, α-lactalbumin (α-LA) may be more sensitive to temperature, resulting in exposure to allergic epitopes and increasing the allergic potential, while the binding capacity of β-lactoglobulin (β-LG) to IgE was reduced under 65 °C for 30 min. By the radius of gyration (Rg) and root-mean-square deviation (RMSD) plots calculated in molecular dynamics simulations, α-LA was less structurally stable at 368 K, while β-LG remained stable at higher temperatures, indicating that α-LA was more thermally sensitive. In addition, we observed that the regions significantly affected by temperatures were associated with the capacity of allergic epitopes (α-LA 80-101 and β-LG 82-93, 105-121) to bind IgE through root-mean-standard fluctuation (RMSF) plots, which may influence the two major allergens. We inferred that these regions are susceptible to structural changes after sterilization, thus affecting the allergenicity of allergens.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ruida Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yunpeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Chi
- Dalian Women and Children Medical Center, Dalian 116012, China
| | - Yue Li
- Dalian Women and Children Medical Center, Dalian 116012, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Abdallah M, Azevedo-Scudeller L, Hiolle M, Lesur C, Baniel A, Delaplace G. Review on mechanisms leading to fouling and stability issues related to heat treatment of casein-based RTD beverages. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Impact of variation in calcium level on the technofunctional properties of milk protein concentrate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
McSweeney DJ, Aydogdu T, Hailu Y, O’Mahony JA, McCarthy NA. Heat treatment of liquid ultrafiltration concentrate influences the physical and functional properties of milk protein concentrate powders. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Khalesi M, FitzGerald RJ. Impact of total calcium in milk protein concentrate on its interaction with the aqueous phase. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
PRESTES AA, HELM CV, ESMERINO EA, SILVA R, PRUDENCIO ES. Conventional and alternative concentration processes in milk manufacturing: a comparative study on dairy properties. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.08822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Erick Almeida ESMERINO
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Brasil; Universidade Federal Rural do Rio de Janeiro, Brasil
| | - Ramon SILVA
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Brasil
| | | |
Collapse
|
11
|
Zhang L, Zhou R, Zhang J, Zhou P. Heat-induced denaturation and bioactivity changes of whey proteins. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Khalesi M, FitzGerald RJ. Physicochemical properties and water interactions of milk protein concentrate with two different levels of undenatured whey protein. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Anema SG. Heat-induced changes in caseins and casein micelles, including interactions with denatured whey proteins. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105136] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Cui Q, Sun Y, Zhou Z, Cheng J, Guo M. Effects of Enzymatic Hydrolysis on Physicochemical Properties and Solubility and Bitterness of Milk Protein Hydrolysates. Foods 2021; 10:foods10102462. [PMID: 34681510 PMCID: PMC8535599 DOI: 10.3390/foods10102462] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023] Open
Abstract
Milk protein concentrate (MPC) is a high-protein dairy product. It is underutilized due to its poor solubility compared with other milk protein products. This study aimed to investigate the effect of enzymatic hydrolysis on the physicochemical properties and solubility of MPC. Results showed that Alcalase hydrolysates possessed a higher degree of hydrolysis (DH) than Protamex and Flavourzyme hydrolysates. Similar results could be obtained using sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the hydrolysate of Alcalase was less than 10 kDa. Changes to the molecular weight thereby led to a modification in the fluorescence intensity, Fourier-transform infrared spectrometry, and ultraviolet absorption. The solubility of all hydrolysates was significantly increased (p < 0.05). Correlation analysis showed a positive correlation between solubility, DH, and bitterness; the correlation coefficients were 0.81 for DH and 0.61 for bitterness. Electronic tongue analysis showed that the bitterness of Alcalase hydrolysates was the highest, while the values for Protamex hydrolysates were the lowest.
Collapse
Affiliation(s)
- Qiang Cui
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (Q.C.); (Y.S.); (Z.Z.); (J.C.)
| | - Yuxue Sun
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (Q.C.); (Y.S.); (Z.Z.); (J.C.)
| | - Zengjia Zhou
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (Q.C.); (Y.S.); (Z.Z.); (J.C.)
| | - Jianjun Cheng
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (Q.C.); (Y.S.); (Z.Z.); (J.C.)
| | - Mingruo Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (Q.C.); (Y.S.); (Z.Z.); (J.C.)
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|