1
|
Hares MF, Griffiths BE, Barningham L, Vamos EE, Gregory R, Duncan JS, Oikonomou G, Stewart CJ, Coombes JL. Progression of the faecal microbiome in preweaning dairy calves that develop cryptosporidiosis. Anim Microbiome 2025; 7:3. [PMID: 39762941 PMCID: PMC11706078 DOI: 10.1186/s42523-024-00352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cryptosporidiosis is a diarrheal disease that commonly affects calves under 6 weeks old. The causative agent, Cryptosporidium parvum, has been associated with the abundance of specific taxa in the faecal microbiome during active infection. However, the long-term impact of these microbiome shifts, and potential effects on calf growth and health have not yet been explored in depth. METHODS Three hundred and forty-six (346) calves from three dairy farms had one faecal swab collected during the first week of life (W1). Thereafter, sampled calves were monitored for diarrhoeal disease and those that suffered a diarrhoea event were tested for C. parvum by lateral flow testing (LFT). Calves that experienced diarrhoea and tested positive for C. parvum by LFT were assigned to the Cryptosporidium-positive (Cp+) group (n = 32). Matched healthy (H) controls with no history of diarrhoea were selected from the remaining cohort (n = 33). The selected subset of calves (n = 65) was observed until weaning, collecting a faecal swab, at approximately Week 5 (W5) and Week 10 (W10) after birth, resulting in a total of 191 samples (W1; n = 65, W5; n = 64, W10; n = 62). 16S rRNA gene amplicon sequencing was performed on all extracted samples. RESULTS Analysis of the longitudinal microbiome showed significant changes in the microbial diversity and composition across all three time-points. Whilst Firmicutes were elevated in the Cp+ group at W5 compared to the H group, no other significant differences were detected between H and Cp+ groups. Whilst the core microbiota showed some taxa were exclusive to each group, the role of these taxa in health and disease has yet to be determined. Antibiotics were also found to have an impact on the relative abundance of some taxa. Though healthy calves received a significantly higher body condition score than Cp+ calves at W5, the difference did not reach significance at W10, suggesting that Cp+ calves may catch up to their healthy counterparts once the infection has resolved. CONCLUSIONS The findings of this study illustrated the changes in the microbial diversity and composition during the preweaning period in dairy calves. The results also indicated that the faecal microbiome is not predictive of cryptosporidiosis and implied that cryptosporidiosis doesn't cause long-term gut dysbiosis. This study furthered our understanding of the parasite-microbiome relationship and its impact on the bovine host.
Collapse
Affiliation(s)
- M F Hares
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK.
| | - B E Griffiths
- Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - L Barningham
- Centre for Genomic Research, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - E E Vamos
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - R Gregory
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - J S Duncan
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, iC2 Liverpool Science Park, Liverpool, L3 5RF, UK
| | - G Oikonomou
- Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - C J Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE2 4HH, UK
| | - J L Coombes
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, UK.
| |
Collapse
|
2
|
Su M, She Y, Deng M, Guo Y, Li Y, Liu G, Sun B, Liu D. Effect of Capsaicin Addition on Antioxidant Capacity, Immune Performance and Upper Respiratory Microbiota in Nursing Calves. Microorganisms 2023; 11:1903. [PMID: 37630463 PMCID: PMC10458815 DOI: 10.3390/microorganisms11081903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Capsaicin (CAP) has various biological activities; it has antibacterial, anti-inflammatory and antioxidant properties, and stimulates intestinal development. The aim of this study was to investigate the effect of CAP on the health of nursing calves under group housing conditions. Twenty-four newborn Holstein calves were randomly assigned to three treatment groups of eight calves each. The milk replacer was supplemented with 0, 0.15 or 0.3 mL/d of CAP in each of the three treatment groups. Following a one-month clinical trial of individual-pen housing, an extended one-month trial of group housing was conducted. At the end of the trial, serum samples, rectal fecal samples and upper respiratory swab samples were collected to determine the effect of CAP addition on serum parameters, fecal fermentation parameters and upper respiratory microbiota of calves under group housing conditions. The results showed that the addition of high doses of CAP decreased calf respiratory scores (p < 0.05), increased serum glutathione peroxidase, superoxide dismutase, immunoglobulin A, immunoglobulin G, immunoglobulin M and interleukin-10 concentration (p < 0.05), and decreased malondialdehyde, amyloid A and haptoglobin concentration (p < 0.05). Moreover, high doses of CAP increased the rectal fecal concentration of total short-chain fatty acids, acetate and butyric acid (p < 0.05). In addition, CAP regulated the upper respiratory tract microbiota, with high doses of CAP reducing Mycoplasma abundance (p < 0.05), two doses of CAP reducing Corynebacterium abundance (p < 0.05) and a tendency to reduce Staphylococcus abundance (p = 0.06). Thus, CAP can improve calf antioxidant capacity, immune capacity and reduce inflammatory factors, stress proteins as well as improve gut fermentation and upper respiratory microbiota under group housing conditions, which is beneficial for healthy calf growth.
Collapse
Affiliation(s)
- Minqiang Su
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhang She
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi 832000, China
| |
Collapse
|
3
|
Tomazi ACCH, Tomazi T, Bringhenti L, Vinhal APA, Rodrigues MX, Bilby TR, Huson HJ, Bicalho RC. Treatment with 2 commercial antibiotics reduced clinical and systemic signs of pneumonia and the abundance of pathogenic bacteria in the upper respiratory tract of preweaning dairy calves. J Dairy Sci 2023; 106:2750-2771. [PMID: 36797182 DOI: 10.3168/jds.2022-22451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 02/16/2023]
Abstract
The aim of this study was to evaluate the effect of therapeutically administered tildipirosin or florfenicol + flunixin meglumine for the treatment of bovine respiratory disease (BRD) accompanied by fever in calves before weaning compared with diseased and untreated animals. As specific objectives, we evaluated the composition of the bacterial microbiota of the upper respiratory tract (URT) and blood and health parameters of the animals. Preweaning Holstein female calves diagnosed with naturally acquired pneumonia were randomly assigned to one of the following experimental groups on the day of diagnosis (d 0): (1) TLD (n = 36): single subcutaneous injection with 4 mg/kg tildipirosin; (2) FLF (n = 33): single subcutaneous injection with an antimicrobial (40 mg/kg florfenicol) combined with a nonsteroidal anti-inflammatory drug (2.2 mg/kg flunixin meglumine); and (3) NEG (n = 35): no treatment within the first 5 d following enrollment. The NEG treatment group was closely monitored for 5 d, and calves were removed from the study following a standardized late treatment protocol, when necessary, to minimize health concerns. Healthy untreated calves (CTR; n = 31) were also selected for the study and used as controls. Blood samples used for biochemical analysis and nasopharyngeal swabs used for evaluation of URT microbiota were collected daily from d 0 until d 5 and then weekly until weaning. Next-generation sequencing of the 16S rRNA gene was used to assess the URT microbiota at the phylum and genus levels. Clinical signs associated with pneumonia and otitis media were assessed daily, as was the need for antibiotic interventions. Calves in the TLD and FLF groups had faster recovery from fever within the first 5 d after enrollment. In addition, antibiotic-treated calves reached the same serum haptoglobin levels as healthy calves on d 2 after diagnosis, whereas calves in the NEG group had higher haptoglobin levels than the CTR group until at least d 5 after BRD diagnosis. Calves in the TLD and FLF groups had a lower risk of treatment for pneumonia (FLF = 22.8%; TLD = 27.7%) from d 5 to weaning than calves in the NEG group (54.7%). Furthermore, FLF treatment had a significantly lower risk of nasal discharge, otitis media, and treatment failure compared with the NEG group, but did not differ from the TLD group. Differences in the composition of the URT microbiota were found between groups, and the genus Mycoplasma was the most abundant in samples collected from the URT of calves with and without pneumonia. Both drugs were effective in reducing the mean relative abundance (MRA) of important genera associated with pneumonia (Mannheimia and Pasteurella), although an increase in Mycoplasma MRA was observed for tildipirosin-treated calves. In conclusion, both drugs were effective in reducing the inflammatory signs of pneumonia and the need for antimicrobial treatment after enrollment compared with no treatment. In addition, both TLD and FLF were effective in reducing the MRA of important bacterial genera associated with pneumonia; however, TLD treatment was associated with increased Mycoplasma MRA compared with healthy and untreated calves.
Collapse
Affiliation(s)
- A C C H Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - T Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; Merck Animal Health, Madison, NJ 07940.
| | - L Bringhenti
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; FERA Animal Health LLC, College Station, TX 77845
| | - A P A Vinhal
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - M X Rodrigues
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; FERA Animal Health LLC, College Station, TX 77845
| | - T R Bilby
- Merck Animal Health, Madison, NJ 07940
| | - H J Huson
- Department of Animal Sciences, Cornell University, Ithaca, NY 14853
| | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853; FERA Animal Health LLC, College Station, TX 77845
| |
Collapse
|
4
|
Cowick CA, Russ BP, Bales AR, Nanduri B, Meyer F. Mannheimia haemolytica Negatively Affects Bovine Herpesvirus Type 1.1 Replication Capacity In Vitro. Microorganisms 2022; 10:microorganisms10112158. [PMID: 36363750 PMCID: PMC9697469 DOI: 10.3390/microorganisms10112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bovine Respiratory Disease (BRD) is a multifactorial condition affecting cattle worldwide resulting in high rates of morbidity and mortality. The disease can be triggered by Bovine Herpesvirus-1 (BoHV-1) infection, stress, and the subsequent proliferation and lung colonization by commensal bacteria such as Mannheimia haemolytica, ultimately inducing severe pneumonic inflammation. Due to its polymicrobial nature, the study of BRD microbes requires co-infection models. While several past studies have mostly focused on the effects of co-infection on host gene expression, we focused on the relationship between BRD pathogens during co-infection, specifically on M. haemolytica’s effect on BoHV-1 replication. This study shows that M. haemolytica negatively impacts BoHV-1 replication in a dose-dependent manner in different in vitro models. The negative effect was observed at very low bacterial doses while increasing the viral dose counteracted this effect. Viral suppression was also dependent on the time at which each microbe was introduced to the cell culture. While acidification of the culture medium did not grossly affect cell viability, it significantly inhibited viral replication. We conclude that M. haemolytica and BoHV-1 interaction is dose and time-sensitive, wherein M. haemolytica proliferation induces significant viral suppression when the viral replication program is not fully established.
Collapse
Affiliation(s)
- Caitlyn A. Cowick
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS 39762, USA
| | - Brynnan P. Russ
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS 39762, USA
| | - Anna R. Bales
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS 39762, USA
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Florencia Meyer
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS 39762, USA
- Correspondence: ; Tel.: +1-(662)-325-2640; Fax: +1-(662)-325-8955
| |
Collapse
|
5
|
Cummings DB, Meyer NF, Step DL. Bovine Respiratory Disease Considerations in Young Dairy Calves. Vet Clin North Am Food Anim Pract 2022; 38:93-105. [PMID: 35219488 DOI: 10.1016/j.cvfa.2021.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Raising young dairy calves presents many challenges for producers and veterinarians including losses attributable to BRD. This article will discuss several key concepts for practitioners to consider when applying evidence-based medicine for the control and treatment of BRD in young dairy calves. The authors review BRD complex, provide considerations for diagnostic approaches, and discuss research associated with the control and treatment of BRD.
Collapse
Affiliation(s)
- Daniel B Cummings
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd., Duluth, GA, 30096.
| | - Nathan F Meyer
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd., Duluth, GA, 30096; Affiliate Faculty, Department of Clinical Sciences, Colorado State University, 1601 Campus Delivery, Fort Collins, CO, 80523
| | - Douglas L Step
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd., Duluth, GA, 30096
| |
Collapse
|
6
|
Xiao J, Chen T, Alugongo GM, Khan MZ, Li T, Ma J, Liu S, Wang W, Wang Y, Li S, Cao Z. Effect of the Length of Oat Hay on Growth Performance, Health Status, Behavior Parameters and Rumen Fermentation of Holstein Female Calves. Metabolites 2021; 11:890. [PMID: 34940648 PMCID: PMC8703666 DOI: 10.3390/metabo11120890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the effect of the length of oat hay on the performance, health, behavior, and rumen fermentation of dairy calves. For this purpose, two hundred and ten healthy two-day-old Holstein dairy calves were randomly allocated into three groups: basic diet (calf starter) without hay (CON), or a basic diet with oat hay at either long (OL: 10-12 cm) or short (OS: 3-5 cm) length cut. The basic diet was fed from day 4, while the hay was offered from day 14. All calves were weaned at day 56 and remained in their individual hutches till the end of the trial (day 70). Calf starter intake and fecal scores were recorded daily. Bodyweight, body size, and rumen fluid samples were collected biweekly before weaning and weekly after weaning. Overall, providing oat hay (OS and OL) in the diet increased the body weight, starter intake, and average daily gain compared to the CON group. Similarly, feeding oat hay improved rumen fermentation. More specifically, hay enhanced the rumen pH and changed the rumen fermentation type. Hay fed calves spent more time on rumination but less time performing abnormal behaviors compared to control. As it can be concluded, feeding oat hay to calves enhances the growth performance, rumen fermentation, and normal calf behaviors, implying improved animal welfare irrespective of the hay length.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhijun Cao
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.X.); (T.C.); (G.M.A.); (M.Z.K.); (T.L.); (J.M.); (S.L.); (W.W.); (Y.W.); (S.L.)
| |
Collapse
|
7
|
Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota. Animals (Basel) 2021; 11:ani11113280. [PMID: 34828011 PMCID: PMC8614244 DOI: 10.3390/ani11113280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are major disruptors of the gastrointestinal microbiota, depleting bacterial species beneficial for the host health and favoring the emergence of potential pathogens. Furthermore, the intestine is a reactor of antibiotic resistance emergence, and the presence of antibiotics exacerbates the selection of resistant bacteria that can disseminate in the environment and propagate to further hosts. We reviewed studies analyzing the effect of antibiotics on the intestinal microbiota and antibiotic resistance conducted on animals, focusing on the main food-producing and companion animals. Irrespective of antibiotic classes and animal hosts, therapeutic dosage decreased species diversity and richness favoring the bloom of potential enteropathogens and the selection of antibiotic resistance. These negative effects of antibiotic therapies seem ineluctable but often were mitigated when an antibiotic was administered by parenteral route. Sub-therapeutic dosages caused the augmentation of taxa involved in sugar metabolism, suggesting a link with weight gain. This result should not be interpreted positively, considering that parallel information on antibiotic resistance selection was rarely reported and selection of antibiotic resistance is known to occur also at low antibiotic concentration. However, studies on the effect of antibiotics as growth promoters put the basis for understanding the gut microbiota composition and function in this situation. This knowledge could inspire alternative strategies to antibiotics, such as probiotics, for improving animal performance. This review encompasses the analysis of the main animal hosts and all antibiotic classes, and highlights the future challenges and gaps of knowledge that should be filled. Further studies are necessary for elucidating pharmacodynamics in animals in order to improve therapy duration, antibiotic dosages, and administration routes for mitigating negative effects of antibiotic therapies. Furthermore, this review highlights that studies on aminoglycosides are almost inexistent, and they should be increased, considering that aminoglycosides are the first most commonly used antibiotic family in companion animals. Harmonization of experimental procedures is necessary in this research field. In fact, current studies are based on different experimental set-up varying for antibiotic dosage, regimen, administration, and downstream microbiota analysis. In the future, shotgun metagenomics coupled with long-reads sequencing should become a standard experimental approach enabling to gather comprehensive knowledge on GIM in terms of composition and taxonomic functions, and of ARGs. Decorticating GIM in animals will unveil revolutionary strategies for medication and improvement of animals' health status, with positive consequences on global health.
Collapse
|