1
|
Li T, Xie Y, Yuan J, Wu Z, Yang A, Li X, Chen H. Cleavage specificity of the pitcher fluid proteases from Nepenthes × miranda and their reduction on allergenicity of cow's milk proteins. Food Chem 2025; 478:143714. [PMID: 40058260 DOI: 10.1016/j.foodchem.2025.143714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/14/2025] [Accepted: 03/01/2025] [Indexed: 04/06/2025]
Abstract
In this study, the pitcher fluid proteases from Nepenthes × miranda were researched as a novel protease resource due to their cleavage specificity and ability to reduce the allergenicity of cow's milk proteins. We found that these proteases are particularly efficient at the P1 position with K, L, V, S, I, and R residues and exhibit similar preferences to amino acid residues at the P1' position. It is concluded that P1 is responsible for specificity of pitcher fluid proteases, while P1' tends to show their broadness when hydrolyzation happens. And consistent with the destroying of epitopes, in vivo assays also demonstrated a reduction in allergenicity from both whey protein concentrates and caseins, although the effect on caseins paled to whey protein concentrates. Therefore, these proteases hold significant potential and warrant further development for applications addressing cow's milk protein allergies.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China.
| | - Yanhai Xie
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China.
| | - Juanli Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China; School of Pharmacy, Nanchang University, Nanchang 330047, China.
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China.
| | - Anshu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China.
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Gu H, Liang L, Wei Y, Wang J, Zhao M, Hu J, Ma W, Fan D, Luan Y, Shi J, Xu L, Zhang X. Identification of a novel calcium-binding peptide from Lentinula edodes and structure, stability and absorption evaluation of its calcium chelate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40254539 DOI: 10.1002/jsfa.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/21/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Peptide-Ca chelates are promising calcium supplements. Lentinula edodes (LE) is rich in amino acids with calcium-binding ability, and so it is hypothesized that it can be used to develop peptide-Ca chelates. Additionally, aiming to save time, molecular docking, using Ca2+ or calcium sensing receptor (CaSR) (a regulator of calcium homeostasis) as target, has been applied in the screening of calcium-binding peptides (CBP). In the present study, LE CBP was separated and identified by traditional methods. The optimal CBP was further screened through docking. Then, the structure, stability and calcium absorption of LEVEIHA-Ca were evaluated. RESULTS The LE protein hydrolysate was sequentially purified using ultrafiltration followed by anion-exchange chromatography; two subfractions (F33 and F34) of LE CBP were obtained, both of which exhibited higher calcium binding rate. Eight potential CBP in the two subfractions were identified, and leucine-glutamic acid-valine-glutamic acid-histidine-isoleucine-alanine (LEVEHIA), showing the highest affinity with Ca2+ and CaSR, was selected by docking assay. The prepared chelate, LEVEIHA-Ca, formed more compact and larger micelles (1125 ± 2 nm) with lower zeta potential (-20.1 ± 0.3 mv) compared to LEVEHIA. Functional groups including COO-, NH, CN and CO were involved in the chelation between LEVEIHA and Ca2+. LEVEIHA-Ca was tolerant to high temperature, and most calcium (87 ± 4%) was retained after gastrointestinal digestion. LEVEIHA-Ca exhibited better promoting effects on calcium absorption than casein phosphopeptides-Ca. CONCLUSION LE can be used to prepare peptide-chelate with high calcium absorption. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haofeng Gu
- School of Modern Agriculture & Biotechnology, AnKang University, Ankang, China
| | - Lei Liang
- School of Modern Agriculture & Biotechnology, AnKang University, Ankang, China
| | - Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahao Wang
- School of Modern Agriculture & Biotechnology, AnKang University, Ankang, China
| | - Miao Zhao
- School of Modern Agriculture & Biotechnology, AnKang University, Ankang, China
| | - Jiaxue Hu
- School of Modern Agriculture & Biotechnology, AnKang University, Ankang, China
| | - Wanning Ma
- School of Modern Agriculture & Biotechnology, AnKang University, Ankang, China
| | - Dan Fan
- School of Modern Agriculture & Biotechnology, AnKang University, Ankang, China
| | - Yunbin Luan
- School of Modern Agriculture & Biotechnology, AnKang University, Ankang, China
| | - Jiaxin Shi
- School of Modern Agriculture & Biotechnology, AnKang University, Ankang, China
| | - Lanyun Xu
- School of Modern Agriculture & Biotechnology, AnKang University, Ankang, China
| | - Xinyue Zhang
- School of Modern Agriculture & Biotechnology, AnKang University, Ankang, China
| |
Collapse
|
3
|
Lv L, Wei F, Liu L, Song F, Hou X, Yang Q. Study on the Allergenicity of Tropomyosin from Different Aquatic Products Based on Conformational and Linear Epitopes Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4936-4946. [PMID: 39948035 DOI: 10.1021/acs.jafc.4c11853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Tropomyosin (TM) is a major allergen in aquatic products. The aim of this study was to analyze the allergenicity of TM from different aquatic products based on conformational and linear epitopes. Structural and allergenicity analyses of TM were conducted using intrinsic fluorescence, UV absorption spectra, circular dichroism, and animal experiments. Epitope mapping was performed through bioinformatics software and a one-bead, one-compound (OBOC) peptide library screening approach. The results showed that the structures of TMs from different aquatic products are similar. Cross-reactivity was observed among TMs from different aquatic products, with fish-TM showing lower cross-reactivity compared with other TMs. Additionally, 13, 14, 11, 13, and 12 linear epitopes, along with 2, 2, 1, 2, and 3 conformational epitopes, were identified for shrimp-TM, crab-TM, fish-TM, oyster-TM, and clam-TM, respectively. Overall, these findings provide a basis for elucidating the epitope localization and allergenicity relationship of TMs from different aquatic products.
Collapse
Affiliation(s)
- Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangling Wei
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lu Liu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Futeng Song
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiudan Hou
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Wu MX, Huan F, Gao S, Ni LN, Gu Y, Han TJ, Liu M, Lai D, Liu QM, Liu GM. Preparation of the Hypoallergenic Enzymatic Hydrolyzate of Cra a 4 with the Potential to Induce Immune Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4299-4308. [PMID: 39909734 DOI: 10.1021/acs.jafc.4c12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Sarcoplasmic calcium-binding protein identified in Crassostrea angulata (Cra a 4), is a stable allergen; the methods to reduce its allergenicity are still limited. The present study aimed to develop the hypoallergenic enzymatic hydrolyzate of Cra a 4 (ECra a 4) by enzymolysis. After screening of proteases by bioinformatics and optimization of enzymolysis conditions, ECra a 4 was obtained by enzymolysis with Trypsin. Further, ECra a 4 was used to stimulate splenocytes from Cra a 4-sensitized mice, with findings that ECra a 4 could stimulate CD4+ T-cell proliferation, inhibit IL-4 secretion, and promote TGF-β secretion. Spectroscopy analysis revealed that enzymolysis destroyed the structure of Cra a 4, which affected its allergenicity. Peptidomic analysis revealed that enzymolysis destroyed the B-cell epitopes of Cra a 4 while retaining its T-cell epitopes. Overall, ECra a 4 with hypoallergenicity and T-cell stimulating ability can be used as an immune tolerance product for further study.
Collapse
Affiliation(s)
- Ming-Xuan Wu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Shuai Gao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Ling-Na Ni
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yi Gu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Tian-Jiao Han
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| | - Dong Lai
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| |
Collapse
|
5
|
Zeng J, Zou J, Yi H, He J, Zhao J, Zhu S, Li B, Dudu OE, Zhang L, Gong P. Localization and antigenicity reduction of immunodominant conformational IgE epitopes on αs1-casein. Int J Biol Macromol 2025; 285:138278. [PMID: 39631588 DOI: 10.1016/j.ijbiomac.2024.138278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
αs1-Casein (αs1-CN) is the major allergen in cow milk; however, the understanding of its conformational epitopes remains limited due to the absence of a well-defined three-dimensional structure, which has impeded efforts to effectively reduce its antigenicity. This study employed molecular dynamics simulations (MD), ELISA, cell assays and peptidomes analysis to investigate the critical conformational epitopes of αs1-Casein. MD and immunological analyses identified a dominant conformational epitope encompassing the regions S55-E75 & Y154-T174 & F179-W199, which exhibited strong binding affinity to IgE and triggered the releasing of β-hexosaminidase, histamine and IL-6 in KU812 cells, thereby inducing allergic responses. Notably, the segments Y154-T174 and F179-W199 were particularly impactful. Furthermore, the presence of helical structures within the epitopes enhanced their binding to IgE to a certain extent. Peptidomes analysis further revealed that papain efficiently disrupted the key epitope (Y154-T174) by selectively cleaving the hotspot amino acid residues (Y154 and Y165), thereby significantly reducing the antigenicity of αs1-CN, decreasing IgE and IgG binding to 7.28 % and 10.39 %, respectively. These findings enhance the understanding of αs1-CN's antigenic epitopes and provides a theoretical and technical foundation for the targeted reduction of its antigenicity.
Collapse
Affiliation(s)
- Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; School of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China
| | - Junzhe Zou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Jinlong Zhao
- School of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China
| | - Shiye Zhu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | | | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
6
|
Li D, He X, Li F, Yang Y, Liu M, Liu Q, Luo L, Chen G, Liu G. Effect of transglutaminase-catalyzed glycosylation on the allergenicity of tropomyosin in the Perna viridis food matrix. Food Funct 2024; 15:9136-9148. [PMID: 39157921 DOI: 10.1039/d4fo02305f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Food allergy is one of the hot issues in the field of food safety, and there have been a lot of concerns on how to reduce the allergenicity of food allergens. Food processing can change the allergenicity of allergens in the food matrix. In this study, ten IgE linear epitopes of the major allergen tropomyosin (TM) in Perna viridis were identified by bioinformatics prediction and serological experiments. The transglutaminase-catalyzed glycosylation modification sites glutamine, lysine and arginine were highly represented in the IgE linear epitopes of TM. The Perna viridis food matrix was treated with transglutaminase-catalyzed glycosylation. This reaction changed the secondary structure of protein in the food matrix, increased the content of β-sheets and decreased the content of β-turns. The intensity of intrinsic fluorescence and surface hydrophobicity were reduced. The IgE-binding activity of TM in the food matrix was reduced by modifying seven amino acid residues on six IgE linear epitopes. Transglutaminase-catalyzed glycosylation products decreased allergic symptoms in allergic mice, reduced the proportion of CD4+IL-4+ Th2 cells, and increased the proportion of CD4+IFN-γ+ Th1 cells and Treg cells. Mouse serum levels of IgE and IgG1 antibodies in the food matrix and TM were reduced. Therefore, this study provided a theoretical basis for the development of hypoallergenic Perna viridis products.
Collapse
Affiliation(s)
- Dongxiao Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Xinrong He
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Fajie Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361000, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| | - Qingmei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Lianzhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Guixia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| |
Collapse
|
7
|
Wang S, Lin S, Liu K, Jia S, Liu Q, Sun N. Investigation into Potential Allergenicity and Digestion-Resistant Linear Epitopes of Fish Skin Gelatin in Cell-Cultured Meat Scaffolds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14922-14940. [PMID: 38885638 DOI: 10.1021/acs.jafc.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
As a key component of cell-cultured fish, fish skin gelatin (FSG)-based cell scaffold provides support structures for cell growth, proliferation, and differentiation. However, there are potential allergenicity risks contained in FSG-based scaffolds. In this study, 3D edible scaffolds were prepared by phase separation method and showed a contact angle of less than 90°, which indicated that the scaffolds were favorable for cell adhesion. Besides, the swelling ratio was greater than 200%, implying a great potential to support cell growth. The sequence homology analysis indicated that FSG was prone to cross-reaction with collagen analogues. Additionally, a food allergic model was constructed and represented that mice gavaged with cod FSG exhibited higher levels of specific antibodies, mast cell degranulation, vascular permeability, and intestinal barrier impairment than those gavaged with pangasius and tilapias FSG. Its higher allergenicity might be attributed to a higher number of digestion-resistant linear epitopes. Moreover, the higher hydrolysis degree linked to the exposure of linear epitopes to promote the combination with IgE, which was also responsible for maintaining the higher allergenicity of cod FSG. This study clarifies allergenic risks in cell-cultured fish and further study will focus on the allergenicity reduction of FSG-based cell scaffolds.
Collapse
Affiliation(s)
- Shuya Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Kexin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Shuqi Jia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qiaozhen Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
8
|
Meng X, Tu ZC, Wen PW, Hu YM, Wang H. Investigating the Mechanism of Microwave-Assisted Enzymolysis Synergized with Magnetic Bead Adsorption for Reducing Ovalbumin Allergenicity through Biomass Spectrometry Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38833376 DOI: 10.1021/acs.jafc.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This study found that, after microwave treatment at 560 W for 30 s, alkaline protease enzymolysis significantly reduced the allergenicity of ovalbumin (OVA). Furthermore, specific adsorption of allergenic anti-enzyme hydrolyzed peptides in the enzymatic products by immunoglobulin G (IgG) bound to magnetic bead further decreased the allergenicity of OVA. The results indicated that microwave treatment disrupts the structure of OVA, increasing the accessibility of OVA to the alkaline protease. A comparison between 17 IgG-binding epitopes identified through high-performance liquid chromatography-higher energy collisional dissociation-tandem mass spectrometry and previously reported immunoglobulin E (IgE)-binding epitopes revealed a complete overlap in binding epitopes at amino acids (AA)125-135, AA151-158, AA357-366, and AA373-381. Additionally, partial overlap was observed at positions AA41-59, AA243-252, and AA320-340. Consequently, these binding epitopes were likely pivotal in eliciting the allergic reaction to OVA, warranting specific attention in future studies. In conclusion, microwave-assisted enzymolysis synergized with magnetic bead adsorption provides an effective method to reduce the allergenicity of OVA.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
- Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Ping-Wei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
9
|
Ma J, Tong P, Chen Q, Liu J, Li H, Long F. Covalent conjugation with polyphenol reduced the sensitization of walnut and ameliorated allergy by enhancing intestinal epithelial barrier in mice. Food Chem 2024; 439:138191. [PMID: 38091784 DOI: 10.1016/j.foodchem.2023.138191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
In order to reduce the sensitization of walnut protein (WP), the effects of the interaction between WP and (-)-Epigallocatechin gallate (EGCG), quercetin, trans-ferulic acid, and resveratrol were investigated. Covalent and non-covalent conjugations were compared. The results suggested that covalent conjugation reduced the free amino acid content, sulfhydryl content, and surface hydrophobicity. When compared to non-covalent conjugation, covalent modification showed a lower IgE binding capacity, accompanied by changes in protein conformation. Moreover, animal experiments revealed that there were up-regulation of transforming growth factor-β, T-box expressed in t cells, and forkhead transcription factor Foxp3 mRNA expression, and down-regulation of IL-4, IL-17, GATA binding protein 3 and retinoid-related orphan nuclear receptor γt mRNA expression in the conjugate groups. These results suggested that covalent conjugation of polyphenols, especially EGCG, likely ameliorated allergy by promoting Th1/Th2 and Treg/Th17 balance and alleviating allergy-induced intestinal barrier damage, which might be a support in reducing the allergenicity of WP.
Collapse
Affiliation(s)
- Jing Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Pengyan Tong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiwen Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Huzhong Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
10
|
Wang S, Lin S, Liu K, Liu Y, Liu Q, Sun N. Digestion-Resistant Linear Epitopes as Dominant Contributors to Strong Allergenicity of Tropomyosin in Antarctic Krill ( Euphausia superba). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16739-16751. [PMID: 37897700 DOI: 10.1021/acs.jafc.3c04999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Although tropomyosin has been identified as a major allergen in Antarctic krill, the digestive fate of Antarctic krill tropomyosin and its relationship with allergenicity are unknown. In this study, Antarctic krill tropomyosin was administered to BALB/c mice via both gavage and intraperitoneal injection to explore its sensitizing and eliciting capacity, and its digestion products were analyzed for structural changes and digestion-resistant linear epitopes. Mice gavaged with tropomyosin exhibited lower levels of specific IgE and IgG1, mast cell degranulation, vascular permeability, and anaphylaxis symptoms than those in the intraperitoneal injection group. This may be due to the destruction of macromolecular aggregates, loose expansion of the tertiary structure, complete disappearance of α-helix, and significant changes in molecular force upon the digestion of tropomyosin. Nevertheless, the intragastric administration of Antarctic krill tropomyosin still triggered strong allergic reactions, which was attributed to the existence of seven digestion-resistant linear epitopes (Glu26-His44, Thr111-Arg125, Glu157-Glu164, Glu177-Gly186, Val209-Ile225, Arg244-Arg255, and Val261-Ile270).
Collapse
Affiliation(s)
- Shan Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Kexin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yao Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qiaozhen Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
11
|
He S, Xiong M, Li L, Yan Y, Li J, Feng Z, Li Y, Zhao J, Dong Y, Li X, Chen H, Long C. One-Step Purification of IgE Epitope-Specific Antibody Using Immunomagnetic Beads and Highly Sensitive Detection of Bovine β-Lactoglobulin for the Prediction of Milk Allergenicity in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14068-14078. [PMID: 37679308 DOI: 10.1021/acs.jafc.3c03461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Bovine β-lactoglobulin (BLG) is a common allergen found in milk, and the immunoglobulin E (IgE) epitope plays a crucial role in cow milk allergy. Therefore, targeting the IgE epitope could be useful in accurately detecting BLG and assessing its allergenicity. However, producing an IgE epitope-specific antibody (IgE-EsAb) through traditional methods requires complex and time-consuming procedures. Here, IgE-EsAb was purified from rabbit anti-BLG sera by immunomagnetic beads in one step. Then, a sandwich ELISA (sELISA) based on the IgE-EsAb was developed to detect BLG and predict the potential milk allergenicity in foods. The obtained IgE-EsAb could specifically recognize the target IgE epitope of BLG and exhibited high affinity and specificity. The developed IgE-EsAb-based sELISA demonstrated an ultra-wide linear range of 3.9-1.28 × 105 ng/mL, with a limit of detection of 0.49 ng/mL for BLG. Additionally, the proposed immunoassay showed high specificity and recoveries (91.24-109.61%). The ability of the IgE-EsAb-based sELISA to evaluate the potential milk allergenicity in foods was validated using sera from cow milk allergy patients. These results suggest that immunomagnetic beads are an effective tool for rapidly obtaining the IgE-EsAb, and our proposed sELISA could be a reliable and user-friendly method for monitoring trace amounts of BLG and predicting the potential milk allergenicity of food samples.
Collapse
Affiliation(s)
- Shengfa He
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Meng Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Liming Li
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yan Yan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jinyu Li
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ziling Feng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Yang Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jiangqiang Zhao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Yaping Dong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Caiyun Long
- Ganzhou Center for Disease Control and Prevention, Ganzhou 341000, China
| |
Collapse
|
12
|
Pereira RN, Rodrigues RM, Madalena DA, Vicente A. Tackling food allergens-The role of food processing on proteins' allergenicity. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:317-351. [PMID: 37722777 DOI: 10.1016/bs.afnr.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
This chapter examines how innovative and emerging food processing technologies, such as those that use heat, electricity, electromagnetic waves, and pressure, can modify protein denaturation, aggregation, and intermolecular interactions pathways, which can result in varying immunoreactive responses. It emphasizes the need to understand how these processing methods affect the protein epitopes recognized by antibodies and their respective priming pathways, especially during the sensitization stage that precedes an allergic response. Although traditional processing methods have been investigated, the impact of novel technologies on food protein allergenicity remains largely unknown. The chapter specifically focuses on milk proteins, which have clinical significance and are associated with cow's milk allergy, one of the most common food allergies in young children. Additionally, it examines potential scientific advancements that novel processing methods may bring to this field.
Collapse
Affiliation(s)
- Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniel A Madalena
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - António Vicente
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
13
|
Lajnaf R, Feki S, Ben Ameur S, Attia H, Kammoun T, Ayadi MA, Masmoudi H. Recent advances in selective allergies to mammalian milk proteins not associated with Cow's Milk Proteins Allergy. Food Chem Toxicol 2023; 178:113929. [PMID: 37406758 DOI: 10.1016/j.fct.2023.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Cow's milk proteins allergy (CMA) is an atypical immune system response to cow's milk and dairy products. It's one of the most common food allergies in children affecting 8% of the total pediatric population pediatric population. This comprehensive review examines recent studies in CMA, especially regarding mammalian milk allergies such as goat's, sheep's, buffalo's, camel's, mare's and donkey's milk allergies in order to increase awareness of these selective allergies and to reduce allergy risks for those who have them. The consumption of other mammalian milk types is not recommended because of the significant homology between milk proteins from cow, sheep, goat and buffalo resulting in clinical cross-reactivity. However, camel's, mare's or donkey's milk may be tolerated by some allergic patients. Selective mammalian milk allergies are unusual and rare disorders characterized by severe symptoms including angio-oedema, urticaria, respiratory manifestations and anaphylaxis. Based on the reported allergic cases, cheese products including Ricotta, Romano, Pecorino and Mozzarella, are considered as the most common source of allergens especially in goat's, sheep's and buffalo's milk allergies, while the major allergens in donkey's and mare's milk seems to be whey proteins including lysozyme, α-lactalbumin and β-lactogloblin due to the low casein/whey proteins ratio in equine's milk.
Collapse
Affiliation(s)
- Roua Lajnaf
- Alimentary Analysis Unit, National Engineering School of Sfax, BPW 3038, Sfax, Tunisia; Immunology Department, Habib Bourguiba University Hospital, Sfax, Tunisia; Pediatric Department, Hédi Chaker University Hospital, Sfax, Tunisia.
| | - Sawsan Feki
- Immunology Department, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Salma Ben Ameur
- Pediatric Department, Hédi Chaker University Hospital, Sfax, Tunisia
| | - Hamadi Attia
- Alimentary Analysis Unit, National Engineering School of Sfax, BPW 3038, Sfax, Tunisia
| | - Thouraya Kammoun
- Pediatric Department, Hédi Chaker University Hospital, Sfax, Tunisia
| | - Mohamed Ali Ayadi
- Department of Food Technology, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés, 2, Gembloux, B-5030, Belgium
| | - Hatem Masmoudi
- Immunology Department, Habib Bourguiba University Hospital, Sfax, Tunisia
| |
Collapse
|
14
|
Li Y, Ding J, Zhang S, Dong L, Bao Z, Lin S. Pulsed Electric Field-Assisted Alcalase Treatment Reduces the Allergenicity and Eliminates the Antigenic Epitopes of Ovomucoid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3424-3432. [PMID: 36786733 DOI: 10.1021/acs.jafc.2c07824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Physically assisted chemical modifications can effectively reduce the allergenicity of ovomucoid (OVM). However, only a few studies have used pulsed electric field (PEF)-assisted alcalase hydrolysis to reduce the allergenicity of OVM. Herein, we investigated the effect of PEF-assisted alcalase treatment on the spatial conformation, allergenicity, and antigenic epitopes of OVM based on multispectroscopic analyses, bioinformatics, and mass spectrometry. The results showed that PEF-assisted alcalase treatment promoted the hydrolysis of OVM; moreover, the α-helix content and surface hydrophobicity of OVM significantly decreased, which disordered its spatial conformation and weakened its intermolecular interactions. Additionally, enzyme-linked immunosorbent assay (ELISA) results showed that the PEF-assisted alcalase treatment significantly reduced the binding levels of IgE and IgG1, which were 47.66 and 36.41%, respectively. Finally, eight epitopes of OVM were obtained by immunoinformatic tools. Nano-high performance liquid chromatography coupled to tandem mass spectrometry (nano-HPLC MS/MS) results showed that the hydrolysate of OVM and alcalase (HOVM) had nine more peptide-containing epitopes than the hydrolysate of PEF-treated OVM and PEF-treated alcalase (HOVM-PP'), indicating that PEF could promote the elimination of linear epitopes in OVM, thereby reducing OVM allergenicity.
Collapse
Affiliation(s)
- Yinli Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Shuyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Liu Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| |
Collapse
|
15
|
Lajnaf R, Feki S, Ben Ameur S, Attia H, Kammoun T, Ayadi MA, Masmoudi H. Cows' milk alternatives for children with cows' milk protein allergy - Review of health benefits and risks of allergic reaction. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
16
|
Zeng J, Lin K, Zhang X, Zou J, Zhang L, Gong P, Zhao J, Han C, Liu Y, Yi H, Liu T. Insight into the molecular-level details of αs1 casein interactions with IgG: Combining with LC-MS/MS and molecular modelling techniques. Food Chem 2023; 399:133987. [DOI: 10.1016/j.foodchem.2022.133987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
|
17
|
Li H, Zhang S, Xu S, Yang J, Yuan Y, Gao X, Li H, Yu J. Enzymatic hydrolysis of milk protein by complex enzyme mixture of alcalase and neutrase: Kinetic model and hydrolysis control. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Hongbo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Shuhua Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Siyuan Xu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Jingjing Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Yujing Yuan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Xianjun Gao
- Tianjin Tianyi‐U Biotechnology Co., Ltd. No. 88, North Central Road, Hangzhou Street, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| |
Collapse
|
18
|
Feng L, Ye W, Zhang K, Qu D, Liu W, Wu M, Han J. In vitro Digestion Characteristics of Hydrolyzed Infant Formula and Its Effects on the Growth and Development in Mice. Front Nutr 2022; 9:912207. [PMID: 35811942 PMCID: PMC9263559 DOI: 10.3389/fnut.2022.912207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Infant formula, an important food for babies, is convenient and nutritious, and hydrolyzed formulas have attracted much attention due to their non-allergicity. However, it is uncertain whether hydrolyzed formulars cause obesity and other side effects in infants. Herein, three infant formulas, standard (sIF), partially hydrolyzed (pHIF), and extensively hydrolyzed (eHIF), were analyzed in an in vitro gastrointestinal digestion model. With increasing degree of hydrolysis, the protein moleculars, and allergenicity of the proteins decreased and the long-chain polyunsaturated fatty acid content increased. Moreover, the digestion model solutions quickly digested the small fat globules and proteins in the hydrolyzed formula, allowing it to become electrostatically stable sooner. The eHIF-fed mice presented larger body sizes, and exhibited excellent exploratory and spatial memory abilities in the maze test. Based on villus height and crypt depth histological characterizations and amplicon sequencing, eHIF promoted mouse small intestine development and changed the gut microbiota composition, eventually favoring weight gain. The mouse spleen index showed that long-term infant formula consumption might be detrimental to immune system development, and the weight-bearing swimming test showed that eHIF could cause severe physical strength decline. Therefore, long-term consumption of infant formula, especially eHIF, may have both positive and negative effects on mouse growth and development, and our results might shed light on feeding formula to infants.
Collapse
Affiliation(s)
- Lifang Feng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wei Ye
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kuo Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Daofeng Qu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Min Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Ecology and Health Institute, Hangzhou Vocational and Technical College, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- *Correspondence: Jianzhong Han,
| |
Collapse
|
19
|
Alternatives to Cow’s Milk-Based Infant Formulas in the Prevention and Management of Cow’s Milk Allergy. Foods 2022; 11:foods11070926. [PMID: 35407012 PMCID: PMC8997926 DOI: 10.3390/foods11070926] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Cow’s milk-based infant formulas are the most common substitute to mother’s milk in infancy when breastfeeding is impossible or insufficient, as cow’s milk is a globally available source of mammalian proteins with high nutritional value. However, cow’s milk allergy (CMA) is the most prevalent type of food allergy among infants, affecting up to 3.8% of small children. Hypoallergenic infant formulas based on hydrolysed cow’s milk proteins are commercially available for the management of CMA. Yet, there is a growing demand for more options for infant feeding, both in general but especially for the prevention and management of CMA. Milk from other mammalian sources than the cow, such as goat, sheep, camel, donkey, and horse, has received some attention in the last decade due to the different protein composition profile and protein amino acid sequences, resulting in a potentially low cross-reactivity with cow’s milk proteins. Recently, proteins from plant sources, such as potato, lentil, chickpeas, quinoa, in addition to soy and rice, have gained increased interest due to their climate friendly and vegan status as well as potential lower allergenicity. In this review, we provide an overview of current and potential future infant formulas and their relevance in CMA prevention and management.
Collapse
|