1
|
Hayat MA, Ding J, Zhang X, Liu T, Zhang J, Bin Wang H. Enhanced apoptosis in damaged laminar tissue of acute laminitis induced by oligofructose overload in dairy cows. Vet Immunol Immunopathol 2025; 284:110935. [PMID: 40233496 DOI: 10.1016/j.vetimm.2025.110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Dairy cow laminitis leads to massive financial losses and animal health issues in the worldwide dairy sector. Apoptosis may be an important factor in the epidermal attachment failure. This study explored the laminar tissue apoptotic-related gene and protein status with oligofructose (OF)-induced laminitis in dairy cows. Twelve clinically healthy, non-pregnant Chinese Holstein cows were randomly divided into two groups of six cows each: the control group and the oligofructose overload group (OF group), respectively. At 0 h, 17 g/kg BW of OF dissolved in 20 mL/kg BW of warm deionized water was gavaged to the OF dairy cows through a stomach tube, while the control cows were given the same dose of deionized water in the same way. After 72 h, laminar tissue samples in both groups were collected to express genes and proteins. Compared with the control cows, the gene expression of Bcl2 significantly reduced in the OF cows laminar tissue. The gene expression of Bax and P53 significantly enhanced in the laminar tissue of OF cows compared to the control cows. The expression of Bcl2 protein significantly decreased, whereas the expression of Bax and Bif1, caspase3, caspase8, and caspase9/9p proteins significantly increased in the OF cows' laminar tissues than in the control cows. However, the distribution of Bax and P53 proteins significantly enhanced in the OF cows' laminar tissues relative to the control cows. In conclusion, imbalanced gene and protein status may represent the primary cause of the epidermal attachment failure, which confirmed the increased apoptosis in laminar tissue of sick cows.
Collapse
Affiliation(s)
- Muhammad Abid Hayat
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China; Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiafeng Ding
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Xianhao Zhang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China
| | - Tao Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China
| | - Jiantao Zhang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China
| | - Hong Bin Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China.
| |
Collapse
|
2
|
Yu J, Liu C, Wang D, Wan P, Cheng L, Yan X. Integrated microbiome and metabolome analysis reveals altered gut microbial communities and metabolite profiles in dairy cows with subclinical mastitis. BMC Microbiol 2025; 25:115. [PMID: 40033186 PMCID: PMC11877966 DOI: 10.1186/s12866-025-03810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Dairy cow mastitis is a common and prevalent disease arose by various complicated pathogeny, which poses serious threat to the health of cows, safety of dairy product and economic benefits for pastures. Due to the high stealthiness and long incubation period, subclinical mastitis (SM) of cows causes enormous economic losses. Besides the infection by exogenous pathogenic microorganisms, previous studies demonstrated that gastrointestinal microbial dysbiosis is one of the crucial causes for occurrence and development of mastitis based on the theory of entero-mammary axis. Whereas, limited researches have been conducted on potential pathological metabolic mechanisms underlying the relationship between gut microbiota and SM in cows. RESULTS The differences in blood parameters, gut microbiome, plasma and fecal metabolome between healthy and SM cows were compared by performing 16 S rDNA sequencing and non-targeted metabolomic analysis in the current study. The content of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and activity of catalase (CAT), total antioxidant capacity(T-AOC) were significantly decreased, while malondialdehyde (MDA) concentration was dramatically increased in serum of SM cows in comparison with healthy cows. The gut of cows with SM harbored more abundant Cyanobacteria, Proteobacteria, Succinivibrio and Lactobacillus_iners. Moreover, the abundance of Paraprevotella, Coprococcus, Succiniclasticum, Desulfovibrio and Bifidobacterium_pseudolongum were observably reduced in the gut of SM cows. Furthermore, higher abundance of pro-inflammatory metabolites were observed in feces (9(S)-HPODE, 25-hydroxycholesterol, dodecanedioic acid, etc.) and plasma (9-hydroxy-10,12-octadecadienoic acid, 13,14-dihydro PGF1α, 5,6-dehydro arachidonic acid, myristic acid, histamine, etc.) of SM cows. The abundance of certain metabolites with anti-inflammatory and antioxidant properties (mandelic acid, gamma-tocotrienol, deoxycholic acid, etc.) were notably decreased in feces or plasma of cows with SM. CONCLUSIONS The intestinal microbial composition and metabolic profiles of healthy and SM cows were significantly distinct, that were characterized by decreased abundance of intestinal symbiotic bacteria, potential probiotics and anti-inflammatory, antioxidant compounds, along with increased abundance of potential pro-inflammatory bacteria, lipid metabolites, and the occurrence of oxidative stress in cows suffered from SM. The results of this study further enriched our understanding of the correlations between gut microbiota and metabolic profiles and SM, which provided insight into the formulation of management strategies for SM in cows.
Collapse
Affiliation(s)
- Jie Yu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, 430208, China
| | - Chenhui Liu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, 430208, China
| | - Dingfa Wang
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, 430208, China
| | - Pingmin Wan
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, 430208, China
| | - Lei Cheng
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan, 430208, China.
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Gebeyew K, Mi H, Liu Y, Liu Y, Wang B, Feyera T, Zhiliang T, He Z. Differential immunological responses in lamb rumen and colon to alfalfa hay and wheat straw in a concentrate-rich diet: insights into microbe-host interactions. mSystems 2024; 9:e0048324. [PMID: 39287375 PMCID: PMC11494937 DOI: 10.1128/msystems.00483-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
The impact of a concentrate-rich (CR) diet on the gut microbiome and epithelium homeostasis is well documented. However, it has not been systematically studied whether and how host-microbial interaction contributes to the immune homeostasis in the rumen and colon of lambs fed alfalfa hay and wheat straw, alone or combined, in a CR diet. In all, 63 lambs (initial body weight, 16.69 ± 1.50 kg) were randomly allotted to three dietary groups, each consisting of three pens with seven lambs per pen. Over 14 weeks, the lambs were fed diets as follows: 60% concentrate supplemented with either 40% wheat straw (WG), 20% alfalfa hay combined with 20% wheat straw (MG), or 40% alfalfa hay (AG). The present findings showed that lambs in the AG group had greater (P < 0.05) IgG and lower (P = 0.067) tumor necrosis factor-alpha concentrations relative to those in the MG and WG groups. The 16S rRNA analysis highlighted that various bacterial phyla and genera in the rumen and colon preferentially degrade fiber and starch derived from alfalfa hay and wheat straw. The weighted gene co-expression network analysis revealed that the bacterial genera from the Firmicutes are broadly associated with genes involved in various signaling pathways, underscoring the potential role of Firmicutes as key drivers of host-microbial interactions under the present feeding conditions. These findings shed light on the fact that the rumen and colon immune homeostasis is distinctively influenced by diets of alfalfa hay, wheat straw, or their combination in a CR diet. Further studies should examine the prolonged effects of replacing wheat straw with alfalfa hay in a concentrate-rich diet formulated to provide equivalent neutral detergent fiber levels. This could reveal how various forage fibers influence host-microbial interactions and gut health.IMPORTANCEIn contemporary feedlots, a growing trend is to feed animals a concentrate-rich (CR) diet that could disrupt the synchronized interplay between microbes and host metabolism, leading to altered metabolic functions. Wheat straw and alfalfa hay have different levels of protein and neutral detergent fiber, each with varying rates of digestion. It is unclear how including alfalfa hay and wheat straw, alone or combined in a CR diet, influences the host-microbial consortia and immune homeostasis. Herein, we showed that rumen and colon showed differential immune responses to the alfalfa hay, wheat straw, or both. Bacterial genera preferentially degrade fiber and starch derived from alfalfa hay, wheat straw, or both. Bacterial genera from Firmicutes phylum play a pivotal role in driving the host-microbial interactions, as indicated by their extensive association with genes across various signaling pathways.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongbin Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Biao Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Teka Feyera
- Department of Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Tan Zhiliang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Zhang H, Shi H, Xie W, Meng M, Wang Y, Ma N, Chang G, Shen X. Subacute ruminal acidosis induces pyroptosis via the mitophagy-mediated NLRP3 inflammasome activation in the livers of dairy cows fed a high-grain diet. J Dairy Sci 2024; 107:4092-4107. [PMID: 38278294 DOI: 10.3168/jds.2023-23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/23/2023] [Indexed: 01/28/2024]
Abstract
High-grain (HG) feeding can trigger subacute ruminal acidosis (SARA) and subsequent liver tissue injury. This study investigated pyroptosis and NLRP3 inflammasome activation in SARA-induced liver injury, and the role of mitophagy during this process. Twelve mid-lactating Holstein cows equipped with rumen fistulas were randomly divided into 2 groups: a low-grain (LG) diet group (grain:forage = 4:6) and a HG diet group (grain:forage = 6:4). Each group had 6 cows. The experiment lasted for 3 wk. The ruminal fluid was collected through the rumen fistula on experimental d 20 and 21, and the pH immediately measured. At the end of the experiment, all animals were slaughtered, and peripheral blood and liver tissue were collected. The ruminal pH was lower in the HG group than that in the LG group at all time points. In addition, the ruminal pH in the HG group was lower than 5.6 at 3 consecutive time points after feeding (4, 6, and 8 h on d 20; 2, 4, and 6 h on d 21), indicating that HG feeding induced SARA. The content of lipopolysaccharide, IL-1β, and apoptosis-related cysteine protease 1 (caspase-1) and the activity of alanine aminotransferase and aspartate aminotransferase in the blood plasma of the HG group were all significantly increased. Hepatic caspase-1 activity was increased in the livers of the HG group. The increased expression levels of pyroptosis- and NLRP3 inflammasome-related genes IL1B, IL18, gasdermin D (GSDMD), apoptosis-associated speck-like protein containing a card (ASC), NLR family pyrin domain-containing 3 (NLRP3), and caspase-1 (CASP1) in liver tissue of the HG group were detected. Furthermore, western blot analysis showed that HG feeding led to increased expression of pyroptosis- and NLRP3 inflammasome-related proteins GSDMD N-terminal (GSDMD-NT), IL-1β, IL-18, cleaved-caspase-1, ASC, NLRP3, and cleaved-caspase-11 and upregulated expression of mitophagy-related proteins microtubule-associated protein 1 light chain 3 II (MAP1LC3-II), beclin 1 (BECN1), Parkin, and PTEN-induced kinase 1 (PINK1) in liver tissue. Collectively, our results revealed that SARA caused increased mitophagy and activated the NLRP3 inflammasome, causing pyroptosis and subsequent liver injury in dairy cows fed a HG diet.
Collapse
Affiliation(s)
- Hongzhu Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Huimin Shi
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
5
|
Hu X, He Z, Zhao C, He Y, Qiu M, Xiang K, Zhang N, Fu Y. Gut/rumen-mammary gland axis in mastitis: Gut/rumen microbiota-mediated "gastroenterogenic mastitis". J Adv Res 2024; 55:159-171. [PMID: 36822391 PMCID: PMC10770137 DOI: 10.1016/j.jare.2023.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Mastitis is an inflammatory response in the mammary gland that results in huge economic losses in the breeding industry. The aetiology of mastitis is complex, and the pathogenesis has not been fully elucidated. It is commonly believed that mastitis is induced by pathogen infection of the mammary gland and induces a local inflammatory response. However, in the clinic, mastitis is often comorbid or secondary to gastric disease, and local control effects targeting the mammary gland are limited. In addition, recent studies have found that the gut/rumen microbiota contributes to the development of mastitis and proposed the gut/rumen-mammary gland axis. Combined with studies indicating that gut/rumen microbiota disturbance can damage the gut mucosa barrier, gut/rumen bacteria and their metabolites can migrate to distal extraintestinal organs. It is believed that the occurrence of mastitis is related not only to the infection of the mammary gland by external pathogenic microorganisms but also to a gastroenterogennic pathogenic pathway. AIM OF REVIEW We propose the pathological concept of "gastroenterogennic mastitis" and believe that the gut/rumen-mammary gland axis-mediated pathway is the pathological mechanism of "gastroenterogennic mastitis". KEY SCIENTIFIC CONCEPTS OF REVIEW To clarify the concept of "gastroenterogennic mastitis" by summarizing reports on the effect of the gut/rumen microbiota on mastitis and the gut/rumen-mammary gland axis-mediated pathway to provide a research basis and direction for further understanding and solving the pathogenesis and difficulties encountered in the prevention of mastitis.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhaoqi He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
6
|
Liang J, Cheng L, Feng J, Han Z, Huang C, Xie F, Li Y, Luo X, Wang Q, He J, Chen H. Molecular mechanism of Danshenol C in reversing peritoneal fibrosis: novel network pharmacological analysis and biological validation. BMC Complement Med Ther 2023; 23:361. [PMID: 37833759 PMCID: PMC10571429 DOI: 10.1186/s12906-023-04170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE The primary objective of this study is to elucidate the molecular mechanism underlying the reversal of peritoneal fibrosis (PF) by Danshenol C, a natural compound derived from the traditional Chinese medicine Salvia miltiorrhiza. By comprehensively investigating the intricate interactions and signaling pathways involved in Danshenol C's therapeutic effects on PF, we aim to unveil novel insights into its pharmacological actions. This investigation holds the potential to revolutionize the clinical application of Salvia miltiorrhiza in traditional Chinese medicine, offering promising new avenues for the treatment of PF and paving the way for evidence-based therapeutic interventions. METHODS Firstly, we utilized the YaTCM database to retrieve the structural formula of Danshenol C, while the SwissTargetPrediction platform facilitated the prediction of its potential drug targets. To gain insights into the genetic basis of PF, we acquired the GSE92453 dataset and GPL6480-9577 expression profile from the GEO database, followed by obtaining disease-related genes of PF from major disease databases. R software was then employed to screen for DEG associated with PF. To explore the intricate interactions between Danshenol C's active component targets, we utilized the String database and Cytoscape3.7.2 software to construct a PPI network. Further analysis in Cytoscape3.7.2 enabled the identification of core modules within the PPI network, elucidating key targets and molecular pathways critical to Danshenol C's therapeutic actions. Subsequently, we employed R to perform GO and KEGG pathway enrichment analyses, providing valuable insights into the functional implications and potential biological mechanisms of Danshenol C in the context of PF. To investigate the binding interactions between the core active components and key targets, we conducted docking studies using Chem3D, autoDock1.5.6, SYBYL2.0, and PYMOL2.4 software. We applied in vivo and in vitro experiments to prove that Danshenol C can improve PF. In order to verify the potential gene and molecular mechanism of Danshenol C to reverse PF, we used quantitative PCR, western blot, and apoptosis, ensuring robust and reliable verification of the results. RESULTS ① Wogonin, sitosterol, and Signal Transducer and Activator of Transcription 5 (STAT5) emerged as the most significant constituents among the small-molecule active compounds and gene targets investigated. ②38 targets intersected with the disease, among which MAPK14, CASP3, MAPK8 and STAT3 may be the key targets; The results of GO and KEGG analysis showed that there was a correlation between inflammatory pathway and Apoptosis. ④Real-time PCR showed that the mRNA expressions of MAPK8 (JNK1), MAPK14 (P38) and STAT3 were significantly decreased after Danshenol C treatment (P < 0.05), while the mRNA expression of CASP3 was significantly increased (P < 0.05)⑤Western blot showed that protein expressions of CASP3 and MAPK14 were significantly increased (P < 0.05), while the expression of STAT3 and MAPK8 was decreased after Danshenol C treatment (P < 0.05). ⑥There was no significant difference in flow analysis of apoptosis among groups. CONCLUSION The findings suggest that Danshenol C may modulate crucial molecular pathways, including the MAPK, Apoptosis, Calcium signaling, JAK-STAT signaling, and TNF signaling pathways. This regulation is mediated through the modulation of core targets such as STAT3, MAPK14, MAPK8, CASP3, and others. By targeting these key molecular players, Danshenol C exhibits the potential to regulate cellular responses to chemical stress and inflammatory stimuli. The identification of these molecular targets and pathways represents a significant step forward in understanding the molecular basis of Danshenol C's therapeutic effects in PF. This preliminary exploration provides novel avenues for the development of anti-PF treatment strategies and the discovery of potential therapeutic agents. By targeting specific core targets and pathways, Danshenol C opens up new possibilities for the development of more effective and targeted drugs to combat PF. These findings have the potential to transform the landscape of PF treatment and offer valuable insights for future research and drug development endeavors.
Collapse
Affiliation(s)
- Jiabin Liang
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lulu Cheng
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Feng
- Radiology Department of Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zeping Han
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Huang
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| | - Fangmei Xie
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongsheng Li
- Guangzhou Municipality Tianhe Nuoya Bio-Engineering Co., Ltd, Guangzhou, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, China
| | - Qingmei Wang
- Stroke Biological Recovery Laboratory, Teaching Affiliate of Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Jinhua He
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hanwei Chen
- Guangzhou Panyu Central Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Medical Imaging Institute of Panyu, Guangzhou, China.
- Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China.
| |
Collapse
|
7
|
Dias e Silva CE, Miranda V, Miranda M, Silva JG, Souza IR, Burato S, de Sousa OA, Cerri RL, Lima FS, Cappellozza BI, Vasconcelos JLM. A proposed model to evaluate how changes in body condition score and the fatty acid profile of a supplement affect physiology and metabolic responses of nonlactating females. JDS COMMUNICATIONS 2023; 4:406-411. [PMID: 37727238 PMCID: PMC10505778 DOI: 10.3168/jdsc.2022-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/17/2023] [Indexed: 09/21/2023]
Abstract
Two experiments were designed to evaluate the effects of altering body condition score (BCS) and the profile of a fatty acid (FA) supplement on the metabolism of Bos indicus Nellore females. In experiment 1, 16 and 24 B. indicus heifers and nonlactating cows, respectively, were assigned to (1) maintenance diet (MNT-MNT; n = 10), (2) maintenance diet and BCS loss (MNT-LSS; n = 10), (3) maintenance diet supplemented with calcium salts of soybean oil for 30 d and BCS loss for 40 d (MNT+CFA-LSS; n = 10), and (4) maintenance diet for 30 d and BCS loss for 40 d with a diet containing calcium salts of soybean oil (MNT-LSS+CFA; n = 10). Following the BCS loss period, MNT-LSS, MNT+CFA-LSS, and MNT-LSS+CFA were fed a diet to promote the gain of BCS. In experiment 2, 40 Bos indicus nulliparous heifers were assigned to (1) maintenance diet (MNT-MNT; n = 10), (2) BCS loss followed by a BCS gain (LSS-REM; n = 10), (3) BCS loss followed by a BCS gain diet with CFA of palm oil (LSS-REM+PLM; n = 10), and (4) BCS loss followed by a BCS gain diet with CFA of soybean oil (LSS-REM+SOY; n = 10). Blood samples were obtained for serum haptoglobin and fecal samples for pH (experiment 2 only). In experiment 1, a treatment × day interaction was observed for BCS during the 60-d BCS loss and gain period. Animals assigned to MNT-MNT had a greater BCS than the other treatment groups on d 40 and 60 of the experiment, but no other differences were observed. Moreover, a treatment × day interaction was observed for serum haptoglobin, as on d 60, MNT-LSS had a greater mean serum haptoglobin concentration. In experiment 2, a treatment × day interaction was also observed for BCS. From d -4 to 0, LSS-REM and LSS-REM+SOY had a reduced BCS versus MNT-MNT, but also lower for LSS-REM versus MNT-MNT on d 1, and LSS-REM+PLM versus MNT-MNT on d -1 and 0. For serum haptoglobin, no treatment or treatment × day interaction was observed. A treatment × day interaction was observed for fecal pH. From d -10 to 0, MNT often had a lower fecal pH, but during realimentation, LSS-REM heifers had a reduced fecal pH on d 1, 4, and 10. In summary, we failed to demonstrate an increase in serum haptoglobin due to a BCS loss. Still, supplementation with calcium salts of FA alleviated the increase in haptoglobin and maintained fecal pH at more stable values during realimentation, regardless of the FA profile of the supplement.
Collapse
Affiliation(s)
- Carlos Eduardo Dias e Silva
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18168-000, Brazil
| | - Victor Miranda
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18168-000, Brazil
| | - Miguel Miranda
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18168-000, Brazil
| | - Júlia G. Silva
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18168-000, Brazil
| | - Isabella R.T. Souza
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18168-000, Brazil
| | - Samir Burato
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18168-000, Brazil
| | | | - Ronaldo L.A. Cerri
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Fábio S. Lima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | | | - José Luiz M. Vasconcelos
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18168-000, Brazil
| |
Collapse
|
8
|
Meng M, Jiang Y, Wang Y, Huo R, Ma N, Shen X, Chang G. β-carotene targets IP3R/GRP75/VDAC1-MCU axis to renovate LPS-induced mitochondrial oxidative damage by regulating STIM1. Free Radic Biol Med 2023; 205:25-46. [PMID: 37270031 DOI: 10.1016/j.freeradbiomed.2023.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria are the main sites for the storage and regulation of Ca2+ homeostasis. An imbalance of Ca2+ homeostasis can cause ER stress and mitochondrial dysfunction, thereby inducing apoptosis. The store-operated calcium entry (SOCE) is the main channel for extracellular calcium influx. Mitochondria-associated endoplasmic reticulum (MAM) is an important agent for Ca2+ transfer from the ER to the mitochondria. Therefore, regulation of SOCE and MAMs has potential therapeutic value for disease prevention and treatment. In this study, bovine mammary epithelial cells (BMECs) and mice were used as models to explore the mechanisms of β-carotene to relieve ER stress and mitochondrial dysfunction. BAPTA-AM, EGTA (Ca2+ inhibitor), and BTP2 (SOCE channel inhibitor) alleviated ER stress and mitochondrial oxidative damage induced by increased intracellular Ca2+ levels after lipopolysaccharide (LPS) stimulation. Furthermore, inhibition of ER stress by 4-PBA (ER stress inhibitor), 2-APB (IP3R inhibitor), and ruthenium red (mitochondrial calcium uniporter (MCU) inhibitor) restored mitochondrial function by reducing mitochondrial ROS. Our data also confirm that β-carotene targeted STIM1 and IP3R channels to repair LPS-induced ER stress and mitochondrial disorders. Consistent with the in vitro study, in vito experiments in mice further showed that β-carotene attenuated LPS-induced ER stress and mitochondrial oxidative damage by inhibiting the expression of STIM1 and ORAI1, and reducing the level of Ca2+ in mouse mammary glands. Therefore, ER stress-mitochondrial oxidative damage mediated by the STIM1-ER-IP3R/GRP75/VDAC1-MCU axis plays an vital role in the development of mastitis. Our results provided novel ideas and therapeutic targets for the prevention and treatment of mastitis.
Collapse
Affiliation(s)
- Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yijin Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Ran Huo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
9
|
Meng M, Li X, Huo R, Ma N, Chang G, Shen X. A high-concentrate diet induces mitochondrial dysfunction by activating the MAPK signaling pathway in the mammary gland of dairy cows. J Dairy Sci 2023; 106:5775-5787. [PMID: 37296051 DOI: 10.3168/jds.2022-22907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/10/2023] [Indexed: 06/12/2023]
Abstract
Subacute rumen acidosis can lead to mastitis in dairy cows. Mitochondrial dysfunction is closely related to the inflammatory response. This experiment was conducted to investigate the effects of a high-concentrate diet on mammary gland inflammation and mitochondrial damage in dairy cows. Twelve Holstein dairy cows in mid-lactation were randomly divided into 2 groups and fed a 40% concentrate (low concentrate, LC) diet or a 60% concentrate (high concentrate, HC) diet. Cows were fed individually, and the experiment lasted for 3 wk. After the experiment, mammary gland tissue, blood, and rumen fluid were collected. Compared with the LC diet, the HC diet significantly decreased rumen pH; the pH was <5.6 for more than 3 h. The HC diet also increased the concentration of LPS in the blood (7.17 ± 1.25 µg/mL vs. 12.12 ± 1.26 µg/mL), which indicated that feeding the HC diet successfully induced subacute rumen acidosis. The HC diet also increased the concentration of Ca2+ (34.80 ± 4.23 µg/g vs. 46.87 ± 7.24 µg/g) in the mammary gland and upregulated the expression of inflammatory factors IL-6 (1,128.31 ± 147.53 pg/g vs. 1,538.42 ± 241.38 pg/g), IL-1β (69.67 ± 5.86 pg/g vs. 90.13 ± 4.78 pg/g), and tumor necrosis factor-α (91.99 ± 10.43 pg/g vs. 131.75 ± 17.89 pg/g) in mammary venous blood. The HC diet also increased the activity of myeloperoxidase (0.41 ± 0.05 U/g vs. 0.71 ± 0.11 U/g) and decreased the content of ATP (0.47 ± 0.10 µg/mL vs. 0.32 ± 0.11 µg/mL) in the mammary gland. In addition, phosphorylation of JNK (1.00 ± 0.21 vs. 2.84 ± 0.75), ERK (1.00 ± 0.20 vs. 1.53 ± 0.31), and p38 (1.00 ± 0.13 vs. 1.47 ± 0.41) and protein expression of IL-6 (1.00 ± 0.22 vs. 2.21 ± 0.27) and IL-8 (1.00 ± 0.17 vs. 1.96 ± 0.26) were enhanced in cows of the HC group, indicating that the mitogen-activated protein kinase (MAPK) signaling pathway was activated. Compared with the LC diet, the HC diet reduced the protein expression of mitochondrial biogenesis-related proteins PGC-1α (1.00 ± 0.17 vs. 0.55 ± 0.12), NRF1 (1.00 ± 0.17 vs. 0.60 ± 0.10), TFAM (1.00 ± 0.10 vs. 0.73 ± 0.09), and SIRTI (1.00 ± 0.44 vs. 0.40 ± 0.10). The HC diet promoted mitochondrial fission and inhibited mitochondrial fusion by reducing protein expression of MFN1 (1.00 ± 0.31 vs. 0.49 ± 0.09), MFN2 (1.00 ± 0.19 vs. 0.69 ± 0.13), and OPA1 (1.00 ± 0.08 vs. 0.72 ± 0.07), and by increasing that of DRP1 (1.00 ± 0.09 vs. 1.39 ± 0.10), MFF (1.00 ± 0.15 vs. 1.89 ± 0.12), and TTC1/FIS1 (1.00 ± 0.08 vs. 1.76 ± 0.14), leading to mitochondrial dysfunction. The HC diet increased mitochondrial permeability by upregulating the protein expression of VDAC1 (1.00 ± 0.42 vs. 1.90 ± 0.44), ANT (1.00 ± 0.22 vs. 1.27 ± 0.17), and CYPD (1.00 ± 0.41 vs. 1.82 ± 0.43). Taken together, these results indicated that feeding the HC diet induced mitochondrial damage via the MAPK signaling pathway in the mammary gland of dairy cows.
Collapse
Affiliation(s)
- Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Xuerui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Ran Huo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China.
| |
Collapse
|
10
|
Wang L, Wang Y, Meng M, Ma N, Wei G, Huo R, Chang G, Shen X. High-concentrate diet elevates histone lactylation mediated by p300/CBP through the upregulation of lactic acid and induces an inflammatory response in mammary gland of dairy cows. Microb Pathog 2023; 180:106135. [PMID: 37172660 DOI: 10.1016/j.micpath.2023.106135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
High-concentrate diet can cause metabolic diseases, such as subacute ruminal acidosis (SARA), and secondary mastitis. To investigate the effect of SARA induced by high-concentrate diet on the lysine lactylation (Kla) and inflammatory responses in the mammary gland of dairy cows and the mechanism between them, we selected twelve mid-lactation Holstein cows with similar body conditions for modelling. They were randomly divided into two groups, fed a low-concentrate diet (LC) and a high-concentrate diet (HC) for 21 days. Our results showed that high-concentrate diet feeding significantly reduced ruminal pH, and the pH was below 5.6 for more than 3 h per day, indicating successful induction of the SARA model. Lactic acid concentrations in mammary gland and plasma were higher in the HC group than that in the LC group. HC diet feeding significantly up-regulated the expression levels of the Pan Kla, H3K18la, p300/CBP and monocarboxylate transporter 1 (MCT1) in the mammary gland. In addition, the mRNA expression levels of inflammatory factors were significantly regulated, including IL-1β, IL-1α, IL-6, IL-8, SAA3, and TNF-α, while the anti-inflammatory factor IL-10 was down-regulated. The mammary gland of HC group was structurally disorganized with incomplete glandular vesicles, with a large number of detached mammary epithelial cells and inflammatory cells infiltration. The up-regulation of TLR4, TNF-α, p-p65, and p-IκBα indicated that the TLR4/NF-κB signaling pathway was activated. In conclusion, this study found that HC diet feeding can induce SARA and increase the concentration of lactic acid in mammary gland and plasma. Then, lactic acid could be transported into cells by MCT1 and up-regulate the expression level of histone lactylation mediated by p300/CBP, and subsequently promote the activation of TLR4/NF-κB signaling pathway, ultimately causing inflammatory responses in the mammary gland.
Collapse
Affiliation(s)
- Lairong Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Guozhen Wei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Ran Huo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
11
|
Benson JC, Trebak M. Too much of a good thing: The case of SOCE in cellular apoptosis. Cell Calcium 2023; 111:102716. [PMID: 36931194 PMCID: PMC10481469 DOI: 10.1016/j.ceca.2023.102716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Intracellular calcium (Ca2+) is an essential second messenger in eukaryotic cells regulating numerous cellular functions such as contraction, secretion, immunity, growth, and metabolism. Ca2+ signaling is also a key signal transducer in the intrinsic apoptosis pathway. The store-operated Ca2+ entry pathway (SOCE) is ubiquitously expressed in eukaryotic cells, and is the primary Ca2+ influx pathway in non-excitable cells. SOCE is mediated by the endoplasmic reticulum Ca2+ sensing STIM proteins, and the plasma membrane Ca2+-selective Orai channels. A growing number of studies have implicated SOCE in regulating cell death primarily via the intrinsic apoptotic pathway in a variety of tissues and in response to physiological stressors such as traumatic brain injury, ischemia reperfusion injury, sepsis, and alcohol toxicity. Notably, the literature points to excessive cytosolic Ca2+ influx through SOCE in vulnerable cells as a key factor tipping the balance towards cellular apoptosis. While the literature primarily addresses the functions of STIM1 and Orai1, STIM2, Orai2 and Orai3 are also emerging as potential regulators of cell death. Here, we review the functions of STIM and Orai proteins in regulating cell death and the implications of this regulation to human pathologies.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Department of Cellular and Molecular Physiology, Graduate Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
12
|
Delosière M, Bernard L, Viala D, Fougère H, Bonnet M. Milk and plasma proteomes from cows facing diet-induced milk fat depression are related to immunity, lipid metabolism and inflammation. Animal 2023; 17:100822. [PMID: 37196580 DOI: 10.1016/j.animal.2023.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023] Open
Abstract
Milk proteins are a source of bioactive molecules for calves and humans that may also reflect the physiology and metabolism of dairy cows. Dietary lipid supplements are classically used to modulate the lipid content and composition of bovine milk, with potential impacts on the nutrient's homeostasis and the systemic inflammation of cows that remains to be more explored. This study aimed at identifying discriminant proteins and their associated pathways in twelve Holstein cows (87 ± 7 days in milk), multiparous and non-pregnant, fed for 28 d a diet either, supplemented with 5% DM intake of corn oil and with 50% additional starch from wheat in the concentrate (COS, n = 6) chosen to induce a milk fat depression, or with 3% DM intake of hydrogenated palm oil (HPO, n = 6) known to increase milk fat content. Intake, milk yield and milk composition were measured. On d 27 of the experimental periods, milk and blood samples were collected and label-free quantitative proteomics was performed on proteins extracted from plasma, milk fat globule membrane (MFGM) and skimmed milk (SM). The proteomes from COS and HPO samples were composed of 98, 158 and 70 unique proteins, respectively, in plasma, MFGM and SM. Of these, the combination of a univariate and a multivariate partial least square discriminant analyses reveals that 15 proteins in plasma, 24 in MFGM and 14 in SM signed the differences between COS and HPO diets. The 15 plasma proteins were related to the immune system, acute-phase response, regulation of lipid transport and insulin sensitivity. The 24 MFGM proteins were related to the lipid biosynthetic process and secretion. The 14 SM proteins were linked mainly to immune response, inflammation and lipid transport. This study proposes discriminant milk and plasma proteomes, depending on diet-induced divergence in milk fat secretion, that are related to nutrient homeostasis, inflammation, immunity and lipid metabolism. The present results also suggest a higher state of inflammation with the COS diet.
Collapse
Affiliation(s)
- Mylène Delosière
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France.
| | - Laurence Bernard
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| | - Didier Viala
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France; INRAE, Université Clermont Auvergne, Vetagro Sup, PFEM, 63122 Saint-Genès-Champanelle, France
| | - Hélène Fougère
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMRH, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
13
|
Meng M, Zhao X, Huo R, Li X, Chang G, Shen X. Disodium Fumarate Alleviates Endoplasmic Reticulum Stress, Mitochondrial Damage, and Oxidative Stress Induced by the High-Concentrate Diet in the Mammary Gland Tissue of Hu Sheep. Antioxidants (Basel) 2023; 12:antiox12020223. [PMID: 36829784 PMCID: PMC9952365 DOI: 10.3390/antiox12020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The long-term feeding of the high-concentrate diet (HC) reduced rumen pH and induced subacute rumen acidosis (SARA), leading to mammary gland tissue damage among ruminants. Disodium fumarate enhanced rumen bufferation and alleviated a decrease in rumen pH induced by the HC diet. Therefore, the purpose of this study was to investigate whether disodium fumarate could alleviate endoplasmic reticulum (ER) stress, mitochondrial damage, and oxidative stress induced by the high-concentrate diet in the mammary gland tissue of Hu sheep. In this study, 18 Hu sheep in mid-lactation were randomly divided into three groups: one fed with a low-concentrate diet (LC) diet, one fed with a HC diet, and one fed with a HC diet with disodium fumarate (AHC). Each sheep was given an additional 10 g of disodium fumarate/day. The experiment lasted for eight weeks. After the experiment, rumen fluid, blood, and mammary gland tissue were collected. The results show that, compared with the LC diet, the HC diet could reduce rumen pH, and the pH below 5.6 was more than 3 h, and the LPS content of blood and rumen fluid in HC the diet was significantly higher than in the LC diet. This indicates that the HC diet induced SARA in Hu sheep. However, the supplementation of disodium fumarate in the HC diet increased the rumen pH and decreased the content of LPS in blood and rumen fluid. Compared with the LC diet, the HC diet increased Ca2+ content in mammary gland tissue. However, the AHC diet decreased Ca2+ content. The HC diet induced ER stress in mammary gland tissue by increasing the mRNA and protein expressions of GRP78, CHOP, PERK, ATF6, and IRE1α. The HC diet also activated the IP3R-VDAC1-MCU channel and lead to mitochondrial damage by inhibiting mitochondrial fusion and promoting mitochondrial division, while disodium fumarate could alleviate these changes. In addition, disodium fumarate alleviated oxidative stress induced by the HC diet by activating Nrf2 signaling and reducing ROS production in mammary gland tissue. In conclusion, the supplementation of disodium fumarate at a daily dose of 10 g/sheep enhanced rumen bufferation by maintaining the ruminal pH above 6 and reduced LPS concentration in ruminal fluid and blood. This reaction avoided the negative effect observed by non-supplemented sheep that were fed with a high-concentrate diet involving endoplasmic reticulum stress, oxidative stress, and mitochondrial damage in the mammary gland tissue of Hu sheep.
Collapse
|
14
|
Meng M, Li X, Wang Z, Huo R, Ma N, Chang G, Shen X. A high-concentrate diet induces inflammatory injury via regulating Ca 2+/CaMKKβ-mediated autophagy in mammary gland tissue of dairy cows. Front Immunol 2023; 14:1186170. [PMID: 37197665 PMCID: PMC10183583 DOI: 10.3389/fimmu.2023.1186170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Calmodulin-dependent protein kinase β (CaMKKβ) is closely related to Ca2+ concentration. An increase in Ca2+ concentration in the cytoplasm activates CaMKKβ, and activated CaMKKβ affects the activities of AMPK and mTOR and induces autophagy. A high-concentrate diet leads to Ca2+ disorder in mammary gland tissue. Objectives Therefore, this study mainly investigated the induction of mammary gland tissue autophagy by a high-concentrate diet and the specific mechanism of lipopolysaccharide (LPS)-induced autophagy in bovine mammary epithelial cells (BMECs). Material and Methods Twelve mid-lactation Holstein dairy cows were fed with a 40% concentrate diet (LC) and a 60% concentrate diet (HC) for 3 weeks. At the end of the trial, rumen fluid, lacteal vein blood, and mammary gland tissue were collected. The results showed that the HC diet significantly decreased rumen fluid pH, with a pH lower than 5.6 for more than 3 h, indicating successfully induction of subacute rumen acidosis (SARA). The mechanism of LPS-induced autophagy in BMECs was studied in vitro. First, the cells were divided into a Ctrl group and LPS group to study the effects of LPS on the concentration of Ca2+ and autophagy in BMECs. Then, cells were pretreated with an AMPK inhibitor (compound C) or CaMKKβ inhibitor (STO-609) to investigate whether the CaMKKβ-AMPK signaling pathway is involved in LPS-induced BMEC autophagy. Results The HC diet increased the concentration of Ca2+ in mammary gland tissue and pro-inflammatory factors in plasma. The HC diet also significantly increased the expression of CaMKKβ, AMPK, and autophagy-related proteins, resulting in mammary gland tissue injury. In vitro cell experiments showed that LPS increased intracellular Ca2+ concentration and upregulated protein expression of CaMKKβ, AMPK, and autophagy-related proteins. Compound C pretreatment decreased the expression of proteins related to autophagy and inflammation. In addition, STO-609 pretreatment not only reversed LPS-induced BMECs autophagy but also inhibited the protein expression of AMPK, thereby alleviating the inflammatory response in BMECs. These results suggest that inhibition of the Ca2+/CaMKKβ-AMPK signaling pathway reduces LPS-induced autophagy, thereby alleviating inflammatory injury of BMECs. Conclusion Therefore, SARA may increase the expression of CaMKKβ by increasing Ca2+ levels and activate autophagy through the AMPK signaling pathway, thereby inducing inflammatory injury in mammary gland tissue of dairy cows.
Collapse
|
15
|
β-carotene alleviates LPS-induced inflammation through regulating STIM1/ORAI1 expression in bovine mammary epithelial cells. Int Immunopharmacol 2022; 113:109377. [DOI: 10.1016/j.intimp.2022.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
16
|
Chen Q, Yang M, Liu X, Zhang J, Mi S, Wang Y, Xiao W, Yu Y. Blood transcriptome analysis and identification of genes associated with supernumerary teats in Chinese Holstein cows. J Dairy Sci 2022; 105:9837-9852. [DOI: 10.3168/jds.2022-22346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
|
17
|
Xue Y, Zhou S, Xie W, Meng M, Ma N, Zhang H, Wang Y, Chang G, Shen X. STIM1–Orai1 Interaction Exacerbates LPS-Induced Inflammation and Endoplasmic Reticulum Stress in Bovine Hepatocytes through Store-Operated Calcium Entry. Genes (Basel) 2022; 13:genes13050874. [PMID: 35627260 PMCID: PMC9140735 DOI: 10.3390/genes13050874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: The basic mechanism of store-operated Ca2+ entry (SOCE) in bovine hepatocytes (BHEC) is related to the activation of STIM1 and Orai1. The effect of STIM1- and Orai1-dependent calcium ion signaling on the NF-κB signaling pathway is unclear. (2) Methods: In this study, the expression of STIM1 and Orai1 in BHEC was regulated. RT-qPCR, Western blotting, and an immunofluorescence antibody (IFA) assay were performed to elucidate the effect of inflammation and endoplasmic reticulum stress (ERS) in BHEC. (3) Results: First of all, in this study, RT-PCR and Western blotting were used to detect the levels of IκB, NF-κB, and inflammatory factors (IL-6, IL-8, and TNF-α) and the expression of genes and proteins related to ERS (PERK, IRE1, ATF6, GRP78, and CHOP), which reached peak levels simultaneously when BHEC were treated with 16 μg/mL LPS for 1 h. For STIM1, we overexpressed STIM1 in BHEC by using plasmid transfection technology. The results showed that after overexpression of STIM1, the gene and protein expression of STIM1 levels were significantly upregulated, and the expression of Orai1 on the cell membrane was also upregulated, which directly activated the SOCE channel and induced inflammation and ERS in BHEC. The overexpression group was then treated with LPS, and it was found that the overexpression of STIM1 could enhance LPS-induced BHEC inflammation and ERS in BHEC. For Orai1, BHEC were pretreated with 8 μg/mL of the specific inhibitor BTP2 for 6 h. It was found that BTP2 could inhibit the expression of mRNA in Orai1, significantly reduce the gene expression of STIM1, inhibit the activation of the NF-κB signaling pathway, and alleviate inflammation and ERS in BHEC under LPS stimulation. (4) Conclusions: In conclusion, STIM1/Orai1 can intervene and exacerbate LPS-induced inflammation and ERS in bovine hepatocytes through SOCE.
Collapse
|