1
|
Burren A, Terranova M, Kreuzer M, Kupper T, Probst S. The relationship between milk urea nitrogen content and urinary nitrogen excretion as determined in 4 Swiss dairy breeds. J Dairy Sci 2025; 108:5342-5360. [PMID: 40049408 DOI: 10.3168/jds.2024-25915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/03/2025] [Indexed: 05/03/2025]
Abstract
Ammonia (NH3) originating from agriculture substantially contributes to the environmental nitrogen load and threatens sensitive ecosystems by inducing eutrophication and acidification of the soil. To strategically minimize NH3 emissions, this study aimed to develop a model to predict urinary nitrogen (UN) excretion (g/d), the major NH3 source of cows of different dairy breeds, based on an easy-to-determine proxy as an on-farm tool. For that purpose, dietary characteristics were not considered. One such proxy would be the MUN content, which could be determined in tank milk samples from dairy farms. We therefore investigated the UN and MUN values from 21 different feeding experiments performed in Switzerland with 4 contrasting dairy breeds. These were 162 Brown Swiss (BS), 348 Holstein (HO), 44 Jersey (JE), and 50 Swiss Fleckvieh (SF) cows. We investigated the relationship between the coefficients of the UN and MUN using various linear mixed models. The forward model selection demonstrated that it is essential to consider the interaction between MUN and breed, as well as BW and breed, when modeling UN. Furthermore, there was a pronounced heteroscedasticity between UN and MUN for higher MUN values (>14 mg/dL). This heteroscedasticity must be accounted for, either through explicit modeling or log transformation. The final model included fixed effects, MUN, BW, and breed, the interactions, MUN × breed and BW × breed, as well as the experiment as random effect. This model also considered the heteroscedasticity. In the final model, R2 was high, at 81.2%. The regression coefficients and highest posterior density intervals were 7.28 (5.42; 9.02), 10.41 (9.16; 11.65), 9.00 (6.20; 11.94) and 11.79 (9.15; 14.25) g/d of increase in UN per mg/dL of MUN for BS, HO, JE, and SF, respectively. The estimated regression coefficients for BW and highest posterior density intervals were 0.09 (-0.01; 0.19), 0.17 (0.11; 0.27), 0.51 (0.21; 0.80) and 0.28 (0.03; 0.53) for BS, HO, JE, and SF, respectively. The estimated marginal means ± SE for UN (g/d) were 117 ± 12, 147 ± 12, 119 ± 14, and 135 ± 14 for BS, HO, JE, and SF, respectively. These results confirm MUN content to be a useful tool to predict UN excretion in lactating dairy cows, as suggested by previous studies. However, in contrast to previous findings, our results underscore the necessity of accounting for breed and BW in the predictive model. The established model improves the accuracy of mass flow models that estimate NH3 emissions based on the UN excretion of livestock at the beginning of the manure management chain.
Collapse
Affiliation(s)
- A Burren
- School of Agricultural, Forest and Food Sciences (BFH-HAFL), Bern University of Applied Sciences, 3052 Zollikofen, Switzerland
| | - M Terranova
- AgroVet-Strickhof, ETH Zurich, 8315 Lindau, Switzerland
| | - M Kreuzer
- Institute of Agricultural Sciences, ETH Zurich, 8315 Lindau, Switzerland
| | - T Kupper
- School of Agricultural, Forest and Food Sciences (BFH-HAFL), Bern University of Applied Sciences, 3052 Zollikofen, Switzerland
| | - S Probst
- School of Agricultural, Forest and Food Sciences (BFH-HAFL), Bern University of Applied Sciences, 3052 Zollikofen, Switzerland.
| |
Collapse
|
2
|
Tavernier E, Delaby L, Gormley IC, Berry DP. Characterization of grazing Holstein-Friesian dairy cows based on a combination of nitrogen use efficiency and nitrogen balance. J Dairy Sci 2025; 108:3746-3755. [PMID: 39947596 DOI: 10.3168/jds.2024-25818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/08/2025] [Indexed: 04/20/2025]
Abstract
Awareness and interest in the use of nitrogen in dairy production systems is intensifying. Cows with high nitrogen use efficiency (NUE; nitrogen used and stored divided by nitrogen available) are generally considered to have a lower nitrogen footprint. This, however, may not always be true on a per-animal basis. The objective of this study was to characterize lactating dairy cows based on the combination of NUE and nitrogen balance (Nbal; nitrogen available less the nitrogen used and stored). Data were available for 1,472 weekly NUE and Nbal estimates from 711 lactations of 278 Holstein-Friesian grazing dairy cows. Random solutions for each cow from separate mixed model analyses of NUE and Nbal were used to categorize each cow into 1 of 2 strata for NUE and separately for Nbal; cows were then categorized on a combination of strata for NUE and Nbal. Data from 248 cows were used. Marginal means for a range of production traits were computed for each of the 4 strata. The population mean (SD) for NUE and Nbal was 21.3% (4.4) and 436 (97) grams of nitrogen per day, respectively. The correlation coefficient between NUE and Nbal was -0.47 demonstrating that the relationship between efficiency (i.e., NUE) and excretion (i.e., Nbal) is, indeed, not perfect. Cows with high NUE and low Nbal were assumed more desirable cows because they had, on average, a higher (i.e., better) or similar NUE to the other 3 strata and excreted, on average, 53 g of nitrogen less per day (SE = 5.1 g N/d) compared with the cows stratified as high NUE and high Nbal. Nevertheless, cows with high NUE and low Nbal were, on average, in greater negative energy balance than cows with low NUE and high Nbal, with the former also having, on average, a lower BCS than both strata of cows with low NUE, suggesting potential poorer health or reproductive capabilities compared with their counterparts. In conclusion, it is important to consider both NUE (high is desirable) and Nbal (low is desirable) when defining nitrogen-efficient dairy cows.
Collapse
Affiliation(s)
- E Tavernier
- School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland; Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - L Delaby
- INRAE, Institut Agro, UMR Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage, 35590 Saint-Gilles, France
| | - I C Gormley
- School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - D P Berry
- Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| |
Collapse
|
3
|
Mangwe MC, Mason WA, Reed CB, Spaans OK, Pacheco D, Bryant RH. A systematic review and meta-analysis of cow-level factors affecting milk urea nitrogen and urinary nitrogen output under pasture-based diets. J Dairy Sci 2025; 108:579-596. [PMID: 39369898 DOI: 10.3168/jds.2024-25394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
With dairy cattle farming under pressure to lower its environmental footprint, it is important to find effective on-farm proxies for evaluation and monitoring of management practices aimed at reducing the risk of nitrogen (N) losses and optimizing N use efficiency of dairy farm systems. Urinary N (UN) is regarded as the most potent source of N emissions. In contrast to confinement systems, there have been few studies from pasture-based systems associating on-farm animal and nutritional factors with UN output. Thus, the aims of this meta-analysis were to collate a database from pasture-based research in order to (1) investigate the associations of management, dietary, and animal variables with MUN concentration and daily UN output; (2) describe the MUN-UN association; and (3) assess whether animal, management, and dietary factors influence the relationship. We developed a dataset consisting of 95 observations representing 919 lactating dairy cattle fed pasture-based diets, which was compiled from 32 unique research publications that reported both MUN and UN output. Multilevel, mixed meta-analysis regression techniques were used to analyze the data. Initially, all variables were assessed as the sole fixed effect in a 2-level random effects model, accounting for within-publication heterogeneity. Meta-regression techniques were then used to assess the relationship of all variables with MUN and UN output, respectively, accounting for 3 sources of variability: the sampling error of the individual observation, within-publication heterogeneity, and among-publication heterogeneity. At the univariable level, despite more than 10 dietary, animal, or management variables being significantly associated with MUN, none explained a large amount of the MUN variation. The variables that explained the greatest amount of variation were dietary CP content and the ratio of nitrogen to ME content, which explained about 33% and 31% of the variation in MUN concentrations, respectively. Combining factors in multiple regressions improved the model fit, such that the variation within publications explained by dietary CP and N intake increased to 40.0% in the final multiple meta-regression model. For UN output, individual variables explained a greater proportion of variance reported among observations, compared with MUN, whereby diet CP content (pseudo R2 = 66.1%), N-to-ME intake ratio (pseudo R2 = 64.0%), N intake (pseudo R2 = 58.3%), and MUN (pseudo R2 = 43.5%) explained the greatest amount of the total variation. Milk urea nitrogen, N intake, and DMI were associated with UN output in the final multiple meta-regression model. Substantial heterogeneity existed in both MUN and UN among publications, with among-publication heterogeneity accounting for 73.4% of all the variation noted in MUN, and 88.6% of all the variation in UN output. As such, the meta-analyses could not predict MUN and UN to any great extent. It is recommended that a consistent approach to measuring and reporting MUN concentrations and UN output be carried out for all future research in pasture-based systems.
Collapse
Affiliation(s)
- Mancoba C Mangwe
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | | | | | | | | | - Racheal H Bryant
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| |
Collapse
|
4
|
Pereira FC, Kumara S, Fleming A, Lai SZ, Wilson E, Gregorini P. Animal as the Solution II: Phenotyping for Low Milk Urea Nitrogen A1PF Dairy Cows. Animals (Basel) 2024; 15:32. [PMID: 39794975 PMCID: PMC11718933 DOI: 10.3390/ani15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The societal pressure on intensive pastoral dairying demands the search for strategies to reduce the amount of N flowing through and excreted by dairy cows. One of the strategies that is being currently explored focuses on the animal as a solution, as there are differences in N metabolism between cows even within the same herd. This work was conducted to explore such an approach in A1PF herds in New Zealand and the possibility of identifying A1PF cows that are divergent for milk urea nitrogen (MUN) concentration through phenotyping as a potential viable strategy to reduce N leaching and emissions from temperate dairy systems. Three herd tests were conducted to select a population sample of 200 cows (exhibiting the lowest 100 and highest 100 MUN concentrations). Milk samples were collected from the 200 cows during mid and late lactation to test for milk solids content and MUN. From the 200 cows, urine for urinary N concentration (UN), blood for plasma urea N, total antioxidants (TAS), and glutathione peroxidase (GPx) were collected from the 20 extremes (the lowest 10 and highest 10 MUN concentrations). Milk urea N was greater in cows selected as high-MUN cows (16.2 vs. 14.32 ± 0.23 mg/dL) and greater during late lactation (16.9 vs. 13.0 ± 0.19 mg/dL). Milk solids and fat content were 38% and 20% greater in cows selected as low-MUN cows than in high-MUN cows during mid lactation (p < 0.001). Low-MUN cows had lower UN than high-MUN cows during mid lactation (0.64 vs. 0.88 ± 0.11%). The N concentration in the plasma (p = 0.01) and Tas (p = 0.06) were greater during late lactation. There was a positive relationship between the MUN concentration phenotype used for selection and the MUN concentration for the trial period and MUN concentration and UN concentration during mid and late lactation (p < 0.001). Our results suggest that A1PF cows within a commercial herd can be phenotyped and selected for low-MUN, which may be potentially a viable strategy to reduce N losses to the environment and create healthier systems. Following genetic tracking, those cows can be bred to further promote low-MUN A1PF herds.
Collapse
Affiliation(s)
- Fabiellen C. Pereira
- Department of Agricultural Sciences, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, P.O. Box 85084, Christchurch 7647, New Zealand; (S.K.); (A.F.); (S.Z.L.); (P.G.)
| | | | | | | | | | | |
Collapse
|
5
|
TAKANO T, GOTO A, SUGINO T. The composition of early lactation milk in recipient dairy cows determines success in bovine embryo transfer. J Vet Med Sci 2024; 86:1198-1204. [PMID: 39343538 PMCID: PMC11569873 DOI: 10.1292/jvms.24-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
To identify new criteria for selecting recipient dairy cows for embryo transfer (ET), we retrospectively examined the effects of the composition of early lactation milk on fertility risk in ET. This study investigated the association between milk fat (FAT), milk protein (PRO), and milk urea nitrogen (MUN) levels during early lactation, based on production records, and subsequent fertility risk in ET using contingency table analysis and multivariable logistic regression analysis, which included five confounding variables. The results showed that MUN levels during early lactation were negatively associated with fertility risk in ET, while FAT and PRO levels showed no clear association. A reduction in MUN levels during the peak lactation period suggests a deficiency in dry matter intake, an inadequate protein supply, and an imbalance in the ratio of proteins to fermentable carbohydrates in the rumen, which may have adversely impacted fertility risk in ET. Monitoring MUN levels is crucial for maintaining a proper protein balance. The results obtained in this study suggest that MUN levels in the early lactation phase obtained from production records can be used as a predictor of fertility in recipients to improve the fertility risk in ET. No special techniques or costs are required for using production records, making them easy to use in clinical practice. Our findings provide valuable insights for optimizing cost-effectiveness and fertility risk in ET and their clinical applications.
Collapse
Affiliation(s)
- Toshihiro TAKANO
- Research Center for Animal Science, Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan
- Fukuoka Prefecture Dairy Cooperative Association, Fukuoka, Japan
| | - Akira GOTO
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Toshihisa SUGINO
- Research Center for Animal Science, Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Reyer H, Honerlagen H, Oster M, Ponsuksili S, Kuhla B, Wimmers K. Multi-tissue gene expression profiling of cows with a genetic predisposition for low and high milk urea levels. Anim Biotechnol 2024; 35:2322542. [PMID: 38426941 DOI: 10.1080/10495398.2024.2322542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Milk urea (MU) concentration is proposed as an indicator trait for breeding toward reduced nitrogen (N) emissions and leaching in dairy. We selected 20 German Holstein cows based on MU breeding values, with 10 cows each having low (LMUg) and high (HMUg) MU genetic predisposition. Using RNA-seq, we characterized these cows to unravel molecular pathways governing post-absorptive body N pools focusing on renal filtration and reabsorption of nitrogenous compounds, hepatic urea formation and mammary gland N excretion. While we observed minor adjustments in cellular energy metabolism in different tissues associated with different MU levels, no transcriptional differences in liver ammonia detoxification were detected, despite significant differences in MU between the groups. Differential expression of AQP3 and SLC38A2 in the kidney provides evidence for higher urea concentration in the collecting duct of LMU cows than HMU cows. The mammary gland exhibited the most significant differences, particularly in tricarboxylic acid (TCA) cycle genes, amino acid transport, tRNA binding, and casein synthesis. These findings suggest that selecting for lower MU could lead to altered urinary urea (UU) handling and changes in milk protein synthesis. However, given the genetic variability in N metabolism components, the long-term effectiveness of MU-based selection in reducing N emissions remains uncertain.
Collapse
Affiliation(s)
- Henry Reyer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Hanne Honerlagen
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Michael Oster
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology 'Oskar Kellner', Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, Professorship of Animal Breeding and Genetics, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Wan Y, Xie Z, Cao M, Zhang C, Feng Z, Tian B, Liu Z. Detection of urea in milk by urease-inorganic hybrid nanoflowers combined with portable colorimetric microliter tube. Mikrochim Acta 2024; 191:679. [PMID: 39422792 DOI: 10.1007/s00604-024-06734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
A simple one-pot green synthesis method was used to prepare urease-inorganic hybrid nanoflowers (UE-HNFs), which had a high surface-to-volume ratio to improve enzyme catalytic efficiency and make urease reusable. A portable colorimetric microliter tube based on urease-inorganic hybrid nanoflowers (UE-HNFs-PCMT), as an urea colorimetric biosensor, was developed for determining urea concentration in milk. The combination of urea colorimetric biosensor and a smartphone is used for capturing the colour change of milk after reaction. There was a good linear relationship between colour intensity of the image (Δ intensity) and urea concentration (43-600 mg L-1), with a detection limit of 12.81 mg L-1. UE-HNFs-PCMT has the advantages of no need for complex equipment, easy operation, reusability, low detection cost, good portability, and environmental friendliness and can achieve urea detection in milk.
Collapse
Affiliation(s)
- Yang Wan
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ming Cao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chi Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Tian
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China.
| |
Collapse
|
8
|
Golbotteh MM, Malecky M, Aliarabi H, Zamani P. Impact of oil type and savory plant on nutrient digestibility and rumen fermentation, milk yield, and milk fatty acid profile in dairy cows. Sci Rep 2024; 14:22427. [PMID: 39341950 PMCID: PMC11438970 DOI: 10.1038/s41598-024-73138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Fat supplements are well known for their multiple beneficial effects on ruminant health, reproduction and productivity, and as a source for certain bioactive compounds in ruminant products. On the other hand, numerous phytochemicals have demonstrated the potential to improve rumen fermentation through modifying the volatile fatty acid (VFA) pattern to favour those with greater energy efficiency, boosting microbial protein synthesis, and decreasing methane emission and ruminal ammonia concentration. Savory is an aromatic plant rich in various phytochemicals (mainly carvacrol and flavonoids) that can alter ruminal metabolism of dietary fatty acids, potentially increasing the production of some bioactive compounds such as conjugated linoleic acids (CLAs). This study aimed to investigate combined effects of oil type (fish oil (FO) versus soybean oil (SO)) and the inclusion of savory (Satureja khuzistanica) plant (SP) in the diet on total tract digestibility of nutrients, rumen fermentation, milk yield and milk fatty acid profile in dairy cattle. Eight multiparous lactating Holstein cows were used in a replicated 4 × 4 Latin square design experiment with four diets and four 21-d periods. During each experimental period consisted of 14 days of adaptation and a 7-day sampling period, cows were randomly assigned to one of the four dietary treatments: the diet supplemented with 2% (DM basis) fish oil (FOD) or soybean oil (SOD), the FOD or SOD plus 370 g DM/d/head SP (FODs, SODs, respectively). The experimental diets were arranged in a 2 × 2 factorial design, with the fat sources as the first and SP as the second factor. The FO-supplemented diets had lower dry matter intake (DMI) and higher total tract digestibility than SO-supplemented diets (P < 0.05), and including SP in the diet improved total tract digestibility of dry matter (DM), organic matter (OM), ether extract (EE), and non-fibrous carbohydrates (NFC) (P < 0.05) without negatively affecting DMI. Rumen pH was lower with SO than with FO diets (P < 0.01) and increased with SP inclusion in the diet (P < 0.05). Total protozoa count and ruminal ammonia concentration decreased, and the branched-chain VFA (BCVFA) proportion increased with SP inclusion in the diet (P < 0.05). Milk production, as well as the concentration and yield of milk components (except lactose concentration) were higher with SO than with FO diets (P < 0.05), but these variables remained unaffected by SP. The milk concentrations of both non-esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB) were lower with SO compared to FO diets, and these variables were reduced by SP (P < 0.01). The proportions of both mono- and polyunsaturated FA (MUFA and PUFA, respectively) in milk were higher with FO than with SO diets (P < 0.01), and their proportions increased by SP at the expense of saturated FA (SFA) (P < 0.01). Including SP in the diet increased the proportions of all the milk n-3 FA (C18:3c, C20:5, and C22:6) by 21%, 40%, and 97%, respectively, and those of conjugated linoleic acids (C18:2 (c9,t11-CLA) and C18:2 (t10,c12-CLA)) by 23% and 62%, respectively. There was no interaction between oil type and SP for the assessed variables. Fish oil, despite reducing milk production and milk components, was more effective than soybean oil in enriching milk with healthy FA. These findings also show promise for SP as a feed additive with the potential to improve total tract digestibility, rumen fermentation and milk FA composition.
Collapse
Affiliation(s)
- M Mehdipour Golbotteh
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - M Malecky
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - H Aliarabi
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - P Zamani
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
9
|
Kumar P, Divya, Patel AK, Srivastava A, Kayastha AM. Enhancing milk quality assessment with watermelon (Citrullus lanatus) urease immobilized on VS 2-chitosan nanocomposite beads using response surface methodology. Food Chem 2024; 451:139447. [PMID: 38688097 DOI: 10.1016/j.foodchem.2024.139447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
An eco-friendly hydrothermal method synthesized VS2 nanosheets. Several spectroscopic and microscopic approaches (TEM) were used to characterize the produced VS2 nanosheet microstructure. VS2, Chitosan, and nanocomposite were used to immobilize watermelon (Citrullus lanatus) urease. Optimization using the Response Surface Methodology and the Box-Behnken design yielded immobilization efficiencies of 65.23 %, 72.52 %, and 87.68 % for chitosan, VS2, and nanocomposite, respectively. The analysis of variance confirmed the mathematical model's validity, enabling additional research. AFM, SEM, FTIR, Fluorescence microscopy, and Cary Eclipse Fluorescence Spectrometer showed urease conjugation to the matrix. During and after immobilization, FTIR spectra showed a dynamic connectivity of chemical processes and bonding. The nanocomposite outperformed VS2 and chitosan in pH and temperature. Chitosan and VS2-immobilized urease were more thermally stable than soluble urease, but the nanocomposite-urease system was even more resilient. The nanocomposite retained 60 % of its residual activity after three months of storage. It retains 91.8 % of its initial activity after 12 reuse cycles. Nanocomposite-immobilized urease measured milk urea at 23.62 mg/dl. This result was compared favorably to the gold standard p-dimethylaminobenzaldehyde spectrophotometric result of 20 mg/dl. The linear range is 5 to 70 mg/dl, with a LOD of 1.07 (±0.05) mg/dl and SD of less than 5 %. The nanocomposite's ksel coefficient for interferents was exceptionally low (ksel < 0.07), indicating urea detection sensitivity. Watermelon urease is suitable for dairy sector applications due to its availability, immobilization on nanocomposite, and reuse.
Collapse
Affiliation(s)
- Prince Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Divya
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Amit Kumar Patel
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anchal Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
10
|
Idowu M, Taiwo G, Sidney T, Treon E, Leal Y, Ologunagba D, Eichie F, Pech-Cervantes A, Ogunade IM. Effects of rumen-bypass protein supplement on growth performance, hepatic mitochondrial protein complexes, and hepatic immune gene expression of beef steers with divergent residual feed intake. PLoS One 2024; 19:e0293718. [PMID: 38959213 PMCID: PMC11221652 DOI: 10.1371/journal.pone.0293718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 07/05/2024] Open
Abstract
We investigated the impact of a rumen-bypass protein (RBP) supplement on growth performance, plasma and urinary N (UN) concentration, hepatic mitochondrial protein complexes, and hepatic mRNA expression of immune genes of beef steers with negative or positive residual feed intake (RFI) phenotype. Forty crossbred beef steers with an average body weight (BW) of 492 ± 36 kg were subjected to a generalized randomized block design over a 42-day experimental period. This study followed a 2 × 2 factorial arrangement of treatments. The factors evaluated were: 1) RFI classification (low-RFI (-2.12 kg/d) vs. high-RFI (2.02 kg/d), and 2) rumen-bypass protein supplement: RBP supplement (RBP; 227 g/steer/d) vs. control diet (CON; 0 g/d), resulting in four distinct treatments: LRFI-CON (n = 10), LRFI-RBP (n = 10), HRFI-CON (n = 10), and HRFI-RBP (n = 10). The RBP supplement (84% crude protein) is a mixture of hydrolyzed feather meal, porcine blood meal, and DL-methionine hydroxy analogue. The beef steers were stratified by BW, randomly assigned to treatments, and housed in four pens (1 treatment/pen) equipped with two GrowSafe feed bunks each to measure individual dry mater intake (DMI). Body weight was measured every 7 d. Liver tissue samples were collected on d 42 from all the beef steers. These samples were used for mRNA expression analysis of 16 immune-related genes and for evaluating the mitochondrial protein complexes I - V. No significant effects due to RBP supplementation or RFI × RBP interactions (P > 0.05) were observed for average daily gain (ADG) and DMI. However, compared to high-RFI steers, low-RFI steers showed a trend towards reduced DMI (12.9 vs. 13.6 kg/d; P = 0.07) but ADG was similar for the two RFI groups. Regardless of RFI status, supplemental RBP increased blood urea nitrogen (BUN) (P = 0.01), with a lower BUN concentration in low-RFI steers compared to high-RFI ones. A tendency for interaction (P = 0.07) between RFI and RBP was detected for the UN concentrations; feeding the dietary RBP increased the UN concentration in high-RFI beef steers (209 vs. 124 mM), whereas the concentration was lower than that of the CON group for low-RFI beef steers (86 vs. 131 mM). Interactions of RBP and RFI were observed (P ≤ 0.05) for mitochondrial activities of complexes IV, V, and mRNA expressions of some immune genes such as TLR2, TLR3, and IL23A. In conclusion, while RBP supplementation did not alter growth performance, its observed effects on hepatic immune gene expression, mitochondrial protein complexes, BUN, and UN depended on the beef steers' RFI phenotype. Therefore, the RFI status of beef steers should be considered in future studies evaluating the effects of dietary protein supplements.
Collapse
Affiliation(s)
- Modoluwamu Idowu
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Godstime Taiwo
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Taylor Sidney
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emily Treon
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Yarahy Leal
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Deborah Ologunagba
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Francisca Eichie
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Andres Pech-Cervantes
- Division of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - Ibukun M. Ogunade
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
11
|
Kessler EC, Bruckmaier RM, Gross JJ. Kidney function, but not nitrogen excretion differs between Brown Swiss and Holstein dairy cows. J Dairy Sci 2024:S0022-0302(24)00958-5. [PMID: 38908706 DOI: 10.3168/jds.2024-24997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/24/2024]
Abstract
Brown Swiss (BS) cows have greater urea concentrations in milk and blood compared with Holstein (HO) cows. We tested the hypothesis that BS and HO cows differ in kidney function and nitrogen excretion. Blood, saliva, urine, and feces were sampled in 31 multiparous BS and 46 HO cows kept under identical feeding and management conditions. Samples were collected at different lactational stages after the monthly DHIA control test-day. To test the glomerular filtration rate (GFR) and urea excretion, concentrations of creatinine and urea were measured in serum, urine, and saliva. As an additional marker to estimate GFR, we determined symmetric dimethylarginine (SDMA) in serum. Feces were analyzed for dry matter content and nitrogen concentration. Data on milk urea and protein concentrations, and daily milk yield were obtained from the monthly DHIA test-day records. The effects of breed, time, and parity number on blood, saliva, urine, feces, and milk parameters were evaluated with the GLM procedure with breed, time, and parity number as fixed effects. Differences between BS and HO were assessed by the Tukey-corrected t-test at P < 0.05. Concentrations of urea, creatinine, and SDMA in serum, were greater in BS than in HO cows (P < 0.01): 5.46 ± 0.19 vs 4.72 ± 0.13 mmol/L (urea), 105.96 ± 2.23 vs 93.07 ± 1.50 mmol/l (creatinine), and 16.78 ± 0.69 vs 13.39 ± 0.44 µg/dL (SDMA). We observed a greater urea concentration in BS cows (25.8 ± 0.7 vs 21.8 ± 0.7 mg/dL) and protein content in milk (3.70 ± 0.08 vs 3.45 ± 0.07%) than in HO cows (P < 0.01). Urea and creatinine concentrations in urine and saliva did not differ among breeds. No differences between BS and HO were observed for milk yield, fecal DM, and fecal nitrogen content. Dry matter intake and body weight were similar in BS and HO cows (P > 0.05). Despite greater urea, creatinine, and SDMA concentrations in blood as well as a higher milk urea content in BS compared with HO, respective concentrations in urine did not differ between breeds. In conclusion, our results demonstrate a lower renal GFR in BS compared with HO cows, thereby contributing to the greater plasma urea concentration in BS cows. However, estimation of nitrogen excretion via milk, urine, and feces does not entirely reflect nitrogen turnover within the animal.
Collapse
Affiliation(s)
- E C Kessler
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
12
|
Yang J, Zhao S, Lin B. Effect of commercial fibrolytic enzymes application to normal- and slightly lower energy diets on lactational performance, digestibility and plasma nutrients in high-producing dairy cows. Front Vet Sci 2024; 11:1302034. [PMID: 38764855 PMCID: PMC11099995 DOI: 10.3389/fvets.2024.1302034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/28/2024] [Indexed: 05/21/2024] Open
Abstract
The inclusion of fibrolytic enzymes in the diet is believed to have positive effects on animal production. Hence, the objective of this study was to investigate the impact of supplementing diets with a commercial fibrolytic enzyme preparation (Vistamax; mixture of xylanase and cellulase) derived from Trichoderma reesei on lactational performance, digestibility, and plasma nutrient levels in high-producing dairy cows. Two dietary energy levels were considered: a normal energy diet (metabolizable energy = 2.68 Mcal/kg) and a slightly lower energy diet (metabolizable energy = 2.55 Mcal/kg). A total of 120 lactating Holstein cows (parity = 2; Days in Milk = 113 ± 23) were randomly assigned to four treatment groups using a 2 * 2 factorial arrangement. The dietary treatments consisted of: (1) normal energy diet without enzyme supplementation (NL); (2) normal energy diet with enzyme supplementation (NLE); (3) slightly lower energy diet without enzyme supplementation (SL); and (4) slightly lower energy diet with enzyme supplementation (SLE). The amount of enzyme added to the diets was determined based on previous in vitro studies and supplier recommendations. The enzyme and premix were mixed prior to the preparation of the total mixed ration, and the trial lasted for a duration of 42 days. The results indicated that the application of the fibrolytic enzyme did not have a significant effect on dry matter intake (DMI), but it did enhance the digestibility of dry matter (DM), neutral detergent fiber (NDF), potentially digestible NDF (pdNDF), organic matter (OM), milk production, milk urea nitrogen (MUN), and blood urea nitrogen (BUN). On the other hand, the slightly lower energy diet resulted in a decrease in DMI, milk production, milk protein yield, plasma free amino acids (FAA), and an increase in plasma B-hydroxybutyrate (BHBA). In conclusion, the inclusion of the fibrolytic enzyme in the diets of dairy cows led to improvements in the digestibility of DM, NDF, pdNDF, OM, milk production, and feed efficiency. Furthermore, the application of the enzyme to the slightly lower energy diet resulted in milk production levels comparable to those observed in cows fed the untreated normal energy diet.
Collapse
Affiliation(s)
- Jiahua Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Lin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Seleem MS, Wu ZH, Xing CQ, Zhang Y, Hanigan MD, Bu DP. Effects of rumen-encapsulated methionine and lysine supplementation and low dietary protein on nitrogen efficiency and lactation performance of dairy cows. J Dairy Sci 2024; 107:2087-2098. [PMID: 37923213 DOI: 10.3168/jds.2023-23404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Low crude protein (CP) diets might be fed to dairy cows without affecting productivity if the balance of absorbed AA were improved, which would decrease the environmental effect of dairy farms. The aim of this study was to investigate the effects of supplementing ruminally protected Lys (RPL) and Met (RPM) at 2 levels of dietary CP on nutrient intake, milk production, milk composition, milk N efficiency (MNE), and plasma concentrations of AA in lactating Holstein cows and to evaluate these effects against the predictions of the new NASEM (2021) model. Fifteen multiparous cows were used in a replicated 3 × 3 Latin square design with 21-d periods. The 3 treatments were (1) a high-protein (HP) basal diet containing 16.4% CP (metabolizable protein [MP] balance of -130 g/d; 95% of target values), (2) a medium-protein diet containing 15% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; MPLM; MP balance of -314 g/d; 87% of target values), and (3) a low-protein diet containing 13.6% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; LPLM; MP balance of -479 g/d; 80% of target values). Dry matter intake was less for cows fed MPLM and LPLM diets compared with those fed the HP diet. Compared with the HP diet, the intake of CP, neutral detergent fiber, acid detergent fiber, and organic matter, but not starch, was lower for cows fed MPLM and LPLM diets. Milk production and composition were not affected by MPLM or LPLM diets relative to the HP diet. Milk urea N concentrations were reduced for the MPLM and LPLM diets compared with the HP diet, indicating that providing a low-protein diet supplemented with rumen-protected AA led to greater N efficiency. There was no significant effect of treatment on plasma AA concentrations except for proline, which significantly increased for the MPLM treatment compared with the other 2 treatments. Overall, the results supported the concept that milk performance might be maintained when feeding lactating dairy cows with low CP diets if the absorbed AA balance is maintained through RPL and RPM feeding. Further investigations are needed to evaluate responses over a longer time period with consideration of all AA rather than on the more aggregated MP and the ratio between Lys and Met.
Collapse
Affiliation(s)
- M S Seleem
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Z H Wu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - C Q Xing
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Y Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - M D Hanigan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060
| | - D P Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Joint Laboratory on Integrated Crop-Tree-Livestock Systems, Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research, and World Agroforestry Center (ICRAF), Beijing 100193, China.
| |
Collapse
|
14
|
Tavernier E, Gormley IC, Delaby L, O'Donovan M, Berry DP. Genetic covariance components for measures of nitrogen utilization in grazing dairy cows. J Dairy Sci 2024; 107:2231-2240. [PMID: 37939837 DOI: 10.3168/jds.2023-24117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Improved nitrogen utilization of dairy production systems should improve not only the economic output of the systems but also the environmental metrics. One strategy to improve efficiency is through breeding programs. Improving a trait through breeding is conditional on the presence of exploitable genetic variability. Using a database of 1,291 deeply phenotyped grazing dairy cows, the genetic variability for 2 definitions of nitrogen utilization was studied: nitrogen use efficiency (i.e., nitrogen output in milk and meat divided by nitrogen available) and nitrogen balance (i.e., nitrogen available less nitrogen output in milk and meat). Variance components for both variables were estimated using animal repeatability linear mixed models. Genetic variability was detected for both nitrogen utilization metrics, even though their heritability estimates were low (<0.10). Validation of genetic evaluations revealed that animals divergent for nitrogen use efficiency or nitrogen balance indeed differed phenotypically, further demonstrating that breeding for improved nitrogen efficiency should result in a shift in the population mean toward better efficiency. Nitrogen use efficiency and nitrogen balance were not genetically correlated with each other (<|0.28|), and neither metric was correlated with milk urea nitrogen (<|0.12|). Nitrogen balance was unfavorably correlated with milk yield, showing the importance of including the nitrogen utilization metrics in a breeding index to improve nitrogen utilization without negatively impacting milk yield. In conclusion, improvement of nitrogen utilization through breeding is possible, even if more nitrogen utilization phenotypic data need to be collected to improve the selection accuracy considering the low heritability estimates.
Collapse
Affiliation(s)
- E Tavernier
- School of Mathematics and Statistics, University College Dublin D04 V1W8, Ireland; Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, P61 C996 Fermoy, Co. Cork, Ireland
| | - I C Gormley
- School of Mathematics and Statistics, University College Dublin D04 V1W8, Ireland
| | - L Delaby
- INRAE, Institut Agro, UMR Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage, 35590 Saint-Gilles, France
| | - M O'Donovan
- Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, P61 C996 Fermoy, Co. Cork, Ireland
| | - D P Berry
- Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, P61 C996 Fermoy, Co. Cork, Ireland.
| |
Collapse
|
15
|
Khataee S, Dehghan G, Shaghaghi Z, Khataee A. An enzyme-free sensor based on La-doped CoFe-layered double hydroxide decorated on reduced graphene oxide for sensitive electrochemical detection of urea. Mikrochim Acta 2024; 191:152. [PMID: 38388755 DOI: 10.1007/s00604-024-06221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
The successful synthesis of La-doped CoFe LDH@rGO nanocomposite is reported combining the advantages of LDH and rGO and shows promising performances in electrochemical sensors. The structure of the obtained nanocomposite was investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), and field emission scanning electron microscope images (FE-SEM). Then, it was directly utilized to construct a carbon paste electrode (CPE) for urea detection. The electrochemical performance of the sensor was evaluated by various electrochemical methods. The La-CoFe LDH@rGO electrode exhibited excellent electrocatalytic properties, including a wide linear working range of 0.001-23.5 mM, very high sensitivity of 1.07 ± 0.023 µA µM-1 cm-2, a low detection limit of 0.33 ± 0.11 µM, and rapid response time of 5 s towards urea detection at the working potential of 0.4 V. Furthermore, the sensor displayed a high selectivity in different matrices, appropriate reproducibility, and long shelf life without activity loss during 3 months of storage under ambient conditions. Further tests were performed on serum and milk samples to confirm the capability of the proposed sensor for practical applications, demonstrating a reasonable recovery of 94.8 to 102% with an RSD value below 3%. Consequently, the synergistic effect of each component led to the good electrocatalytic activity of the modified electrode towards urea.
Collapse
Affiliation(s)
- Simin Khataee
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Gholamrez Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran.
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran.
- Department of Chemical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
16
|
Pang K, Wang J, Chai S, Yang Y, Wang X, Liu S, Ding C, Wang S. Ruminal microbiota and muscle metabolome characteristics of Tibetan plateau yaks fed different dietary protein levels. Front Microbiol 2024; 15:1275865. [PMID: 38419639 PMCID: PMC10899706 DOI: 10.3389/fmicb.2024.1275865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The dietary protein level plays a crucial role in maintaining the equilibrium of rumen microbiota in yaks. To explore the association between dietary protein levels, rumen microbiota, and muscle metabolites, we examined the rumen microbiome and muscle metabolome characteristics in yaks subjected to varying dietary protein levels. Methods In this study, 36 yaks were randomly assigned to three groups (n = 12 per group): low dietary protein group (LP, 12% protein concentration), medium dietary protein group (MP, 14% protein concentration), and high dietary protein group (HP, 16% protein concentration). Results 16S rDNA sequencing revealed that the HP group exhibited the highest Chao1 and Observed_species indices, while the LP group demonstrated the lowest. Shannon and Simpson indices were significantly elevated in the MP group relative to the LP group (P < 0.05). At the genus level, the relative abundance of Christensenellaceae_R-7_group in the HP group was notably greater than that in the LP and MP groups (P < 0.05). Conversely, the relative abundance of Rikenellaceae_RC9_gut_group displayed an increasing tendency with escalating feed protein levels. Muscle metabolism analysis revealed that the content of the metabolite Uric acid was significantly higher in the LP group compared to the MP group (P < 0.05). The content of the metabolite L-(+)-Arabinose was significantly increased in the MP group compared to the HP group (P < 0.05), while the content of D-(-)-Glutamine and L-arginine was significantly reduced in the LP group (P < 0.05). The levels of metabolites 13-HPODE, Decanoylcarnitine, Lauric acid, L-(+)-Arabinose, and Uric acid were significantly elevated in the LP group relative to the HP group (P < 0.05). Furthermore, our observations disclosed correlations between rumen microbes and muscle metabolites. The relative abundance of NK4A214_group was negatively correlated with Orlistat concentration; the relative abundance of Christensenellaceae_R-7_group was positively correlated with D-(-)-Glutamine and L-arginine concentrations. Discussion Our findings offer a foundation for comprehending the rumen microbiome of yaks subjected to different dietary protein levels and the intimately associated metabolic pathways of the yak muscle metabolome. Elucidating the rumen microbiome and muscle metabolome of yaks may facilitate the determination of dietary protein levels.
Collapse
Affiliation(s)
- Kaiyue Pang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Jianmei Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shatuo Chai
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Yingkui Yang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Xun Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Shujie Liu
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Cheng Ding
- Department of Agriculture and Rural Affairs, Zachen County, Shannan, Tibet Autonomous Region, Xizang, China
| | - ShuXiang Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| |
Collapse
|
17
|
Shalileh F, Sabahi H, Golbashy M, Dadmehr M, Hosseini M. A simple smartphone-assisted paper-based colorimetric biosensor for the detection of urea adulteration in milk based on an environment-friendly pH-sensitive nanocomposite. Anal Chim Acta 2023; 1284:341935. [PMID: 37996167 DOI: 10.1016/j.aca.2023.341935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
Urea is a common milk adulterant that falsely increases its protein content. Excessive consumption of urea is harmful to the kidney, liver, and gastrointestinal system. The conventional methods for urea detection in milk are time-consuming, costly, and require highly skilled operators. So, there is an increasing demand for the development of rapid, convenient, and cost-efficient methods for the detection of urea adulteration in milk. Herein, we report a novel colorimetric paper-based urea biosensor, consisting of a novel environment-friendly nanocomposite of halloysite nanotubes (HNT), that urease enzyme and an anthocyanin-rich extract, as a natural pH indicator are simultaneously immobilized into its internal and external surfaces. The biosensing mechanism of this biosensor is based on anthocyanin color change, which occurs due to urease-mediated hydrolysis of urea and pH increment of the environment. The colorimetric signal of this biosensor is measured through smartphone-assisted analysis of the mean RGB (Red-Green-Blue) intensity of samples and is capable of detecting urea with a detection limit of 0.2 mM, and a linear range from 0.5 to 100 mM. This biosensor has demonstrated promising results for the detection of urea in milk samples, in the presence of other milk adulterants and interferents.
Collapse
Affiliation(s)
- Farzaneh Shalileh
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Hossein Sabahi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Mohammad Golbashy
- Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources, University of Khuzestan, Ahvaz, Iran
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran; Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Tavernier E, Gormley IC, Delaby L, McParland S, O'Donovan M, Berry DP. Cow-level factors associated with nitrogen utilization in grazing dairy cows using a cross-sectional analysis of a large database. J Dairy Sci 2023; 106:8871-8884. [PMID: 37641366 DOI: 10.3168/jds.2023-23606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/06/2023] [Indexed: 08/31/2023]
Abstract
Reducing nitrogen pollution while maintaining milk production is a major challenge of dairy production. One of the keys to delivering on this challenge is to improve the efficiency of how dairy cows use nitrogen. Thus, estimating the nitrogen utilization of lactating grazing dairy cows and exploring the association between animal factors and productivity with nitrogen utilization are the first steps to understanding the nitrogen utilization complex in dairy cows. Nitrogen utilization metrics were derived from milk and body weight records from 1,291 grazing dairy cows of multiple breeds and crossbreeds; all cows had sporadic information on nitrogen intake concurrent with information on nitrogen sinks (and other nitrogen sources, such as body tissue mobilization). Several nitrogen utilization metrics were investigated, including nitrogen use efficiency (nitrogen output as products such as milk and meat divided by nitrogen intake) and nitrogen excreted (nitrogen intake less the nitrogen output as products such as milk and meat). In the present study, a primiparous Holstein-Friesian used, on average, 20.6% of the nitrogen it ate, excreting the surplus as feces and urine, representing 402 g of nitrogen per day. Intercow variability existed, with a between-cow standard deviation of 0.0094 for nitrogen use efficiency and 24 g of nitrogen per day for nitrogen excretion. As lactation progressed, nitrogen use efficiency declined and nitrogen excretion increased. Nevertheless, nitrogen use efficiency improved (i.e., decreased) from first to second parity, even though it did not improve from second to third parity or greater. Furthermore, nitrogen excretion continued to increase from first to third parity or greater. Nitrogen use efficiency and nitrogen excretion were negatively correlated (-0.56 to -0.40), signifying that dairy cows who partition more of the ingested nitrogen into products such as milk and meat, on average, also excrete less nitrogen. Milk urea nitrogen was, at best, weakly correlated with nitrogen use efficiency and nitrogen excretion; the correlations were between -0.01 and 0.06. In conclusion, several cow-level factors such as parity, stage of lactation, and breed were associated with the range of different nitrogen efficiency metrics investigated; moreover, even after accounting for such effects, 4.8% to 6.3% of the remaining variation in the nitrogen use efficiency and nitrogen balance metrics were attributable to intercow differences.
Collapse
Affiliation(s)
- E Tavernier
- School of Mathematics and Statistics, University College Dublin, D04 V1W8 Dublin, Ireland; Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, P61 P302 Fermoy, Co. Cork, Ireland
| | - I C Gormley
- School of Mathematics and Statistics, University College Dublin, D04 V1W8 Dublin, Ireland
| | - L Delaby
- INRAE, Institut Agro, UMR Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage, 35590 Saint-Gilles, France
| | - S McParland
- Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, P61 P302 Fermoy, Co. Cork, Ireland
| | - M O'Donovan
- Department of Animal Bioscience, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, P61 P302 Fermoy, Co. Cork, Ireland
| | - D P Berry
- School of Mathematics and Statistics, University College Dublin, D04 V1W8 Dublin, Ireland.
| |
Collapse
|
19
|
Oyebade AO, Lee S, Sultana H, Arriola K, Duvalsaint E, Nino De Guzman C, Fernandez Marenchino I, Marroquin Pacheco L, Amaro F, Ghedin Ghizzi L, Mu L, Guan H, Almeida KV, Rajo Andrade B, Zhao J, Tian P, Cheng C, Jiang Y, Driver J, Queiroz O, Ferraretto LF, Ogunade IM, Adesogan AT, Vyas D. Effects of direct-fed microbial supplementation on performance and immune parameters of lactating dairy cows. J Dairy Sci 2023; 106:8611-8626. [PMID: 37641244 DOI: 10.3168/jds.2022-22898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/29/2023] [Indexed: 08/31/2023]
Abstract
We evaluated the effects of supplementing bacterial direct-fed microbial (DFM) on performance, apparent total-tract digestibility, rumen fermentation, and immune parameters of lactating dairy cows. One hundred fourteen multiparous Holstein cows (41 ± 7 DIM) were used in a randomized complete block design with an experiment comprising 14 d of a covariate (pre-experimental sample and data collection) and 91 d of an experimental period. Cows were blocked based on energy-corrected milk (ECM) yield during the covariate period and the following treatments were randomly assigned within each block: (1) control (CON), corn silage-based total mixed ration without DFM; (2) PRO-A, basal diet top-dressed with a mixture of Lactobacillus animalis and Propionibacterium freudenreichii at 3 × 109 cfu/d; and 3) PRO-B, basal diet top-dressed with a mixture of L. animalis, P. freudenreichii, Bacillus subtilis, and Bacillus licheniformis at 11.8 × 109 cfu/d. Milk yield, dry matter intake (DMI), and body weight were measured daily, while milk samples for component analysis were taken on 2 consecutive days of each week of data collection. Feces, urine, rumen, and blood samples were taken during the covariate period, wk 4, 7, 10, and 13 for estimation of digestibility, N-partitioning, rumen fermentation, plasma nutrient status and immune parameters. Treatments had no effect on DMI and milk yield. Fat-corrected milk (3.5% FCM) and milk fat yield were improved with PRO-B, while milk fat percent and feed efficiency (ECM/DMI) tended to increase with PRO-B compared with PRO-A and CON. Crude fat digestibility was greater with PRO-B compared with CON. Feeding CON and PRO-A resulted in higher total volatile fatty acid concentration relative to PRO-B. Percentage of neutrophils tended to be reduced with PRO-A compared with CON and PRO-B. The mean fluorescence intensity (MFI) of anti-CD44 antibody on granulocytes tended to be higher in PRO-B compared with CON. The MFI of anti-CD62L antibody on CD8+ T cells was lower in PRO-A than PRO-B, with PRO-A also showing a tendency to be lower than CON. This study indicates the potential of DFM to improve fat digestibility with consequential improvement in fat corrected milk yield, feed efficiency and milk fat yield by lactating dairy cows. The study findings also indicate that dietary supplementation with DFM may augment immune parameters or activation of immune cells, including granulocytes and T cells; however, the overall effects on immune parameters are inconclusive.
Collapse
Affiliation(s)
- A O Oyebade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - S Lee
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - H Sultana
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - K Arriola
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - E Duvalsaint
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - C Nino De Guzman
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - I Fernandez Marenchino
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - L Marroquin Pacheco
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - F Amaro
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - L Ghedin Ghizzi
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - L Mu
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - H Guan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - K V Almeida
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - B Rajo Andrade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - J Zhao
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - P Tian
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - C Cheng
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY 40601
| | - Y Jiang
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY 40601
| | - J Driver
- MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211
| | - O Queiroz
- Chr. Hansen A/S, Animal Health and Nutrition, B⊘ge Allé 10-12, DK-2970 H⊘rsholm, Denmark
| | - L F Ferraretto
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI 53706
| | - I M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506
| | - A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611.
| |
Collapse
|
20
|
Monllor P, Zemzmi J, Muelas R, Roca A, Sendra E, Romero G, Díaz JR. Long-Term Feeding of Dairy Goats with 40% Artichoke by-Product Silage Preserves Milk Yield, Nutritional Composition and Animal Health Status. Animals (Basel) 2023; 13:3585. [PMID: 38003201 PMCID: PMC10668740 DOI: 10.3390/ani13223585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this work is to study the effect of 40% inclusion of artichoke by-product silage (AB) in dairy goat diets on milk yield, composition and animal health status during a full lactation period compared to an isoenergetic and isoproteic mixed ration based on alfalfa hay and a cereal and legume mixture. Milk yield was not affected by the dietary treatments, and neither was body weight. AB treatment reduced whey protein (0.38 vs. 0.42%, p < 0.05) and milk urea concentrations (687 vs. 773 mg/L, respectively, p < 0.001), and did not affect total true protein (3.22 vs. 3.24% p > 0.05) or other macro-composition variables. AB treatment showed higher milk concentrations of Ca (p < 0.05), Mn (p < 0.01), Cu (p < 0.01) and Zn (p < 0.001) compared to the control group (C). Slight differences were observed in milk fatty acid profile without any negative effects (p > 0.05) on the blood cholesterol and glucose of goats. The AB group reduced blood urea due to its high dietary total phenol content. However, it had a positive effect on β-hydroxybutyrate (p < 0.05) and nonesterified fatty acids (p > 0.05). It was concluded that 40% artichoke by-product inclusion in dairy goat feed for the whole lactation period (23 weeks) is a sustainable solution, reducing feeding cost by 12.5% per kg of dry matter, contributing to a better circular economy without any negative repercussions on the productivity and health of Murciano-Granadina dairy goats.
Collapse
Affiliation(s)
- Paula Monllor
- Department of Agro-Food Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche (UMH), Ctra. de Beniel, Km 3.2, 03312 Orihuela, Spain; (P.M.); (R.M.); (A.R.); (E.S.)
| | - Jihed Zemzmi
- Servicio de Nutrición y Bienestar Animal, Department of Ciencia Animal y de los Alimentos, Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain;
| | - Raquel Muelas
- Department of Agro-Food Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche (UMH), Ctra. de Beniel, Km 3.2, 03312 Orihuela, Spain; (P.M.); (R.M.); (A.R.); (E.S.)
| | - Amparo Roca
- Department of Agro-Food Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche (UMH), Ctra. de Beniel, Km 3.2, 03312 Orihuela, Spain; (P.M.); (R.M.); (A.R.); (E.S.)
| | - Esther Sendra
- Department of Agro-Food Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche (UMH), Ctra. de Beniel, Km 3.2, 03312 Orihuela, Spain; (P.M.); (R.M.); (A.R.); (E.S.)
| | - Gema Romero
- Department of Agro-Food Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche (UMH), Ctra. de Beniel, Km 3.2, 03312 Orihuela, Spain; (P.M.); (R.M.); (A.R.); (E.S.)
| | - José Ramón Díaz
- Department of Agro-Food Technology, Escuela Politécnica Superior de Orihuela (EPSO), Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche (UMH), Ctra. de Beniel, Km 3.2, 03312 Orihuela, Spain; (P.M.); (R.M.); (A.R.); (E.S.)
| |
Collapse
|
21
|
Mangrio S, Tahira A, Chang AS, Mahar IA, Markhand M, Shah AA, Medany SS, Nafady A, Dawi EA, Saleem LMA, Mustafa EM, Vigolo B, Ibupoto ZH. Advanced Urea Precursors Driven NiCo 2O 4 Nanostructures Based Non-Enzymatic Urea Sensor for Milk and Urine Real Sample Applications. BIOSENSORS 2023; 13:444. [PMID: 37185519 PMCID: PMC10135918 DOI: 10.3390/bios13040444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
The electrochemical performance of NiCo2O4 with urea precursors was evaluated in order to develop a non-enzymatic urea sensor. In this study, NiCo2O4 nanostructures were synthesized hydrothermally at different concentrations of urea and characterized using scanning electron microscopy and X-ray diffraction. Nanostructures of NiCo2O4 exhibit a nanorod-like morphology and a cubic phase crystal structure. Urea can be detected with high sensitivity through NiCo2O4 nanostructures driven by urea precursors under alkaline conditions. A low limit of detection of 0.05 and an analytical range of 0.1 mM to 10 mM urea are provided. The concentration of 006 mM was determined by cyclic voltammetry. Chronoamperometry was used to determine the linear range in the range of 0.1 mM to 8 mM. Several analytical parameters were assessed, including selectivity, stability, and repeatability. NiCo2O4 nanostructures can also be used to detect urea in various biological samples in a practical manner.
Collapse
Affiliation(s)
- Sanjha Mangrio
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan (A.S.C.)
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University, Khairpur Mirs 66111, Pakistan
| | - Abdul Sattar Chang
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan (A.S.C.)
| | - Ihsan Ali Mahar
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan (A.S.C.)
| | - Mehnaz Markhand
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan (A.S.C.)
| | - Aqeel Ahmed Shah
- Department of metalluargy and Materials, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Shymaa S. Medany
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Elmuez A. Dawi
- Nonlinear Dynamics Research Centre (NDRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Lama M. A. Saleem
- Biomolecular Science, Earth and Life Science, Amsterdam University, 1081 HV Amsterdam, The Netherlands
| | - E. M. Mustafa
- Department of Sciences and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Brigitte Vigolo
- The Institut Jean Lamour (IJL), Université de Lorraine, CNRS, F-54000 Nancy, France
| | - Zafar Hussain Ibupoto
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan (A.S.C.)
| |
Collapse
|
22
|
Microbial Fermented Liquid Supplementation Improves Nutrient Digestibility, Feed Intake, and Milk Production in Lactating Dairy Cows Fed Total Mixed Ration. Animals (Basel) 2023; 13:ani13050933. [PMID: 36899790 PMCID: PMC10000028 DOI: 10.3390/ani13050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The purpose of this experiment was to examine the effects of MFL supplementation on feed intake, nutrient digestibility, milk yield, and milk composition in early lactating dairy cows. Twelve, Thai crossbred Holstein Friesian cows in early lactation, 500 ± 30 kg of body weight (BW), were randomly assigned according to a completely randomized design (CRD). MFL supplementation levels of 0, 100, 200, and 300 mL/d were used as treatments. Experimental animals were fed a total mixed ration (TMR) with a roughage to concentrate ratio (R:C ratio) of 40:60, which contains 12% crude protein (CP) and 70% total digestible nutrient (TDN). Rice straw was a roughage source. MFL supplementation levels had no effect (p > 0.05) on body weight change and dry matter intake (DMI) expressed as %BW, whereas DMI expressed as metabolic body weight (BW0.75) was linearly (p < 0.05) increased, with the highest at 200 mL/d in the YFL supplementation group (147.5 g/kg BW0.75), whereas feed intake of organic matter (OM), CP, ether extract (EE), neutral detergent fiber (NDF) and acid detergent fiber (ADF) did not significant (p > 0.05) difference among treatments. Related to apparent digestibility, MFL levels did not affect (p > 0.05) on DM, OM, and EE digestibility, while apparent digestibility of CP, NDF, and ADF were linearly increased (p < 0.05) when increasing MFL supplementation levels, and the highest (p < 0.05) were the 200 and 300 mL/d FML supplemented groups. BUN at 0 h post feeding did not show a significant difference (p > 0.05) between treatments, while at 4 h after feeding, BUN was linearly (p < 0.05) increased from 0, 100, 200, and 300 (mL/day) MFL supplementation, the values were 12.9, 13.1, 19.7, and 18.4 mg/dL, respectively and the highest was 200 mL/head/day for the MFL supplemented group. MFL supplementation did not affect (p > 0.05) milk fat, lactose, solid not fat (SNF), and specific gravity of milk, while MFL supplementation at 200 mL/day caused a linear increase (p < 0.01) in BUN, MUN, milk yield, milk protein, total solids (TS) and 3.5% FCM when supplement levels were increased. In conclusion, MFL supplementation in early lactating dairy cows could improve feed intake, nutrient digestibility, milk yield, and milk composition.
Collapse
|
23
|
Meta-Regression to Develop Predictive Equations for Urinary Nitrogen Excretion of Lactating Dairy Cows. Animals (Basel) 2023; 13:ani13040620. [PMID: 36830408 PMCID: PMC9951755 DOI: 10.3390/ani13040620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Dairy cows' urinary nitrogen (N) excretion (UN; g/d) represents a significant environmental concern due to their contribution to nitrate leaching, nitrous oxide (a potent greenhouse gas), and ammonia emissions (contributor to N deposition). The first objective of the current study was to determine the adequacy of existing models to predict UN from total mixed ration (TMR)-fed and fresh forage (FF)-fed cows. Next, we aimed to develop equations to predict UN based on animal factors [milk urea nitrogen (MUN; mg/dL) and body weight (BW, kg)] and to explore how these equations are improved when dietary factors, such as diet type, dry matter intake (DMI), or dietary characteristics [neutral detergent fiber (NDF) and crude protein (CP) content], are considered. A dataset was obtained from 51 published experiments composed of 174 treatment means. The whole dataset was used to evaluate the mean and linear biases of three existing equations including diet type as an interaction term; all models had significant linear and mean biases and two of the three models had poor predictive capabilities as indicated by their large relative prediction error (RPE; root mean square error of prediction as a percent of the observed mean). Next, the complete data set was split into training and test sets, which were used to develop and to evaluate new models, respectively. The first model included MUN and BW, and there was a significant interaction between diet type and the coefficients. This model had the worst 1:1 agreement [Lin's concordance correlation coefficient (CCC) = 0.50] and largest RPE (24.7%). Models that included both animal and dietary factors performed the best, and when included in the model, the effect of diet type was no longer significant (p > 0.10). These models all had very good agreement (CCC ≥ 0.86) and relatively low RPE (≤13.1%). This meta-analysis developed precise and accurate equations to predict UN from dairy cows in both confined and pasture-based systems.
Collapse
|
24
|
Doran MJ, Mulligan FJ, Lynch MB, Fahey AG, Markiewicz-Keszycka M, Rajauria G, Pierce KM. Effects of Protein Supplementation Strategy and Genotype on Milk Production and Nitrogen Utilisation Efficiency in Late-Lactation, Spring-Calving Grazing Dairy Cows. Animals (Basel) 2023; 13:ani13040570. [PMID: 36830357 PMCID: PMC9951762 DOI: 10.3390/ani13040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The objectives of this study were to evaluate the effects of (1) protein supplementation strategy, (2) cow genotype and (3) an interaction between protein supplementation strategy and cow genotype on milk production and nitrogen (N) utilisation efficiency (milk N output/ total dietary N intake × 100; NUE) in late-lactation, spring-calving grazing dairy cows. A 2 × 2 factorial arrangement experiment, with two feeding strategies [13% (lower crude protein; LCP) and 18% CP (higher CP; HCP) supplements with equal metabolisable protein supply] offered at 3.6 kg dry matter/cow perday, and two cow genotype groups [lower milk genotype (LM) and higher milk genotype (HM)], was conducted over 53 days. Cows were offered 15 kg dry matter of grazed herbage/cow/day. Herbage intake was controlled using electric strip wires which allowed cows to graze their daily allocation-only. There was an interaction for herbage dry matter intake within cows offered HCP, where higher milk genotype (HM) cows had increased herbage dry matter intake (+0.58 kg) compared to lower milk genotype (LM) cows. Offering cows LCP decreased fat + protein yield (-110 g) compared to offering cows HCP. Offering cows LCP decreased the total feed N proportion that was recovered in the urine (-0.007 proportion units) and increased the total feed N proportion that was recovered in the faeces (+0.008 proportion units) compared to offering cows HCP. In conclusion, our study shows that reducing the supplementary CP concentration from 18% to 13% resulted in decreased milk production (-9.8%), reduced partitioning of total feed N to urine (-0.9%) and increased partitioning of total feed N to faeces (+14%) in late lactation, grazing dairy cows.
Collapse
Affiliation(s)
- M. J. Doran
- School of Agriculture and Food Science, University College Dublin Lyons Farm, W23 ENY2 Naas, Ireland
- Correspondence:
| | - Finbar J. Mulligan
- School of Veterinary Medicine, University College Dublin, Belfield, DO4 V1W8 Dublin, Ireland
| | - Mary B. Lynch
- School of Agriculture and Food Science, University College Dublin Lyons Farm, W23 ENY2 Naas, Ireland
- Teagasc Environment Research Centre, Johnstown Castle, Y35 Y521 Wexford, Ireland
| | - Alan G. Fahey
- School of Agriculture and Food Science, University College Dublin Lyons Farm, W23 ENY2 Naas, Ireland
| | - Maria Markiewicz-Keszycka
- School of Agriculture and Food Science, University College Dublin Lyons Farm, W23 ENY2 Naas, Ireland
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin Lyons Farm, W23 ENY2 Naas, Ireland
| | - Karina M. Pierce
- School of Agriculture and Food Science, University College Dublin Lyons Farm, W23 ENY2 Naas, Ireland
| |
Collapse
|
25
|
Rempel LA, Oliver WT, Miles JR. Early- and mid-lactation milk traits are associated with piglet growth during lactation. J Anim Sci 2023; 101:skad340. [PMID: 37776106 PMCID: PMC10563146 DOI: 10.1093/jas/skad340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023] Open
Abstract
Preweaning piglet growth is tied to milk quality and consumption. To determine the relationship of milk traits from parity 1-4 dams and piglet growth, early- and mid-lactation (day 2 and day 16) milk samples were collected from 48 litters and analyzed for protein, fat, somatic cell count (SCC), lactose, other solids (solids excluding protein and fat), total solids, and milk urea nitrogen (MUN). There were no interactions of parity by day therefore only main effects were tested. Milk volume and percent MUN were greatest (P < 0.05) from fourth parity dams. Nulliparous dams had elevated (P < 0.05) SCC. Several milk traits were different by day. Percent milk protein, fat, and total solids were greater (P < 0.05) from day 2 milk, while percent milk lactose and other solids were greater (P < 0.05) from day 16 milk. Each milk trait was categorically identified as high, moderate, or low at ¼, ½, or ¼ distribution, respectively. Mixed models were used to determine the association of individual milk traits with piglet lactation growth (gain calculated from body weights at birth, day 10, and day 25 weaning; WN). Moderate levels of day 2 milk protein were associated with the greatest (P < 0.05) gain during lactation in comparison to low and high levels. High levels of day 2 milk lactose and day 2 other solids were both related (P < 0.05) to piglet gain over the lactation period. Evaluation of day 16 milk traits with piglet gain over lactation indicated high levels of fat, other solids, and total solids had the greatest (P < 0.05) gain in comparison to moderate and low levels of each trait. Within phase of lactation weight gain, association of day 2 or day 16 milk traits with early weight gain (birth to day 10) or late weight gain (day 10 to WN) were performed. The greatest (P < 0.05) early weight gains were associated with moderate levels of day 2 protein, high levels of day 2 lactose and day 2 other solids, and low levels of day 2 MUN. High levels of day 2 milk lactose and day 16 milk fat were associated (P < 0.05) with piglet gain during late lactation (day 10 to weaning). Genetic selection or improved management that allows for favorable milk traits at critical periods of lactation for improved weight gain will improve pig production.
Collapse
Affiliation(s)
- Lea A Rempel
- USDA, ARS, USMARCPO Box 166, Clay Center, NE, 68933, USA
| | | | - Jeremy R Miles
- USDA, ARS, USMARCPO Box 166, Clay Center, NE, 68933, USA
| |
Collapse
|
26
|
Evaluation of Urine Nitrogen Excretion as the Measure of the Environmental Load and the Efficiency of Nitrogen Utilization. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
The aim of this study was to evaluate the relationship between nutrition, the concentration of milk urea nitrogen (MUN) and the urinary nitrogen excretion in farm conditions and to use the MUN concentration as a tool to control protein nutrition and environmental load in dairy farming. Urinary N excretion was evaluated by an empirical model according to the intake and metabolic transformation of N to milk protein in selected farms was on average 208.8 ± 34.8 g with a range of values from 127.7 to 277.8 g N.day−1. The evaluated proportion of excreted N in relation to crude protein (CP) intake in the total mix ration (TMR) was statistically significant (R2 = 0.504; P < 0.0001). Urinary N excretion, evaluated according to the analysis of the MUN content, using selected regression equations, was on average 211.8 ± 24.3 g.day−1 with an individual variation of 157.2‒274.7 g.day−1 with a significantly higher positive correlation to the received CP in the TMR (R2 = 0.693; P < 0.0001). The evaluated effect of CP concentration in the TMR on urine N excretion confirmed the higher nitrogen excretion in the urine by 25.6 g per day with an increased CP in the TMR by 1 %. The proportion of urea nitrogen in the total N excreted in the urine was on average 80.5 %. The validation of the models for the prediction of nitrogen excretion, according to the MUN for the practical application on farms, was determined the best equation by Kaufmann a St-Pierre, which used available data from routine analysis of milk composition by the Breeding service of Slovakia. The MUN analysis offered a simple and non-invasive approach to the evaluation of the urinary N excretion, as well as, the efficiency of N utilization from feed to milk.
Collapse
|
27
|
Ma L, Luo H, Brito LF, Chang Y, Chen Z, Lou W, Zhang F, Wang L, Guo G, Wang Y. Estimation of genetic parameters and single-step genome-wide association studies for milk urea nitrogen in Holstein cattle. J Dairy Sci 2022; 106:352-363. [DOI: 10.3168/jds.2022-21857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
|
28
|
Effects of rumen-protected lysine and methionine supplementation in low-crude protein diets on lactation performance, nitrogen metabolism, rumen fermentation, and blood metabolites in Holstein cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Bougouin A, Hristov A, Dijkstra J, Aguerre MJ, Ahvenjärvi S, Arndt C, Bannink A, Bayat AR, Benchaar C, Boland T, Brown WE, Crompton LA, Dehareng F, Dufrasne I, Eugène M, Froidmont E, van Gastelen S, Garnsworthy PC, Halmemies-Beauchet-Filleau A, Herremans S, Huhtanen P, Johansen M, Kidane A, Kreuzer M, Kuhla B, Lessire F, Lund P, Minnée EMK, Muñoz C, Niu M, Nozière P, Pacheco D, Prestløkken E, Reynolds CK, Schwarm A, Spek JW, Terranova M, Vanhatalo A, Wattiaux MA, Weisbjerg MR, Yáñez-Ruiz DR, Yu Z, Kebreab E. Prediction of nitrogen excretion from data on dairy cows fed a wide range of diets compiled in an intercontinental database: A meta-analysis. J Dairy Sci 2022; 105:7462-7481. [PMID: 35931475 DOI: 10.3168/jds.2021-20885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022]
Abstract
Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake.
Collapse
Affiliation(s)
- A Bougouin
- Department of Animal Science, University of California, Davis 95616.
| | - A Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16803
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - M J Aguerre
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634
| | - S Ahvenjärvi
- Animal Nutrition, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - C Arndt
- Mazingira Centre, International Livestock Research Institute (ILRI), 00100 Nairobi, Kenya
| | - A Bannink
- Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - A R Bayat
- Animal Nutrition, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - C Benchaar
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada J1M 0C8
| | - T Boland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - W E Brown
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706-1205; Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - L A Crompton
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, United Kingdom
| | - F Dehareng
- Department of Valorisation of Agricultural Products, Walloon Agricultural Research Centre, 5030 Gembloux, Belgium
| | - I Dufrasne
- Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health (FARAH), University of Liège, 4000 Liège, Belgium
| | - M Eugène
- INRAE - Université Clermont Auvergne - VetAgroSup UMR 1213 Unité Mixte de Recherche sur les Herbivores, Centre de recherche Auvergne-Rhône-Alpes, Theix, 63122 Saint-Genès-Champanelle, France
| | - E Froidmont
- Department of Valorisation of Agricultural Products, Walloon Agricultural Research Centre, 5030 Gembloux, Belgium
| | - S van Gastelen
- Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - P C Garnsworthy
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - A Halmemies-Beauchet-Filleau
- Faculty of Agriculture and Forestry, Department of Agricultural Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - S Herremans
- Department of Valorisation of Agricultural Products, Walloon Agricultural Research Centre, 5030 Gembloux, Belgium
| | - P Huhtanen
- Department of Agricultural Science for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - M Johansen
- Department of Animal Science, Aarhus University, AU Foulum, Dk-8830 Tjele, Denmark
| | - A Kidane
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - M Kreuzer
- Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - B Kuhla
- Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," Dummerstorf, Mecklenburg-Vorpommern, Germany
| | - F Lessire
- Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health (FARAH), University of Liège, 4000 Liège, Belgium
| | - P Lund
- Department of Animal Science, Aarhus University, AU Foulum, Dk-8830 Tjele, Denmark
| | - E M K Minnée
- DairyNZ Ltd., Private Bag 3221, Hamilton, New Zealand 3240
| | - C Muñoz
- Instituto de Investigaciones Agropecuarias, INIA Remehue, Ruta 5 S, Osorno, Chile
| | - M Niu
- Department of Animal Science, University of California, Davis 95616; Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - P Nozière
- INRAE - Université Clermont Auvergne - VetAgroSup UMR 1213 Unité Mixte de Recherche sur les Herbivores, Centre de recherche Auvergne-Rhône-Alpes, Theix, 63122 Saint-Genès-Champanelle, France
| | - D Pacheco
- Ag Research, Palmerston North 4410, New Zealand
| | - E Prestløkken
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - C K Reynolds
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, United Kingdom
| | - A Schwarm
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - J W Spek
- Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - M Terranova
- AgroVet-Strickhof, ETH Zurich, 8315 Lindau, Switzerland
| | - A Vanhatalo
- Faculty of Agriculture and Forestry, Department of Agricultural Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - M A Wattiaux
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison 53706-1205
| | - M R Weisbjerg
- Department of Animal Science, Aarhus University, AU Foulum, Dk-8830 Tjele, Denmark
| | - D R Yáñez-Ruiz
- Estación Experimental del Zaidin, CSIC, 1, 18008 Granada, Spain
| | - Z Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - E Kebreab
- Department of Animal Science, University of California, Davis 95616
| |
Collapse
|
30
|
Correa-Luna M, Johansen M, Noziere P, Chantelauze C, Nasrollahi SM, Lund P, Larsen M, Bayat AR, Crompton LA, Reynolds CK, Froidmont E, Edouard N, Dewhurst R, Bahloul L, Martin C, Cantalapiedra-Hijar G. Nitrogen isotopic discrimination as a biomarker of between-cow variation in the efficiency of nitrogen utilization for milk production: A meta-analysis. J Dairy Sci 2022; 105:5004-5023. [PMID: 35450714 DOI: 10.3168/jds.2021-21498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/21/2022] [Indexed: 11/19/2022]
Abstract
Estimating the efficiency of N utilization for milk production (MNE) of individual cows at a large scale is difficult, particularly because of the cost of measuring feed intake. Nitrogen isotopic discrimination (Δ15N) between the animal (milk, plasma, or tissues) and its diet has been proposed as a biomarker of the efficiency of N utilization in a range of production systems and ruminant species. The aim of this study was to assess the ability of Δ15N to predict the between-animal variability in MNE in dairy cows using an extensive database. For this, 20 independent experiments conducted as either changeover (n = 14) or continuous (n = 6) trials were available and comprised an initial data set of 1,300 observations. Between-animal variability was defined as the variation observed among cows sharing the same contemporary group (CG; individuals from the same experimental site, sampling period, and dietary treatment). Milk N efficiency was calculated as the ratio between mean milk N (grams of N in milk per day) and mean N intake (grams of N intake per day) obtained from each sampling period, which lasted 9.0 ± 9.9 d (mean ± SD). Samples of milk (n = 604) or plasma (n = 696) and feeds (74 dietary treatments) were analyzed for natural 15N abundance (δ15N), and then the N isotopic discrimination between the animal and the dietary treatment was calculated (Δ15n = δ15Nanimal - δ15Ndiet). Data were analyzed through mixed-effect regression models considering the experiment, sampling period, and dietary treatment as random effects. In addition, repeatability estimates were calculated for each experiment to test the hypothesis of improved predictions when MNE and Δ15N measurements errors were lower. The considerable protein mobilization in early lactation artificially increased both MNE and Δ15N, leading to a positive rather than negative relationship, and this limited the implementation of this biomarker in early lactating cows. When the experimental errors of Δ15N and MNE decreased in a particular experiment (i.e., higher repeatability values), we observed a greater ability of Δ15N to predict MNE at the individual level. The predominant negative and significant correlation between Δ15N and MNE in mid- and late lactation demonstrated that on average Δ15N reflects MNE variations both across dietary treatments and between animals. The root mean squared prediction error as a percentage of average observed value was 6.8%, indicating that the model only allowed differentiation between 2 cows in terms of MNE within a CG if they differed by at least 0.112 g/g of MNE (95% confidence level), and this could represent a limitation in predicting MNE at the individual level. However, the one-way ANOVA performed to test the ability of Δ15N to differentiate within-CG the top 25% from the lowest 25% individuals in terms of MNE was significant, indicating that it is possible to distinguish extreme animals in terms of MNE from their N isotopic signature, which could be useful to group animals for precision feeding.
Collapse
Affiliation(s)
- M Correa-Luna
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France
| | - M Johansen
- Department of Animal Science, Aarhus University, AU Foulum, PO Box 50, DK-8830, Tjele, Denmark
| | - P Noziere
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France
| | - C Chantelauze
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB, Clermont, F-63000 Clermont-Ferrand, France
| | - S M Nasrollahi
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France
| | - P Lund
- Department of Animal Science, Aarhus University, AU Foulum, PO Box 50, DK-8830, Tjele, Denmark
| | - M Larsen
- Department of Animal Science, Aarhus University, AU Foulum, PO Box 50, DK-8830, Tjele, Denmark
| | - A R Bayat
- Milk Production Solutions, Production Systems, Natural Resources Institute Finland (Luke), FI 31600 Jokioinen, Finland
| | - L A Crompton
- Centre for Dairy Research, Department of Animal Sciences, School of Agriculture, Policy, and Development, University of Reading, Reading, RG6 6AH, United Kingdom
| | - C K Reynolds
- Centre for Dairy Research, Department of Animal Sciences, School of Agriculture, Policy, and Development, University of Reading, Reading, RG6 6AH, United Kingdom
| | - E Froidmont
- Walloon Agricultural Research Center (CRA-W), B-5030 Gembloux, Belgium
| | - N Edouard
- INRAE, Agrocampus-Ouest, PEGASE, 35590 Saint-Gilles, France
| | - R Dewhurst
- SRUC, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - L Bahloul
- Adisseo France S.A.S., 92160 Antony, France
| | - C Martin
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France
| | - G Cantalapiedra-Hijar
- Université Clermont Auvergne, INRAE, UMR Herbivores, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
31
|
Bittante G. Effects of breed, farm intensiveness, and cow productivity on infrared predicted milk urea. J Dairy Sci 2022; 105:5084-5096. [DOI: 10.3168/jds.2021-21105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022]
|
32
|
Bittencourt CA, Júnior RTA, Silva EE, Meneguette JR, Schuh BR, Daley VDL, Fernandes SR, Signoretti RD, Freitas JA. Replacement of soybean meal with alternative protein sources in the concentrate supplement for lactating Holstein × Gyr cows in an intensive tropical pasture-based system: effects on performance, milk composition, and diurnal ingestive behavior. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Tilahun M, Zhao L, Guo Z, Shen Y, Ma L, Callaway TR, Xu J, Bu D. Amla (Phyllanthus emblica) fresh fruit as new feed source to enhance ruminal fermentation and milk production in lactating dairy cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
34
|
King L, Wickramasinghe J, Dooley B, McCarthy C, Branstad E, Grilli E, Baumgard L, Appuhamy R. Effects of Microencapsulated Methionine on Milk Production and Manure Nitrogen Excretions of Lactating Dairy Cows. Animals (Basel) 2021; 11:ani11123545. [PMID: 34944319 PMCID: PMC8698091 DOI: 10.3390/ani11123545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Methionine (Met) deficiency in the diet can limit milk protein production and lead to excessive nitrogen (N) excretions to the environment by dairy cows. We demonstrated that the supplementation of a new rumen-protected Met product to a Met deficient diet increased milk protein yield and decreased manure N excretions of high producing dairy cows. Increased blood flow to the mammary glands and increased apparent total tract digestibility of dietary crude protein seem to be the underlying mechanisms for those improvements in production and the environmental sustainability. Abstract The study objective was to determine the effects of rumen-protected methionine (Met) by microencapsulation (RPM) on amino acid (AA) supply to the udder, milk production, and manure nitrogen (N) losses of dairy cows. A corn and soybean-based diet deficient in metabolizable Met (~10 g/d) was supplemented with RPM providing 0, 11.0, 19.3, and 27.5 g/d of Met. Dry matter intake (DMI), milk production, plasma essential AA (EAA), mammary plasma flow (MPF), and fecal (FN) and urinary N (UN) outputs (g/d) were determined. The RPM increased linearly milk yield, milk protein yield, and energy corrected milk yield (p < 0.040) without affecting DMI. Milk protein yield increased by 50 g/d for the 19.3 vs. 0 g/d dose (p = 0.006) but the rate of increment decreased for 27.5 g/d dose. Plasma Met, and MPF increased linearly with RPM dose (p < 0.050). Apparent total tract digestibility of crude protein (p = 0.020) and FN (p = 0.081) decreased linearly with RPM. The UN did not change but total manure N decreased linearly with RPM (p = 0.054). The RPM (19.3 g/d) seemed to help cows overcome the metabolizable Met deficiency while mitigating manure N excretions to the environment.
Collapse
Affiliation(s)
- Layla King
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (L.K.); (J.W.); (B.D.); (C.M.); (E.B.); (L.B.)
| | - Janaka Wickramasinghe
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (L.K.); (J.W.); (B.D.); (C.M.); (E.B.); (L.B.)
| | - Brooke Dooley
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (L.K.); (J.W.); (B.D.); (C.M.); (E.B.); (L.B.)
| | - Carrie McCarthy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (L.K.); (J.W.); (B.D.); (C.M.); (E.B.); (L.B.)
| | - Emily Branstad
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (L.K.); (J.W.); (B.D.); (C.M.); (E.B.); (L.B.)
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Vetagro Inc., Chicago, IL 60604, USA
| | - Lance Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (L.K.); (J.W.); (B.D.); (C.M.); (E.B.); (L.B.)
| | - Ranga Appuhamy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (L.K.); (J.W.); (B.D.); (C.M.); (E.B.); (L.B.)
- Correspondence: ; Tel.: +1-(515)-294-4631
| |
Collapse
|
35
|
Refat B, Christensen DA, Ismael A, Feng X, Rodríguez-Espinosa ME, Guevara-Oquendo VH, Yang J, AlZahal O, Yu P. Evaluating the effects of fibrolytic enzymes on rumen fermentation, omasal nutrient flow, and production performance in dairy cows during early lactation. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was performed to evaluate the effects of pre-treating a barley-silage-based diet with an exogenous fibrolytic enzyme derived from Trichoderma reesei (FETR, a mixture of xylanase and cellulase) on lactation performance, omasal nutrient flow and digestibility, rumen fermentation characteristics, and rumen pH profile in Holstein dairy cows during early lactation. The dairy trial was conducted using nine Holstein dairy cows (averaging 46 ± 24 days in milk and 697 ± 69 kg body weight, six cows were fitted with a rumen cannula, and three were non-cannulated). Two groups of cows were randomly assigned to each of the dietary treatments in a crossover design: control (without FETR supplementation) and supplemented [with 0.75 mL of FETR·kg−1 dry matter (DM) of the diet based on our previous study]. The application of FETR tended to decrease the DM intake compared with control. There were no effects of FETR (P > 0. 10) on omasal nutrient flow and digestibility, rumen fermentation characteristics, and rumen pH profile. In conclusion, this study lacks evidence that the fibrolytic enzyme (at a level of 0.75 mL of FETR·kg−1 DM) can affect nutrient digestibility, ruminal fermentation, and the performance of early-lactation cows. Further study with larger animal trials are needed.
Collapse
Affiliation(s)
- Basim Refat
- Department of Animal and Poultry Science, College of Agricultural and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - David A. Christensen
- Department of Animal and Poultry Science, College of Agricultural and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Aya Ismael
- Department of Animal and Poultry Science, College of Agricultural and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Xin Feng
- Department of Animal and Poultry Science, College of Agricultural and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - María E. Rodríguez-Espinosa
- Department of Animal and Poultry Science, College of Agricultural and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Victor H. Guevara-Oquendo
- Department of Animal and Poultry Science, College of Agricultural and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Jenchieh Yang
- Department of Animal and Poultry Science, College of Agricultural and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | | | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agricultural and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
36
|
Guinati BGS, Sousa LR, Oliveira KA, Coltro WKT. Simultaneous analysis of multiple adulterants in milk using microfluidic paper-based analytical devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5383-5390. [PMID: 34734929 DOI: 10.1039/d1ay01339d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study reports the simultaneous colorimetric detection of urea, H2O2, and pH in milk samples using microfluidic paper-based analytical devices (μPADs) fabricated through a craft cutter printer. Paper-based devices were designed to contain three detection zones interconnected to a sampling zone by microfluidic channels. Colorimetric analysis was performed using images digitalized through an office scanner. The volumes of chromogenic and sample solutions were optimized, and the best colorimetric performance was achieved by adding 0.5 and 10 μL into detection and sampling zones, respectively. Simultaneous assays were then carried out, and the recorded responses revealed a linear behavior in the concentration ranges from 0-30.0 mmol L-1, 0-10.0 mmol L-1 and 6.0-9.0 for urea, H2O2 and pH, respectively. The limit of detection values obtained for urea and H2O2 were 2.4 mmol L-1 and 0.1 mmol L-1, respectively. For pH measurements, colorimetric assay allowed the monitoring of solution pH with a resolution of 0.25 units. The use of μPADs to detect target adulterants exhibited suitable reproducibility (RSD ≤ 6.0%), accuracy (91-102%) and no cross-reaction occurrence. When compared to reference techniques, colorimetric assays did not reveal a significant difference at a confidence level of 95%. As a proof-of-concept, the feasibility of the proposed approach was successfully demonstrated through the analysis of potential adulterants in sixteen milk samples, which were tested without any pretreatment requirement. Based on the achievements, μPADs in conjunction with colorimetric measurements emerge as a powerful tool for rapid screening of potential adulterants in milk.
Collapse
Affiliation(s)
- Bárbara G S Guinati
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Lucas R Sousa
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Karoliny A Oliveira
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| |
Collapse
|
37
|
Nitrogen use efficiency and soil chemical composition in small-scale dairy systems. Trop Anim Health Prod 2021; 53:538. [PMID: 34762180 DOI: 10.1007/s11250-021-02988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
In dairy production systems, the efficient use of resources is required to guarantee its sustainability. Worldwide, the efficiency of feed utilization and its effects have been widely studied. However, few studies have quantified animal nitrogen use and its corresponding soil contribution in small-scale production systems. Therefore, this study aimed to determine the efficiency of feed utilization and quantify the soil chemical composition in small-scale production systems using two different feeding strategies. Twelve dairy farms were evaluated from May 2016 to April 2017. Data analysis was performed using an ANOVA following a completely randomized model and using feeding strategies as treatment. Regarding the feeding systems' characteristics, significant differences (P < 0.05) were only observed in land surface and land used to produce mixed-grass and corn. Nitrogen (N) input and output in dairy cattle were significantly different (P < 0.05) for crude protein intake. The highest results were observed in grazing feeding systems. The cut and carry strategies excreted 71% of the consumed N in the manure; grazing strategies excreted 72%. The efficiency of feed utilization (EFU) is low; only 19% of the consumed N is recovered during milk production. As for the soil chemical composition, significant differences (P < 0.05) were observed in the percentage of total N and the carbon to nitrogen (C:N) ratio. The remaining components behaved similarly in both feeding systems. Systems that include crops and livestock can positively change the biophysical and socioeconomic dynamics of agricultural systems.
Collapse
|
38
|
Lunsin R, Pilajun R, Cherdthong A, Wanapat M, Duanyai S, Sombatsri P. Influence of fibrolytic enzymes in total mixed ration containing urea-molasses-treated sugarcane bagasse on the performance of lactating Holstein-Friesian crossbred cows. Anim Sci J 2021; 92:e13652. [PMID: 34717034 DOI: 10.1111/asj.13652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study was to determine the effect of different levels of fibrolytic enzyme on nutrient utilization and milk production in dairy cows. Four multiparous early-to-mid-lactation Holstein-Friesian crossbred cows were randomly allocated in a 4 × 4 Latin square design. Cows were fed a balanced total mixed ration (TMR) on a dry matter (DM) basis containing 0, 1.2, 2.4, and 3.6 g/kg DM of fibrolytic enzyme in TMR, where the TMR comprises 60% concentrate supplemented with a fibrolytic enzyme at 0, 2, 4, and 6 g/kg DM of concentrate, and 40% urea-molasses-treated sugarcane bagasse (UMSB) was used as a roughage source. Fibrolytic enzyme supplementation in TMR containing UMSB did not affect dry matter intake (DMI) of dairy cows (p > 0.05). There was a quadratic effect of fibrolytic enzyme levels on the digestibility of DM, organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) (p < 0.05), and the maximal response was reached at 1.2-2.4 g/kg DM of fibrolytic enzyme added in the TMR. Furthermore, 3.5% fat-corrected milk, milk fat, total volatile fatty acids, and propionic acid were greater in a cow fed with 1.2-2.4 g/kg DM of fibrolytic enzyme, resulting in a lower ratio of acetic acid to propionic acid (p < 0.05). In conclusion, adding a fibrolytic enzyme in TMR containing UMSB improved nutrient utilization, rumen fermentation, and milk production of lactating dairy cows.
Collapse
Affiliation(s)
- Ratchataporn Lunsin
- Program in Animal Science, Faculty of Agriculture, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| | - Ruangyote Pilajun
- Department of Animal Science, Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Somporn Duanyai
- Program in Animal Science, Faculty of Agriculture, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| | - Prapatsorn Sombatsri
- Program in Agriculture Science, Faculty of Agriculture, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| |
Collapse
|
39
|
Webb EC, de Bruyn E. Effects of Milk Urea Nitrogen (MUN) and Climatological Factors on Reproduction Efficiency of Holstein Friesian and Jersey Cows in the Subtropics. Animals (Basel) 2021; 11:ani11113068. [PMID: 34827800 PMCID: PMC8614443 DOI: 10.3390/ani11113068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of MUN and climatological factors on the inter calving period (ICP), reproductive performance (RP%), and reproductive index (RI) in Holstein Friesian (n = 1177) and Jersey cows (n = 3305) in different seasons in the subtropics. Threshold values for MUN on the reproduction of dairy cows in the subtropics remain controversial due to complex environmental interactions, especially with high environmental temperatures. A retrospective analysis was conducted of data obtained from the National Milk Recording scheme of the Agricultural Research Council (ARC) in South Africa. The results confirm that MUN influences the reproduction of dairy cows in the subtropics. MUN concentrations exceeding 18.1 ± 4.28 mg/dL in Holstein Friesian cows and 13.0 ± 4.70 mg/dL in Jersey cows extended the inter calving period (ICP), and decreased RP% and RI. Jersey cows have a lower threshold MUN concentration compared to Holstein Friesian cows, but they are not adversely affected by high humidity or temperatures, while Holstein Friesian cows are.
Collapse
|
40
|
Räisänen SE, Lage CFA, Zhou C, Melgar A, Silvestre T, Wasson DE, Cueva SF, Werner J, Takagi T, Miura M, Hristov AN. Lactational performance and plasma and muscle amino acid concentrations in dairy cows fed diets supplying 2 levels of digestible histidine and metabolizable protein. J Dairy Sci 2021; 105:170-187. [PMID: 34656346 DOI: 10.3168/jds.2021-20800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
The objective of this experiment was to investigate the effect of dietary levels of digestible histidine (dHis) and MP on lactational performance and plasma and muscle concentrations of free AA in dairy cows. A randomized block design experiment was conducted with 48 Holstein cows, including 20 primiparous, averaging (±SD) 103 ± 22 d in milk and 45 ± 9 kg/d milk yield at the beginning of the experiment. A 2-wk covariate period preceded 12 experimental wk, of which 10 wk were for data and sample collection. Experimental treatments were (1) MP-adequate (MPA) diet with 2.1% dHis of MP (MPA2.1), (2) MPA with 3.0% dHis (MPA3.0), (3) MP-deficient (MPD) diet with 2.1% dHis (MPD2.1), and (4) MPD with 3.0% dHis (MPD3.0). Actual dHis supply was estimated at 64, 97, 57, and 88 g/d, respectively. Diets supplied MP at 110% (MPA) and 96% (MPD) of NRC 2001 dairy model requirements calculated based on DMI and production data during the experiment. Dry matter intake and milk yield data were collected daily, milk samples for composition and blood samples for AA analysis were collected every other week, and muscle biopsies at the end of covariate period, and during wk 12 of the experiment. The overall DMI was not affected by dHis or MP level. Milk yield tended to be increased by 3.0% dHis compared with 2.1% dHis. Milk true protein concentration and yield were not affected by treatments, whereas milk urea nitrogen concentration was lower for MPD versus the MPA diet. Milk fat concentration was lower for MPD versus MPA. There was a MP × dHis interaction for milk fat yield and energy-corrected milk; milk fat was lower for MPD3.0 versus MPD2.1, but similar for cows fed the MPA diet regardless of dHis level whereas energy-corrected milk was greater for MPA3.0 versus MPA2.1 but tended to be lower for MPD3.0 versus MPD2.1. Plasma His concentration was greater for cows fed dHis3.0, and concentration of sum of essential AA was greater, whereas carnosine, 1-Methyl-His and 3-Methyl-His concentrations were lower for cows fed MPA versus MPD diet. Muscle concentration of His was greater for cows fed dHis3.0 treatment. The apparent efficiency of His utilization was increased at lower MP and His levels. Overall, cows fed a corn silage-based diet supplying MP at 110% of NRC (2001) requirements tended to have increased ECM yield and similar milk protein yield to cows fed a diet supplying MP at 96% of requirements. Supplying dHis at 3.0% of MP (or 86 and 96 g/d, for MPD3.0 and MPA3.0, respectively) tended to increase milk yield and increased plasma and muscle concentrations of His but had minor or no effects on other production variables in dairy cows.
Collapse
Affiliation(s)
- S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Veterinary Medicine, University of California, Tulare 93274
| | - C Zhou
- Department of Animal Science, The Pennsylvania State University, University Park 16802; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Agricultural Innovation Institute of Panama (IDIAP), City of Knowledge 07144, Panama
| | - T Silvestre
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D E Wasson
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Werner
- Animal Resource Program, The Pennsylvania State University, University Park 16802
| | - T Takagi
- Ajinomoto Co. Inc., Kawasaki, Japan 210-8681
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki, Japan 210-8681
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
41
|
Zhou D, Abdelrahman M, Zhang X, Yang S, Yuan J, An Z, Niu K, Gao Y, Li J, Wang B, Zhou G, Yang L, Hua G. Milk Production Responses and Digestibility of Dairy Buffaloes ( Bubalus bubalis) Partially Supplemented with Forage Rape ( Brassica napus) Silage Replacing Corn Silage. Animals (Basel) 2021; 11:ani11102931. [PMID: 34679952 PMCID: PMC8532855 DOI: 10.3390/ani11102931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary To develop alternative silage resources, we employed buffaloes as an animal model to evaluate the possibility and effects of forage rape silage in the dairy buffalo diet. We comprehensively assessed the nutrition value of forage rape silage by the apparent total-tract digestibility, rumen fermentation characteristics, blood metabolism and milk composition of lactating buffaloes. Our current results showed that the inclusion of forage rape silage in diets improved the milk quality, such as milk protein, milk fat, and total solid percentage. Furthermore, partial supplementation of forage rape silage also promotes buffaloes’ dry matter intake. These may be related to the favorable physiological and metabolic changes induced by the forage rape silage. Thus, our current data show the applicability of forage rape silage as a good feed resource for ruminants. Abstract Worldwide, silage is considered the main component in dairy animal diets; however, this portion is mainly dominated by corn silage, which raises availability challenges in some agricultural production systems. The present study evaluated a partial replacement of corn silage with forage rape silage (FRS) and its effect on feed intake, nutrient digestibility, rumen fermentation, milk production, and blood metabolites in buffalo. Thirty-six lactating buffaloes were randomly assigned to four different groups, according to supplementation of FRS (only corn silage, FRS0) or with 15% (FRS15), 25% (FRS25), and 35% (FRS35) of forage rape silage instead of corn silage. The results showed that, compared to corn silage, forage rape silage has a lower carbohydrate but a higher protein concentration. The buffalo intake of dry matter and organic matter were improved linearly with the FRS increasing in the diet. The apparent total-tract digestibility (ATTD) of dry matter, organic matter, nitrogen, neutral detergent fiber, and acid detergent fiber also increased by the FRS supplementation compared with FRS0. Conversely, FRS supplementation decreased the propionic, butyric, and valeric acid contents and increased the acetic:propionic ratio and microbial protein content. Furthermore, FRS inclusion led to a significantly higher milk urea and non-fat milk solid content, higher blood glucose, total globulins, blood urea nitrogen, and lower blood high-density lipoprotein. These results suggested that FRS has high a nutritional value and digestibility, is a good feed resource, and showed favorable effects when supplemented with dairy buffalo ration.
Collapse
Affiliation(s)
- Di Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Mohamed Abdelrahman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut 71515, Egypt
| | - Xinxin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Shuai Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Jing Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Zhigao An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Kaifeng Niu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (Y.G.); (J.L.)
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (Y.G.); (J.L.)
| | - Bo Wang
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.W.); (G.Z.)
| | - Guangsheng Zhou
- Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.W.); (G.Z.)
| | - Liguo Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
- Hubei Province Buffalo Engineering Center, Wuhan 430070, China
- Correspondence: (L.Y.); (G.H.); Tel.: +86-138-7105-6592 (L.Y.); +86-136-3860-4846 (G.H.)
| | - Guohua Hua
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.); (M.A.); (X.Z.); (S.Y.); (J.Y.); (Z.A.); (K.N.)
- Hubei Province Buffalo Engineering Center, Wuhan 430070, China
- Correspondence: (L.Y.); (G.H.); Tel.: +86-138-7105-6592 (L.Y.); +86-136-3860-4846 (G.H.)
| |
Collapse
|
42
|
Effect of dietary tannin supplementation on cow milk quality in two different grazing seasons. Sci Rep 2021; 11:19654. [PMID: 34608216 PMCID: PMC8490380 DOI: 10.1038/s41598-021-99109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/17/2021] [Indexed: 01/12/2023] Open
Abstract
Extensive farming systems are characterized by seasons with different diet quality along the year, as pasture availability is strictly depending on climatic conditions. A number of problems for cattle may occur in each season. Tannins are natural polyphenolic compounds that can be integrated in cows’ diet to overcome these seasonal problems, but little is known about their effect on milk quality according to the season. This study was designed to assess the effects of 150 g/head × day of tannin extract supplementation on proximate composition, urea, colour, cheesemaking aptitude, antioxidant capacity, and fatty acid (FA) profile of cow milk, measured during the wet season (WS) and the dry season (DS) of Mediterranean climate. In WS, dietary tannins had marginal effect on milk quality. Conversely, in DS, the milk from cows eating tannins showed 10% lower urea and slight improvement in antioxidant capacity, measured with FRAP and TEAC assays. Also, tannin extract supplementation in DS reduced branched-chain FA concentration, C18:1 t10 to C18:1 t11 ratio and rumenic to linoleic acid ratio. Tannins effect on rumen metabolism was enhanced in the season in which green herbage was not available, probably because of the low protein content, and high acid detergent fibre and lignin contents in diet. Thus, the integration of tannin in the diet should be adapted to the season. This could have practical implications for a more conscious use of tannin-rich extracts, and other tannin sources such as agro-industrial by-products and forages.
Collapse
|
43
|
Guerra M, Véras A, Ferreira M, Novaes L, Gurgel A, Silva L, Barreto L, Parente M, Santos V. Supplementation of crossbred cows with maize and urea in tropical pasture. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This research article aims to evaluate the effect of total replacement of corn by soybean meal and urea on intake and apparent digestibility of dry matter and its components, production and composition of milk and feeding behavior of lactating cows grazing, with intermittent stocking Mombaça grass (Megathyrsus maximus cv. Mombaça). Twelve milking cows were distributed in a triple 4 x 4 latin square. Experimental treatments consisted of four soybean meal replacement levels by corn more urea (0; 33; 66; 100%). The grass has an average content of crude protein and neutral detergent fiber of 19% and 59%, respectively. The replacement of soybean meal by corn and urea did not affect the intake and digestibility of nutrients. A linear reduction of milk production was observed, but there was no change in milk production corrected to 4.0% of fat. The milk components (g/kg) of fat, protein, lactose, and total solids were not altered, as well as feeding behavior. Under the conditions of this study, the replacement of the diets is suitable for crossbred dairy cows in lactation third medium, producing in average of 12.5 kg/day-1 when kept in quality pastures.
Collapse
Affiliation(s)
- M.G. Guerra
- Universidade Federal Rural de Pernambuco, Brazil
| | - A.S.C. Véras
- Universidade Federal Rural de Pernambuco, Brazil
| | | | - L.P. Novaes
- Universidade Federal do Rio Grande do Norte, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Rafiee H, Darabighane B. A meta-analysis and meta-regression of the effect of substitution of steam flaked corn instead of finely ground corn on dry matter intake, nutrients digestibility, lactation performance, and rumen fermentation in dairy cows. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Chen Y, Atashi H, Vanderick S, Mota RR, Soyeurt H, Hammami H, Gengler N. Genetic analysis of milk urea concentration and its genetic relationship with selected traits of interest in dairy cows. J Dairy Sci 2021; 104:12741-12755. [PMID: 34538498 DOI: 10.3168/jds.2021-20659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to estimate genetic parameters of milk urea concentration (MU) and its genetic correlations with milk production traits, longevity, and functional traits in the first 3 parities in dairy cows. The edited data set consisted in 9,107,349 MU test-day records from the first 3 parities of 560,739 cows in 2,356 herds collected during the years 1994 to 2020. To estimate the genetic parameters of MU, data of 109 randomly selected herds, with a total of 770,016 MU test-day records, were used. Genetic parameters and estimated breeding values were estimated using a multiple-trait (parity) random regression model. Herd-test-day, age-year-season of calving, and days in milk classes (every 5 d as a class) were used as fixed effects, whereas effects of herd-year of calving, permanent environment, and animal were modeled using random regressions and Legendre polynomials of order 2. The average daily heritability and repeatability of MU during days in milk 5 to 365 in the first 3 parities were 0.19, 0.22, 0.20, and 0.48, 0.48, 0.47, respectively. The mean genetic correlation estimated among MU in the first 3 parities ranged from 0.96 to 0.97. The average daily estimated breeding values for MU of the selected bulls (n = 1,900) ranged from -9.09 to 7.37 mg/dL. In the last 10 yr, the genetic trend of MU has gradually increased. The genetic correlation between MU and 11 traits of interest ranged from -0.28 (milk yield) to 0.28 (somatic cell score). The findings of this study can be used as the first step for development of a routine genetic evaluation for MU and its inclusion into the genetic selection program in the Walloon Region of Belgium.
Collapse
Affiliation(s)
- Y Chen
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - H Atashi
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-65186 Shiraz, Iran
| | - S Vanderick
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - R R Mota
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - H Soyeurt
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - H Hammami
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), 5030 Gembloux, Belgium.
| |
Collapse
|
46
|
Fant P, Ramin M, Huhtanen P. Replacement of barley with oats and dehulled oats: Effects on milk production, enteric methane emissions, and energy utilization in dairy cows fed a grass silage-based diet. J Dairy Sci 2021; 104:12540-12552. [PMID: 34531047 DOI: 10.3168/jds.2021-20409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022]
Abstract
Sixteen Nordic Red dairy cows, at 80 ± 4.6 d in milk and with an average body weight of 624 ± 91.8 kg, were used in a replicated 4 × 4 Latin square design to investigate the effects of different concentrate supplements on milk production, enteric CH4 emissions, ruminal fermentation, digestibility, and energy utilization. The cows were blocked into 4 groups based on parity and milk yield and randomly assigned to 1 of 4 experimental concentrates: (1) barley, (2) hulled oats, (3) an oat mixture consisting of hulled and dehulled oats, 50:50 on dry matter basis, and (4) dehulled oats; canola meal was a protein supplement in all 4 concentrates. The cows were fed grass silage and experimental concentrate (forage-to-concentrate ratio 60:40 on dry matter basis) ad libitum. To compare the effects of barley and oats, the barley diet was compared with the overall mean of the hulled oat, oat mixture, and dehulled oat diets. To investigate the effects of gradual replacement of hulled oats with dehulled oats, linear and quadratic contrasts were specified. Milk and energy-corrected milk (ECM) yield were higher on the oat diets compared with the barley diet but were not affected by the type of oats. Concentrations of milk constituents were not affected by grain species or type of oats, except for protein concentration, which was lower on the oat diets than on the barley diet. Feeding the oat diets led to higher milk protein yield and higher milk urea N concentrations. Feed efficiency tended to be higher on the oat diets, and linearly increased with increased inclusion of dehulled oats. Methane emissions (g/d) and CH4 yield (g/kg of dry matter intake) were unaffected by grain species but increased linearly with increasing inclusion of dehulled oats in the diet. Because of higher ECM yield, CH4 intensity (g/kg of ECM) was on average 5.7% lower from cows on the oat diets than on the barley diet. Ruminal fermentation was not affected by dietary treatment. Total-tract apparent digestibility of organic matter, crude protein, and neutral detergent fiber was unaffected by grain species but linearly increased with increasing inclusion of dehulled oats. Gross energy content was higher on the oat diets and linearly increased with increasing inclusion of dehulled oats. Feeding the oat diets led to a lower ratio of CH4 energy to gross energy intake, greater milk energy and heat production but no change in energy balance. Gradual replacement of hulled oats with dehulled oats linearly increased gross energy digestibility, CH4 energy, metabolizable energy intake, heat production, and energy balance. We observed no effect of dietary treatment on efficiency of metabolizable energy use for lactation. In conclusion, replacing barley with any type of oats increased milk and ECM yield, which led to a 5.7% decrease in CH4 intensity. In addition, dehulling of oats before feeding is unnecessary because it did not significantly improve production performance of dairy cows in positive energy balance.
Collapse
Affiliation(s)
- P Fant
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - M Ramin
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - P Huhtanen
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden; Milk Production, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| |
Collapse
|
47
|
Nitrogen Use Efficiency and Excretion in Grazing Cows with High and Low Milk Urea Nitrogen Breeding Values. SUSTAINABILITY 2021. [DOI: 10.3390/su13179827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Milk urea nitrogen content is moderately heritable and is phenotypically related to urine nitrogen (UN). Based on this relationship, it has been suggested that genetic selection for lower milk urea nitrogen in grazing dairy cows could decrease UN concentration thereby reducing nitrogen excretions into the ground. The objective of this study was to compare the nitrogen use efficiency (NUE) and excretion in grazing cows with high and low milk urea nitrogen breeding values (MUNBV) in two farms of contrasting farming intensity. On the high-intensity farm (HIF) 68 and 70 cows with low and high MUNBV, respectively, were fed higher levels of supplementation and milked twice-daily, while on the low-intensity farm (LIF) 82 and 86 cows with low and high MUNBV, respectively, were fed lower levels of supplementation milked once-daily. Nitrogen use efficiency (g/g) was calculated as the ratio of daily milk N to daily N intake. Daily N intake (g/day) was derived from feed intake estimates based on energy requirements. The UN (g/day) was estimated by back-calculation from dietary N and subtracting milk N, faecal N, and N retained in body tissues. Irrespective of farm, cows with low MUNBV had significantly lower MY and milk urea nitrogen (p < 0.001) but this was not linked to significantly less UN. In the LIF, cows with low MUNBV had lower NUE (p < 0.001) than cows with high MUNBV, and this was explained by the reduced protein yield (p < 0.001). Selecting cows for low MUNBV was not an effective tool to reduce N losses and to increase the NUE in two dairy farms of contrasting farming intensity.
Collapse
|
48
|
Estimation of Nitrogen Use Efficiency for Ryegrass-Fed Dairy Cows: Model Development Using Diet- and Animal-Based Proxy Measures. DAIRY 2021. [DOI: 10.3390/dairy2030035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to identify suitable predictors of nitrogen (N) use efficiency (NUE; milk N/N intake) for cows that differed in breeds and were fed with ryegrass pasture, using existing data from the scientific literature. Data from 16 studies were used to develop models based on the relationships between NUE and dietary and animal-based factors. Data from a further 10 studies were used for model validation. Milk urea N (MUN) and dietary water-soluble carbohydrate-to-crudeprotein ratio (WSC/CP) were the best and most practical animal- and diet-based proxies to predict NUE. The results indicate that it might be necessary to adopt separate models for different breeds when using WSC/CP to predict NUE but not when using MUN.
Collapse
|
49
|
Guarnido-Lopez P, Ortigues-Marty I, Taussat S, Fossaert C, Renand G, Cantalapiedra-Hijar G. Plasma proteins δ 15N vs plasma urea as candidate biomarkers of between-animal variations of feed efficiency in beef cattle: Phenotypic and genetic evaluation. Animal 2021; 15:100318. [PMID: 34311194 DOI: 10.1016/j.animal.2021.100318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022] Open
Abstract
Identifying animals that are superior in terms of feed efficiency may improve the profitability and sustainability of the beef cattle sector. However, measuring feed efficiency is costly and time-consuming. Biomarkers should thus be explored and validated to predict between-animal variation of feed efficiency for both genetic selection and precision feeding. In this work, we aimed to assess and validate two previously identified biomarkers of nitrogen (N) use efficiency in ruminants, plasma urea concentrations and the 15N natural abundance in plasma proteins (plasma δ15N), to predict the between-animal variation in feed efficiency when animals were fed two contrasted diets (high-starch vs high-fibre diets). We used an experimental network design with a total of 588 young bulls tested for feed efficiency through two different traits (feed conversion efficiency [FCE] and residual feed intake [RFI]) during at least 6 months in 12 cohorts (farm × period combination). Animals reared in the same cohort, receiving the same diet and housed in the same pen, were considered as a contemporary group (CG). To analyse between-animal variations and explore relationships between biomarkers and feed efficiency, two statistical approaches, based either on mixed-effect models or regressions from residuals, were conducted to remove the between-CG variability. Between-animal variation of plasma δ15N was significantly correlated with feed efficiency measured through the two criteria traits and regardless of the statistical approach. Conversely, plasma urea was not correlated to FCE and showed only a weak, although significant, correlation with RFI. The response of plasma δ15N to FCE variations was higher when animals were fed a high-starch compared to a high-fibre diet. In addition, we identified two dietary factors, the metabolisable protein to net energy ratio and the rumen protein balance that influenced the relation between plasma δ15N and FCE variations. Concerning the genetic evaluation, and despite the moderate heritability of the two biomarkers (0.28), the size of our experimental setup was insufficient to detect significant genetic correlations between feed efficiency and the biomarkers. However, we validated the potential of plasma δ15N to phenotypically discriminate two animals reared in identical conditions in terms of feed efficiency as long as they differ by at least 0.049 g/g for FCE and 1.67 kg/d for RFI. Altogether, the study showed phenotypic, but non-genetic, relationships between plasma proteins δ15N and feed efficiency that varied according to the efficiency index and the diet utilised.
Collapse
Affiliation(s)
- P Guarnido-Lopez
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France
| | - I Ortigues-Marty
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France
| | - S Taussat
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| | - C Fossaert
- Institut de l'élevage, 75595 Paris, France
| | - G Renand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
| | - G Cantalapiedra-Hijar
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
50
|
AGPAT3 Gene polymorphisms are associated with milk production traits in Chinese Holstein cows. J DAIRY RES 2021; 88:247-252. [PMID: 34261571 DOI: 10.1017/s0022029921000546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The current study reports the identification of previously undiscovered single-nucleotide polymorphisms (SNPs) in the bovine AGPAT3 gene and further investigates their associations with milk production traits. Our results demonstrate that the major allele C of the SNP g.12264 C > T is positively correlated with test-day milk yield, protein percentage and 305-day milk yield. Importantly, in silico analysis showed that the C/T transition at this locus gives rise to two new transcription factor binding sites (TFBS), E2F1 and Nkx3-2. Polymorphism g.18658 G > A was the only SNP associated with milk urea nitrogen (MUN) with the G allele related to an increase in milk urea nitrogen as well as fat percentage. The GG genotype of SNP g.28731 A > G was associated with the highest fat and protein percentage and lowest 305-day milk yield and somatic cell score (SCS). The association between AGPAT3 locus and milk production traits could be utilized in marker-assisted selection for the genetic improvement of milk production traits and, probably in conjunction with other traits, for selection to improve fitness of dairy cattle.
Collapse
|