1
|
Kot B, Witeska M. Review: Antimicrobial resistance of Klebsiella pneumoniae isolated from poultry, cattle and pigs. Animal 2024; 18:101345. [PMID: 39490087 DOI: 10.1016/j.animal.2024.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024] Open
Abstract
Klebsiella pneumoniae, common pathogenic bacteria, cause dangerous infectious diseases in animals and humans. Klebsiella pneumoniae have numerous resistance mechanisms to antibacterials and the frequency of resistant K. pneumoniae isolates increases, making treatment of K. pneumoniae-induced infections difficult. Farm animals are a possible source of antibacterial resistant K. pneumoniae. The aim of this literature review (2018-2024) was to evaluate the antibacterial resistance of K. pneumoniae isolated from poultry, cattle and pigs in various countries. The analysis shows that farm animals are an important source of antibacterial-resistant and multidrug-resistant K. pneumoniae and that resistance patterns differ among antibacterial groups, animals and locations. In poultry, high resistance to penicillins (91%), III and IV generation cephalosporins (> 50%) occurred, and low to carbapenems (5%) and polymyxins (6%). In cattle, high resistance to sulphonamides (76%), IV generation cephalosporins, macrolides and lincosamides, and penicillins occurred (> 50%), and low to carbapenems (10%) and polymyxins (1%). Isolates from pigs showed high resistance to I and II-generation cephalosporins, I-generation fluoroquinolones, macrolides and lincosamides, tetracyclines (> 50%) and carbapenems (> 20%), and low to polymyxins (5%). The highest resistance rates to most antibacterial groups occurred in pigs, and in Africa and Asia, while the lowest in cattle, and in North and South America. Particularly, the relatively high resistance of K. pneumoniae to carbapenems and polymyxins in Africa poses a threat to animal and human health as these antibiotics are the last resort therapeutics used to treat severe infections. Different rates of K. pneumoniae resistance to antibacterials among isolates from farm animals probably result from differences in the treatment of each animal group with various antibacterial agents and different regimes of their use in various locations.
Collapse
Affiliation(s)
- B Kot
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, University of Siedlce, 14 Bolesława Prusa Str., 08-110 Siedlce, Poland.
| | - M Witeska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
2
|
Gelalcha BD, Gelgie AE, Kerro Dego O. Antimicrobial resistance and prevalence of extended-spectrum beta-lactamase-producing Klebsiella species in East Tennessee dairy farms. Microbiol Spectr 2024; 12:e0353723. [PMID: 39240080 PMCID: PMC11448431 DOI: 10.1128/spectrum.03537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
Klebsiella species commonly reside in dairy cattle guts and are consistently exposed to beta-lactam antibiotics, including ceftiofur, which are frequently used on the U.S. dairy farms. This may impose selection pressure and result in the emergence of extended-spectrum beta-lactamase (ESBL)-producing strains. However, information on the status and antimicrobial resistance (AMR) profile of ESBL-Klebsiella spp. in the U.S. dairy farms is largely unknown. This study aimed to determine the prevalence and AMR profile of ESBL-Klebsiella spp. and the factors affecting their occurrence in dairy cattle farms. Rectal fecal samples (n = 508) and manure, feed, and water samples (n = 64) were collected from 14 dairy farms in Tennessee. Samples were directly plated on CHROMagar ESBL, and presumptive Klebsiella spp. were confirmed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Antimicrobial susceptibility testing was performed on the isolates against panels of 14 antimicrobial agents from 10 classes using minimum inhibitory concentration. Of 572 samples, 57 (10%) were positive for ESBL-Klebsiella spp. The fecal prevalence of ESBL-Klebsiella spp. was 7.2% (95% CI: 6.5-8.0). The herd-level fecal prevalence of ESBL-Klebsiella spp. was 35.7% (95% CI: 12.7-64.8). The fecal prevalence of ESBL-Klebsiella spp. was significantly higher in calves than in cows and higher in cows with higher parity (≥3) as compared to cows with low parity (P < 0.001). Most (96.5%, n = 57) ESBL-Klebsiella spp. were resistant to ceftriaxone. The highest level of acquired co-resistance to ceftriaxone in ESBL-Klebsiella spp. was to sulfisoxazole (66.7%; 38/57). About 19% of ESBL-Klebsiella spp. were multidrug resistant. The presence of ESBL-producing Klebsiella spp. in dairy cattle, feed, and water obtained from troughs could play a crucial epidemiological role in maintaining and spreading the bacteria on farms and serving as a point source of transmission. IMPORTANCE We collected 572 samples from dairy farms, including rectal feces, manure, feed, and water. We isolated and identified extended-spectrum beta-lactamase (ESBL)-Klebsiella spp. and conducted an antimicrobial susceptibility test and analyzed different variables that may be associated with ESBL-Klebsiella spp. in dairy farms. The results of our study shed light on how ESBL-Klebsiella spp. are maintained through fecal-oral routes in dairy farms and possibly exit from the farm into the environment. We determine the prevalence of ESBL-Klebsiella spp. and their antimicrobial susceptibility profiles, underscoring their potential as a vehicle for multiple resistance gene dissemination within dairy farm settings. We also collected data on variables affecting their occurrence and spread in dairy farms. These findings have significant implications in determining sources of community-acquired ESBL-Enterobacteriaceae infections and designing appropriate control measures to prevent their spread from food animal production systems to humans, animals, and environments.
Collapse
Affiliation(s)
- Benti Deresa Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Aga E Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Pirner LH, Petzl W, Gangl A, Huber-Schlenstedt R, Sorge US. In vitro antimicrobial resistance of Escherichia coli, Serratia marcescens, Klebsiella oxytoca and Klebsiella pneumoniae on Bavarian dairy farms between 2014-2022. J Dairy Sci 2024:S0022-0302(24)00838-5. [PMID: 38825127 DOI: 10.3168/jds.2023-24536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/26/2024] [Indexed: 06/04/2024]
Abstract
The objective of this study was to describe the prevalence of antimicrobial resistance of E. coli, K. oxytoca, K. pneumoniae, and S. marcescens from quarter milk samples submitted to the udder health laboratory of the Bavarian Animal Health Services (TGD) in Southern Germany between 2014 and 2022. All samples were tested with the California Mastitis Test and analyzed with a standard microbroth dilution to determine the minimum inhibitory concentrations (MIC). The antimicrobials tested were amoxicillin/clavulanate, cefazoline, kanamycin/cefalexin, cefoperazone, cefquinome, and marbofloxacin. Breakpoints were chosen in accordance with CLSI. Over the study period, E. coli, K. oxytoca, and K. pneumoniae showed only few resistances to all antimicrobials tested. For those pathogens MIC 50 and MIC 90 were below breakpoint for all antimicrobials except cefoperazone over the 9 years. A decrease in MIC could be seen for E. coli and K. oxytoca for all of the antimicrobials. While the MIC for K. pneumoniae stayed more stagnant, the prevalence of resistance still decreased overall. S. marcescens isolates were proven intrinsically resistant to amoxicillin/clavulanate and cefazolin and while in vitro resistances were low for all other antimicrobials tested, S. marcescens tended toward higher MIC for most of the antimicrobials over the years. Over time, there was also an overall increase in the number of isolates for all 4 pathogens per year. Starting 2018 there was steep increase in the number of isolates particularly from clinical cases. This jump in numbers coincided with a change of the regulation for veterinary drug prescriptions in Germany in 2018 that required, among other things, antimicrobial resistance testing before a change of antibiotics in the course of treatment and the use of critically important antimicrobials. Overall, while the pathogens increased in numbers, the prevalence of their antimicrobial resistance remained low.
Collapse
Affiliation(s)
- Lea H Pirner
- Department of Udder Health and Milk Quality, Bavarian Animal Health Services, 85586 Poing, Germany; Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig Maximilians University Munich, 85764 Oberschleissheim, Germany.
| | - Wolfram Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig Maximilians University Munich, 85764 Oberschleissheim, Germany
| | - Armin Gangl
- Department of Udder Health and Milk Quality, Bavarian Animal Health Services, 85586 Poing, Germany
| | | | - Ulrike S Sorge
- Department of Udder Health and Milk Quality, Bavarian Animal Health Services, 85586 Poing, Germany
| |
Collapse
|
4
|
Nery Garcia BL, Dantas STA, da Silva Barbosa K, Mendes Mitsunaga T, Butters A, Camargo CH, Nobrega DB. Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Other Antimicrobial-Resistant Gram-Negative Pathogens Isolated from Bovine Mastitis: A One Health Perspective. Antibiotics (Basel) 2024; 13:391. [PMID: 38786120 PMCID: PMC11117280 DOI: 10.3390/antibiotics13050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses an imminent threat to global public health, driven in part by the widespread use of antimicrobials in both humans and animals. Within the dairy cattle industry, Gram-negative coliforms such as Escherichia coli and Klebsiella pneumoniae stand out as major causative agents of clinical mastitis. These same bacterial species are frequently associated with severe infections in humans, including bloodstream and urinary tract infections, and contribute significantly to the alarming surge in antimicrobial-resistant bacterial infections worldwide. Additionally, mastitis-causing coliforms often carry AMR genes akin to those found in hospital-acquired strains, notably the extended-spectrum beta-lactamase genes. This raises concerns regarding the potential transmission of resistant bacteria and AMR from mastitis cases in dairy cattle to humans. In this narrative review, we explore the distinctive characteristics of antimicrobial-resistant E. coli and Klebsiella spp. strains implicated in clinical mastitis and human infections. We focus on the molecular mechanisms underlying AMR in these bacterial populations and critically evaluate the potential for interspecies transmission. Despite some degree of similarity observed in sequence types and mobile genetic elements between strains found in humans and cows, the existing literature does not provide conclusive evidence to assert that coliforms responsible for mastitis in cows pose a direct threat to human health. Finally, we also scrutinize the existing literature, identifying gaps and limitations, and propose avenues for future research to address these pressing challenges comprehensively.
Collapse
Affiliation(s)
- Breno Luis Nery Garcia
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Stéfani Thais Alves Dantas
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Kristian da Silva Barbosa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Thatiane Mendes Mitsunaga
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Alyssa Butters
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | | | - Diego Borin Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
5
|
Gelalcha BD, Mohammed RI, Gelgie AE, Kerro Dego O. Molecular epidemiology and pathogenomics of extended-spectrum beta-lactamase producing- Escherichia coli and - Klebsiella pneumoniae isolates from bulk tank milk in Tennessee, USA. Front Microbiol 2023; 14:1283165. [PMID: 38029210 PMCID: PMC10658008 DOI: 10.3389/fmicb.2023.1283165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The rise in extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in dairy cattle farms poses a risk to human health as they can spread to humans through the food chain, including raw milk. This study was designed to determine the status, antimicrobial resistance, and pathogenic potential of ESBL-producing -E. coli and -Klebsiella spp. isolates from bulk tank milk (BTM). Methods Thirty-three BTM samples were collected from 17 dairy farms and screened for ESBL-E. coli and -Klebsiella spp. on CHROMagar ESBL plates. All isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). Results Ten presumptive ESBL-producing bacteria, eight E. coli, and two K. pneumoniae were isolated. The prevalence of ESBL-E. coli and -K. pneumoniae in BTM was 21.2% and 6.1%, respectively. ESBL-E. coli were detected in 41.2% of the study farms. Seven of the ESBL-E. coli isolates were multidrug resistant (MDR). The two ESBL-producing K. pneumoniae isolates were resistant to ceftriaxone. Seven ESBL-E. coli strains carry the blaCTX-M gene, and five of them co-harbored blaTEM-1. ESBL-E. coli co-harbored blaCTX-M with other resistance genes, including qnrB19, tet(A), aadA1, aph(3'')-Ib, aph(6)-Id), floR, sul2, and chromosomal mutations (gyrA, gyrB, parC, parE, and pmrB). Most E. coli resistance genes were associated with mobile genetic elements, mainly plasmids. Six sequence types (STs) of E. coli were detected. All ESBL-E. coli were predicted to be pathogenic to humans. Four STs (three ST10 and ST69) were high-risk clones of E. coli. Up to 40 virulence markers were detected in all E. coli isolates. One of the K. pneumoniae was ST867; the other was novel strain. K. pneumoniae isolates carried three types of beta-lactamase genes (blaCTX-M, blaTEM-1 and blaSHV). The novel K. pneumoniae ST also carried a novel IncFII(K) plasmid ST. Conclusion Detection of high-risk clones of MDR ESBL-E. coli and ESBL-K. pneumoniae in BTM indicates that raw milk could be a reservoir of potentially zoonotic ESBL-E. coli and -K. pneumoniae.
Collapse
Affiliation(s)
- Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Ruwaa I. Mohammed
- Department of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Aga E. Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
6
|
ATALAY M, UÇAN US. Determination of antibiotic resistance and biofilm formation in Klebsiella strains isolated from bovine mastitis cases. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.24880/maeuvfd.1110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mastitis is diseases of dairy cows with a high economic impact. Bovine mastitis is caused by a wide range of bacterial pathogens. As one of the major environmental pathogens Klebsiella ssp. was investigated in this study by some phenotypic characteristics like antibiotic resistance patterns and biofilm formation properties. A number of 483 cows by dairy farms around the Konya were examined by California Mastitis Test (CMT) producing 36 positive in terms of subclinical mastitis. A further 19 samples from clinical mastitic udders were also collected. Samples were inoculated onto Trypticase Soy Agar medium enriched with sheep blood and incubated aerobicaly for 24-48 hours at 37 °C. By morphological, biochemical and cultural charcateristics 14 isolates out of 37 coliform were identified as Klebsiella ssp. The double disc synergy method and Congo Red Agar test were used to perform antibiotic susceptibility and in vitro slime forming properties, respectively. Resistances to the antibiotics Ampicillin, Carbenicillin, Cephotaxime, Chloramphenicol, Erythromycin, Gentamicin, Neomycin, Oxytetracycline, Sulphamethoxazole/Trimpethoprim, Amoxicillin-Clavulanate and Imipenem were 78.5%, 78.5%, 35.7%, 42.8%, 100%, 7%, 7%, 50%, 14%, 21% and 7%, respectively. Three of the total isolets produced biofilm only. This appears to the first report on ESBL producing Klebsiella ssp from subclinical cases of bovine mastitis in Konya, Türkiye. Presently, two numbers of antimicrobial combinations to treat bovine cases are recommended by this work. In conclusion, because of costly challange nature of Klebsiella caused bovine mastitis implemantation of an effective mastitis control program should be used in local farms from Konya.
Collapse
Affiliation(s)
| | - Uçkun Sait UÇAN
- Department of Microbiology, Faculty of Veterinary Medicine, Selçuk University
| |
Collapse
|
7
|
Gelalcha BD, Kerro Dego O. Extended-Spectrum Beta-Lactamases Producing Enterobacteriaceae in the USA Dairy Cattle Farms and Implications for Public Health. Antibiotics (Basel) 2022; 11:1313. [PMID: 36289970 PMCID: PMC9598938 DOI: 10.3390/antibiotics11101313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the top global health threats of the 21th century. Recent studies are increasingly reporting the rise in extended-spectrum beta-lactamases producing Enterobacteriaceae (ESBLs-Ent) in dairy cattle and humans in the USA. The causes of the increased prevalence of ESBLs-Ent infections in humans and commensal ESBLs-Ent in dairy cattle farms are mostly unknown. However, the extensive use of beta-lactam antibiotics, especially third-generation cephalosporins (3GCs) in dairy farms and human health, can be implicated as a major driver for the rise in ESBLs-Ent. The rise in ESBLs-Ent, particularly ESBLs-Escherichia coli and ESBLs-Klebsiella species in the USA dairy cattle is not only an animal health issue but also a serious public health concern. The ESBLs-E. coli and -Klebsiella spp. can be transmitted to humans through direct contact with carrier animals or indirectly through the food chain or via the environment. The USA Centers for Disease Control and Prevention reports also showed continuous increase in community-associated human infections caused by ESBLs-Ent. Some studies attributed the elevated prevalence of ESBLs-Ent infections in humans to the frequent use of 3GCs in dairy farms. However, the status of ESBLs-Ent in dairy cattle and their contribution to human infections caused by ESBLs-producing enteric bacteria in the USA is the subject of further study. The aims of this review are to give in-depth insights into the status of ESBL-Ent in the USA dairy farms and its implication for public health and to highlight some critical research gaps that need to be addressed.
Collapse
Affiliation(s)
| | - Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|