1
|
De Koninck LH, Vuong KS, Shin S, Powers JE, Averkiou MA. Delivery of Cavitation Therapy With a Modified Clinical Scanner: In Vitro Evaluation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:351-361. [PMID: 40031319 PMCID: PMC12002410 DOI: 10.1109/tuffc.2025.3536932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
In this study, we design and implement pulses [1.67 MHz, 20-1000 cycles, 0.8-2.5 MPa, and 5-100 ms pulse repetition time (PRT)] suitable for microbubble cavitation treatments with a phased array of a clinical ultrasound scanner. A range of acoustic parameters was evaluated in a tissue-mimicking phantom with suspended Sonazoid microbubbles. Hydrophone measurements were used to optimize the transmit beamforming. A passive cavitation detection (PCD) system was designed to measure the microbubble scattered signals over a 1 s exposure. Postprocessing of the scattered signals evaluated frequency content to extract broadband energy and calculate the inertial cavitation dose (ICD). ICD was maximized at 1000 cycles (maximum pulse length), 5 ms (fastest firing rate), and 2.5 MPa peak negative pressure (PNP) (maximum pressure). Inertial cavitation was only sustained for about three pulses (out of hundreds fired) occurring within the first 100 ms of treatment. Temporal analysis of the first 1000-cycle pulse revealed that broadband energy is sustained for the entire pulse. We also demonstrate that while inertial cavitation is possible with clinically available pulse wave Doppler settings, ICD can be significantly increased using the new conditions suggested in this work. We have delivered successful image-guided cavitation treatment after modifying a clinical scanner and monitored the cavitation dose with a PCD system on a gel phantom with suspended microbubbles. We plan to apply this technique in vivo in animal tumor models next. This work demonstrates the first implementation of long, high-pressure pulses on a clinical scanner that users can optimize for cavitation treatments.
Collapse
|
2
|
Snipstad S, Einen C, Kastellet AB, Fernandez JL, Mühlenpfordt M, Kurbatskaya A, Årseth C, Berg S, Bjørkøy A, Davies CDL. Ultrasound and Microbubble-Induced Reduction of Functional Vasculature Depends on the Microbubble, Tumor Type and Time After Treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:33-42. [PMID: 39389855 DOI: 10.1016/j.ultrasmedbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Ultrasound in combination with microbubbles can enhance accumulation and improve the distribution of various therapeutic agents in tumor tissue, leading to improved efficacy. Understanding the impact of treatment on the tumor microenvironment, concurrently with how microenvironment attributes affect treatment outcome, will be important for selecting appropriate patient cohorts in future clinical trials. The main aim of this work was to investigate the influence of ultrasound and microbubbles on the functional vasculature of cancer tissue. METHODS Four different tumor models in mice (bone, pancreatic, breast and colon cancer) were characterized with respect to vascular parameters using contrast-enhanced ultrasound imaging. The effect of treatment with microbubbles and ultrasound was then investigated using immunohistochemistry and confocal microscopy, quantifying the total amount of vasculature and fraction of functional vessels. Two different microbubbles were used, the clinical contrast agent SonoVue and the large bubbles generated by Acoustic Cluster Therapy (ACT), tailored for therapeutic purposes. RESULTS The colon cancer model displayed slower flow but a higher vascular volume than the other models. The pancreatic model showed the fastest flow but also the lowest vascular volume. Ultrasound and SonoVue transiently reduced the amount of functional vasculature in breast and colon tumors immediately after treatment. No reduction was observed for ACT, likely due to shorter ultrasound pulses and lower pressures applied. CONCLUSION Variation between tumor models due to tissue characteristics emphasizes the importance of evaluating treatment suitability in the specific tissue of interest, as altered perfusion could have a large impact on drug delivery and therapeutic outcome.
Collapse
Affiliation(s)
- Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway.
| | - Caroline Einen
- Porelab and Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrea Berge Kastellet
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jessica Lage Fernandez
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Melina Mühlenpfordt
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Kurbatskaya
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Charlotte Årseth
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigrid Berg
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Astrid Bjørkøy
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
3
|
Buaron N, Mangraviti A, Wang Y, Liu A, Pedone M, Sankey E, Adar I, Nyska A, Goldbart R, Traitel T, Brem H, Tyler B, Kost J. Ultrasound inhibits tumor growth and selectively eliminates malignant brain tumor in vivo. Bioeng Transl Med 2024; 9:e10660. [PMID: 39553432 PMCID: PMC11561836 DOI: 10.1002/btm2.10660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 11/19/2024] Open
Abstract
Glioma is one of the most common primary malignant brain tumors. Despite progress in therapeutic approaches, the median survival of patients with glioma remains less than 2 years, generating the need for new therapeutic approaches. Ultrasound (US) is widely used in medical fields and is used as a therapeutic tool mainly for improving the performance of therapeutic entities. In this study, we examined a novel approach using low frequency US (20 kHz) (LFUS) as an independent treatment tool for malignant glioma, since primary studies showed that cancer cells are more susceptible to LFUS than healthy cells. LFUS safety and efficacy were examined in a 9L gliosarcoma-bearing female Fischer 344 rats. Two LFUS protocols were examined: a one-time treatment (US1X), and two treatments 24 h apart (US2X). For safety evaluation, rats were monitored for weight change and pain measurements. For efficacy, tumor volume was measured as a function of time and the tumor structural chances were examined histopathologically. LFUS treatment showed rapid inhibition of tumor growth, seen as soon as 12 h after US application. In addition, LFUS was found to affect the tumor structure, which was more extensive (>60% of tumor area) in smaller tumors. In US2X, the tumor tissue was completely destroyed, and an extensive immune response was observed. Importantly, the treatment was highly selective, keeping the healthy tissue surrounding the tumor unharmed. We developed a highly efficient and selective therapeutic protocol for treating malignant glioma with minimal side effects based solely on LFUS.
Collapse
Affiliation(s)
- Nitsa Buaron
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Antonella Mangraviti
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yuan Wang
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ann Liu
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mariangela Pedone
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Eric Sankey
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Itay Adar
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Riki Goldbart
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Tamar Traitel
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Henry Brem
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Betty Tyler
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Joseph Kost
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
4
|
Padilla F, Brenner J, Prada F, Klibanov AL. Theranostics in the vasculature: bioeffects of ultrasound and microbubbles to induce vascular shutdown. Theranostics 2023; 13:4079-4101. [PMID: 37554276 PMCID: PMC10405856 DOI: 10.7150/thno.70372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2023] [Indexed: 08/10/2023] Open
Abstract
Ultrasound-triggered microbubbles destruction leading to vascular shutdown have resulted in preclinical studies in tumor growth delay or inhibition, lesion formation, radio-sensitization and modulation of the immune micro-environment. Antivascular ultrasound aims to be developed as a focal, targeted, non-invasive, mechanical and non-thermal treatment, alone or in combination with other treatments, and this review positions these treatments among the wider therapeutic ultrasound domain. Antivascular effects have been reported for a wide range of ultrasound exposure conditions, and evidence points to a prominent role of cavitation as the main mechanism. At relatively low peak negative acoustic pressure, predominantly non-inertial cavitation is most likely induced, while higher peak negative pressures lead to inertial cavitation and bubbles collapse. Resulting bioeffects start with inflammation and/or loose opening of the endothelial lining of the vessel. The latter causes vascular access of tissue factor, leading to platelet aggregation, and consequent clotting. Alternatively, endothelium damage exposes subendothelial collagen layer, leading to rapid adhesion and aggregation of platelets and clotting. In a pilot clinical trial, a prevalence of tumor response was observed in patients receiving ultrasound-triggered microbubble destruction along with transarterial radioembolization. Two ongoing clinical trials are assessing the effectiveness of ultrasound-stimulated microbubble treatment to enhance radiation effects in cancer patients. Clinical translation of antivascular ultrasound/microbubble approach may thus be forthcoming.
Collapse
Affiliation(s)
- Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | - Francesco Prada
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Ultrasound Neuroimaging and Therapy Lab, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alexander L Klibanov
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Zhao X, Wright A, Goertz DE. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions. ULTRASONICS SONOCHEMISTRY 2023; 93:106291. [PMID: 36640460 PMCID: PMC9852793 DOI: 10.1016/j.ultsonch.2023.106291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 06/04/2023]
Abstract
Therapeutic focused ultrasound in combination with encapsulated microbubbles is being widely investigated for its ability to elicit bioeffects in the microvasculature, such as transient permeabilization for drug delivery or at higher pressures to achieve 'antivascular' effects. While it is well established that the behaviors of microbubbles are altered when they are situated within sufficiently small vessels, there is a paucity of data examining how the bubble population dynamics and emissions change as a function of channel (vessel) diameter over a size range relevant to therapeutic ultrasound, particularly at pressures relevant to antivascular ultrasound. Here we use acoustic emissions detection and high-speed microscopy (10 kframes/s) to examine the behavior of a polydisperse clinically employed agent (Definity®) in wall-less channels as their diameters are scaled from 1200 to 15 µm. Pressures are varied from 0.1 to 3 MPa using either a 5 ms pulse or a sequence of 0.1 ms pulses spaced at 1 ms, both of which have been previously employed in an in vivo context. With increasing pressure, the 1200 µm channel - on the order of small arteries and veins - exhibited inertial cavitation, 1/2 subharmonics and 3/2 ultraharmonics, consistent with numerous previous reports. The 200 and 100 µm channels - in the size range of larger microvessels less affected by therapeutic focused ultrasound - exhibited a distinctly different behavior, having muted development of 1/2 subharmonics and 3/2 ultraharmonics and reduced persistence. These were associated with radiation forces displacing bubbles to the distal wall and inducing clusters that then rapidly dissipated along with emissions. As the diameter transitioned to 50 and then 15 µm - a size regime that is most relevant to therapeutic focused ultrasound - there was a higher threshold for the onset of inertial cavitation as well as subharmonics and ultraharmonics, which importantly had more complex orders that are not normally reported. Clusters also occurred in these channels (e.g. at 3 MPa, the mean lateral and axial sizes were 23 and 72 µm in the 15 µm channel; 50 and 90 µm in the 50 µm channel), however in this case they occupied the entire lumens and displaced the wall boundaries. Damage to the 15 µm channel was observed for both pulse types, but at a lower pressure for the long pulse. Experiments conducted with a 'nanobubble' (<0.45 µm) subpopulation of Definity followed broadly similar features to 'native' Definity, albeit at a higher pressure threshold for inertial cavitation. These results provide new insights into the behavior of microbubbles in small vessels at higher pressures and have implications for therapeutic focused ultrasound cavitation monitoring and control.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Medical Biophysics, University of Toronto, M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada.
| | - Alex Wright
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada.
| |
Collapse
|
6
|
Zhao X, Pellow C, Goertz DE. Intravital imaging and cavitation monitoring of antivascular ultrasound in tumor microvasculature. Theranostics 2023; 13:250-266. [PMID: 36593952 PMCID: PMC9800738 DOI: 10.7150/thno.79186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Focused ultrasound-stimulated microbubbles have been shown to be capable of inducing blood flow shutdown and necrosis in a range of tissue types in an approach termed antivascular ultrasound or nonthermal ablation. In oncology, this approach has demonstrated tumor growth inhibition, and profound synergistic antitumor effects when combined with traditional platforms of chemo-, radiation- and immune-therapies. However, the exposure schemes employed have been broad and underlying mechanisms remain unclear with fundamental questions about exposures, vessel types and sizes involved, and the nature of bubble behaviors and their acoustic emissions resulting in vascular damage - impeding the establishment of standard protocols. Methods: Here, ultrasound transmitters and receivers are integrated into a murine dorsal window chamber tumor model for intravital microscopy studies capable of real-time visual and acoustic monitoring during antivascular ultrasound. Vessel type (normal and tumor-affected), caliber, and viability are assessed under higher pressure conditions (1, 2, and 3 MPa), and cavitation signatures are linked to the biological effects. Results: Vascular events occurred preferentially in tumor-affected vessels with greater incidence in smaller vessels and with more severity as a function of increasing pressure. Vascular blood flow shutdown was found to be due to a combination of focal disruption events and network-related flow changes. Acoustic emissions displayed elevated broadband noise and distinct sub- and ultra-harmonics and their associated third-order peaks with increasing pressure. Conclusions: The observed vascular events taken collectively with identified cavitation signatures provide an improved mechanistic understanding of antivascular ultrasound at the microscale, with implications for establishing a specific treatment protocol and control platform.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Medical Biophysics, University of Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| | | | - David E. Goertz
- Department of Medical Biophysics, University of Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
7
|
Development of an ultrasound guided focused ultrasound system for 3D volumetric low energy nanodroplet-mediated histotripsy. Sci Rep 2022; 12:20664. [PMID: 36450815 PMCID: PMC9712369 DOI: 10.1038/s41598-022-25129-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Low pressure histotripsy is likely to facilitate current treatments that require extremely high pressures. An ultrasound guided focused ultrasound system was designed to accommodate a rotating imaging transducer within a low frequency therapeutic transducer that operates at a center frequency of 105 kHz. The implementation of this integrated system provides real-time therapeutic and volumetric imaging functions, that are used here for low-cost, low-energy 3D volumetric ultrasound histotripsy using nanodroplets. A two-step approach for low pressure histotripsy is implemented with this dual-array. Vaporization of nanodroplets into gaseous microbubbles was performed via the 1D rotating imaging probe. The therapeutic transducer is then used to detonate the vaporized nanodroplets and trigger potent mechanical effects in the surrounding tissue. Rotating the imaging transducer creates a circular vaporized nanodroplet shape which generates a round lesion upon detonation. This contrasts with the elongated lesion formed when using a standard 1D imaging transducer for nanodroplet activation. Optimization experiments show that maximal nanodroplet activation can be achieved with a 2-cycle excitation pulse at a center frequency of 3.5 MHz, and a peak negative pressure of 3.4 MPa (a mechanical index of 1.84). Vaporized nanodroplet detonation was achieved by applying a low frequency treatment at a center frequency of 105 kHz and mechanical index of 0.9. In ex-vivo samples, the rotated nanodroplet activation method yielded the largest lesion area, with a mean of 4.7 ± 0.5 mm2, and a rounded shape. In comparison, standard fixed transducer nanodroplet activation resulted in an average lesion area of 2.6 ± 0.4 mm2, and an elongated shape. This hybrid system enables to achieve volumetric low energy histotripsy, and thus facilitates the creation of precise, large-volume mechanical lesions in tissues, while reducing the pressure threshold required for standard histotripsy by over an order of magnitude.
Collapse
|
8
|
Bismuth M, Katz S, Mano T, Aronovich R, Hershkovitz D, Exner AA, Ilovitsh T. Low frequency nanobubble-enhanced ultrasound mechanotherapy for noninvasive cancer surgery. NANOSCALE 2022; 14:13614-13627. [PMID: 36070492 DOI: 10.1039/d2nr01367c] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scaling down the size of microbubble contrast agents to the nanometer level holds the promise for noninvasive cancer therapy. However, the small size of nanobubbles limits the obtained bioeffects as a result of ultrasound cavitation, when operating near the nanobubble resonance frequency. Here we show that coupled with low energy insonation at a frequency of 80 kHz, well below the resonance frequency of these agents, nanobubbles serve as noninvasive therapeutic warheads that trigger potent mechanical effects in tumors following a systemic injection. We demonstrate these capabilities in tissue mimicking phantoms, where a comparison of the acoustic response of micro- and nano-bubbles after insonation at a frequency of 250 or 80 kHz revealed that higher pressures were needed to implode the nanobubbles compared to microbubbles. Complete nanobubble destruction was achieved at a mechanical index of 2.6 for the 250 kHz insonation vs. 1.2 for the 80 kHz frequency. Thus, the 80 kHz insonation complies with safety regulations that recommend operation below a mechanical index of 1.9. In vitro in breast cancer tumor cells, the cell viability was reduced to 17.3 ± 1.7% of live cells. In vivo, in a breast cancer tumor mouse model, nanobubble tumor distribution and accumulation were evaluated by high frequency ultrasound imaging. Finally, nanobubble-mediated low frequency insonation of breast cancer tumors resulted in effective mechanical tumor ablation and tumor tissue fractionation. This approach provides a unique theranostic platform for safe, noninvasive and low energy tumor mechanotherapy.
Collapse
Affiliation(s)
- Mike Bismuth
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Sharon Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamar Mano
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ramona Aronovich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Dov Hershkovitz
- Department of Pathology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997800, Israel
| | - Agata A Exner
- Departments of Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Glickstein B, Levron M, Shitrit S, Aronovich R, Feng Y, Ilovitsh T. Nanodroplet-Mediated Low-Energy Mechanical Ultrasound Surgery. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1229-1239. [PMID: 35351316 DOI: 10.1016/j.ultrasmedbio.2022.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Mechanical ultrasound surgery methods use short, high-intensity pulses to fractionate tissues. This study reports the development of a two-step technology for low-energy mechanical ultrasound surgery of tissues using nanodroplets to reduce the pressure threshold. Step 1 consists of vaporizing the nanodroplets into gaseous microbubbles via megahertz ultrasound excitation. Then, low-frequency ultrasound is applied to the microbubbles, which turns them into therapeutic warheads that trigger potent mechanical effects in the surrounding tissue. The use of nanoscale nanodroplets coupled with low-frequency ultrasound reduces the pressure threshold required for mechanical ultrasound surgery by an order of magnitude. In addition, their average diameter of 300 nm can overcome challenges associated with the size of microbubbles. Optimization experiments were performed to determine the ultrasound parameters for nanodroplet vaporization and the subsequent microbubble implosion processes. Optimal vaporization was obtained when transmitting a 2-cycle excitation pulse at a center frequency of 5 MHz and a peak negative pressure of 4.1 MPa (mechanical index = 1.8). Low-frequency insonation of the generated microbubbles at a center frequency of 850, 250 or 80 kHz caused enhanced contrast reduction at a center frequency of 80 kHz, compared with the other frequencies, while operating at the same mechanical index of 0.9. Nanodroplet-mediated insonation of ex vivo chicken liver samples generated mechanical damage. Low-frequency treatment at a mechanical index of 0.9 and a center frequency of 80 kHz induced the largest lesion area (average of 0.59 mm2) compared with 250- and 850-kHz treatments with the same mechanical index (average lesions areas of 0.29 and 0.19 mm2, respectively, p < 0.001). The two-step approach makes it possible to conduct both the vaporization and implosion stages at mechanical indices below 1.9, thus avoiding undesired mechanical damage. The findings indicate that coupled with low-frequency ultrasound, nanodroplets can be used for low-energy mechanical ultrasound surgery.
Collapse
Affiliation(s)
- Bar Glickstein
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Mika Levron
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Shitrit
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ramona Aronovich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yi Feng
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Snipstad S, Vikedal K, Maardalen M, Kurbatskaya A, Sulheim E, Davies CDL. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine. Adv Drug Deliv Rev 2021; 177:113847. [PMID: 34182018 DOI: 10.1016/j.addr.2021.113847] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Successful delivery of drugs and nanomedicine to tumors requires a functional vascular network, extravasation across the capillary wall, penetration through the extracellular matrix, and cellular uptake. Nanomedicine has many merits, but penetration deep into the tumor interstitium remains a challenge. Failure of cancer treatment can be caused by insufficient delivery of the therapeutic agents. After intravenous administration, nanomedicines are often found in off-target organs and the tumor extracellular matrix close to the capillary wall. With circulating microbubbles, ultrasound exposure focused toward the tumor shows great promise in improving the delivery of therapeutic agents. In this review, we address the impact of focused ultrasound and microbubbles to overcome barriers for drug delivery such as perfusion, extravasation, and transport through the extracellular matrix. Furthermore, we discuss the induction of an immune response with ultrasound and delivery of immunotherapeutics. The review discusses mainly preclinical results and ends with a summary of ongoing clinical trials.
Collapse
Affiliation(s)
- Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway.
| | - Krister Vikedal
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matilde Maardalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Kurbatskaya
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | | |
Collapse
|
11
|
Bismuth M, Katz S, Rosenblatt H, Twito M, Aronovich R, Ilovitsh T. Acoustically Detonated Microbubbles Coupled with Low Frequency Insonation: Multiparameter Evaluation of Low Energy Mechanical Ablation. Bioconjug Chem 2021; 33:1069-1079. [PMID: 34280311 PMCID: PMC9204695 DOI: 10.1021/acs.bioconjchem.1c00203] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Noninvasive
ultrasound surgery can be achieved using focused ultrasound
to locally affect the targeted site without damaging intervening tissues.
Mechanical ablation and histotripsy use short and intense acoustic
pulses to destroy the tissue via a purely mechanical effect. Here,
we show that coupled with low-frequency excitation, targeted microbubbles
can serve as mechanical therapeutic warheads that trigger potent mechanical
effects in tumors using focused ultrasound. Upon low frequency excitation
(250 kHz and below), high amplitude microbubble oscillations occur
at substantially lower pressures as compared to higher MHz ultrasonic
frequencies. For example, inertial cavitation was initiated at a pressure
of 75 kPa for a center frequency of 80 kHz. Low frequency insonation
of targeted microbubbles was then used to achieve low energy tumor
cell fractionation at pressures below a mechanical index of 1.9, and
in accordance with the Food and Drug Administration guidelines. We
demonstrate these capabilities in vitro and in vivo. In cell cultures,
cell viability was reduced to 16% at a peak negative pressure of 800
kPa at the 250 kHz frequency (mechanical index of 1.6) and to 10%
at a peak negative pressure of 250 kPa at a frequency of 80 kHz (mechanical
index of 0.9). Following an intratumoral injection of targeted microbubbles
into tumor-bearing mice, and coupled with low frequency ultrasound
application, significant tumor debulking and cancer cell death was
observed. Our findings suggest that reducing the center frequency
enhances microbubble-mediated mechanical ablation; thus, this technology
provides a unique theranostic platform for safe low energy tumor fractionation,
while reducing off-target effects.
Collapse
Affiliation(s)
- Mike Bismuth
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sharon Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hagar Rosenblatt
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maayan Twito
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ramona Aronovich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Sujarittam K, Choi JJ. Angular dependence of the acoustic signal of a microbubble cloud. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:2958. [PMID: 33261381 DOI: 10.1121/10.0002490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Microbubble-mediated ultrasound therapies have a common need for methods that can noninvasively monitor the treatment. One approach is to use the bubbles' acoustic emissions as feedback to the operator or a control unit. Current methods interpret the emissions' frequency content to infer the microbubble activities and predict therapeutic outcomes. However, different studies placed their sensors at different angles relative to the emitter and bubble cloud. Here, it is evaluated whether such angles influence the captured emissions such as the frequency content. In computer simulations, 128 coupled bubbles were sonicated with a 0.5-MHz, 0.35-MPa pulse, and the acoustic emissions generated by the bubbles were captured with two sensors placed at different angles. The simulation was replicated in experiments using a microbubble-filled gel channel (0.5-MHz, 0.19-0.75-MPa pulses). A hydrophone captured the emissions at two different angles. In both the simulation and the experiments, one angle captured periodic time-domain signals, which had high contributions from the first three harmonics. In contrast, the other angle captured visually aperiodic time-domain features, which had much higher harmonic and broadband content. Thus, by placing acoustic sensors at different positions, substantially different acoustic emissions were captured, potentially leading to very different conclusions about the treatment outcome.
Collapse
Affiliation(s)
- Krit Sujarittam
- Department of Bioengineering, Imperial College London, 2 Imperial College Road, South Kensington, London, SW7 2AZ, United Kingdom
| | - James J Choi
- Department of Bioengineering, Imperial College London, 2 Imperial College Road, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
13
|
Pellow C, Abenojar EC, Exner AA, Zheng G, Goertz DE. Concurrent visual and acoustic tracking of passive and active delivery of nanobubbles to tumors. Am J Cancer Res 2020; 10:11690-11706. [PMID: 33052241 PMCID: PMC7545999 DOI: 10.7150/thno.51316] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background: There has been growing interest in nanobubbles for their potential to extend bubble-mediated ultrasound approaches beyond that of their larger microbubble counterparts. In particular, the smaller scale of nanobubbles may enable them to access the tumor extravascular compartment for imaging and therapy in closer proximity to cancer cells. Compelling preliminary demonstrations of the imaging and therapeutic abilities of nanobubbles have thus emerged, with emphasis on their ability to extravasate. However, studies to date rely on indirect histologic evidence that cannot confirm whether the structures remain intact beyond the vasculature - leaving their extravascular potential largely untapped. Methods: Nanobubble acoustic scattering was assessed using a recently reported ultra-stable formulation at low concentration (106 mL-1) and frequency (1 MHz), over a range of pressures (100-1500 kPa) in a channel phantom. The pressure-dependent response was utilized as a basis for in vivo experiments where ultrasound transmitters and receivers were integrated into a window chamber for simultaneous intravital multiphoton microscopy and acoustic monitoring in tumor-affected microcirculation. Microscopy and acoustic data were utilized to assess passive and active delivery of nanobubbles and determine whether they remained intact beyond the vasculature. Results: Nanobubbles exhibit pressure-dependent nonlinear acoustic scattering. Nanobubbles are also found to have prolonged acoustic vascular pharmacokinetics, and passively extravasate intact into tumors. Ultrasound stimulation of nanobubbles is shown to actively enhance the delivery of both intact nanobubbles and shell material, increasing their spatial bioavailability deeper into the extravascular space. A range of acute vascular effects were also observed. Conclusion: This study presents the first direct evidence that nanobubbles passively and actively extravasate intact in tumor tissue, and is the first to directly capture acute vascular events from ultrasound-stimulation of nanobubbles. The insights gained here demonstrate an important step towards unlocking the potential of nanobubbles and extending ultrasound-based applications.
Collapse
|
14
|
Bellary A, Villarreal A, Eslami R, Undseth QJ, Lec B, Defnet AM, Bagrodia N, Kandel JJ, Borden MA, Shaikh S, Chopra R, Laetsch TW, Delaney LJ, Shaw CM, Eisenbrey JR, Hernandez SL, Sirsi SR. Perfusion-guided sonopermeation of neuroblastoma: a novel strategy for monitoring and predicting liposomal doxorubicin uptake in vivo. Theranostics 2020; 10:8143-8161. [PMID: 32724463 PMCID: PMC7381728 DOI: 10.7150/thno.45903] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in infants and children, and imposes significant morbidity and mortality in this population. The aggressive chemoradiotherapy required to treat high-risk NB results in survival of less than 50%, yet is associated with significant long-term adverse effects in survivors. Boosting efficacy and reducing morbidity are therefore key goals of treatment for affected children. We hypothesize that these may be achieved by developing strategies that both focus and limit toxic therapies to the region of the tumor. One such strategy is the use of targeted image-guided drug delivery (IGDD), which is growing in popularity in personalized therapy to simultaneously improve on-target drug deposition and assess drug pharmacodynamics in individual patients. IGDD strategies can utilize a variety of imaging modalities and methods of actively targeting pharmaceutical drugs, however in vivo imaging in combination with focused ultrasound is one of the most promising approaches already being deployed for clinical applications. Over the last two decades, IGDD using focused ultrasound with "microbubble" ultrasound contrast agents (UCAs) has been increasingly explored as a method of targeting a wide variety of diseases, including cancer. This technique, known as sonopermeation, mechanically augments vascular permeability, enabling increased penetration of drugs into target tissue. However, to date, methods of monitoring the vascular bioeffects of sonopermeation in vivo are lacking. UCAs are excellent vascular probes in contrast-enhanced ultrasound (CEUS) imaging, and are thus uniquely suited for monitoring the effects of sonopermeation in tumors. Methods: To monitor the therapeutic efficacy of sonopermeation in vivo, we developed a novel system using 2D and 3D quantitative contrast-enhanced ultrasound imaging (qCEUS). 3D tumor volume and contrast enhancement was used to evaluate changes in blood volume during sonopermeation. 2D qCEUS-derived time-intensity curves (TICs) were used to assess reperfusion rates following sonopermeation therapy. Intratumoral doxorubicin (and liposome) uptake in NB was evalauted ex vivo along with associated vascular changes. Results: In this study, we demonstrate that combining focused ultrasound therapy with UCAs can significantly enhance chemotherapeutic payload to NB in an orthotopic xenograft model, by improving delivery and tumoral uptake of long-circulating liposomal doxorubicin (L-DOX) nanoparticles. qCEUS imaging suggests that changes in flow rates are highly sensitive to sonopermeation and could be used to monitor the efficacy of treatment in vivo. Additionally, initial tumor perfusion may be a good predictor of drug uptake during sonopermeation. Following sonopermeation treatment, vascular biomarkers show increased permeability due to reduced pericyte coverage and rapid onset of doxorubicin-induced apoptosis of NB cells but without damage to blood vessels. Conclusion: Our results suggest that significant L-DOX uptake can occur by increasing tumor vascular permeability with microbubble sonopermeation without otherwise damaging the vasculature, as confirmed by in vivo qCEUS imaging and ex vivo analysis. The use of qCEUS imaging to monitor sonopermeation efficiency and predict drug uptake could potentially provide real-time feedback to clinicians for determining treatment efficacy in tumors, leading to better and more efficient personalized therapies. Finally, we demonstrate how the IGDD strategy outlined in this study could be implemented in human patients using a single case study.
Collapse
Affiliation(s)
- Aditi Bellary
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Arelly Villarreal
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Rojin Eslami
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Quincy J. Undseth
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Bianca Lec
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Ann M. Defnet
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Naina Bagrodia
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Jessica J. Kandel
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Mark A. Borden
- Biomedical Engineering, Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Sumbul Shaikh
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theodore W. Laetsch
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, USA
| | - Lauren J. Delaney
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Colette M. Shaw
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John R. Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonia L. Hernandez
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Shashank R. Sirsi
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Jones RM, McMahon D, Hynynen K. Ultrafast three-dimensional microbubble imaging in vivo predicts tissue damage volume distributions during nonthermal brain ablation. Theranostics 2020; 10:7211-7230. [PMID: 32641988 PMCID: PMC7330857 DOI: 10.7150/thno.47281] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic resonance imaging (MRI)-guided focused ultrasound (FUS) thermal ablation is under clinical investigation for non-invasive neurosurgery, though its use is restricted to central brain targets due primarily to skull heating effects. The combination of FUS and contrast agent microbubbles greatly reduces the ultrasound exposure levels needed to ablate brain tissue and may help facilitate the use of transcranial FUS ablation throughout the brain. However, sources of variability exist during microbubble-mediated FUS procedures that necessitate the continued development of systems and methods for online treatment monitoring and control, to ensure that excessive and/or off-target bioeffects are not induced from the exposures. Methods: Megahertz-rate three-dimensional (3D) microbubble imaging in vivo was performed during nonthermal ablation in rabbit brain using a clinical-scale prototype transmit/receive hemispherical phased array system. Results:In-vivo volumetric acoustic imaging over microsecond timescales uncovered spatiotemporal microbubble dynamics hidden by conventional whole-burst temporal averaging. Sonication-aggregate ultrafast 3D source field intensity data were predictive of microbubble-mediated tissue damage volume distributions measured post-treatment using MRI and confirmed via histopathology. Temporal under-sampling of acoustic emissions, which is common practice in the field, was found to impede performance and highlighted the importance of capturing adequate data for treatment monitoring and control purposes. Conclusion: The predictive capability of ultrafast 3D microbubble imaging, reported here for the first time, will enable future microbubble-mediated FUS treatments with unparalleled precision and accuracy, and will accelerate the clinical translation of nonthermal tissue ablation procedures both in the brain and throughout the body.
Collapse
Affiliation(s)
- Ryan M. Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Dallan McMahon
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Enhancement Effect of Microbubble-Enhanced Ultrasound in Microwave Ablation in Rabbit VX2 Liver Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3050148. [PMID: 32090074 PMCID: PMC6998748 DOI: 10.1155/2020/3050148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Objectives One reason for the high recurrence and metastatic rates of tumors such as hepatocellular carcinoma (HCC) treated by microwave ablation (MWA) is the presence of residual foci in the tumor due to heat sink effect. Microbubble-enhanced ultrasound (MEUS) can noninvasively disrupt and block the tumor blood perfusion and has the potential to overcome the heat sink effect and enhance the therapeutic effect of MWA. The study aimed at evaluating the potential additional benefit of microbubble-enhanced ultrasound (MEUS) in hepatocellular carcinoma (HCC) treated by microwave ablation (MWA). Methods In this study, a new strategy of combining MWA with MEUS for treating HCC was proposed. Twenty-four rabbits with VX2 tumors in livers were randomly divided into MEUS + MWA, MEUS alone, MWA alone, and blank control groups, respectively (n = 6). In the MEUS group, the tumors were directly exposed to therapeutic ultrasound for 5 min with a concurrent intravenous injection of microbubbles (0.1 ml/kg diluted into 5 ml saline). In the MWA group, the tumors were treated by MWA for 1 min. In the MEUS + MWA group, tumors were ablated by MWA for 1 min after ultrasound cavitation enhanced by microbubbles as in the MEUS group. In the blank control group, the tumors received probe sham and intravenous saline. Contrast-enhanced ultrasound (CEUS) was performed before treatment and immediately after treatment to display the size, shape, and contour of the tumors. Throughout the treatment process, the local temperature of the treatment area was detected by a temperature needle punctured into the tumor. The blood samples of animals were obtained after treatment for evaluating the liver function. Tumor cell necrosis and apoptotic rates were observed after treatment by histological examination. Results CEUS showed that although perfusion defects appeared in all the treatment groups, especially in the MEUS + MWA group, there was no significant difference between the two groups on the volumes of perfusion defects, which were 1.78 ± 0.31 (cm3) in the MWA group and 1.84 ± 0.20 (cm3) in the combined group (P < 0.01). The time to reach the peak temperature of the treatment area was 21.7 ± 5.0 (s) in the MWA group and 10.3 ± 5.0 (s) in the MEUS + MWA group (P < 0.01). The time to reach the peak temperature of the treatment area was 21.7 ± 5.0 (s) in the MWA group and 10.3 ± 5.0 (s) in the MEUS + MWA group (P < 0.01). The time to reach the peak temperature of the treatment area was 21.7 ± 5.0 (s) in the MWA group and 10.3 ± 5.0 (s) in the MEUS + MWA group ( Conclusions These results suggested MEUS treatment alone may significantly reduce tumor blood perfusion and led to a sharp rise in the local temperature of the treatment area to a higher PT using MEUS + MWA with higher rates of necrosis and apoptosis of cancer cells without severe liver function damage, which might be a safe strategy for treating HCC.
Collapse
|
17
|
Yemane PT, Åslund AKO, Snipstad S, Bjørkøy A, Grendstad K, Berg S, Mørch Y, Torp SH, Hansen R, Davies CDL. Effect of Ultrasound on the Vasculature and Extravasation of Nanoscale Particles Imaged in Real Time. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3028-3041. [PMID: 31474384 DOI: 10.1016/j.ultrasmedbio.2019.07.683] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound and microbubbles have been found to improve the delivery of drugs and nanoparticles to tumor tissue. To obtain new knowledge on the influence of vascular parameters on extravasation and to elucidate the effect of acoustic pressure on extravasation and penetration of nanoscale particles into the extracellular matrix, real-time intravital multiphoton microscopy was performed during sonication of tumors growing in dorsal window chambers. The impact of vessel diameter, vessel structure and blood flow was characterized. Fluorescein isothiocyanate-dextran (2 MDa) was injected to visualize blood vessels. Mechanical indexes (MI) of 0.2-0.8 and in-house-made, nanoparticle-stabilized microbubbles or Sonovue were applied. The rate and extent of penetration into the extracellular matrix increased with increasing MI. However, to achieve extravasation, smaller vessels required MIs (0.8) higher than those of blood vessels with larger diameters. Ultrasound changed the blood flow rate and direction. Interestingly, the majority of extravasations occurred at vessel branching points.
Collapse
Affiliation(s)
- Petros T Yemane
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andreas K O Åslund
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Stroke Unit, Department of Internal Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Astrid Bjørkøy
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristin Grendstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigrid Berg
- Cancer Clinic, St. Olav's Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Yrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Sverre H Torp
- Department of Pathology, St. Olav's Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rune Hansen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Health Research, SINTEF Digital, Trondheim, Norway
| | | |
Collapse
|
18
|
Peng C, Sun T, Vykhodtseva N, Power C, Zhang Y, Mcdannold N, Porter T. Intracranial Non-thermal Ablation Mediated by Transcranial Focused Ultrasound and Phase-Shift Nanoemulsions. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2104-2117. [PMID: 31101446 PMCID: PMC6591088 DOI: 10.1016/j.ultrasmedbio.2019.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 05/09/2023]
Abstract
High intensity focused ultrasound (HIFU) mechanical ablation is an emerging technique for non-invasive transcranial surgery. Lesions are created by driving inertial cavitation in tissue, which requires significantly less peak pressure and time-averaged power compared with traditional thermal ablation. The utility of mechanical ablation could be extended to the brain provided the pressure threshold for inertial cavitation can be reduced. In this study, the utility of perfluorobutane (PFB)-based phase-shift nanoemulsions (PSNEs) for lowering the inertial cavitation threshold and enabling focal mechanical ablation in the brain was investigated. We successfully achieved vaporization of PFB-based PSNEs at 1.8 MPa with a 740 kHz focused transducer with a pulsed sonication protocol (duty cycle = 1.5%, 10 min sonication) within intact CD-1 mice brains. Evidence is provided showing that a single bolus injection of PSNEs could be used to initiate and sustain inertial cavitation in cerebrovasculature for at least 10 min. Histologic analysis of brain slices after HIFU exposure revealed ischemic and hemorrhagic lesions with dimensions that were comparable to the focal zone of the transducer. These results suggest that PFB-based PSNEs may be used to significantly reduce the inertial cavitation threshold in the cerebrovasculature and, when combined with transcranial focused ultrasound, enable focal intracranial mechanical ablation.
Collapse
Affiliation(s)
- Chenguang Peng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | - Tao Sun
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Natalia Vykhodtseva
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Chanikarn Power
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nathan Mcdannold
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Santos MA, Wu SK, Li Z, Goertz DE, Hynynen K. Microbubble-assisted MRI-guided focused ultrasound for hyperthermia at reduced power levels. Int J Hyperthermia 2018; 35:599-611. [PMID: 30295119 DOI: 10.1080/02656736.2018.1514468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Ultrasound contrast agent microbubbles were combined with magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS) as a means to achieve mild hyperthermia at reduced power levels. METHODS MRgFUS hyperthermia (42°C for 20 min) was evaluated in rabbit thigh muscle or Vx2 tumors using infusions of microbubbles (Definity, 20 µL/kg) or saline (sham) administered over 5 min. The impact of treatments on drug uptake was assessed with liposomal doxorubicin (Caelyx, 2.5 mg/kg). Applied power levels before and after the injection of microbubbles or saline were compared, and drug uptake was evaluated with fluorometry of tissues harvested 24 hr post-treatment. RESULTS MRgFUS hyperthermia in muscle and tumors resulted in accurate temperature control (mean =42.0°C, root mean square error (RMSE) = 0.3°C). The power dropped significantly following the injection of microbubbles in muscle and tumors compared to exposures without microbubbles (-21.9% ± 12.5% vs -5.9% ± 7.8%, p = .009 in muscle; -33.8% ± 9.9% vs -3.0% ± 7.2%, p < .001 in tumors). Cavitation monitoring indicated emission of subharmonic, ultraharmonic, and elevated levels of fourth to sixth harmonic frequencies following microbubble injection. The drug delivery was elevated significantly in muscle with the use of microbubble-assisted relative to conventional heating (0.5 ± 0.5 ng/mg vs 0.20 ± 0.04 ng/mg, p = .05), whereas in tumors similar levels were found (11 ± 3 ng/mg vs 16 ± 4 ng/mg, p = .13). CONCLUSIONS The finding that microbubbles reduce the applied power requirements for hyperthermia has considerable clinical implications. The elevated levels of drug found in muscle but not tumor tissue suggest a complex interplay between the heating effects of microbubbles with those of enhanced permeabilization and possible vascular damage.
Collapse
Affiliation(s)
- Marc A Santos
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada
| | - Sheng-Kai Wu
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada
| | - Zhe Li
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada
| | - David E Goertz
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada
| | - Kullervo Hynynen
- a Physical Sciences Platform , Sunnybrook Research Institute , Toronto , Canada.,b Department of Medical Biophysics , University of Toronto , Toronto , Canada.,c Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , Canada
| |
Collapse
|
20
|
Chen Z, Zhao H, Qiao X, Yi C, Gao S, Gao W, Liu Z. Effect of Microbubble-Enhanced Ultrasound on Radiofrequency Ablation of Rabbit Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1451-1459. [PMID: 29685588 DOI: 10.1016/j.ultrasmedbio.2018.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Microbubble-enhanced ultrasound (MEUS) can non-invasively disrupt and block liver blood perfusion. It may potentially overcome the heat sink effect during a thermal ablation and consequently enhance radiofrequency ablation (RFA) of the liver. We propose a new strategy combining RFA with MEUS. For ultrasound treatment, an 831-kHz air-backed focused transducer directed 400-cycle bursts at 4.3 MPa to the liver at a 9-Hz rate. The treatment was nucleated by a lipids microbubble forming MEUS. Eighteen surgically exposed rabbit livers were treated using MEUS combined with RFA; the other 32 livers were treated using MEUS (n = 14) or RFA (n = 18) alone and served as the controls. Contrast ultrasound imaging confirmed that MEUS treatment significantly reduced liver blood perfusion by cutting contrast peak intensities in half (44.7%-54.1%) without severe liver function damage. The ablated liver volume treated using MEUS combined with RFA was 2.8 times greater than that treated using RFA alone. In conclusion, RFA of the liver can be safely and greatly enhanced by combination with MEUS pre-treatment.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hongzhi Zhao
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xueyan Qiao
- Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Cuo Yi
- Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Shunji Gao
- Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wenhong Gao
- Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
21
|
Yang Q, Tang P, He G, Ge S, Liu L, Zhou X. Hemocoagulase Combined with Microbubble-Enhanced Ultrasound Cavitation for Augmented Ablation of Microvasculature in Rabbit VX2 Liver Tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1658-1670. [PMID: 28545858 DOI: 10.1016/j.ultrasmedbio.2017.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
We investigated a new method for combining microbubble-enhanced ultrasound cavitation (MEUC) with hemocoagulase (HC) atrox. Our goal was to induce embolic effects in the vasculature and combine these with an anti-angiogenic treatment strategy. Fourteen days after being implanted with a single slice of the liver VX2 tumor, rabbits were randomly divided into five groups: (i) a control group injected intra-venously with saline using a micropump; (ii) a group given only an injection of HC; (iii) a group treated only with ultrasound cavitation; (iv) a group treated with MEUC; (v) a group treated with MEUC + HC. Contrast-enhanced ultrasound was performed before treatment and 1 h and 7 d post-treatment to measure tumor size, enhancement and necrosis range. QontraXt software was used to determine the time-intensity curve of tumor blood perfusion and microvascular changes. At 1 h and 7 d after treatment with MEUC + HC, the parameters of the time-intensity curve, which included peak value, regional blood volume, regional blood flow and area under the curve value and which were measured using contrast-enhanced ultrasound, were significantly lower than those of the other treatment groups. The MEUC + HC treatment group exhibited significant growth inhibition relative to the ultrasound cavitation only, HC and MEUC treatment groups. No damage was observed in the surrounding normal tissues. These results support the feasibility of reducing the blood perfusion of rabbit VX2 liver tumors using a new method that combines MEUC and HC.
Collapse
Affiliation(s)
- Qian Yang
- Department of Ultrasound, Xijing Hospital, Xi'an, China
| | - Peng Tang
- Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Charity Hospital, Beijing, China
| | - Guangbin He
- Department of Ultrasound, Xijing Hospital, Xi'an, China
| | - Shuping Ge
- The Heart Center, St. Christopher's Hospital for Children & Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Deborah Heart and Lung Center, Browns Mills, New Jersey, USA
| | - Liwen Liu
- Department of Ultrasound, Xijing Hospital, Xi'an, China.
| | - Xiaodong Zhou
- Department of Ultrasound, Xijing Hospital, Xi'an, China
| |
Collapse
|
22
|
Top CB, White PJ, McDannold NJ. Nonthermal ablation of deep brain targets: A simulation study on a large animal model. Med Phys 2016; 43:870-82. [PMID: 26843248 PMCID: PMC4723413 DOI: 10.1118/1.4939809] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Thermal ablation with transcranial MRI-guided focused ultrasound (FUS) is currently limited to central brain targets because of heating and other beam effects caused by the presence of the skull. Recently, it was shown that it is possible to ablate tissues without depositing thermal energy by driving intravenously administered microbubbles to inertial cavitation using low-duty-cycle burst sonications. A recent study demonstrated that this ablation method could ablate tissue volumes near the skull base in nonhuman primates without thermally damaging the nearby bone. However, blood-brain disruption was observed in the prefocal region, and in some cases, this region contained small areas of tissue damage. The objective of this study was to analyze the experimental model with simulations and to interpret the cause of these effects. METHODS The authors simulated prior experiments where nonthermal ablation was performed in the brain in anesthetized rhesus macaques using a 220 kHz clinical prototype transcranial MRI-guided FUS system. Low-duty-cycle sonications were applied at deep brain targets with the ultrasound contrast agent Definity. For simulations, a 3D pseudospectral finite difference time domain tool was used. The effects of shear mode conversion, focal steering, skull aberrations, nonlinear propagation, and the presence of skull base on the pressure field were investigated using acoustic and elastic wave propagation models. RESULTS The simulation results were in agreement with the experimental findings in the prefocal region. In the postfocal region, however, side lobes were predicted by the simulations, but no effects were evident in the experiments. The main beam was not affected by the different simulated scenarios except for a shift of about 1 mm in peak position due to skull aberrations. However, the authors observed differences in the volume, amplitude, and distribution of the side lobes. In the experiments, a single element passive cavitation detector was used to measure the inertial cavitation threshold and to determine the pressure amplitude to use for ablation. Simulations of the detector's acoustic field suggest that its maximum sensitivity was in the lower part of the main beam, which may have led to excessive exposure levels in the experiments that may have contributed to damage in the prefocal area. CONCLUSIONS Overall, these results suggest that case-specific full wave simulations before the procedure can be useful to predict the focal and the prefocal side lobes and the extent of the resulting bioeffects produced by nonthermal ablation. Such simulations can also be used to optimally position passive cavitation detectors. The disagreement between the simulations and the experiments in the postfocal region may have been due to shielding of the ultrasound field due to microbubble activity in the focal region. Future efforts should include the effects of microbubble activity and vascularization on the pressure field.
Collapse
Affiliation(s)
- Can Barış Top
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115
| | - P Jason White
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115
| | - Nathan J McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115
| |
Collapse
|
23
|
McDannold N, Zhang Y, Vykhodtseva N. Nonthermal ablation in the rat brain using focused ultrasound and an ultrasound contrast agent: long-term effects. J Neurosurg 2016; 125:1539-1548. [PMID: 26848919 DOI: 10.3171/2015.10.jns151525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Thermal ablation with transcranial MRI-guided focused ultrasound (FUS) is currently under investigation as a less invasive alternative to radiosurgery and resection. A major limitation of the method is that its use is currently restricted to centrally located brain targets. The combination of FUS and a microbubble-based ultrasound contrast agent greatly reduces the ultrasound exposure level needed to ablate brain tissue and could be an effective means to increase the "treatment envelope" for FUS in the brain. This method, however, ablates tissue through a different mechanism: destruction of the microvasculature. It is not known whether nonthermal FUS ablation in substantial volumes of tissue can safely be performed without unexpected effects. The authors investigated this question by ablating volumes in the brains of normal rats. METHODS Overlapping sonications were performed in rats (n = 15) to ablate a volume in 1 hemisphere per animal. The sonications (10-msec bursts at 1 Hz for 60 seconds; peak negative pressure 0.8 MPa) were combined with the ultrasound contrast agent Optison (100 µl/kg). The rats were followed with MRI for 4-9 weeks after FUS, and the brains were examined with histological methods. RESULTS Two weeks after sonication and later, the lesions appeared as cyst-like areas in T2-weighted MR images that were stable over time. Histological examination demonstrated well-defined lesions consisting of a cyst-like cavity that remained lined by astrocytic tissue. Some white matter structures within the sonicated area were partially intact. CONCLUSIONS The results of this study indicate that nonthermal FUS ablation can be used to safely ablate tissue volumes in the brain without unexpected delayed effects. The findings are encouraging for the use of this ablation method in the brain.
Collapse
Affiliation(s)
- Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Natalia Vykhodtseva
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:221-41. [DOI: 10.1007/978-3-319-22536-4_13] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Arvanitis CD, Vykhodtseva N, Jolesz F, Livingstone M, McDannold N. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model. J Neurosurg 2015; 124:1450-9. [PMID: 26381252 DOI: 10.3171/2015.4.jns142862] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Transcranial MRI-guided focused ultrasound (TcMRgFUS) is an emerging noninvasive alternative to surgery and radiosurgery that is undergoing testing for tumor ablation and functional neurosurgery. The method is currently limited to central brain targets due to skull heating and other factors. An alternative ablative approach combines very low intensity ultrasound bursts and an intravenously administered microbubble agent to locally destroy the vasculature. The objective of this work was to investigate whether it is feasible to use this approach at deep brain targets near the skull base in nonhuman primates. METHODS In 4 rhesus macaques, targets near the skull base were ablated using a clinical TcMRgFUS system operating at 220 kHz. Low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes in conjunction with the ultrasound contrast agent Definity, which was administered as a bolus injection or continuous infusion. The acoustic power level was set to be near the inertial cavitation threshold, which was measured using passive monitoring of the acoustic emissions. The resulting tissue effects were investigated with MRI and with histological analysis performed 3 hours to 1 week after sonication. RESULTS Thirteen targets were sonicated in regions next to the optic tract in the 4 animals. Inertial cavitation, indicated by broadband acoustic emissions, occurred at acoustic pressure amplitudes ranging from 340 to 540 kPa. MRI analysis suggested that the lesions had a central region containing red blood cell extravasations that was surrounded by edema. Blood-brain barrier disruption was observed on contrast-enhanced MRI in the lesions and in a surrounding region corresponding to the prefocal area of the FUS system. In histology, lesions consisting of tissue undergoing ischemic necrosis were found in all regions that were sonicated above the inertial cavitation threshold. Tissue damage in prefocal areas was found in several cases, suggesting that in those cases the sonication exceeded the inertial cavitation threshold in the beam path. CONCLUSIONS It is feasible to use a clinical TcMRgFUS system to ablate skull base targets in nonhuman primates at time-averaged acoustic power levels at least 2 orders of magnitude below what is needed for thermal ablation with this device. The results point to the risks associated with the method if the exposure levels are not carefully controlled to avoid inertial cavitation in the acoustic beam path. If methods can be developed to provide this control, this nonthermal approach could greatly expand the use of TcMRgFUS for precisely targeted ablation to locations across the entire brain.
Collapse
Affiliation(s)
- Costas D Arvanitis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; and
| | - Natalia Vykhodtseva
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; and
| | - Ferenc Jolesz
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; and
| | | | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School; and
| |
Collapse
|
26
|
Timbie KF, Mead BP, Price RJ. Drug and gene delivery across the blood-brain barrier with focused ultrasound. J Control Release 2015; 219:61-75. [PMID: 26362698 DOI: 10.1016/j.jconrel.2015.08.059] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) remains one of the most significant limitations to treatments of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases and psychiatric disorders. It is now well-established that focused ultrasound (FUS) in conjunction with contrast agent microbubbles may be used to non-invasively and temporarily disrupt the BBB, allowing localized delivery of systemically administered therapeutic agents as large as 100nm in size to the CNS. Importantly, recent technological advances now permit FUS application through the intact human skull, obviating the need for invasive and risky surgical procedures. When used in combination with magnetic resonance imaging, FUS may be applied precisely to pre-selected CNS targets. Indeed, FUS devices capable of sub-millimeter precision are currently in several clinical trials. FUS mediated BBB disruption has the potential to fundamentally change how CNS diseases are treated, unlocking potential for combinatorial treatments with nanotechnology, markedly increasing the efficacy of existing therapeutics that otherwise do not cross the BBB effectively, and permitting safe repeated treatments. This article comprehensively reviews recent studies on the targeted delivery of therapeutics into the CNS with FUS and offers perspectives on the future of this technology.
Collapse
Affiliation(s)
- Kelsie F Timbie
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brian P Mead
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
27
|
Abstract
The combination of microbubbles and ultrasound has emerged as a promising method for local drug delivery. Microbubbles can be locally activated by a targeted ultrasound beam, which can result in several bio-effects. For drug delivery, microbubble-assisted ultrasound is used to increase vascular- and plasma membrane permeability for facilitating drug extravasation and the cellular uptake of drugs in the treated region, respectively. In the case of drug-loaded microbubbles, these two mechanisms can be combined with local release of the drug following destruction of the microbubble. The use of microbubble-assisted ultrasound to deliver chemotherapeutic agents is also referred to as sonochemotherapy. In this review, the basic principles of sonochemotherapy are discussed, including aspects such as the type of (drug-loaded) microbubbles used, the routes of administration used in vivo, ultrasound devices and parameters, treatment schedules and safety issues. Finally, the clinical translation of sonochemotherapy is discussed, including the first clinical study using sonochemotherapy.
Collapse
Affiliation(s)
- Bart H A Lammertink
- Image Guided Therapy, Imaging Division, University Medical Center Utrecht Utrecht, Netherlands
| | - Clemens Bos
- Image Guided Therapy, Imaging Division, University Medical Center Utrecht Utrecht, Netherlands
| | - Roel Deckers
- Image Guided Therapy, Imaging Division, University Medical Center Utrecht Utrecht, Netherlands
| | - Gert Storm
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University Utrecht, Netherlands ; Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente Enschede, Netherlands
| | - Chrit T W Moonen
- Image Guided Therapy, Imaging Division, University Medical Center Utrecht Utrecht, Netherlands
| | - Jean-Michel Escoffre
- Image Guided Therapy, Imaging Division, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
28
|
Derieppe M, Rojek K, Escoffre JM, de Senneville BD, Moonen C, Bos C. Recruitment of endocytosis in sonopermeabilization-mediated drug delivery: a real-time study. Phys Biol 2015; 12:046010. [PMID: 26118644 DOI: 10.1088/1478-3975/12/4/046010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microbubbles (MBs) in combination with ultrasound (US) can enhance cell membrane permeability, and have the potential to facilitate the cellular uptake of hydrophilic molecules. However, the exact mechanism behind US- and MB-mediated intracellular delivery still remains to be fully understood. Among the proposed mechanisms are formation of transient pores and endocytosis stimulation. In our study, we investigated whether endocytosis is involved in US- and MB-mediated delivery of small molecules. Dynamic fluorescence microscopy was used to investigate the effects of endocytosis inhibitors on the pharmacokinetic parameters of US- and MB-mediated uptake of SYTOX Green, a 600 Da hydrophilic model drug. C6 rat glioma cells, together with SonoVue(®) MBs, were exposed to 1.4 MHz US waves at 0.2 MPa peak-negative pressure. Collection of the signal intensity in each individual nucleus was monitored during and after US exposure by a fibered confocal fluorescence microscope designed for real-time imaging. Exposed to US waves, C6 cells pretreated with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, showed up to a 2.5-fold significant increase of the uptake time constant, and a 1.1-fold increase with genistein, an inhibitor of caveolae-mediated endocytosis. Both inhibitors slowed down the US-mediated uptake of SYTOX Green. With C6 cells and our experimental settings, these quantitative data indicate that endocytosis plays a role in sonopermeabilization-mediated delivery of small molecules with a more predominant contribution of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Marc Derieppe
- Imaging Division, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Wood AKW, Sehgal CM. A review of low-intensity ultrasound for cancer therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:905-28. [PMID: 25728459 PMCID: PMC4362523 DOI: 10.1016/j.ultrasmedbio.2014.11.019] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/13/2014] [Accepted: 11/24/2014] [Indexed: 05/05/2023]
Abstract
The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy-sonodynamic therapy, ultrasound-mediated chemotherapy, ultrasound-mediated gene delivery and anti-vascular ultrasound therapy-was reviewed. Each technique consistently resulted in the death of cancer cells, and the bio-effects of ultrasound were attributed primarily to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform that can monitor the success of anti-cancer therapy. Little attention, however, has been given either to the direct assessment of the mechanisms underlying the observed bio-effects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data, there could be prompt application of a therapy technique in the treatment of cancer patients.
Collapse
Affiliation(s)
- Andrew K W Wood
- Department Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chandra M Sehgal
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
30
|
Goertz DE. An overview of the influence of therapeutic ultrasound exposures on the vasculature: high intensity ultrasound and microbubble-mediated bioeffects. Int J Hyperthermia 2015; 31:134-44. [PMID: 25716770 DOI: 10.3109/02656736.2015.1009179] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is well established that the interaction of ultrasound with soft tissues can induce a wide range of bioeffects. One of the most important and complex of these interactions in the context of therapeutic ultrasound is with the vasculature. Potential vascular effects range from enhancing microvascular permeability to inducing vascular damage and vessel occlusion. While aspects of these effects are broadly understood, the development of improved approaches to exploit these effects and gain a more detailed mechanistic understanding is ongoing and largely anchored in preclinical research. Here a general overview of this established yet rapidly evolving topic is provided, with a particular emphasis on effects arising from high-intensity focused ultrasound and microbubble-mediated exposures.
Collapse
Affiliation(s)
- David E Goertz
- Department of Physical Sciences, Sunnybrook Health Sciences Center , Toronto, Ontario , Canada
| |
Collapse
|
31
|
Gong Y, Wang Z, Dong G, Sun Y, Wang X, Rong Y, Li M, Wang D, Ran H. Low-intensity focused ultrasound mediated localized drug delivery for liver tumors in rabbits. Drug Deliv 2014; 23:2280-2289. [PMID: 25367869 DOI: 10.3109/10717544.2014.972528] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To explore the antitumor effects of low-intensity focused ultrasound (LIFU) mediated localized drug delivery of adriamycin-microbubble-PLGA nanoparticle complexes on rabbits VX2 liver tumor. METHODS ADM-NMCs were prepared by covalent linking of ADM-PLGA nanoparticles (ADM-NPs) to the shell of the microbubbles. A fixed water bag filled with microbubbles was subjected to LIFU and non-focused ultrasound respectively, and the ultrasound images of which were recorded before and after ultrasonication. A total of 54 VX2 liver tumor-burdened rabbits were divided into six groups randomly, including control, ADM-NPs combined with LIFU, microbubbles combined with LIFU, ADM-NPs and microbubbles combined with LIFU, ADM-NMCs combined with LIFU and ADM-NMCs combined with Non-FUS. The tumor volume and volume inhibition rate (VIR) of tumor progression were calculated and compared. Apoptotic cells were labeled by terminal deoxyuridine nick end. Proliferating cell nuclear antigen was detected by immunohistochemistry. The median survival time of the animals were recorded and compared. RESULTS ADM-NMCs were successfully prepared with an average diameter of 1721 nm. The highest VIR and apoptotic index (AI) were found in the group of ADM-NMCs combined with LIFU while the lowest proliferating index (PI) was simultaneously observed in this group. The median survival time of the rabbits in the ADM-NMCs combined with LIFU group was the longest (71days) among all groups. CONCLUSIONS ADM-NMCs combined with LIFU could inhibit the rabbits VX2 liver tumor progress by delaying the tumor proliferation and accelerating apoptosis, which presents a novel process for liver tumor targeting chemotherapy.
Collapse
Affiliation(s)
- Yuping Gong
- a Second Affiliated Hospital , Chongqing Medical University , Chongqing , P. R. China
| | - Zhigang Wang
- a Second Affiliated Hospital , Chongqing Medical University , Chongqing , P. R. China.,b Institute of Ultrasound Imaging , Chongqing Medical University , Chongqing , P. R. China
| | - Guifang Dong
- a Second Affiliated Hospital , Chongqing Medical University , Chongqing , P. R. China
| | - Yang Sun
- a Second Affiliated Hospital , Chongqing Medical University , Chongqing , P. R. China
| | - Xi Wang
- a Second Affiliated Hospital , Chongqing Medical University , Chongqing , P. R. China
| | - Yue Rong
- a Second Affiliated Hospital , Chongqing Medical University , Chongqing , P. R. China
| | - Maoping Li
- c First Affiliated Hospital , Chongqing Medical University , Chongqing , P. R. China , and
| | - Dong Wang
- d Children's Hospital of Chongqing Medical University , Chongqing , P. R. China
| | - Haitao Ran
- a Second Affiliated Hospital , Chongqing Medical University , Chongqing , P. R. China
| |
Collapse
|
32
|
Woodworth GF, Dunn GP, Nance EA, Hanes J, Brem H. Emerging insights into barriers to effective brain tumor therapeutics. Front Oncol 2014; 4:126. [PMID: 25101239 PMCID: PMC4104487 DOI: 10.3389/fonc.2014.00126] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/13/2014] [Indexed: 12/27/2022] Open
Abstract
There is great promise that ongoing advances in the delivery of therapeutics to the central nervous system (CNS) combined with rapidly expanding knowledge of brain tumor patho-biology will provide new, more effective therapies. Brain tumors that form from brain cells, as opposed to those that come from other parts of the body, rarely metastasize outside of the CNS. Instead, the tumor cells invade deep into the brain itself, causing disruption in brain circuits, blood vessel and blood flow changes, and tissue swelling. Patients with the most common and deadly form, glioblastoma (GBM) rarely live more than 2 years even with the most aggressive treatments and often with devastating neurological consequences. Current treatments include maximal safe surgical removal or biopsy followed by radiation and chemotherapy to address the residual tumor mass and invading tumor cells. However, delivering effective and sustained treatments to these invading cells without damaging healthy brain tissue is a major challenge and focus of the emerging fields of nanomedicine and viral and cell-based therapies. New treatment strategies, particularly those directed against the invasive component of this devastating CNS disease, are sorely needed. In this review, we (1) discuss the history and evolution of treatments for GBM, (2) define and explore three critical barriers to improving therapeutic delivery to invasive brain tumors, specifically, the neuro-vascular unit as it relates to the blood brain barrier, the extra-cellular space in regard to the brain penetration barrier, and the tumor genetic heterogeneity and instability in association with the treatment efficacy barrier, and (3) identify promising new therapeutic delivery approaches that have the potential to address these barriers and create sustained, meaningful efficacy against GBM.
Collapse
Affiliation(s)
- Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Gavin P Dunn
- Department of Neurosurgery, Pathology and Immunology, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine , St. Louis, MO , USA
| | - Elizabeth A Nance
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Neurosurgery, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
33
|
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66:2-25. [PMID: 24270007 PMCID: PMC4219254 DOI: 10.1016/j.addr.2013.11.009] [Citation(s) in RCA: 1988] [Impact Index Per Article: 180.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/23/2013] [Accepted: 11/13/2013] [Indexed: 12/17/2022]
Abstract
Cancer nanotherapeutics are progressing at a steady rate; research and development in the field has experienced an exponential growth since early 2000's. The path to the commercialization of oncology drugs is long and carries significant risk; however, there is considerable excitement that nanoparticle technologies may contribute to the success of cancer drug development. The pace at which pharmaceutical companies have formed partnerships to use proprietary nanoparticle technologies has considerably accelerated. It is now recognized that by enhancing the efficacy and/or tolerability of new drug candidates, nanotechnology can meaningfully contribute to create differentiated products and improve clinical outcome. This review describes the lessons learned since the commercialization of the first-generation nanomedicines including DOXIL® and Abraxane®. It explores our current understanding of targeted and non-targeted nanoparticles that are under various stages of development, including BIND-014 and MM-398. It highlights the opportunities and challenges faced by nanomedicines in contemporary oncology, where personalized medicine is increasingly the mainstay of cancer therapy. We revisit the fundamental concepts of enhanced permeability and retention effect (EPR) and explore the mechanisms proposed to enhance preferential "retention" in the tumor, whether using active targeting of nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated macrophages. The overall objective of this review is to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancers.
Collapse
Affiliation(s)
- Nicolas Bertrand
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Xiaoyang Xu
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA.
| |
Collapse
|
34
|
Sheehan J. Arteriovenous malformations. J Neurosurg 2013; 120:111; discussion 112. [PMID: 24180570 DOI: 10.3171/2013.6.jns131080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jason Sheehan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville Virginia
| |
Collapse
|
35
|
Ultrasound-activated agents comprised of 5FU-bearing nanoparticles bonded to microbubbles inhibit solid tumor growth and improve survival. Mol Ther 2013; 22:321-328. [PMID: 24172867 DOI: 10.1038/mt.2013.259] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/17/2013] [Indexed: 11/08/2022] Open
Abstract
Nanoparticle (NP) drug delivery vehicles may eventually offer improved tumor treatments; however, NP delivery from the bloodstream to tumors can be hindered by poor convective and/or diffusive transport. We tested whether poly(lactic-co-glycolic acid) NP delivery can be improved by covalently linking them to ultrasound (US)-activated microbubbles in a "composite-agent" formulation and whether drug 5-fluorouracil (5FU)-loaded NPs delivered in this fashion inhibit the growth of tumors that are typically not responsive to intravenously administered 5FU. After intravenous composite-agent injection, C6 gliomas implanted on Rag-1(-/-) mice were exposed to pulsed 1 MHz US, resulting in the delivery of 16% of the initial NP dose per gram tissue. This represented a five- to 57-fold increase in NP delivery when compared to multiple control groups. 5FU-bearing NP delivery from the composite-agent formulation resulted in a 67% reduction in tumor volume at 7 days after treatment, and animal survival increased significantly when compared to intravenous soluble 5FU administration. We conclude that NP delivery from US-activated composite agents may improve tumor treatment by offering a combination of better targeting, enhanced payload delivery, and controlled local drug release.
Collapse
|
36
|
McDannold N, Zhang YZ, Power C, Jolesz F, Vykhodtseva N. Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function. J Neurosurg 2013; 119:1208-20. [PMID: 24010975 DOI: 10.3171/2013.8.jns122387] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging-guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull. METHODS In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm. RESULTS Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina. CONCLUSIONS This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively producing sharply demarcated lesions in deep brain structures while preserving function in adjacent nerves. Because of low vascularity--and thus a low microbubble concentration--some large white matter tracts appear to have some natural resistance to this type of ablation compared with gray matter. While future work is needed to develop methods of monitoring the procedure and establishing its safety at deep brain targets, the technique does appear to be a potential solution that allows FUS ablation of deep brain targets while sparing adjacent nerve structures.
Collapse
Affiliation(s)
- Nathan McDannold
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
37
|
Lai CY, Fite BZ, Ferrara KW. Ultrasonic enhancement of drug penetration in solid tumors. Front Oncol 2013; 3:204. [PMID: 23967400 PMCID: PMC3746679 DOI: 10.3389/fonc.2013.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/25/2013] [Indexed: 12/22/2022] Open
Abstract
Increasing the penetration of drugs within solid tumors can be accomplished through multiple ultrasound-mediated mechanisms. The application of ultrasound can directly change the structure or physiology of tissues or can induce changes in a drug or vehicle in order to enhance delivery and efficacy. With each ultrasonic pulse, a fraction of the energy in the propagating wave is absorbed by tissue and results in local heating. When ultrasound is applied to achieve mild hyperthermia, the thermal effects are associated with an increase in perfusion or the release of a drug from a temperature-sensitive vehicle. Higher ultrasound intensities locally ablate tissue and result in increased drug accumulation surrounding the ablated region of interest. Further, the mechanical displacement induced by the ultrasound pulse can result in the nucleation, growth and collapse of gas bubbles. As a result of such cavitation, the permeability of a vessel wall or cell membrane can be increased. Finally, the radiation pressure of the propagating pulse can translate particles or tissues. In this perspective, we will review recent progress in ultrasound-mediated tumor delivery and the opportunities for clinical translation.
Collapse
Affiliation(s)
- Chun-Yen Lai
- Department of Biomedical Engineering, University of California Davis , Davis, CA , USA
| | | | | |
Collapse
|
38
|
Microendoscopy for hypericin fluorescence tumor diagnosis in a subcutaneous glioma mouse model. Photodiagnosis Photodyn Ther 2013; 10:552-60. [PMID: 24284111 DOI: 10.1016/j.pdpdt.2013.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND New treatment strategies for malignant gliomas are indispensible, due to the poor prognosis for patients. Fluorescence diagnosis (FD) and photodynamic therapy (PDT) are currently under intensive investigation and seem to improve the prognosis. Especially for deep seated malignant brain lesions and in order to optimize therapy new diagnostic tools are needed. METHODS In a syngeneic subcutaneous glioma mouse model we investigated the time dependent hypericin (HYP) uptake in malignant tumor tissue by microendoscopically fluorescence measurements. The HYP fluorescence in tumor was also detected by fluorescence microscopy (FM) and was compared to endoscopic data. RESULTS Both methods, microendoscopy and FM, demonstrated time dependent HYP uptake in subcutaneously implanted mouse glioma. Maximum of HYP uptake was achieved after 6h, measured with both methods. FM reached a 10-fold increase in fluorescence intensity compared to the autofluorescence. Measured by microendoscopy a 2.2-fold HYP fluorescence intensity compared to the autofluorescence was detected. Microendoscopy enables visualization of small vessels even in healthy brain tissue by intravascular HYP fluorescence. CONCLUSION The new developed microendoscope enables not only fluorescence based discrimination of tumor and healthy tissue, but also semiquantitative measurements of fluorescence intensities in vivo. Individual repetitive fluorescence diagnosis will become possible by this method and opens up new possibilities for determining optimal settings of light applications for PDT.
Collapse
|
39
|
Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:329-345. [PMID: 23504911 DOI: 10.1002/wnan.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Encapsulated microbubbles have been developed over the past two decades to provide improvements both in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components--an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive preclinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | |
Collapse
|
40
|
Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:329-45. [PMID: 23504911 DOI: 10.1002/wnan.1219] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Encapsulated microbubbles have been developed over the past two decades to provide improvements both in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components--an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive preclinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | | |
Collapse
|
41
|
Todorova M, Agache V, Mortazavi O, Chen B, Karshafian R, Hynynen K, Man S, Kerbel RS, Goertz DE. Antitumor effects of combining metronomic chemotherapy with the antivascular action of ultrasound stimulated microbubbles. Int J Cancer 2013; 132:2956-66. [DOI: 10.1002/ijc.27977] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/22/2012] [Indexed: 01/20/2023]
|
42
|
Goertz DE, Todorova M, Mortazavi O, Agache V, Chen B, Karshafian R, Hynynen K. Antitumor effects of combining docetaxel (taxotere) with the antivascular action of ultrasound stimulated microbubbles. PLoS One 2012; 7:e52307. [PMID: 23284980 PMCID: PMC3527530 DOI: 10.1371/journal.pone.0052307] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/12/2012] [Indexed: 11/25/2022] Open
Abstract
Ultrasound stimulated microbubbles (USMB) are being investigated for their potential to promote the uptake of anticancer agents into tumor tissue by exploiting their ability to enhance microvascular permeability. At sufficiently high ultrasound transmit amplitudes it has also recently been shown that USMB treatments can, on their own, induce vascular damage, shutdown blood flow, and inhibit tumor growth. The objective of this study is to examine the antitumor effects of ‘antivascular’ USMB treatments in conjunction with chemotherapy, which differs from previous work which has sought to enhance drug uptake with USMBs by increasing vascular permeability. Conceptually this is a strategy similar to combining vascular disrupting agents with a chemotherapy, and we have selected the taxane docetaxel (Taxotere) for evaluating this approach as it has previously been shown to have potent antitumor effects when combined with small molecule vascular disrupting agents. Experiments were conducted on PC3 tumors implanted in athymic mice. USMB treatments were performed at a frequency of 1 MHz employing sequences of 50 ms bursts (0.00024 duty cycle) at 1.65 MPa. USMB treatments were administered on a weekly basis for 4 weeks with docetaxel (DTX) being given intravenously at a dose level of 5 mg/kg. The USMB treatments, either alone or in combination with DTX, induced an acute reduction in tumor perfusion which was accompanied at the 24 hour point by significantly enhanced necrosis and apoptosis. Longitudinal experiments showed a modest prolongation in survival but no significant growth inhibition occurred in DTX–only and USMB-only treatment groups relative to control tumors. The combined USMB-DTX treatment group produced tumor shrinkage in weeks 4–6, and significant growth inhibition and survival prolongation relative to the control (p<0.001), USMB-only (p<0.01) and DTX-only treatment groups (p<0.01). These results suggest the potential of enhancing the antitumor activity of docetaxel by combining it with antivascular USMB effects.
Collapse
Affiliation(s)
- David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
43
|
Tlaxca JL, Rychak JJ, Ernst PB, Konkalmatt PR, Shevchenko TI, Pizarro TT, Pizzaro TT, Rivera-Nieves J, Klibanov AL, Lawrence MB. Ultrasound-based molecular imaging and specific gene delivery to mesenteric vasculature by endothelial adhesion molecule targeted microbubbles in a mouse model of Crohn's disease. J Control Release 2012; 165:216-25. [PMID: 23142578 DOI: 10.1016/j.jconrel.2012.10.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/27/2012] [Accepted: 10/15/2012] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract (GI) for which treatments with immunosuppressive drugs have significant side-effects. Consequently, there is a clinical need for site-specific and non-toxic delivery of therapeutic genes or drugs for CD and related disorders such as inflammatory bowel disease. The aim of this study was to validate a gene delivery platform based on ultrasound-activated lipid-shelled microbubbles (MBs) targeted to inflamed mesenteric endothelium in the CD-like TNFΔARE mouse model. MBs bearing luciferase plasmid were functionalized with antibodies to MAdCAM-1 (MB-M) or VCAM-1 (MB-V), biomarkers of gut endothelial cell inflammation and evaluated in an in vitro flow chamber assay with appropriate ligands to confirm targeting specificity. Following MB retro-orbital injection in TNFΔARE mice, the mean contrast intensity in the ileocecal region from accumulated MB-M and MB-V was 8.5-fold and 3.6-fold greater, respectively, compared to MB-C. Delivery of luciferase plasmid to the GI tract in TNFΔARE mice was achieved by insonating the endothelial cell-bound agents using a commercial sonoporator. Luciferase expression in the midgut was detected 48 h later by bioluminescence imaging and further confirmed by immunohistochemical staining. The liver, spleen, heart, and kidney had no detectable bioluminescence following insonation. Transfection of the microcirculation guided by a targeted, acoustically-activated platform such as an ultrasound contrast agent microbubble has the potential to be a minimally-invasive treatment strategy to ameliorate CD and other inflammatory conditions.
Collapse
Affiliation(s)
- José L Tlaxca
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li P, Zheng Y, Ran H, Tan J, Lin Y, Zhang Q, Ren J, Wang Z. Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. J Control Release 2012; 162:349-54. [DOI: 10.1016/j.jconrel.2012.07.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/16/2012] [Accepted: 07/08/2012] [Indexed: 11/28/2022]
|
45
|
Abstract
The intersection of particles and directed energy is a rich source of novel and useful technology that is only recently being realized for medicine. One of the most promising applications is directed drug delivery. This review focuses on phase-shift nanoparticles (that is, particles of submicron size) as well as micron-scale particles whose action depends on an external-energy triggered, first-order phase shift from a liquid to gas state of either the particle itself or of the surrounding medium. These particles have tremendous potential for actively disrupting their environment for altering transport properties and unloading drugs. This review covers in detail ultrasound and laser-activated phase-shift nano- and micro-particles and their use in drug delivery. Phase-shift based drug-delivery mechanisms and competing technologies are discussed.
Collapse
|
46
|
Rapoport N. Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:492-510. [PMID: 22730185 DOI: 10.1002/wnan.1176] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on phase-shift perfluorocarbon nanoemulsions whose action depends on an ultrasound-triggered phase shift from a liquid to gas state. For drug-loaded perfluorocarbon nanoemulsions, microbubbles are formed under the action of tumor-directed ultrasound and drug is released locally into tumor volume in this process. This review covers in detail mechanisms involved in the droplet-to-bubble transition as well as mechanisms of ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Natalya Rapoport
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
47
|
Gao Y, Gao S, Zhao B, Zhao Y, Hua X, Tan K, Liu Z. Vascular effects of microbubble-enhanced, pulsed, focused ultrasound on liver blood perfusion. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:91-98. [PMID: 22104531 DOI: 10.1016/j.ultrasmedbio.2011.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
The purpose of this study was to investigate the vascular effects of microbubble-enhanced pulsed high-pressure ultrasound on liver blood perfusion. In the presence of circulating lipid-shell microbubbles, a focused ultrasound transducer was used to transcutaneously treat eight livers of healthy rabbits for perfusion analysis and to treat three livers with the abdomen open for histologic analysis. Twenty-two livers treated with the ultrasound only (n = 11) or microbubbles only (n = 11) served as the controls. The focused ultrasound was operated at a frequency of 1.22 MHz with a peak negative pressure of 4.6 MPa. The liver blood perfusion was estimated by performing contrast-enhanced ultrasound and gray-scale quantification on the livers before and after treatment. A temporary, nonenhanced region occurred in all of the experimental livers. The regional contrast gray-scale values of the experimental group dropped significantly from 88.4 before treatment to 2.7 after treatment. The liver perfusion also demonstrated a gradual recovery over a 60-min period. The liver perfusion of the control groups remained the same after treatment. We found microvascular rupture, hemorrhage and swelling hepatocytes upon histologic examination of the experimental group. Regional liver blood perfusion can be temporarily blocked by microbubble-enhanced focused ultrasound with high-pressure amplitude. These vascular effects can be explained as acute microvascular injury of the liver and may have clinical implications.
Collapse
Affiliation(s)
- Yuejuan Gao
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Transcranial ultrasound for arteriovenous malformations: something old is new again. World Neurosurg 2011; 77:269-70. [PMID: 22120323 DOI: 10.1016/j.wneu.2011.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 07/27/2011] [Indexed: 11/21/2022]
|