1
|
Xu R, Treeby BE, Martin E. Safety Review of Therapeutic Ultrasound for Spinal Cord Neuromodulation and Blood-Spinal Cord Barrier Opening. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:317-331. [PMID: 38182491 DOI: 10.1016/j.ultrasmedbio.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/07/2024]
Abstract
New focused ultrasound spinal cord applications have emerged, particularly those improving therapeutic agent delivery to the spinal cord via blood-spinal cord barrier opening and the neuromodulation of spinal cord tracts. One hurdle in the development of these applications is safety. It may be possible to use safety trends from seminal and subsequent works in focused ultrasound to guide the development of safety guidelines for spinal cord applications. We collated data from decades of pre-clinical studies and illustrate a clear relationship between damage, time-averaged spatial peak intensity and exposure duration. This relationship suggests a thermal mechanism underlies ultrasound-induced spinal cord damage. We developed minimum and mean thresholds for damage from these pre-clinical studies. When these thresholds were plotted against the parameters used in recent pre-clinical ultrasonic spinal cord neuromodulation studies, the majority of the neuromodulation studies were near or above the minimum threshold. This suggests that a thermal neuromodulatory effect may exist for ultrasonic spinal cord neuromodulation, and that the thermal dose must be carefully controlled to avoid damage to the spinal cord. By contrast, the intensity-exposure duration threshold had no predictive value when applied to blood-spinal cord barrier opening studies that employed injected contrast agents. Most blood-spinal cord barrier opening studies observed slight to severe damage, except for small animal studies that employed an active feedback control method to limit pressures based on measured bubble oscillation behavior. The development of new focused ultrasound spinal cord applications perhaps reflects the recent success in the development of focused ultrasound brain applications, and recent work has begun on the translation of these technologies from brain to spinal cord. However, a great deal of work remains to be done, particularly with respect to developing and accepting safety standards for these applications.
Collapse
Affiliation(s)
- Rui Xu
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Bradley E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
2
|
Zhao W, Chen JZ, Hu JH, Huang JQ, Jiang YN, Luo G, Yi GF, Peng ZH, Wang H, Shen J, Gao BL. In vivo effects of radiofrequency ablation on long bones and the repair process in swine models. Jpn J Radiol 2016; 35:31-39. [PMID: 27822778 DOI: 10.1007/s11604-016-0596-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate in vivo effect of radiofrequency ablation (RFA) on swine long bones and the repair process. MATERIALS AND METHODS RFA was performed in six swine at the end and middle part of the tibia or femur. After RFA, radiological examinations were performed, and the swine were killed immediately and at different time points post-RFA for histopathological examination. RESULTS All swine had successful RFA. The RFA-induced elliptical necrotic area ranged from 3.81-5.24 cm2 (mean 4.08 ± 0.73 cm2) at the bone end but 5.60-8.98 cm2 (mean 7.58 ± 1.41) at the middle part immediately after RFA until 10 days, with the necrosis area significantly smaller (P = 0.000) at the end than at the middle. RFA only damaged the cortical bone slightly (0.01 cm thick) with no damage to the soft tissues outside the compact bone at both the end and middle. Surrounding the elliptic pale zone of coagulative necrosis was a narrow brown band of hemorrhage and inflammatory exudate. From day 10 until week 12, tissue proliferation and repair became increasingly apparent, with proliferated granulation, fibrous tissue, and fresh and mature bone trabecula. CONCLUSION RFA can quickly and effectively destroy the cancellous bone tissue without affecting the cortical bone and activate bone remodeling.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Jin-Zhou Chen
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Ji-Hong Hu
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Jian-Qiang Huang
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Yong-Neng Jiang
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Gang Luo
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Gen-Fa Yi
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Zhao-Hong Peng
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Hui Wang
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Jin Shen
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Bu-Lang Gao
- Department of Medical Imaging, The First Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, 650032, People's Republic of China.
| |
Collapse
|
3
|
Scott SJ, Salgaonkar V, Prakash P, Burdette EC, Diederich CJ. Interstitial ultrasound ablation of vertebral and paraspinal tumours: parametric and patient-specific simulations. Int J Hyperthermia 2015; 30:228-44. [PMID: 25017322 DOI: 10.3109/02656736.2014.915992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. METHODS 3D patient-specific finite element models (n = 11) of interstitial ultrasound ablation of tumours associated with the spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43 °C (EM43 °C)) and safety margins (<45 °C and <6 EM43 °C), and to determine performance and required delivery parameters. RESULTS Osteolytic tumours (≤44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm(2), 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. CONCLUSIONS Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours.
Collapse
Affiliation(s)
- Serena J Scott
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California , San Francisco , California
| | | | | | | | | |
Collapse
|
4
|
Salgaonkar VA, Diederich CJ. Catheter-based ultrasound technology for image-guided thermal therapy: current technology and applications. Int J Hyperthermia 2015; 31:203-15. [PMID: 25799287 DOI: 10.3109/02656736.2015.1006269] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Catheter-based ultrasound (CBUS) is applied to deliver minimally invasive thermal therapy to solid cancer tumours, benign tissue growth, vascular disease, and tissue remodelling. Compared to other energy modalities used in catheter-based surgical interventions, unique features of ultrasound result in conformable and precise energy delivery with high selectivity, fast treatment times, and larger treatment volumes. We present a concise review of CBUS technology being currently utilized in animal and clinical studies or being developed for future applications. CBUS devices have been categorised into interstitial, endoluminal and endovascular/cardiac applications. Basic applicator designs, site-specific evaluations and possible treatment applications have been discussed in brief. Particular emphasis has been given to ablation studies that incorporate image guidance for applicator placement, therapy monitoring, feedback control, and post-procedure assessment. Examples of devices included here span the entire spectrum of the development cycle from preliminary simulation-based design studies to implementation in clinical investigations. The use of CBUS under image guidance has the potential for significantly improving precision and applicability of thermal therapy delivery.
Collapse
Affiliation(s)
- Vasant A Salgaonkar
- Department of Radiation Oncology, University of California , San Francisco, California , USA
| | | |
Collapse
|
5
|
Pezeshki PS, Akens MK, Gofeld M, Woo J, Whyne CM, Yee AJM. Bone targeted bipolar cooled radiofrequency ablation in a VX-2 rabbit femoral carcinoma model. Clin Exp Metastasis 2015; 32:279-88. [PMID: 25648441 DOI: 10.1007/s10585-015-9703-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/24/2015] [Indexed: 12/01/2022]
Abstract
To determine the effect of bipolar cooled radiofrequency ablation (BCRF) on bone and tumour in a lapine pathologic femoral model. Under institutional approval, twelve New Zealand white rabbits received a single femoral injection of VX2 carcinoma cells (day 0). The rabbit femora, (n = 24), were block-randomized into four experimental groups: tumour-bearing radiofrequency ablation (RFA) treated, healthy bone RFA treated, tumour-bearing shams and healthy bone shams (n = 6 per group). 15 min of thermally regulated (65 °C) BCRF was applied at day 14. Pre- and post-treatment MR imaging was performed and repeated at day 28 prior to euthanasia. Histologic evaluation was used to determine treatment effect on tumour and bone tissue. A thirteenth injected rabbit served as a histologic control (no BCRF electrode placement). Large volumes (12.9 ± 5.5 cm(3)) of thermal ablation were achieved. An eight-fold reduction in tumour growth resulted in RFA treated animals compared to tumour-bearing sham controls (p < 0.001). Osteolysis was controlled in the tumour-treated group. Therapeutic effects were best imaged using MR contrast-enhanced SPoiled Gradient Recalled (SPGR) sequences. Osteoclasts and osteoblasts were observed to be sensitive to BCRF but osteocytes were more resilient. A small number of tumour cells within BCRF treated regions appeared viable post treatment. New bone formation was stimulated in the periphery of the targeted BCRF treatment zone. Structurally large VX2 tumour volumes within bone were successfully ablated with BCRF, stimulating new bone formation in the treatment periphery, although viable appearing osteocytes and tumour cells were observed in some treated regions.
Collapse
|
6
|
Chen L, Xiao J, Su IC, Wu YW, Zhang B, Ge KY, Chang YC, Yang C, Ni CF. Establishing a rabbit spinal tumor model for nonvascular interventional therapy through CT-guided percutaneous puncture inoculation. AJNR Am J Neuroradiol 2014; 36:153-9. [PMID: 24812018 DOI: 10.3174/ajnr.a3956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE An animal spinal tumor model is needed to better simulate the clinical situation and to allow percutaneous puncture, which may provide an experimental platform for the new nonvascular interventional therapies. We established a rabbit spinal tumor model through a CT-guided percutaneous puncture inoculation technique for nonvascular interventional therapy. MATERIALS AND METHODS VX2 tumor cells were inoculated into the lumbar vertebrae of 32 rabbits through a CT-guided percutaneous puncture technique; then, the development of hind limb paraparesis was observed in the rabbits twice a day. MR imaging and CT were performed on days 14, 21, and 28 postinoculation and at the development of hind limb paraparesis. On days 21 and 28 postinoculation, 2 rabbits, whose imaging suggested successful modeling without hind limb paraparesis, were chosen on each day. The lumbar vertebrae were sampled from 1 rabbit for histopathologic examination, and the other rabbit underwent PET-CT examination before percutaneous vertebroplasty. Finally the lesion vertebrae were sampled for histopathologic examination. RESULTS The success rate of modeling was 90.6% (29/32) in our study. On day 21 postinoculation, successful modeling was achieved in 21 rabbits, with 19 having no hind limb paraparesis. On day 28 postinoculation, another 7 achieved successful modeling, and only 1 developed hind limb paraparesis. Percutaneous vertebroplasty treatment was successful for the 2 rabbit models. CONCLUSIONS Establishment of a rabbit spinal tumor model through a CT-guided percutaneous puncture technique and inoculation of VX2 tumor is easy and has a high success rate. The established model can be used to study nonvascular interventional therapies for spinal tumor, including percutaneous vertebroplasty.
Collapse
Affiliation(s)
- L Chen
- From the Departments of Interventional Radiology (L.C., K.-Y.G., Y.-C.C., C.Y., C.-F.N.)
| | - J Xiao
- Department of Orthopedic Surgery (J.X.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - I-C Su
- Division of Neurosurgery (I.-C.S.), Department of Surgery, Taipei Cathay General Hospital, Taipei, Taiwan School of Medicine (I.-C.S.), Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Y-W Wu
- Nuclear Medicine (Y.-W.W., B.Z.), The First Affiliated Hospital of Soochow University, Suzhou, China
| | - B Zhang
- Nuclear Medicine (Y.-W.W., B.Z.), The First Affiliated Hospital of Soochow University, Suzhou, China
| | - K-Y Ge
- From the Departments of Interventional Radiology (L.C., K.-Y.G., Y.-C.C., C.Y., C.-F.N.)
| | - Y-C Chang
- From the Departments of Interventional Radiology (L.C., K.-Y.G., Y.-C.C., C.Y., C.-F.N.)
| | - C Yang
- From the Departments of Interventional Radiology (L.C., K.-Y.G., Y.-C.C., C.Y., C.-F.N.)
| | - C-F Ni
- From the Departments of Interventional Radiology (L.C., K.-Y.G., Y.-C.C., C.Y., C.-F.N.)
| |
Collapse
|
7
|
Sarabia-Estrada R, Zadnik PL, Molina CA, Jimenez-Estrada I, Groves ML, Gokaslan ZL, Bydon A, Witham TF, Wolinsky JP, Sciubba DM. A rat model of metastatic spinal cord compression using human prostate adenocarcinoma: histopathological and functional analysis. Spine J 2013; 13:1597-606. [PMID: 23810458 DOI: 10.1016/j.spinee.2013.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 09/28/2012] [Accepted: 05/04/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Cancer is a major global public health problem responsible for one in every four deaths in the United States. Prostate cancer alone accounts for 29% of all cancers in men and is the sixth leading cause of death in men. It is estimated that up to 30% of patients with cancer will develop metastatic disease, the spine being one of the most frequently affected sites in patients with prostate cancer. PURPOSE To study this condition in a preclinical setting, we have created a novel animal model of human metastatic prostate cancer to the spine and have characterized it histologically, functionally, and via bioluminescence imaging. STUDY DESIGN Translational science investigation of animal model of human prostate cancer in the spine. METHODS Luciferase-positive human prostate tumor cells PC3 (PC3-Luc) were injected in the flank of athymic male rats. PC3-Luc tumor samples were then implanted into the L5 vertebral body of male athymic rats (5 weeks old). Thirty-two rats were randomized into three surgical groups: experimental, control, and sham. Tumor growth was assessed qualitatively and noninvasively via bioluminescence emission, upon luciferin injection. To determine the functional impact of tumor growth in the spine, rats were evaluated for gait abnormalities during gait locomotion using video-assisted gait analysis. Rats were euthanized 22 days after tumor implantation, and spines were subjected to histopathological analyses. RESULTS Twenty days after tumor implantation, the tumor-implanted rats showed distinct signs of gait disturbances: dragging tail, right- or left-hind limb uncoordination, and absence of toe clearance during forward limb movement. At 20 days, all rats experienced tumor growth, evidenced by bioluminescent signal. Locomotion parameters negatively affected in tumor-implanted rats included stride length, velocity, and duration. At necropsy, all spines showed evidence of tumor growth, and the histological analysis found spinal cord compression and peritumoral osteoblastic reaction characteristic of bony prostate tumors. None of the rats in the sham or control groups demonstrated any evidence of bioluminescence signal or signs of gait disturbances. CONCLUSIONS In this project, we have developed a novel animal model of metastatic spine cancer using human prostate cancer cells. Tumor growth, evaluated via bioluminescence and corroborated by histopathological analyses, affected hind limb locomotion in ways that mimic motor deficits present in humans afflicted with metastatic spine disease. Our model represents a reliable method to evaluate the experimental therapeutic approaches of human tumors of the spine in animals. Gait locomotion and bioluminescence analyses can be used as surrogate noninvasive methods to evaluate tumor growth in this model.
Collapse
Affiliation(s)
- Rachel Sarabia-Estrada
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|