1
|
Pease M, Arefan D, Hammond FM, Castellano JF, Okonkwo DO, Wu S. Computational Prognostic Modeling in Traumatic Brain Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:475-486. [PMID: 39523284 DOI: 10.1007/978-3-031-64892-2_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury is the leading cause of death and disability worldwide. Despite this large impact, no predictive models are in widespread use due to tedious data collection requirements, lack of provider trust, and poor performance. Furthermore, these models use simple, often binary, data elements that fail to capture the complex heterogeneity of traumatic brain injury. Recent advances in computational modeling efforts have demonstrated promising results for capturing imaging, clinical, electroencephalographic, and other biomarkers for powerful predictive models. In this review, we provide an overview of efforts in computational modeling in neurotrauma and provide insights into future directions.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurosurgery, Indiana University, Indianapolis, IN, USA
| | - Dooman Arefan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Flora M Hammond
- Department of Physical Medicine & Rehabilitation, Indiana University, Indianapolis, IN, USA
| | | | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shandong Wu
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Biomedical Informatics; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Shin SS, Chawla S, Jang DH, Mazandi VM, Weeks MK, Kilbaugh TJ. Imaging of White Matter Injury Correlates with Plasma and Tissue Biomarkers in Pediatric Porcine Model of Traumatic Brain Injury. J Neurotrauma 2023; 40:74-85. [PMID: 35876453 PMCID: PMC9917326 DOI: 10.1089/neu.2022.0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Traumatic brain injury (TBI) causes significant white matter injury, which has been characterized by various rodent and human clinical studies. The exact time course of imaging changes in a pediatric brain after TBI and its relation to biomarkers of injury and cellular function, however, is unknown. To study the changes in major white matter structures using a valid model of TBI that is comparable to a human pediatric brain in terms of size and anatomical features, we utilized a four-week-old pediatric porcine model of injury with controlled cortical impact (CCI). Using diffusion tensor imaging differential tractography, we show progressive anisotropy changes at major white matter tracts such as the corona radiata and inferior fronto-occipital fasciculus between day 1 and day 30 after injury. Moreover, correlational tractography shows a large part of bilateral corona radiata having positive correlation with the markers of cellular respiration. In contrast, bilateral corona radiata has a negative correlation with the plasma biomarkers of injury such as neurofilament light or glial fibrillary acidic protein. These are expected correlational findings given that higher integrity of white matter would be expected to correlate with lower injury biomarkers. We then studied the magnetic resonance spectroscopy findings and report decrease in a N-acetylaspartate/creatinine (NAA/Cr) ratio at the pericontusional cortex, subcortical white matter, corona radiata, thalamus, genu, and splenium of corpus callosum at 30 days indicating injury. There was also an increase in choline/creatinine ratio in these regions indicating rapid membrane turnover. Given the need for a pediatric TBI model that is comparable to human pediatric TBI, these data support the use of a pediatric pig model with CCI in future investigations of therapeutic agents. This model will allow future TBI researchers to rapidly translate our pre-clinical study findings into clinical trials for pediatric TBI.
Collapse
Affiliation(s)
- Samuel S. Shin
- Division of Neurocritical Care, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David H. Jang
- Department of Emergency Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vanessa M. Mazandi
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M. Katie Weeks
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Affiliation(s)
- Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Shin SS, Hefti MM, Mazandi VM, Issadore DA, Meaney DF, Schneider ALC, Diaz-Arrastia R, Kilbaugh TJ. Plasma Neurofilament Light and Glial Fibrillary Acidic Protein Levels over Thirty Days in a Porcine Model of Traumatic Brain Injury. J Neurotrauma 2022; 39:935-943. [PMID: 35369719 PMCID: PMC9836679 DOI: 10.1089/neu.2022.0070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To establish the clinical relevance of porcine model of traumatic brain injury (TBI) using the plasma biomarkers of injury with diffusion tensor imaging (DTI) over 30 days, we performed a randomized, blinded, pre-clinical trial using Yorkshire pigs weighing 7-10 kg. Twelve pigs were subjected to Sham injury (n = 5) by skin incision or TBI (n = 7) by controlled cortical impact. Blood samples were collected before the injury, then at approximately 5-day intervals until 30 days. Both groups also had DTI at 24 h and at 30 days after injury. Plasma samples were isolated and single molecule array (Simoa) was performed for glial fibrillary acidic protein (GFAP) and neurofilament light (NFL) levels. Afterwards, brain tissue samples were stained for β-APP. DTI showed fractional anisotropy (FA) decrease in the right corona radiata (ipsilateral to injury), contralateral corona radiata, and anterior corpus callosum at 1 day. At 30 days, ipsilateral corona radiata showed decreased FA. Pigs with TBI also had increase in GFAP and NFL at 1-5 days after injury. Significant difference between Sham and TBI animals continued up to 20 days. Linear regression showed significant negative correlation between ipsilateral corona radiata FA and both NFL and GFAP levels at 1 day. To further validate the degree of axonal injury found in DTI, β-APP immunohistochemistry was performed on a perilesional tissue as well as corona radiata bilaterally. Variable degree of staining was found in ipsilateral corona radiata. Porcine model of TBI replicates the acute increase in plasma biomarkers seen in clinical TBI. Further, long term white matter injury is confirmed in the areas such as the splenium and corona radiata. However, future study stratifying severe and mild TBI, as well as comparison with other subtypes of TBI such as diffuse axonal injury, may be warranted.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| | - Vanessa M. Mazandi
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A. Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea L. C. Schneider
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Nolan AL, Petersen C, Iacono D, Mac Donald CL, Mukherjee P, van der Kouwe A, Jain S, Stevens A, Diamond BR, Wang R, Markowitz AJ, Fischl B, Perl DP, Manley GT, Keene CD, Diaz-Arrastia R, Edlow BL. Tractography-Pathology Correlations in Traumatic Brain Injury: A TRACK-TBI Study. J Neurotrauma 2021; 38:1620-1631. [PMID: 33412995 PMCID: PMC8165468 DOI: 10.1089/neu.2020.7373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diffusion tractography magnetic resonance imaging (MRI) can infer changes in network connectivity in patients with traumatic brain injury (TBI), but the pathological substrates of disconnected tracts have not been well defined because of a lack of high-resolution imaging with histopathological validation. We developed an ex vivo MRI protocol to analyze tract terminations at 750-μm isotropic resolution, followed by histopathological evaluation of white matter pathology, and applied these methods to a 60-year-old man who died 26 days after TBI. Analysis of 74 cerebral hemispheric white matter regions revealed a heterogeneous distribution of tract disruptions. Associated histopathology identified variable white matter injury with patchy deposition of amyloid precursor protein (APP), loss of neurofilament-positive axonal processes, myelin dissolution, astrogliosis, microgliosis, and perivascular hemosiderin-laden macrophages. Multiple linear regression revealed that tract disruption strongly correlated with the density of APP-positive axonal swellings and neurofilament loss. Ex vivo diffusion MRI can detect tract disruptions in the human brain that reflect axonal injury.
Collapse
Affiliation(s)
- Amber L. Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Cathrine Petersen
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Diego Iacono
- Department of Pathology, Uniformed Services University (USU), Bethesda, Maryland, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, USA
- DoD/USU Brain Tissue Repository (BTR) & Neuropathology Core, Uniformed Services University (USU), Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
- Complex Neurodegenerative Disorders, Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Allison Stevens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bram R. Diamond
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ruopeng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amy J. Markowitz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Health Sciences and Technology, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel P. Perl
- Department of Pathology, Uniformed Services University (USU), Bethesda, Maryland, USA
- DoD/USU Brain Tissue Repository (BTR) & Neuropathology Core, Uniformed Services University (USU), Bethesda, Maryland, USA
| | - Geoffrey T. Manley
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Baete SH, Cloos MA, Lin YC, Placantonakis DG, Shepherd T, Boada FE. Fingerprinting Orientation Distribution Functions in diffusion MRI detects smaller crossing angles. Neuroimage 2019; 198:231-241. [PMID: 31102735 DOI: 10.1016/j.neuroimage.2019.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Diffusion tractography is routinely used to study white matter architecture and brain connectivity in vivo. A key step for successful tractography of neuronal tracts is the correct identification of tract directions in each voxel. Here we propose a fingerprinting-based methodology to identify these fiber directions in Orientation Distribution Functions, dubbed ODF-Fingerprinting (ODF-FP). In ODF-FP, fiber configurations are selected based on the similarity between measured ODFs and elements in a pre-computed library. In noisy ODFs, the library matching algorithm penalizes the more complex fiber configurations. ODF simulations and analysis of bootstrapped partial and whole-brain in vivo datasets show that the ODF-FP approach improves the detection of fiber pairs with small crossing angles while maintaining fiber direction precision, which leads to better tractography results. Rather than focusing on the ODF maxima, the ODF-FP approach uses the whole ODF shape to infer fiber directions to improve the detection of fiber bundles with small crossing angle. The resulting fiber directions aid tractography algorithms in accurately displaying neuronal tracts and calculating brain connectivity.
Collapse
Affiliation(s)
- Steven H Baete
- Center for Advanced Imaging Innovation and Research (CAI(2)R), NYU School of Medicine, New York, NY, USA; Center for Biomedical Imaging, Dept. of Radiology, NYU School of Medicine, New York, NY, USA.
| | - Martijn A Cloos
- Center for Advanced Imaging Innovation and Research (CAI(2)R), NYU School of Medicine, New York, NY, USA; Center for Biomedical Imaging, Dept. of Radiology, NYU School of Medicine, New York, NY, USA; The Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, USA
| | - Ying-Chia Lin
- Center for Advanced Imaging Innovation and Research (CAI(2)R), NYU School of Medicine, New York, NY, USA; Center for Biomedical Imaging, Dept. of Radiology, NYU School of Medicine, New York, NY, USA
| | - Dimitris G Placantonakis
- Dept. of Neurosurgery, Perlmutter Cancer Center, Neuroscience Institute, Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Timothy Shepherd
- Center for Advanced Imaging Innovation and Research (CAI(2)R), NYU School of Medicine, New York, NY, USA; Center for Biomedical Imaging, Dept. of Radiology, NYU School of Medicine, New York, NY, USA
| | - Fernando E Boada
- Center for Advanced Imaging Innovation and Research (CAI(2)R), NYU School of Medicine, New York, NY, USA; Center for Biomedical Imaging, Dept. of Radiology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Ware AL, Biekman B, Hachey R, MacLeod M, Bird W, Pathak S, Clarke E, Borrasso A, Puccio AM, Glavin K, Pomiecko K, Moretti P, Beers SR, Levin HS, Schneider W, Okonkwo DO, Wilde EA. A Preliminary High-Definition Fiber Tracking Study of the Executive Control Network in Blast-Induced Traumatic Brain Injury. J Neurotrauma 2018; 36:686-701. [PMID: 30070176 DOI: 10.1089/neu.2018.5725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is common in veterans of the Iraq- and Afghanistan-era conflicts. However, the typical subtlety of neural alterations and absence of definitive biomarkers impede clinical detection on conventional imaging. This preliminary study examined the structure and functional correlates of executive control network (ECN) white matter in veterans to investigate the clinical utility of using high-definition fiber tracking (HDFT) to detect chronic bTBI. Demographically similar male veterans (N = 38) with and without bTBI (ages 24 to 50 years) completed standardized neuropsychological testing and magnetic resonance imaging. Quantitative HDFT metrics of subcortical-dorsolateral prefrontal cortex (DLPFC) tracts were derived. Moderate-to-large group effects were observed on HDFT metrics. Relative to comparisons, bTBI demonstrated elevated quantitative anisotropy (QA) and reduced right hemisphere volume of all examined tracts, and reduced fiber count and increased generalized fractional anisotropy in the right DLPFC-putamen tract and DLPFC-thalamus, respectively. The Group × Age interaction effect on DLPFC-caudate tract volume was large; age negatively related to volume in the bTBI group, but not comparison group. Groups performed similarly on the response inhibition measure. Performance (reaction time and commission errors) robustly correlated with HDFT tract metrics (QA and tract volume) in the comparison group, but not bTBI group. Results support anomalous density and integrity of ECN connectivity, particularly of the right DLPFC-putamen pathway, in bTBI. Results also support exacerbated aging in veterans with bTBI. Similar ECN function despite anomalous microstructure could reflect functional compensation in bTBI, although alternate interpretations are explored.
Collapse
Affiliation(s)
- Ashley L Ware
- 1 Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston , Houston, Texas.,2 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas
| | - Brian Biekman
- 1 Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics (TIMES), University of Houston , Houston, Texas.,2 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas
| | - Rebecca Hachey
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Marianne MacLeod
- 2 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas
| | - William Bird
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sudhir Pathak
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Emily Clarke
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Allison Borrasso
- 4 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ava M Puccio
- 4 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Kelly Glavin
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Kristopher Pomiecko
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Paolo Moretti
- 5 Department of Neurology, Baylor College of Medicine , Houston, Texas.,6 Neurology Service, Michael E. DeBakey VA Medical Center , Houston, Texas.,7 Department of Neurology, University of Utah School of Health Sciences , Salt Lake City, Utah.,8 Department of Human and Molecular Genetics, University of Utah School of Health Sciences , Salt Lake City, Utah.,9 Neurology Service, George E. Wahlen VA Medical Center , Salt Lake City, Utah
| | - Sue R Beers
- 10 Department of Psychiatry, University of Pittsburgh School of Medicine , Pittsburgh, PA
| | - Harvey S Levin
- 2 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas.,11 Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Walter Schneider
- 3 Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania.,12 Department of Psychology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - David O Okonkwo
- 4 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Elisabeth A Wilde
- 2 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas.,5 Department of Neurology, Baylor College of Medicine , Houston, Texas.,6 Neurology Service, Michael E. DeBakey VA Medical Center , Houston, Texas.,7 Department of Neurology, University of Utah School of Health Sciences , Salt Lake City, Utah.,9 Neurology Service, George E. Wahlen VA Medical Center , Salt Lake City, Utah.,13 Department of Radiology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
8
|
Ingham RJ, Ingham JC, Euler HA, Neumann K. Stuttering treatment and brain research in adults: A still unfolding relationship. JOURNAL OF FLUENCY DISORDERS 2018; 55:106-119. [PMID: 28413060 DOI: 10.1016/j.jfludis.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE Brain imaging and brain stimulation procedures have now been used for more than two decades to investigate the neural systems that contribute to the occurrence of stuttering in adults, and to identify processes that might enhance recovery from stuttering. The purpose of this paper is to review the extent to which these dual lines of research with adults who stutter have intersected and whether they are contributing towards the alleviation of this impairment. METHOD Several areas of research are reviewed in order to determine whether research on the neurology of stuttering is showing any potential for advancing the treatment of this communication disorder: (a) attempts to discover the neurology of stuttering, (b) neural changes associated with treated recovery, and (c) direct neural intervention. RESULTS AND CONCLUSIONS Although much has been learned about the neural underpinnings of stuttering, little research in any of the reviewed areas has thus far contributed to the advancement of stuttering treatment. Much of the research on the neurology of stuttering that does have therapy potential has been largely driven by a speech-motor model that is designed to account for the efficacy of fluency-inducing strategies and strategies that have been shown to yield therapy benefits. Investigations on methods that will induce neuroplasticity are overdue. Strategies profitable with other disorders have only occasionally been employed. However, there are signs that investigations on the neurology of adults who have recovered from stuttering are slowly being recognized for their potential in this regard.
Collapse
Affiliation(s)
- Roger J Ingham
- Department of Speech and Hearing Sciences, University of California, Santa Barbara, USA
| | - Janis C Ingham
- Department of Speech and Hearing Sciences, University of California, Santa Barbara, USA
| | - Harald A Euler
- Department of Phoniatrics and Pediatric Audiology, Clinic of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Katrin Neumann
- Department of Phoniatrics and Pediatric Audiology, Clinic of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
9
|
Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury. Brain Imaging Behav 2018; 11:591-610. [PMID: 28194558 DOI: 10.1007/s11682-017-9684-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.
Collapse
|
10
|
The vestibulocochlear bases for wartime posttraumatic stress disorder manifestations. Med Hypotheses 2017; 106:44-56. [DOI: 10.1016/j.mehy.2017.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 06/28/2017] [Indexed: 11/23/2022]
|
11
|
Guise C, Fernandes MM, Nóbrega JM, Pathak S, Schneider W, Fangueiro R. Hollow Polypropylene Yarns as a Biomimetic Brain Phantom for the Validation of High-Definition Fiber Tractography Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29960-29967. [PMID: 27723307 DOI: 10.1021/acsami.6b09809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Current brain imaging methods largely fail to provide detailed information about the location and severity of axonal injuries and do not anticipate recovery of the patients with traumatic brain injury. High-definition fiber tractography appears as a novel imaging modality based on water motion in the brain that allows for direct visualization and quantification of the degree of axons damage, thus predicting the functional deficits due to traumatic axonal injury and loss of cortical projections. This neuroimaging modality still faces major challenges because it lacks a "gold standard" for the technique validation and respective quality control. The present work aims to study the potential of hollow polypropylene yarns to mimic human white matter axons and construct a brain phantom for the calibration and validation of brain diffusion techniques based on magnetic resonance imaging, including high-definition fiber tractography imaging. Hollow multifilament polypropylene yarns were produced by melt-spinning process and characterized in terms of their physicochemical properties. Scanning electronic microscopy images of the filaments cross section has shown an inner diameter of approximately 12 μm, confirming their appropriateness to mimic the brain axons. The chemical purity of polypropylene yarns as well as the interaction between the water and the filament surface, important properties for predicting water behavior and diffusion inside the yarns, were also evaluated. Restricted and hindered water diffusion was confirmed by fluorescence microscopy. Finally, the yarns were magnetic resonance imaging scanned and analyzed using high-definition fiber tractography, revealing an excellent choice of these hollow polypropylene structures for simulation of the white matter brain axons and their suitability for constructing an accurate brain phantom.
Collapse
Affiliation(s)
- Catarina Guise
- Centre for Textile Science and Technology (2C2T), University of Minho , Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Margarida M Fernandes
- Centre for Textile Science and Technology (2C2T), University of Minho , Campus de Azurém, 4800-058 Guimarães, Portugal
| | - João M Nóbrega
- Institute for Polymers and Composites/I3N, University of Minho , Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Sudhir Pathak
- Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Walter Schneider
- Learning Research and Development Center, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T), University of Minho , Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
12
|
Gooijers J, Beets IAM, Albouy G, Beeckmans K, Michiels K, Sunaert S, Swinnen SP. Movement preparation and execution: differential functional activation patterns after traumatic brain injury. Brain 2016; 139:2469-85. [DOI: 10.1093/brain/aww177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/27/2016] [Indexed: 12/30/2022] Open
|
13
|
Edlow BL, Copen WA, Izzy S, van der Kouwe A, Glenn MB, Greenberg SM, Greer DM, Wu O. Longitudinal Diffusion Tensor Imaging Detects Recovery of Fractional Anisotropy Within Traumatic Axonal Injury Lesions. Neurocrit Care 2016; 24:342-52. [PMID: 26690938 PMCID: PMC4884487 DOI: 10.1007/s12028-015-0216-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Traumatic axonal injury (TAI) may be reversible, yet there are currently no clinical imaging tools to detect axonal recovery in patients with traumatic brain injury (TBI). We used diffusion tensor imaging (DTI) to characterize serial changes in fractional anisotropy (FA) within TAI lesions of the corpus callosum (CC). We hypothesized that recovery of FA within a TAI lesion correlates with better functional outcome. METHODS Patients who underwent both an acute DTI scan (≤day 7) and a subacute DTI scan (day 14 to inpatient rehabilitation discharge) at a single institution were retrospectively analyzed. TAI lesions were manually traced on the acute diffusion-weighted images. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD) were measured within the TAI lesions at each time point. FA recovery was defined by a longitudinal increase in CC FA that exceeded the coefficient of variation for FA based on values from healthy controls. Acute FA, ADC, AD, and RD were compared in lesions with and without FA recovery, and correlations were tested between lesional FA recovery and functional recovery, as determined by disability rating scale score at discharge from inpatient rehabilitation. RESULTS Eleven TAI lesions were identified in 7 patients. DTI detected FA recovery within 2 of 11 TAI lesions. Acute FA, ADC, AD, and RD did not differ between lesions with and without FA recovery. Lesional FA recovery did not correlate with disability rating scale scores. CONCLUSIONS In this retrospective longitudinal study, we provide initial evidence that FA can recover within TAI lesions. However, FA recovery did not correlate with improved functional outcomes. Prospective histopathological and clinical studies are needed to further elucidate whether lesional FA recovery indicates axonal healing and has prognostic significance.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street - Suite 300, Boston, MA, 02114, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - William A Copen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Saef Izzy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street - Suite 300, Boston, MA, 02114, USA
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mel B Glenn
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street - Suite 300, Boston, MA, 02114, USA
| | - David M Greer
- Department of Neurology, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Al Nimer F, Thelin E, Nyström H, Dring AM, Svenningsson A, Piehl F, Nelson DW, Bellander BM. Comparative Assessment of the Prognostic Value of Biomarkers in Traumatic Brain Injury Reveals an Independent Role for Serum Levels of Neurofilament Light. PLoS One 2015; 10:e0132177. [PMID: 26136237 PMCID: PMC4489843 DOI: 10.1371/journal.pone.0132177] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a common cause of death and disability, worldwide. Early determination of injury severity is essential to improve care. Neurofilament light (NF-L) has been introduced as a marker of neuroaxonal injury in neuroinflammatory/-degenerative diseases. In this study we determined the predictive power of serum (s-) and cerebrospinal fluid (CSF-) NF-L levels towards outcome, and explored their potential correlation to diffuse axonal injury (DAI). A total of 182 patients suffering from TBI admitted to the neurointensive care unit at a level 1 trauma center were included. S-NF-L levels were acquired, together with S100B and neuron-specific enolase (NSE). CSF-NF-L was measured in a subcohort (n = 84) with ventriculostomies. Clinical and neuro-radiological parameters, including computerized tomography (CT) and magnetic resonance imaging, were included in the analyses. Outcome was assessed 6 to 12 months after injury using the Glasgow Outcome Score (1-5). In univariate proportional odds analyses mean s-NF-L, -S100B and -NSE levels presented a pseudo-R2 Nagelkerke of 0.062, 0.214 and 0.074 in correlation to outcome, respectively. In a multivariate analysis, in addition to a model including core parameters (pseudo-R2 0.33 towards outcome; Age, Glasgow Coma Scale, pupil response, Stockholm CT score, abbreviated injury severity score, S100B), S-NF-L yielded an extra 0.023 pseudo-R2 and a significantly better model (p = 0.006) No correlation between DAI or CT assessed-intracranial damage and NF-L was found. Our study thus demonstrates that S-NF-L correlates to TBI outcome, even if used in models with S100B, indicating an independent contribution to the prediction, perhaps by reflecting different pathophysiological processes, not possible to monitor using conventional neuroradiology. Although we did not find a predictive value of NF-L for DAI, this cannot be completely excluded. We suggest further studies, with volume quantification of axonal injury, and a prolonged sampling time, in order to better determine the connection between NF-L and DAI.
Collapse
Affiliation(s)
- Faiez Al Nimer
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Eric Thelin
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Harriet Nyström
- Department of Clinical Neuroscience, Section of Neuroradiology, Karolinska Institutet, Stockholm, Sweden
| | - Ann M Dring
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Svenningsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - David W Nelson
- Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci 2015; 16:11903-65. [PMID: 26016501 PMCID: PMC4490422 DOI: 10.3390/ijms160611903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Physiology, School of Medicine, University of Jinan, Guangzhou 250012, China.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, University Hospital Innsbruck, Tyrol 6020, Austria.
| | - Richard Applegate Ii
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
16
|
Cieslak M, Ingham RJ, Ingham JC, Grafton ST. Anomalous white matter morphology in adults who stutter. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2015; 58:268-77. [PMID: 25635376 PMCID: PMC4675119 DOI: 10.1044/2015_jslhr-s-14-0193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/16/2015] [Indexed: 05/02/2023]
Abstract
AIMS Developmental stuttering is now generally considered to arise from genetic determinants interacting with neurologic function. Changes within speech-motor white matter (WM) connections may also be implicated. These connections can now be studied in great detail by high-angular-resolution diffusion magnetic resonance imaging. Therefore, diffusion spectrum imaging was used to reconstruct streamlines to examine white matter connections in people who stutter (PWS) and in people who do not stutter (PWNS). METHOD WM morphology of the entire brain was assayed in 8 right-handed male PWS and 8 similarly aged right-handed male PWNS. WM was exhaustively searched using a deterministic algorithm that identifies missing or largely misshapen tracts. To be abnormal, a tract (defined as all streamlines connecting a pair of gray matter regions) was required to be at least one 3rd missing, in 7 out of 8 subjects in one group and not in the other group. RESULTS Large portions of bilateral arcuate fasciculi, a heavily researched speech pathway, were abnormal in PWS. Conversely, all PWS had a prominent connection in the left temporo-striatal tract connecting frontal and temporal cortex that was not observed in PWNS. CONCLUSION These previously unseen structural differences of WM morphology in classical speech-language circuits may underlie developmental stuttering.
Collapse
|
17
|
|
18
|
Abstract
Traumatic brain injury (TBI) remains a significant public health problem and is a leading cause of death and disability in many countries. Durable treatments for neurological function deficits following TBI have been elusive, as there are currently no FDA-approved therapeutic modalities for mitigating the consequences of TBI. Neurostimulation strategies using various forms of electrical stimulation have recently been applied to treat functional deficits in animal models and clinical stroke trials. The results from these studies suggest that neurostimulation may augment improvements in both motor and cognitive deficits after brain injury. Several studies have taken this approach in animal models of TBI, showing both behavioral enhancement and biological evidence of recovery. There have been only a few studies using deep brain stimulation (DBS) in human TBI patients, and future studies are warranted to validate the feasibility of this technique in the clinical treatment of TBI. In this review, the authors summarize insights from studies employing neurostimulation techniques in the setting of brain injury. Moreover, they relate these findings to the future prospect of using DBS to ameliorate motor and cognitive deficits following TBI.
Collapse
Affiliation(s)
- Samuel S Shin
- Department of Neurological Surgery, University of Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
19
|
Jang SH, Yeo SS, Chang MC. Unusual compensatory neural connections following disruption of corpus callosum fibers in a patient with corpus callosum hemorrhage. Int J Neurosci 2013; 123:892-895. [PMID: 23796149 DOI: 10.3109/00207454.2013.810627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We report on a patient with hemorrhage of the corpus callosum (CC) in whom unusual compensatory neural connections were observed following disruption of CC fibers. METHODS A 42-year-old female patient presented with callosal alien hand syndrome (AHS) after the onset of the hemorrhage. She showed a rapid recovery and the symptoms of her AHS had almost disappeared at 7 weeks after onset. We performed diffusion tensor tractography (DTT) for the evaluation of CC fibers and performed a comparison with DTT findings acquired from a normal subject (a 47-year-old female). RESULTS Findings on DTT of the patient revealed extensive disruption of CC fibers passing through the anterior portion of the genu and most of the CC body. We observed that CC fibers in the right and left temporal lobes joined with the right and left inferior fronto-occipital fasciculus, respectively, and these neural fibers were connected to each other through the anterior commissure. These changes of neural connections were not observed in the normal subject. CONCLUSION We think that the unusual neural connections in this patient were compensatory phenomena for disruption of CC fibers. In addition, the good recovery from symptoms of AHS in this patient appears to be correlated with these unusual compensatory neural connections. We believe that the results of this study suggest a mechanism for neural recovery following injury of the CC fibers.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University , Namku, Taegu , Republic of Korea
| | | | | |
Collapse
|
20
|
Abstract
Traumatic coma is associated with disruption of axonal pathways throughout the brain, but the specific pathways involved in humans are incompletely understood. In this study, we used high angular resolution diffusion imaging to map the connectivity of axonal pathways that mediate the 2 critical components of consciousness-arousal and awareness-in the postmortem brain of a 62-year-old woman with acute traumatic coma and in 2 control brains. High angular resolution diffusion imaging tractography guided tissue sampling in the neuropathologic analysis. High angular resolution diffusion imaging tractography demonstrated complete disruption of white matter pathways connecting brainstem arousal nuclei to the basal forebrain and thalamic intralaminar and reticular nuclei. In contrast, hemispheric arousal pathways connecting the thalamus and basal forebrain to the cerebral cortex were only partially disrupted, as were the cortical "awareness pathways." Neuropathologic examination, which used β-amyloid precursor protein and fractin immunomarkers, revealed axonal injury in the white matter of the brainstem and cerebral hemispheres that corresponded to sites of high angular resolution diffusion imaging tract disruption. Axonal injury was also present within the gray matter of the hypothalamus, thalamus, basal forebrain, and cerebral cortex. We propose that traumatic coma may be a subcortical disconnection syndrome related to the disconnection of specific brainstem arousal nuclei from the thalamus and basal forebrain.
Collapse
|
21
|
Campbell TF, Dollaghan C, Janosky J, Rusiewicz HL, Small SL, Dick F, Vick J, Adelson PD. Consonant accuracy after severe pediatric traumatic brain injury: a prospective cohort study. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2013; 56:1023-1034. [PMID: 23275427 DOI: 10.1044/1092-4388(2012/12-0077)] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PURPOSE The authors sought to describe longitudinal changes in Percentage of Consonants Correct-Revised (PCC-R) after severe pediatric traumatic brain injury (TBI), to compare the odds of normal-range PCC-R in children injured at older and younger ages, and to correlate predictor variables and PCC-R outcomes. METHOD In 56 children injured between age 1 month and 11 years, PCC-R was calculated over 12 monthly sessions beginning when the child produced ≥ 10 words. At each session, the authors compared odds of normal-range PCC-R in children injured at younger (≤ 60 months) and older (> 60 months) ages. Correlations were calculated between final PCC-R and age at injury, injury mechanism, gender, maternal education, residence, treatment, Glasgow Coma Score, and intact brain volume. RESULTS PCC-Rs varied within and between children. Odds of normal-range PCC-R were significantly higher for the older than for the younger group at all sessions but the first; odds of normal-range PCC-R were 9 to 33 times higher in the older group in sessions 3 to 12. Age at injury was significantly correlated with final PCC-R. CONCLUSION Over a 12-month period, severe TBI had more adverse effects for children whose ages placed them in the most intensive phase of PCC-R development than for children injured later.
Collapse
Affiliation(s)
- Thomas F Campbell
- Callier Center for Communication Disorders, The University of Texas at Dallas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hoffmann M. The human frontal lobes and frontal network systems: an evolutionary, clinical, and treatment perspective. ISRN NEUROLOGY 2013; 2013:892459. [PMID: 23577266 PMCID: PMC3612492 DOI: 10.1155/2013/892459] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/19/2012] [Indexed: 12/27/2022]
Abstract
Frontal lobe syndromes, better termed as frontal network systems, are relatively unique in that they may manifest from almost any brain region, due to their widespread connectivity. The understandings of the manifold expressions seen clinically are helped by considering evolutionary origins, the contribution of the state-dependent ascending monoaminergic neurotransmitter systems, and cerebral connectivity. Hence, the so-called networktopathies may be a better term for the syndromes encountered clinically. An increasing array of metric tests are becoming available that complement that long standing history of qualitative bedside assessments pioneered by Alexander Luria, for example. An understanding of the vast panoply of frontal systems' syndromes has been pivotal in understanding and diagnosing the most common dementia syndrome under the age of 60, for example, frontotemporal lobe degeneration. New treatment options are also progressively becoming available, with recent evidence of dopaminergic augmentation, for example, being helpful in traumatic brain injury. The latter include not only psychopharmacological options but also device-based therapies including mirror visual feedback therapy.
Collapse
Affiliation(s)
- Michael Hoffmann
- Director Stroke and Cognitive Neurology Programs, James A. Haley Veterans' Hospital, 13000 Bruce B. Down's Boulevard, Tampa, FL 33612, USA
- Cognitive Neurologist and Director SciBrain, Roskamp Neurosciences Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| |
Collapse
|
23
|
Flygt J, Djupsjö A, Lenne F, Marklund N. Myelin loss and oligodendrocyte pathology in white matter tracts following traumatic brain injury in the rat. Eur J Neurosci 2013; 38:2153-65. [PMID: 23458840 DOI: 10.1111/ejn.12179] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Axonal injury is an important contributor to the behavioral deficits observed following traumatic brain injury (TBI). Additionally, loss of myelin and/or oligodendrocytes can negatively influence signal transduction and axon integrity. Apoptotic oligodendrocytes, changes in the oligodendrocyte progenitor cell (OPC) population and loss of myelin were evaluated at 2, 7 and 21 days following TBI. We used the central fluid percussion injury model (n = 18 and three controls) and the lateral fluid percussion injury model (n = 15 and three controls). The external capsule, fimbriae and corpus callosum were analysed. With Luxol Fast Blue and RIP staining, myelin loss was observed in both models, in all evaluated regions and at all post-injury time points, as compared with sham-injured controls (P ≤ 0.05). Accumulation of β-amyloid precursor protein was observed in white matter tracts in both models in areas with preserved and reduced myelin staining. White matter microglial/macrophage activation, evaluated by isolectin B4 immunostaining, was marked at the early time points. In contrast, the glial scar, evaluated by glial fibrillary acidic protein staining, showed its highest intensity 21 days post-injury in both models. The number of apoptotic oligodendrocytes, detected by CC1/caspase-3 co-labeling, was increased in both models in all evaluated regions. Finally, the numbers of OPCs, evaluated with the markers Tcf4 and Olig2, were increased from day 2 (Olig2) or day 7 (Tcf4) post-injury (P ≤ 0.05). Our results indicate that TBI induces oligodendrocyte apoptosis and widespread myelin loss, followed by a concomitant increase in the number of OPCs. Prevention of myelin loss and oligodendrocyte death may represent novel therapeutic targets for TBI.
Collapse
Affiliation(s)
- J Flygt
- Department of Neurosurgery, Uppsala University Hospital, Uppsala SE-751 85, Sweden
| | | | | | | |
Collapse
|
24
|
Abstract
Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization, and interpretation.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
25
|
Phillips JS, Greenberg AS, Pyles JA, Pathak SK, Behrmann M, Schneider W, Tarr MJ. Co-analysis of brain structure and function using fMRI and diffusion-weighted imaging. J Vis Exp 2012:4125. [PMID: 23169034 DOI: 10.3791/4125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)(1, 2) protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a "circuit diagram" and reproduce it on an individual-subject basis, for the purpose of monitoring task-relevant brain activity in networks of interest.
Collapse
|
26
|
Rosenfeld JV, Maas AI, Bragge P, Morganti-Kossmann MC, Manley GT, Gruen RL. Early management of severe traumatic brain injury. Lancet 2012; 380:1088-98. [PMID: 22998718 DOI: 10.1016/s0140-6736(12)60864-2] [Citation(s) in RCA: 379] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Severe traumatic brain injury remains a major health-care problem worldwide. Although major progress has been made in understanding of the pathophysiology of this injury, this has not yet led to substantial improvements in outcome. In this report, we address present knowledge and its limitations, research innovations, and clinical implications. Improved outcomes for patients with severe traumatic brain injury could result from progress in pharmacological and other treatments, neural repair and regeneration, optimisation of surgical indications and techniques, and combination and individually targeted treatments. Expanded classification of traumatic brain injury and innovations in research design will underpin these advances. We are optimistic that further gains in outcome for patients with severe traumatic brain injury will be achieved in the next decade.
Collapse
Affiliation(s)
- Jeffrey V Rosenfeld
- Department of Neurosurgery, The Alfred Hospital, Monash University, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Fernandez-Miranda JC, Pathak S, Engh J, Jarbo K, Verstynen T, Yeh FC, Wang Y, Mintz A, Boada F, Schneider W, Friedlander R. High-Definition Fiber Tractography of the Human Brain. Neurosurgery 2012; 71:430-53. [PMID: 22513841 DOI: 10.1227/neu.0b013e3182592faa] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
High-definition fiber tracking (HDFT) is a novel combination of processing, reconstruction, and tractography methods that can track white matter fibers from cortex, through complex fiber crossings, to cortical and subcortical targets with subvoxel resolution.
OBJECTIVE:
To perform neuroanatomical validation of HDFT and to investigate its neurosurgical applications.
METHODS:
Six neurologically healthy adults and 36 patients with brain lesions were studied. Diffusion spectrum imaging data were reconstructed with a Generalized Q-Ball Imaging approach. Fiber dissection studies were performed in 20 human brains, and selected dissection results were compared with tractography.
RESULTS:
HDFT provides accurate replication of known neuroanatomical features such as the gyral and sulcal folding patterns, the characteristic shape of the claustrum, the segmentation of the thalamic nuclei, the decussation of the superior cerebellar peduncle, the multiple fiber crossing at the centrum semiovale, the complex angulation of the optic radiations, the terminal arborization of the arcuate tract, and the cortical segmentation of the dorsal Broca area. From a clinical perspective, we show that HDFT provides accurate structural connectivity studies in patients with intracerebral lesions, allowing qualitative and quantitative white matter damage assessment, aiding in understanding lesional patterns of white matter structural injury, and facilitating innovative neurosurgical applications. High-grade gliomas produce significant disruption of fibers, and low-grade gliomas cause fiber displacement. Cavernomas cause both displacement and disruption of fibers.
CONCLUSION:
Our HDFT approach provides an accurate reconstruction of white matter fiber tracts with unprecedented detail in both the normal and pathological human brain. Further studies to validate the clinical findings are needed.
Collapse
Affiliation(s)
| | - Sudhir Pathak
- Magnetic Resonance Research Center, Department of Radiology, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Kevin Jarbo
- Magnetic Resonance Research Center, Department of Radiology, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Timothy Verstynen
- Magnetic Resonance Research Center, Department of Radiology, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fang-Cheng Yeh
- Learning and Research Development Center, Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Fernando Boada
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania
| | - Walter Schneider
- Department of Neurological Surgery
- Magnetic Resonance Research Center, Department of Radiology, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | |
Collapse
|