1
|
Gouzoulis MJ, Jabbouri SS, Seddio AE, Grauer JN, Tuason DA. Goldenhar syndrome associated with increased risk of respiratory failure and reoperations following spinal deformity surgery. Spine Deform 2025; 13:205-210. [PMID: 39249241 DOI: 10.1007/s43390-024-00963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Goldenhar syndrome is a rare congenital disease that presents with a spectrum of clinical sequelae related to the vertebrae and other organs. The spinal manifestations of the syndrome are associated with scoliosis for which fusion may be considered. The current study aimed to evaluate the risks of adverse events and reoperations following posterior spinal fusion for those with Goldenhar syndrome relative to those with adolescent idiopathic scoliosis (AIS). METHODS Patients with Goldenhar syndrome and AIS between the ages of 10 and 17 who underwent posterior spinal fusion were abstracted from the 2010 to 2022 PearlDiver Database. The Goldenhar syndrome patients were matched 1:4 to patients with AIS based on age, sex, and Elixhauser Comorbidity Index. All 90 day postoperative adverse events, readmissions, and 5 year reoperations were identified using administrative coding. Incidence of adverse events between the cohorts were compared using multivariate logistic regression. RESULTS A total of 11,742 patients with AIS and 72 (0.61%) Goldenhar syndrome undergoing deformity surgery were identified. On matched comparison, patients with Goldenhar syndromes had higher odds ratio (OR) of respiratory failure (OR: 2.99, p = 0.009), severe adverse events (p = 2.29, p = 0.01), and readmissions (p = 2.26, p = 0.02). Over 5 years, they had a significantly higher incidence of reoperation compared to those with AIS (18.1% versus 5.5%, p = 0.005). CONCLUSIONS In this national sample of patients with Goldenhar syndrome undergoing posterior spinal fusion, patients with Goldenhar had increased odds of respiratory failure, readmissions, and reoperations. Targeted risk mitigation strategies may be appropriately considered for those with Goldenhar syndrome undergoing such surgeries. LEVEL OF EVIDENCE Level III; Case-control study or retrospective cohort study.
Collapse
Affiliation(s)
- Michael J Gouzoulis
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, US
| | - Sahir S Jabbouri
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, US
| | - Anthony E Seddio
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, US
| | - Jonathan N Grauer
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, US
| | - Dominick A Tuason
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, US.
| |
Collapse
|
2
|
Gouzoulis MJ, Joo PY, Jeong S, Jabbouri SS, Moran J, Zhu JR, Grauer JN. A 10-year perspective on the question of whether surgeries for adolescent idiopathic scoliosis are "one and done"? Spine Deform 2024; 12:903-908. [PMID: 38555557 DOI: 10.1007/s43390-024-00858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE Posterior scoliosis fusion (PSF) for adolescent idiopathic scoliosis (AIS) is considered a highly successful surgery with excellent outcomes. However, especially as many patients "graduate" from their pediatric surgeons, there is the need to quantify the long-term outcomes of such surgeries. METHODS The 2010-2022 Pearldiver M161 dataset was queried for those who were 10 to 18 years old with AIS undergoing PSF with at least 10 years follow-up. Patient characteristics were abstracted. Reoperations were identified based on coding for any subsequent thoracic/lumbar surgery/revision. The 10-year reoperation rate and reasons for reoperation were determined, and multivariate regression was performed to determine risk factors. RESULTS In total, 3,373 AIS PSF patients were identified. Of the study cohort, 324 (9.6%) underwent reoperation within 10-years with an interquartile range for timing of surgery of 81-658 days, of which 29.6% were done for infection. Reoperations were done within the first three months for 152 (46.9% of reoperations), three months to 2 years for 97 (29.9%), and 2 years to 10 years for 74 (22.8%). Based on multivariate regression, need for reoperation was associated with male sex (OR: 1.70), asthma (OR: 1.36) and greater than thirteen segments of instrumentation (OR: 1.48) (p < 0.05 for each) but not age, other comorbidities, or insurance. CONCLUSIONS The current study of a large national AIS PSF population found 9.6% to undergo reoperation in the 10 years following their index operation. Although specifics about the curve pattern could not be determined, the reoperation incidence and correlation with specific risk factors are notable and important for patient counselling.
Collapse
Affiliation(s)
- Michael J Gouzoulis
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, 47 College Street, 208071, New Haven, CT, 06510, USA
| | - Peter Y Joo
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, 47 College Street, 208071, New Haven, CT, 06510, USA
| | - Seongho Jeong
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, 47 College Street, 208071, New Haven, CT, 06510, USA
| | - Sahir S Jabbouri
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, 47 College Street, 208071, New Haven, CT, 06510, USA
| | - Jay Moran
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, 47 College Street, 208071, New Haven, CT, 06510, USA
| | - Justin R Zhu
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, 47 College Street, 208071, New Haven, CT, 06510, USA
| | - Jonathan N Grauer
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, 47 College Street, 208071, New Haven, CT, 06510, USA.
| |
Collapse
|
3
|
Wang Y, Li H, Zhao C, Zi Q, He F, Wang W. VEGF-modified PLA/HA nanocomposite fibrous membrane for cranial defect repair in rats. J Biomater Appl 2023; 38:455-467. [PMID: 37610341 DOI: 10.1177/08853282231198157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A major obstacle to bone tissue repair is the difficulty in establishing a rapid blood supply areas of bone defects. Vascular endothelial growth factor (VEGF)-infused tissue-engineered scaffolds offer a possible therapeutic option for these types of injuries. Their role is to accelerate angiogenesis and improve bone healing. In this study, we used electrostatic spinning and biofactor binding to construct polylactic acid (PLA)/hydroxyapatite (HA)-VEGF scaffold materials and clarify their pro-vascular role in bone defect areas for efficient bone defect repair. PLA/HA nanocomposite fibrous membranes were manufactured by selecting suitable electrostatic spinning parameters. Heparin and VEGF were bound sequentially, and then the VEGF binding and release curves of the fiber membranes were calculated. A rat cranial defect model was constructed, and PLA/HA fiber membranes bound with VEGF and unbound with VEGF were placed for treatment. Finally, we compared bone volume recovery and vascular recovery in different fibrous membrane sites. A VEGF concentration of 2.5 µg/mL achieved the maximum binding and uniform distribution of PLA/HA fibrous membranes. Extended-release experiments showed that VEGF release essentially peaked at 14 days. In vivo studies showed that PLA/HA fibrous membranes bound with VEGF significantly increased the number of vessels at the site of cranial defects, bone mineral density, bone mineral content, bone bulk density, trabecular separation, trabecular thickness, and the number of trabeculae at the site of defects in rats compared with PLA/HA fibrous membranes not bound with VEGF. VEGF-bound PLA/HA fibrous membranes demonstrate the slow release of VEGF. The VEGF binding process does not disrupt the morphology and structure of the fibrous membranes. The fibrous membranes could stimulate both osteogenesis and angiogenesis. Taken together, this research provides a new strategy for critical-sized bone defects repairing.
Collapse
Affiliation(s)
- Yanghao Wang
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haohan Li
- Kunming Medical University, Kunming, Yunnan, China
| | - Cuicui Zhao
- Kunming Medical University, Kunming, Yunnan, China
| | - Qihan Zi
- Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Weizhou Wang
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Hao D, Liu R, Fernandez TG, Pivetti C, Jackson JE, Kulubya ES, Jiang HJ, Ju HY, Liu WL, Panitch A, Lam KS, Leach JK, Farmer DL, Wang A. A bioactive material with dual integrin-targeting ligands regulates specific endogenous cell adhesion and promotes vascularized bone regeneration in adult and fetal bone defects. Bioact Mater 2023; 20:179-193. [PMID: 35663336 PMCID: PMC9160290 DOI: 10.1016/j.bioactmat.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in designing bone materials capable of directing endogenous cells to promote vascularized bone regeneration. However, current strategies lack regulation of the specific endogenous cell populations for vascularized bone regeneration, thus leading to adverse tissue formation and decreased regenerative efficiency. Here, we engineered a biomaterial to regulate endogenous cell adhesion and promote vascularized bone regeneration. The biomaterial works by presenting two synthetic ligands, LLP2A and LXW7, explicitly targeting integrins α4β1 and αvβ3, respectively, expressed on the surfaces of the cells related to bone formation and vascularization, such as mesenchymal stem cells (MSCs), osteoblasts, endothelial progenitor cells (EPCs), and endothelial cells (ECs). In vitro, the LLP2A/LXW7 modified biomaterial improved the adhesion of MSCs, osteoblasts, EPCs, and ECs via integrin α4β1 and αvβ3, respectively. In an adult rat calvarial bone defect model, the LLP2A/LXW7 modified biomaterial enhanced bone formation and vascularization by synergistically regulating endogenous cells with osteogenic and angiogenic potentials, such as DLX5+ cells, osteocalcin+ cells, CD34+/CD45- cells and CD31+ cells. In a fetal sheep spinal bone defect model, the LLP2A/LXW7 modified biomaterial augmented bone formation and vascularization without any adverse effects. This innovative biomaterial offers an off-the-shelf, easy-to-use, and biologically safe product suitable for vascularized bone regeneration in both fetal and adult disease environments.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Tomas Gonzalez Fernandez
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jordan Elizabeth Jackson
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Edwin Samuel Kulubya
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Hong-Jiang Jiang
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Hai-Yang Ju
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Wen-Liang Liu
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Alyssa Panitch
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - J. Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| |
Collapse
|
5
|
Advances in bone regeneration with growth factors for spinal fusion: A literature review. NORTH AMERICAN SPINE SOCIETY JOURNAL 2022; 13:100193. [PMID: 36605107 PMCID: PMC9807829 DOI: 10.1016/j.xnsj.2022.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Bone tissue is regenerated via the spatiotemporal involvement of various cytokines. Among them, the bone morphogenetic protein (BMP), which plays a vital role in the bone regeneration process, has been applied clinically for the treatment of refractory orthopedic conditions. Although BMP therapy using a collagen carrier has shown efficiency in bone regeneration over the last two decades, a major challenge-considerable side effects associated with the acute release of high doses of BMPs-has also been revealed. To improve BMP efficiency, the development of new carriers and biologics that can be used in conjunction with BMPs is currently underway. In this review, we describe the current status and future prospects of bone regeneration therapy, with a focus on BMPs. Furthermore, we outline the characteristics and molecular signaling pathways involving BMPs, clinical applications of BMPs in orthopedics, clinical results of BMP use in human spinal surgeries, drugs combined with BMPs to provide synergistic effects, and novel BMP carriers.
Collapse
|
6
|
Novel Surgical Technique for Adolescent Idiopathic Scoliosis: Minimally Invasive Scoliosis Surgery. J Clin Med 2022; 11:jcm11195847. [PMID: 36233714 PMCID: PMC9572236 DOI: 10.3390/jcm11195847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/21/2023] Open
Abstract
Despite advancements in instruments and surgical techniques for adolescent idiopathic scoliosis (AIS) surgery, conventional open scoliosis surgery (COSS) is usually required to achieve satisfactory deformity correction using various distinct surgical techniques, such as rod derotation, direct vertebral rotation, facetectomies, osteotomies, and decortication of the laminae. However, COSS is accompanied by significant blood loss and requires a large midline skin incision. Minimally invasive surgery (MIS) has evolved enormously in various fields of spinal surgery, including degenerative spinal diseases. MIS of the spine has some advantages over conventional surgery, such as a smaller incision, less blood loss and postoperative pain, and lower infection rates. Since the introduction of MIS for AIS in 2011, MIS has been reported to have comparable outcomes, including correction rate with some usual advantages of MIS. However, several complications, such as dislodgement of rods, wound infection, and hypertrophic scar formation, have also been reported in the initial stages of MIS for AIS. We devised a novel approach, called the coin-hole technique or minimally invasive scoliosis surgery (MISS), to minimize these complications. This article aimed to introduce a novel surgical technique for AIS and provide a preliminary analysis and up-to-date information regarding MISS.
Collapse
|
7
|
Sun H, Dong J, Wang Y, Shen S, Shi Y, Zhang L, Zhao J, Sun X, Jiang Q. Polydopamine-Coated Poly(l-lactide) Nanofibers with Controlled Release of VEGF and BMP-2 as a Regenerative Periosteum. ACS Biomater Sci Eng 2021; 7:4883-4897. [PMID: 34472855 DOI: 10.1021/acsbiomaterials.1c00246] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The periosteum plays an important role in vascularization and ossification during bone repair. However, in most studies, an artificial periosteum cannot restore both functions of the periosteum concurrently. In this study, a novel nanofiber that can sustain the release of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) was fabricated to enhance the durability of angiogenesis and osteogenesis during bone regeneration. A cell-free tissue engineered periosteum based on an electrospinning poly-l-lactic acid (PLLA) nanofiber was fabricated, on which VEGF and BMP-2 were immobilized through a polydopamine (PDA) coating conveniently and safely (BVP@PLLA membrane). The results indicated a significantly improved loading rate as well as a slow and sustained release of VEGF and BMP-2 with the help of the PDA coating. BMP-2 immobilized on nanofibers successfully induced the osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs) in vitro with high expression of runt-related transcription factor 2 (Runx2), osteopontin (OPN), and alkaline phosphatase (ALP). Similarly, angiogenic differentiation of BMSCs with the expression of fetal liver kinase-1 (Flk-1) and vascular endothelial cadherin (VE-cadherin) was observed under the environment of VEGF sustained release. Moreover, an in vivo study revealed that the BVP@PLLA membrane could enhance vascular formation and new bone formation, which accelerates bone regeneration in rat femoral defects along with a massive periosteum defect. Therefore, our study suggests that the novel artificial periosteum with dual growth factor controlled release is a promising system to improve bone regeneration in bone defects along with a massive periosteum defect.
Collapse
Affiliation(s)
- Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, Jiangsu 213003, P.R. China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| | - Yangyufan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| | - Yong Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| | - Jie Zhao
- Department of Orthopedics, The Affiliated Wujin Hospital of Jiangsu University, 2 Yongning Road, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaoliang Sun
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, Jiangsu 213003, P.R. China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
8
|
Evaluating the utility and quality of large administrative databases in pediatric spinal neurosurgery research. Childs Nerv Syst 2021; 37:2993-3001. [PMID: 34402953 DOI: 10.1007/s00381-021-05331-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The purpose of this study was to assess the quality of articles utilizing large administrative databases to answer questions related to pediatric spinal neurosurgery by quantifying their adherence to standard reporting guidelines. METHODS A systematic literature search was conducted with search terms including "pediatric" and "neurosurgery," associated neurosurgical diagnoses, and the names of known databases. Study abstracts were reviewed to identify clinical studies involving pediatric populations, spine-related pathology or procedures, and large administrative databases. Included studies were graded using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) criteria. RESULTS A total of 28 papers of the initial 1496 identified met inclusion criteria. These papers involved 10 databases and had a mean study period of 11.46 ± 12.27 years. The subjects of these research papers were undergoing treatment of scoliosis (n = 5), spinal cord injury (n = 5), spinal cord tumors (n = 9), and spine surgery in general (n = 9). The mean STROBE score was 19.41 ± 2.02 (out of 22). CONCLUSION Large administrative databases are commonly used within pediatric spine-related neurosurgical research to cover a broad spectrum of research questions and study topics. The heterogeneity of research to this point encourages the continued use of large databases to better understand treatment and diagnostic trends, perioperative and long-term outcomes, and rare pathologies within pediatric spinal neurosurgery.
Collapse
|
9
|
Buell TJ, Shaffrey CI. Editorial. Anterior cervical fusion and rhBMP-2: a prospective study is needed to assess optimal dosing and delivery. Neurosurg Focus 2021; 50:E3. [PMID: 34062500 DOI: 10.3171/2021.3.focus21176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Lin Z, Nica C, Sculean A, Asparuhova MB. Positive Effects of Three-Dimensional Collagen-Based Matrices on the Behavior of Osteoprogenitors. Front Bioeng Biotechnol 2021; 9:708830. [PMID: 34368101 PMCID: PMC8334008 DOI: 10.3389/fbioe.2021.708830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Recent research has demonstrated that reinforced three-dimensional (3D) collagen matrices can provide a stable scaffold for restoring the lost volume of a deficient alveolar bone. In the present study, we aimed to comparatively investigate the migratory, adhesive, proliferative, and differentiation potential of mesenchymal stromal ST2 and pre-osteoblastic MC3T3-E1 cells in response to four 3D collagen-based matrices. Dried acellular dermal matrix (DADM), hydrated acellular dermal matrix (HADM), non-crosslinked collagen matrix (NCM), and crosslinked collagen matrix (CCM) did all enhance the motility of the osteoprogenitor cells. Compared to DADM and NCM, HADM and CCM triggered stronger migratory response. While cells grown on DADM and NCM demonstrated proliferative rates comparable to control cells grown in the absence of a biomaterial, cells grown on HADM and CCM proliferated significantly faster. The pro-proliferative effects of the two matrices were supported by upregulated expression of genes regulating cell division. Increased expression of genes encoding the adhesive molecules fibronectin, vinculin, CD44 antigen, and the intracellular adhesive molecule-1 was detected in cells grown on each of the scaffolds, suggesting excellent adhesive properties of the investigated biomaterials. In contrast to genes encoding the bone matrix proteins collagen type I (Col1a1) and osteopontin (Spp1) induced by all matrices, the expression of the osteogenic differentiation markers Runx2, Alpl, Dlx5, Ibsp, Bglap2, and Phex was significantly increased in cells grown on HADM and CCM only. Short/clinically relevant pre-coating of the 3D biomaterials with enamel matrix derivative (EMD) or recombinant bone morphogenetic protein-2 (rBMP-2) significantly boosted the osteogenic differentiation of both osteoprogenitor lines on all matrices, including DADM and NCM, indicating that EMD and BMP-2 retained their biological activity after being released from the matrices. Whereas EMD triggered the expression of all osteogenesis-related genes, rBMP-2 upregulated early, intermediate, and late osteogenic differentiation markers except for Col1a1 and Spp1. Altogether, our results support favorable influence of HADM and CCM on the recruitment, growth, and osteogenic differentiation of the osteoprogenitor cell types. Furthermore, our data strongly support the biofunctionalization of the collagen-based matrices with EMD or rBMP-2 as a potential treatment modality for bone defects in the clinical practice.
Collapse
Affiliation(s)
- Zhikai Lin
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Cristina Nica
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Cellular responses to deproteinized bovine bone mineral biofunctionalized with bone-conditioned medium. Clin Oral Investig 2020; 25:2159-2173. [PMID: 32870390 PMCID: PMC7966141 DOI: 10.1007/s00784-020-03528-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES The aim of the study was to investigate whether the osteoinductive properties of bone-conditioned medium (BCM) harvested from cortical bone chips within a clinically relevant short-term period can enhance the biologic characteristics of deproteinized bovine bone mineral (DBBM) in vitro. MATERIALS AND METHODS To assess the biofunctionalization of DBBM, the adhesive, proliferative, and differentiation properties of mesenchymal stromal ST2, pre-osteoblastic MC3T3-E1, and primary bone-derived cells grown on BCM-coated DBBM were examined by crystal violet staining of adherent cells, BrdU ELISA, and qRT-PCR, respectively. RESULTS BCM extracted within 20 min or 24 h in either Ringer's solution (BCM-RS) or RS mixed with autologous serum (BCM-RS + S) increased the adhesive properties of all three cell types seeded on DBBM. The 20-min BCM-RS preparation appeared more potent than the 24-h preparation. BCM-RS made within 20 min or 24 h had strong pro-proliferative effects on all cell types grown on DBBM. RS + S alone exhibited a considerable pro-proliferative effect, suggesting an impact of the serum on cellular growth. DBBM coated with BCM-RS or BCM-RS + S, made within 20 min or 24 h each, caused a significant induction of osteogenic differentiation marker expression with a higher potency of the BCM-RS + S. Finally, a strong additive effect of fresh bone chips combined with BCM-coated DBBM on the osteogenic differentiation of the three cell types was observed. CONCLUSIONS Altogether, the data strongly support the biofunctionalization of DBBM with BCM extracted within a clinically relevant time window of 20 min. CLINICAL RELEVANCE Pre-activation of non-osteoinductive biomaterials with BCM, prepared from autologous bone chips during a guided bone regeneration (GBR) procedure, bears the potential of an optimal treatment modality for bone defects in daily practice.
Collapse
|
12
|
Cohen LL, Yang BW, O'Neill NP, Proctor MR, Glotzbecker MP, Hedequist DJ. Use of recombinant human bone morphogenetic protein for revision cervical spine fusion in children with Down syndrome: a case series. J Neurosurg Pediatr 2020; 25:535-539. [PMID: 32005018 DOI: 10.3171/2019.11.peds19622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/25/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Patients with trisomy 21 (Down syndrome; DS) often have atlantoaxial instability (AAI), which, if severe, causes myelopathy and neurological deterioration. Children with DS and AAI who undergo cervical spine fusion have a high rate of nonunion requiring revision surgery. Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a TGF-β growth factor that is used to induce bone formation in spine fusion. Although previous studies in the adult population have reported no reduction in pseudarthrosis rates with the use of rhBMP-2, there is a lack of literature in the pediatric DS population. This study describes the use of rhBMP-2 in children with DS and AAI during revision to treat nonunion. METHODS A retrospective review of a cervical spine fusion database (n = 175) was conducted. This database included all cervical spine fusions using modern instrumentation at the authors' institution from 2002 to 2019. Patients with DS who underwent a revision utilizing rhBMP-2 were included in the study. The number of prior fusions, use of rhBMP-2 in fusions, length of stay, halo use, and surgical data were collected. Postoperative complications and length of follow-up were also recorded. RESULTS Eight patients (75% female) met the inclusion criteria. The average age at revision with rhBMP-2 was 11 years (range 3-19 years). All patients were diagnosed with nonunion after an initial cervical fusion. All revisions were posterior fusions of C1-2 (n = 2) or occiput to cervical (n = 6). All revisions included implant revisions, iliac crest bone grafting, and rhBMP-2 use. One patient required irrigation and debridement of an rhBMP-induced seroma. Another patient required return to the operating room to repair a dural tear. There were no neurological, infectious, airway, or implant-related complications. Revision utilizing rhBMP-2 achieved fusion in 100% (n = 8) of patients. The average length of follow-up was 42.6 months. All patients demonstrated solid fusion mass on the last radiograph. CONCLUSIONS This is the first case series reporting the successful use of rhBMP-2 to facilitate cervical spine fusion in patients with DS after previous nonunion. In addition, few rhBMP-2-related postoperative complications occurred.
Collapse
Affiliation(s)
| | | | | | - Mark R Proctor
- 2Neurosurgery, Harvard Medical School/Boston Children's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
13
|
Fujioka-Kobayashi M, Schaller B, Mourão CFDAB, Zhang Y, Sculean A, Miron RJ. Biological characterization of an injectable platelet-rich fibrin mixture consisting of autologous albumin gel and liquid platelet-rich fibrin (Alb-PRF). Platelets 2020; 32:74-81. [PMID: 31959025 DOI: 10.1080/09537104.2020.1717455] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelet-rich fibrin (PRF) has been proposed as an autologous membrane with the advantages of host accumulation of platelets and leukocytes with entrapment of growth factors. However, limitations include its faster resorption properties (~2 weeks). Interestingly, recent studies have demonstrated that by heating a liquid platelet-poor plasma (PPP) layer, the resorption properties of heated albumin (albumin gel) can be extended from 2 weeks to greater than 4 months (e-PRF). The aim of the present study was to characterize the biological properties of this novel regenerative modality. Whole blood collected from peripheral blood in 9-mL plastic tubes was centrifuged at 700 g for 8 minutes. Thereafter, the platelet-poor plasma layer was heated at 75°C for 10 minutes to create denatured albumin (albumin gel). The remaining cells and growth factor found within the buffy coat layer (liquid PRF) were thereafter mixed back together with the cooled albumin gel to form Alb-PRF. Histological analysis, including the distribution of cells within Alb-PRF, was then performed. Seven different growth factor release kinetics from Alb-PRF were characterized up to 10 days, including PDGF-AA, PDGF-AB, PDGF-BB, TGF-β1, VEGF, IGF and EGF. Thereafter, gingival fibroblast cell responses to Alb-PRF were investigated by means of a live/dead assay at 24 hours; migration assay at 24 hours; proliferation assay at 1, 3 and 5 days; real-time PCR for the expression of TGF-β and collagen 1a2 at 3 and 7 days; and collagen 1 immunostaining at 14 days. It was first observed histologically that viable cells were evenly distributed throughout the Alb-PRF formulation. Growth factor release demonstrated a slow and gradual release, particularly for TGF-β1 and PDGF-AA/AB, during the entire 10-day period. Alb-PRF also exhibited statistically significantly higher cell biocompatibility at 24 hours and statistically significantly induced greater fibroblast proliferation at 5 days when compared to those of control TCP. Alb-PRF further induced statistically significantly greater mRNA levels of TGF-β at 3 and 7 days, as well as collagen 1 at 7 days. The present results indicate that Alb-PRF possesses regenerative properties induced by the slow and gradual release of growth factors found in liquid PRF via albumin gel degradation. Future studies are thus warranted to fully characterize the degradation properties of Alb-PRF in vivo and explore future clinical applications in various fields of medicine.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern , Bern, Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern , Bern, Switzerland
| | | | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan , Wuhan, China
| | - Anton Sculean
- Department of Periodontology, University of Bern , Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, University of Bern , Bern, Switzerland
| |
Collapse
|
14
|
Oravec CS, Motiwala M, Reed K, Jones TL, Klimo P. Big Data Research in Pediatric Neurosurgery: Content, Statistical Output, and Bibliometric Analysis. Pediatr Neurosurg 2019; 54:85-97. [PMID: 30799390 DOI: 10.1159/000495790] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/23/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS We sought to describe pediatric "big data" publications since 2000, their statistical output, and clinical implications. METHODS We searched 4 major North American neurosurgical journals for articles utilizing non-neurosurgery-specific databases for clinical pediatric neurosurgery research. Articles were analyzed for descriptive and statistical information. We analyzed effect sizes (ESs), confidence intervals (CIs), and p values for clinical relevance. A bibliometric analysis was performed using several key citation metrics. RESULTS We identified 74 articles, which constituted 1.7% of all pediatric articles (n = 4,436) published, with an exponential increase after 2013 (53/74, 72%). The Healthcare Cost and Utilization Project (HCUP) databases were most frequently utilized (n = 33); hydrocephalus (n = 19) was the most common study topic. The statistical output (n = 49 studies with 464 ESs, 456 CIs, and 389 p values) demonstrated that the majority of the ESs (253/464, 55%) were categorized as small; half or more of the CI spread (CIS) values and p values were high (274/456, 60%) and very strong (195/389, 50%), respectively. Associations with a combination of medium-to-large ESs (i.e., magnitude of difference), medium-to-high CISs (i.e., precision), and strong-to-very strong p values comprised only 20% (75/381) of the reported ESs. The total number of citations for the 74 articles was 1,115 (range per article, 0-129), with the median number of citations per article being 8.5. Four studies had > 50 citations, and 2 of them had > 100 citations. The calculated h-index was 16, h-core citations were 718, the e-index was 21.5, and the Google i10-index was 34. CONCLUSIONS There has been a dramatic increase in the use of "big data" in the pediatric neurosurgical literature. Reported associations that may, as a group, be of greatest interest to practitioners represented only 20% of the total output from these publications. Citations were weighted towards a few highly cited publications.
Collapse
Affiliation(s)
- Chesney S Oravec
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mustafa Motiwala
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kevin Reed
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tamekia L Jones
- Departments of Pediatrics and Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Paul Klimo
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA, .,Semmes Murphey, Memphis, Tennessee, USA, .,Le Bonheur Children's Hospital, Memphis, Tennessee, USA,
| |
Collapse
|
15
|
Bizelli-Silveira C, Pullisaar H, Abildtrup LA, Andersen OZ, Spin-Neto R, Foss M, Kraft DCE. Strontium enhances proliferation and osteogenic behavior of periodontal ligament cells in vitro. J Periodontal Res 2018; 53:1020-1028. [PMID: 30207394 DOI: 10.1111/jre.12601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Strontium (Sr) enhances osteogenic differentiation of certain multipotent cells. Periodontal ligament cells (PDLCs) are known to be multipotent, and Sr might be useful in periodontal bone tissue engineering. This study investigates the effect of high concentration of Sr on the proliferation and osteogenic behavior of PDLCs in vitro. MATERIAL AND METHODS Primary human PDLCs were cultured in MEM + 10% FBS without (Ctrl) or with Sr in four diverse concentrations: Sr1, 11.3 × 10-3 mg/L, human serum physiological level; Sr2, 13 mg/L, typical human serum level after strontium ranelate treatment; Sr3, 130 mg/L, and Sr4, 360 mg/L. The spreading area (2, 4, 6, 24 hours), proliferation rate (1, 3, 7 days), osteogenic behavior (alkaline phosphatase - ALP activity, 7 and 14 days; expression of osteogenic genes, ALP, Runt-related transcription factor 2 - RUNX2, osteopontin - OPN, osteocalcin - OCN, and osteoprotegerin -OPG, 1, 3, 7, 14, 21 days), and formation of mineralized nodules (14 and 21 days) of the PDLCs were assessed. Data were compared group- and period-wise using ANOVA tests. RESULTS Periodontal ligament cells cultured with Sr4 showed increased spreading area (after 4 hours), proliferation rate (from 3 days), and OCN and OPN (from 7 days) gene expression as compared to Ctrl, Sr1, Sr2, and Sr3. Sr4 also led to lower ALP activity (from 7 days), ALP (from 3 days), and RUNX2 (at 7 and 14 days) gene expression, together with more evident formation of mineralized nodules, compared to Ctrl, Sr1, Sr2, and Sr3. CONCLUSION Periodontal ligament cells responded to Sr4 with increased cellular proliferation and osteogenic behavior in vitro.
Collapse
Affiliation(s)
- Carolina Bizelli-Silveira
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - Helen Pullisaar
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Lisbeth A Abildtrup
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ole Z Andersen
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Morten Foss
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - David C E Kraft
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Stiel N, Stuecker R, Kunkel P, Ridderbusch K, Hagemann C, Breyer S, Ebert N, Spiro AS. Treatment of pediatric spinal deformity with use of recombinant human bone morphogenetic protein-2. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:93. [PMID: 29938328 DOI: 10.1007/s10856-018-6104-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
In pediatric spine surgery nonunion is a challenging issue. Instability may cause neurological impairment and lead to numerous surgeries in order to achieve fusion. The use of rhBMP-2 for pediatric spinal fusion has not been widely reported. In this study, a series of 13 children (14 procedures) that underwent spinal rhBMP-2 application were analyzed in order to measure clinical and radiographic outcome. Therefore, patient data, diagnosis, construct of instrumentation, type of bone graft, quantity of BMP used, and fusion outcome were reviewed. The study cohort included four female and nine male patients with a mean age of 11.2 years (range 2.6-19.2 years) at the time of rhBMP-2 application. Rh-BMP-2 was used in both primary (n = 6) and revision surgery (n = 8) in patients with a high risk for the development of nonunion. The mean follow-up was 51 months (range 12-108 months). Fusion occurred in 11 patients. Complications that may be due to application of rhBMP-2 were seen after four operations. Three patients had an increased body temperature and in one case prolonged wound secretion was evident, treated by local wound care or observation. In one of these patients an extensive postoperative hematoma occurred, necessitating surgical treatment. In conclusion, we could detect high fusion rates following the use of rhBMP-2 in pediatric spine surgery without an increased complication rate attributable to its application. Therefore we consider recombinant human BMP-2 to be an option in selected pediatric spinal procedures, especially in cases with compromised bone healing due to congenital, systemic, or local conditions.
Collapse
Affiliation(s)
- Norbert Stiel
- Department of Pediatric Orthopaedic Surgery, Children's Hospital, Hamburg-Altona, Hamburg, Germany
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Stuecker
- Department of Pediatric Orthopaedic Surgery, Children's Hospital, Hamburg-Altona, Hamburg, Germany
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philip Kunkel
- Department of Pediatric Neurosurgery, Children's Hospital, Hamburg-Altona, Hamburg, Germany
| | - Karsten Ridderbusch
- Department of Pediatric Orthopaedic Surgery, Children's Hospital, Hamburg-Altona, Hamburg, Germany
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagemann
- Department of Pediatric Neurosurgery, Children's Hospital, Hamburg-Altona, Hamburg, Germany
| | - Sandra Breyer
- Department of Pediatric Orthopaedic Surgery, Children's Hospital, Hamburg-Altona, Hamburg, Germany
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Ebert
- Department of Pediatric Orthopaedic Surgery, Children's Hospital, Hamburg-Altona, Hamburg, Germany
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander S Spiro
- Department of Pediatric Orthopaedic Surgery, Children's Hospital, Hamburg-Altona, Hamburg, Germany.
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
17
|
Fujioka-Kobayashi M, Schaller B, Zhang Y, Pippenger BE, Miron RJ. In vitro evaluation of an injectable biphasic calcium phosphate (BCP) carrier system combined with recombinant human bone morphogenetic protein (rhBMP)-9. Biomed Mater Eng 2017; 28:293-304. [PMID: 28527192 DOI: 10.3233/bme-171675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bone morphogenetic protein 9 (BMP9) has previously been characterized as the strongest osteoinductive growth factor among the BMP family. The aim of the present study was to evaluate the possibility of combining rhBMP9 with an injectable biphasic calcium phosphate (I-BCP, maxresorb inject®), since I-BCP is an easy to handle biomaterial with ideal properties for bone augmentation procedures. The adsorption potential of rhBMP9 as well as the cell behavior of bone stromal ST2 cells were investigated on cell viability, adhesion, proliferation and osteogenic differentiation for I-BCP combined with/without rhBMP9 in vitro. I-BCP demonstrated excellent adsorption/retention potential of rhBMP9 with a slow and steady release over a 10 day period by ELISA. Cell attachment at 8 hours and cell proliferation at 1, 3 and 5 days was decreased on I-BCP with/without rhBMP9 when compared to control tissue-culture plastic. While I-BCP had little influence on osteoblast differentiation, its combination with rhBMP9 significantly increased ALP activity at 7 days and mRNA levels of osteoblast differentiation markers including ALP and osteocalcin at 14 days. I-BCP served as an excellent carrier for rhBMP9 clearly demonstrating its osteoinductive potential. We therefore confirm the great potential of rhBMP9 to serve as a future regenerative growth factor for bone applications.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | | | - Richard J Miron
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, FL, USA
| |
Collapse
|
18
|
Bone Morphogenetic Proteins in Pediatric Spinal Arthrodesis: A Statewide Analysis of Trends and Outcome of Utilization. J Pediatr Orthop 2017; 37:e369-e374. [PMID: 28060176 DOI: 10.1097/bpo.0000000000000915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Bone morphogenetic protein (BMP) is considered off-label when used to augment spinal arthrodesis in children and adolescents. There is a paucity of longer-term information on BMP use in this population. The purpose of this study was to determine the rate of BMP utilization in pediatric spinal arthrodesis, assess factors associated with BMP use in this population, and evaluate long-term outcome. METHODS Spinal arthrodeses in patients 18 years and younger performed in New York State between 2004 and 2014 were identified through the Statewide Planning and Research Cooperative System database. All cases had a minimum 1-year follow-up. The primary outcome was revision arthrodesis. The primary outcome, as well as short-term and longer-term complications were identified using time-to-event analysis. Multivariable Cox proportional hazards models were used to assess the association between BMP and outcomes. RESULTS Of 7312 children and adolescents who underwent spinal arthrodesis, 462 (6.7%) received BMP. Utilization spiked between 2008 and 2010 when (8.6%) of cases received BMP, but subsequently BMP use returned to pre-2008 levels (2004 to 2007: 5.3%; 2011 to 2014: 5.5%). BMP was more likely to be used in children who were older (P=0.027), white and with higher mean family income (P<0.001 for race and income). BMP was more likely to be used for revision surgery, 2 to 3 level fusions, and spondylolisthesis (P<0.001 for all). Revision rates did not differ based on BMP utilization status. Patients receiving BMP did not have increased risk of short-term complications although at 5-year follow-up, BMP was associated with a statistically significant increased risk of mechanical complications (hazard ratio 1.48; 95% confidence interval, 1.02-2.14). CONCLUSIONS Off-label use of BMP for pediatric spinal arthrodesis increased until 2008 and now appears to be decreasing. Racial/ethnic minorities and lower socioeconomic status patients are less likely to receive BMP. The rate of revision after spinal arthrodesis does not differ between those treated with and without BMP. Further long-term studies are required to delineate appropriate guidelines for BMP utilization in children. LEVEL OF EVIDENCE Level III.
Collapse
|
19
|
Oravec CS, Motiwala M, Reed K, Kondziolka D, Barker FG, Michael LM, Klimo P. Big Data Research in Neurosurgery: A Critical Look at this Popular New Study Design. Neurosurgery 2017; 82:728-746. [DOI: 10.1093/neuros/nyx328] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023] Open
Affiliation(s)
- Chesney S Oravec
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mustafa Motiwala
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Kevin Reed
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Douglas Kondziolka
- Department of Neurosurgery, New York University Langone Medical Center, New York, New York
| | - Fred G Barker
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - L Madison Michael
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
- Semmes Murphey Clinic, Memphis, Tennessee
| | - Paul Klimo
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
- Semmes Murphey Clinic, Memphis, Tennessee
- Department of Neurosurgery, Le Bonheur Children's Hospital, Memphis, Tennessee
| |
Collapse
|
20
|
Abstract
Orthobiologics are biologic devices or products used in orthopedic surgery to augment or enhance bone formation. The use of orthobiologics in pediatric orthopedics is less frequent than in other orthopedic subspecialties, mainly due to the naturally abundant healing potential and bone formation in children compared with adults. However, orthobiologics are used in certain situations in pediatric orthopedics, particularly in spine and foot surgery. Other uses have been reported in conjunction with specific procedures involving the tibia and pelvis. The use of bioabsorable implants to stabilize children's fractures is an emerging concept but has limited supporting data.
Collapse
Affiliation(s)
- Robert F Murphy
- Department of Orthopaedics, Medical University of South Carolina, 96 Jonathan Lucas Street, CSB 708, Charleston, SC 29492, USA.
| | - James F Mooney
- Department of Orthopaedics, Medical University of South Carolina, 96 Jonathan Lucas Street, CSB 708, Charleston, SC 29492, USA
| |
Collapse
|
21
|
Kobayashi E, Fujioka-Kobayashi M, Sculean A, Chappuis V, Buser D, Schaller B, Dőri F, Miron RJ. Effects of platelet rich plasma (PRP) on human gingival fibroblast, osteoblast and periodontal ligament cell behaviour. BMC Oral Health 2017; 17:91. [PMID: 28578703 PMCID: PMC5457736 DOI: 10.1186/s12903-017-0381-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 05/22/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The use of platelet rich plasma (PRP, GLO) has been used as an adjunct to various regenerative dental procedures. The aim of the present study was to characterize the influence of PRP on human gingival fibroblasts, periodontal ligament (PDL) cells and osteoblast cell behavior in vitro. METHODS Human gingival fibroblasts, PDL cells and osteoblasts were cultured with conditioned media from PRP and investigated for cell migration, proliferation and collagen1 (COL1) immunostaining. Furthermore, gingival fibroblasts were tested for genes encoding TGF-β, PDGF and COL1a whereas PDL cells and osteoblasts were additionally tested for alkaline phosphatase (ALP) activity, alizarin red staining and mRNA levels of osteoblast differentiation markers including Runx2, COL1a2, ALP and osteocalcin (OCN). RESULTS It was first found that PRP significantly increased cell migration of all cells up to 4 fold. Furthermore, PRP increased cell proliferation at 3 and 5 days of gingival fibroblasts, and at 3 days for PDL cells, whereas no effect was observed on osteoblasts. Gingival fibroblasts cultured with PRP increased TGF-β, PDGF-B and COL1 mRNA levels at 7 days and further increased over 3-fold COL1 staining at 14 days. PDL cells cultured with PRP increased Runx2 mRNA levels but significantly down-regulated OCN mRNA levels at 3 days. No differences in COL1 staining or ALP staining were observed in PDL cells. Furthermore, PRP decreased mineralization of PDL cells at 14 days post seeding as assessed by alizarin red staining. In osteoblasts, PRP increased COL1 staining at 14 days, increased COL1 and ALP at 3 days, as well as increased ALP staining at 14 days. No significant differences were observed for alizarin red staining of osteoblasts following culture with PRP. CONCLUSIONS The results demonstrate that PRP promoted gingival fibroblast migration, proliferation and mRNA expression of pro-wound healing molecules. While PRP induced PDL cells and osteoblast migration and proliferation, it tended to have little to no effect on osteoblast differentiation. Therefore, while the effects seem to favor soft tissue regeneration, the additional effects of PRP on hard tissue formation of PDL cells and osteoblasts could not be fully confirmed in the present in vitro culture system.
Collapse
Affiliation(s)
- Eizaburo Kobayashi
- Department of Cranio-Maxillofacial Surgery, University Hospital, University of Bern, Bern, Switzerland
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, University Hospital, University of Bern, Bern, Switzerland
- Department of Oral Surgery, Clinical Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, University Hospital, University of Bern, Bern, Switzerland
| | - Forenc Dőri
- Department of Periodontology, Semmelweis University, Budapest, Hungary
| | - Richard J. Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL USA
- Cell Therapy Institute, Center for Collaborative Research, Nova Southeastern University, Fort Lauderdale, FL USA
| |
Collapse
|
22
|
Madura CJ, Johnston JM. Classification and Management of Pediatric Subaxial Cervical Spine Injuries. Neurosurg Clin N Am 2016; 28:91-102. [PMID: 27886885 DOI: 10.1016/j.nec.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Appropriate management of subaxial spine injury in children requires an appreciation for the differences in anatomy, biomechanics, injury patterns, and treatment options compared with adult patients. Increased flexibility, weak neck muscles, and cranial disproportion predispose younger children to upper cervical injuries and spinal cord injury without radiographic abnormality. A majority of subaxial cervical spine injuries can be treated nonoperatively. Surgical instrumentation options for children have significantly increased in recent years. Future studies of outcomes for children with subaxial cervical spine injury should focus on injury classification and standardized outcome measures to ensure continued improvement in quality of care for this patient population.
Collapse
Affiliation(s)
- Casey J Madura
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, 1600 7th Avenue South, Lowder Suite 400, Birmingham, Alabama 35233, USA
| | - James M Johnston
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, 1600 7th Avenue South, Lowder Suite 400, Birmingham, Alabama 35233, USA.
| |
Collapse
|
23
|
Fujioka-Kobayashi M, Mottini M, Kobayashi E, Zhang Y, Schaller B, Miron RJ. An in vitro study of fibrin sealant as a carrier system for recombinant human bone morphogenetic protein (rhBMP)-9 for bone tissue engineering. J Craniomaxillofac Surg 2016; 45:27-32. [PMID: 27840120 DOI: 10.1016/j.jcms.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/27/2016] [Accepted: 10/04/2016] [Indexed: 01/29/2023] Open
Abstract
In the craniofacial bone field, fibrin sealants are used as coagulant and adhesive tools to stabilize grafts during surgery. Despite this, their exact role in osteogenesis is poorly characterized. In the present study, we aimed to characterize the osteogenic potential of TISSEEL fibrin sealant and used its technology to incorporate growth factors within its matrix. We focused on recombinant human bone morphogenetic protein (rhBMP)-9, which has previously been characterized as one of the strongest osteogenetic inducers in the BMP family. TISSEEL displayed an excellent ability to retain rhBMP9, which was gradually released over a 10-day period. Although TISSEEL decreased bone stromal ST2 cell attachment at 8 h, it displayed normal cell proliferation at 1, 3, and 5 days when compared to tissue culture plastic. Interestingly, TISSEEL had little influence on osteoblast differentiation; however its combination with rhBMP9 significantly increased ALP activity at 7 days, Alizarin Red staining at 14 days, and mRNA levels of osteoblast differentiation markers ALP, bone sialoprotein, and osteocalcin. In summary, although fibrin sealants were shown to have little influence on osteogenesis, their combination with bone-inducing growth factors such as rhBMP9 may serve as an attractive carrier/scaffold for future bone regenerative strategies. Future animal studies are now necessary.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland; Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, Japan.
| | - Matthias Mottini
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Eizaburo Kobayashi
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery (Chair: Prof. Tateyuki Iizuka, MD, DDS, PhD), Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, College of Dental Medicine Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida, USA
| |
Collapse
|
24
|
Molinari RW, Kerr C, Kerr D. Bone morphogenetic protein in pediatric spine fusion surgery. JOURNAL OF SPINE SURGERY 2016; 2:9-12. [PMID: 27683689 DOI: 10.21037/jss.2016.01.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND There is a paucity of literature describing the use of bone graft substitutes to achieve fusion in the pediatric spine. Outcomes and complications involving the off-label use of bone morphogenetic protein 2 (BMP-2) in the pediatric spine are not clearly defined. The purpose of this study is to review the existing literature with respect to reported outcomes and complications involving the use of low-dose BMP-2 in pediatric patients. METHODS A Medline and PubMed literature search was conducted using the words bone morphogenetic protein, BMP, rh-BMP-2, bone graft substitutes, and pediatric spine. RESULTS To date, there are few published reports on this topic. Complications and appropriate BMP-2 dosage application in the pediatric spine remain unknown. CONCLUSIONS This report describes the potential for BMP-2 to achieve successful arthrodesis of the spine in pediatric patients. Usage should be judicious as complications and long-term outcomes of pediatric BMP-2 usage remain undefined in the existing literature.
Collapse
Affiliation(s)
- Robert W Molinari
- Department of Orthopaedic Surgery, University of Rochester, Rochester, New York, USA
| | - Christine Kerr
- Department of Orthopaedic Surgery, University of Rochester, Rochester, New York, USA
| | - Danielle Kerr
- Department of Orthopaedic Surgery, University of Rochester, Rochester, New York, USA
| |
Collapse
|
25
|
Melville JC, Couey MA, Tong MS, Marx RE. Regeneration of a Tooth in a Tissue-Engineered Mandible After Resection of a Central Giant Cell Tumor. Demonstrating Evidence of Functional Matrix Theory and Ectodermal Origin of Teeth in a Human Model-A Case Report. J Oral Maxillofac Surg 2016; 75:850-857. [PMID: 27780691 DOI: 10.1016/j.joms.2016.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/08/2023]
Abstract
Central giant cell tumors (CGCTs) are uncommon lesions occurring in the jaw. They are benign but locally destructive osteolytic lesions. They usually occur in pediatric patients 5 to 15 years of age. Multiple noninvasive modalities of treatment (intralesional steroids, interferon, calcitonin, and denosumab) have been described for those lesions, but for those that are refractory to treatment, enucleation and curettage or resection is a curative surgery. This case report describes a pediatric patient who was diagnosed with an aggressive CGCT of the left mandible encompassing the right angle to the condyle. The lesion became refractory to noninvasive treatments and immediate resection and reconstruction was performed using principles of tissue engineering. After 5 years of close observation, the patient showed normal morphology and growth of his mandible, but surprisingly developed a left mandibular third molar (tooth 17) in the site of the mandibular resection and reconstruction. This is the first case report in the literature to show the spontaneous development of teeth in a human reconstructed mandible, contributing evidence toward the functional matrix theory of mandibular growth and ectodermal origin of teeth.
Collapse
Affiliation(s)
- James C Melville
- Assistant Professor, Department of Oral and Maxillofacial Surgery, University of Texas Health Sciences Center at Houston, School of Dentistry, Houston, TX.
| | - Marcus A Couey
- Resident PGY-5, Department of Oral and Maxillofacial Surgery, University of Texas Health Sciences Center at Houston, School of Dentistry, Houston, TX
| | - Matthew S Tong
- Resident PGY-2, Department of Oral and Maxillofacial Surgery, University of Texas Health Sciences Center at Houston, School of Dentistry, Houston, TX
| | - Robert E Marx
- Professor and Chief, Department of Oral and Maxillofacial Surgery, University of Miami/Jackson Memorial Hospital, Miami, FL
| |
Collapse
|
26
|
Johnson J, Jundt J, Hanna I, Shum JW, Badger G, Melville JC. Resection of an ameloblastoma in a pediatric patient and immediate reconstruction using a combination of tissue engineering and costochondral rib graft: A case report. J Am Dent Assoc 2016; 148:40-43. [PMID: 27435007 DOI: 10.1016/j.adaj.2016.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OVERVIEW Ameloblastoma is an odontogenic tumor predominantly occurring in patients who are in their 20s and 30s. Approximately 10% to 15% of ameloblastomas occur in patients younger than 18 years. Although it is a benign tumor, an ameloblastoma can have a devastating effect on children both physically and emotionally. The aim of this case report is to demonstrate how tissue engineering and surgical techniques can minimize morbidity and recovery time after extirpation and immediate reconstruction of a mandibular ameloblastoma. CASE DESCRIPTION An 11-year-old girl was referred for surgical evaluation of a lesion found on a routine dental radiograph. Resection of a mandibular unicystic ameloblastoma resulted, including immediate reconstruction using a costochondral rib graft, allogeneic bone, bone marrow aspirate concentrate, and recombinant human morphogenetic protein-2. One year postoperatively, the patient had no evidence of recurrence as well as excellent mandibular bone height and width with good facial form. The patient has returned to her daily life without any disabilities or disfigurement. CONCLUSIONS AND PRACTICAL IMPLICATIONS Dentists are typically the first health care providers to discover oral pathology in patients. The coordination of care by the dental care providers and the oral and maxillofacial specialist was key to the successful outcome for this patient. With biotechnology and surgical techniques, the dental surgeon can extirpate an ameloblastoma and reconstruct the mandible defect to the ideal shape and size with minimal morbidity and recovery time.
Collapse
|
27
|
Bodalia PN, Balaji V, Kaila R, Wilson L. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016; 5:145-52. [PMID: 27121215 PMCID: PMC4921046 DOI: 10.1302/2046-3758.54.2000418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 02/16/2016] [Indexed: 01/18/2023] Open
Abstract
Objectives We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418.
Collapse
Affiliation(s)
- P N Bodalia
- Department of Pharmacy, University College London Hospitals, 235 Euston Road, London, NW1 2BU, UK
| | - V Balaji
- West Hertfordshire Hospitals NHS Trust, Spinal Surgery Unit, Watford General Hospital, Vicarage Road, Watford, Hertfordshire, WD18 0HB, UK
| | - R Kaila
- Spinal Surgery, Spinal Deformity Unit, Royal National Orthopaedic Hospital NHS Trust, Middlesex, HA7 4LP, UK
| | - L Wilson
- Spinal Deformity Unit, Royal National Orthopaedic Hospital NHS Trust, Middlesex, HA7 4LP, UK
| |
Collapse
|
28
|
Fujioka-Kobayashi M, Sawada K, Kobayashi E, Schaller B, Zhang Y, Miron RJ. Osteogenic potential of rhBMP9 combined with a bovine-derived natural bone mineral scaffold compared to rhBMP2. Clin Oral Implants Res 2016; 28:381-387. [PMID: 26988608 DOI: 10.1111/clr.12804] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Combination therapies of growth factors and scaffolds for bone tissue engineering are becoming routine for clinical use. BMP9 has previously been characterized as one of the most osteogenic inducers among the BMP superfamily; however, up until recently, BMP9 has only been available through adenovirus transfection experiments (gene therapy). While recombinant human (rh)BMP2 is regarded as the gold standard for bone regeneration with recombinant growth factors, recently the successful development of rhBMP9 brings intriguing new possibilities for future clinical use. The purpose of this pioneering study was to investigate the effects of rhBMP9 in comparison with rhBMP2 on an in vitro cell behavior of bone-forming osteoblasts when combined with a bone grafting material. MATERIAL AND METHODS Undifferentiated mouse ST2 stromal bone marrow cells were seeded onto bovine-derived natural bone mineral (NBM) particles treated with (i) control, (ii) rhBMP2 (10 ng/ml), (iii) rhBMP2 (100 ng/ml), (iv) rhBMP9 (10 ng/ml) and (v) rhBMP9 (100 ng/ml). The effects of rhBMPs were compared for cell adhesion at 8 h, cell proliferation at 1, 3 and 5 days and osteoblast differentiation as assessed by real-time PCR at 3 and 14 days for genes encoding Runx2, collagen1alpha2 (COL1a2), alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, ALP staining and alizarin red staining were used to investigate localization of osteoblast differentiation marker and mineralization on NBM. RESULTS Although neither rhBMP2 nor rhBMP9 influenced cell attachment to NBM particles, both were able to stimulate cell proliferation at 3 days. Furthermore, all concentrations of rhBMPs were able to significantly induce mRNA levels of Runx2, COL1a2 and OCN at 3 days. Interestingly, only rhBMP9 was able to significantly upregulate mRNA levels of ALP up to eightfold, and ALP staining up to 25-fold, when compared to rhBMP2. In addition, only rhBMP9 (100 ng/ml) significantly increased alizarin red staining when compared to control and rhBMP2 (10 ng/ml) samples. CONCLUSION These results demonstrate that both rhBMP2 and rhBMP9 have osteopromotive properties on osteoblast differentiation. It was found that rhBMP9 additionally stimulated the osteopromotive potential of osteoblasts when compared to rhBMP2 by demonstrating higher levels of ALP expression and alizarin red staining. Further animal studies comparing both recombinant proteins are necessary to further characterize the osteoinductive potential of BMP9.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Masako Fujioka-Kobayashi, Department of Oral Surgery, Clinical Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kosaku Sawada
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Kosaku Sawada, Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Eizaburo Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | - Richard J Miron
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Bern, Switzerland.,Department of Periodontology, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
29
|
Caballé-Serrano J, Fujioka-Kobayashi M, Bosshardt DD, Gruber R, Buser D, Miron RJ. Pre-coating deproteinized bovine bone mineral (DBBM) with bone-conditioned medium (BCM) improves osteoblast migration, adhesion, and differentiation in vitro. Clin Oral Investig 2016; 20:2507-2513. [PMID: 26876734 DOI: 10.1007/s00784-016-1747-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Autogenous bone grafting has remained the gold standard for bone augmentation procedures with ability to release growth factors to the surrounding microenvironment. Recent investigations have characterized these specific growth factors released by autogenous bone chips with further isolation into a "bone-conditioned medium" (BCM). The aim of the present investigation was to utilize autologous growth factors from bone chips (BCM) in combination with deproteinized bovine bone mineral (DBBM) and investigate the ability for BCM to enhance osteoblast behavior. MATERIALS AND METHODS Mouse ST2 cells were seeded on (1) DBBM particles alone or (2) DBBM + BCM. Thereafter, samples were compared for cell recruitment, adhesion, proliferation, and real-time PCR for osteoblast differentiation markers including Runx2, collagen 1 alpha 2 (COL1A2), alkaline phosphatase (ALP), and osteocalcin (OCN). Alizarin red staining was used to assess mineralization. RESULTS Coating BCM on DBBM particles improved cell migration of ST2 cells and significantly enhanced a 2-fold increase in cell adhesion. While no significant increase in cell proliferation was observed, BCM significantly increased mRNA levels of COL1A2, ALP, and OCN at 3 days post seeding. Furthermore, a 3-fold increase in alizarin red staining was observed on DBBM particles pre-coated with BCM. CONCLUSION Pre-coating DBBM with BCM enhanced the osteoconductive properties of DBBM by mediating osteoblast recruitment, attachment, and differentiation towards bone-forming osteoblasts. Future animal study is necessary to further characterize the added benefit of BCM as an autogenous growth factor source for combination therapies. CLINICAL RELEVANCE The application of BCM in combination with biomaterials may serve as an autogenous growth factor source for bone regeneration.
Collapse
Affiliation(s)
- Jordi Caballé-Serrano
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral and MaxilloFacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain.,Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Department of Oral Surgery, Clinical Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Dieter D Bosshardt
- Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Richard J Miron
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
30
|
Molinari RW, Molinari C. The Use of Bone Morphogenetic Protein in Pediatric Cervical Spine Fusion Surgery: Case Reports and Review of the Literature. Global Spine J 2016; 6:e41-6. [PMID: 26835215 PMCID: PMC4733381 DOI: 10.1055/s-0035-1555660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/09/2015] [Indexed: 10/26/2022] Open
Abstract
Study Design Case report. Objective There is a paucity of literature describing the use of bone graft substitutes to achieve fusion in the pediatric cervical spine. The outcomes and complications involving the off-label use of bone morphogenetic protein (BMP)-2 in the pediatric cervical spine are not clearly defined. The purpose of this article is to report successful fusion without complications in two pediatric patients who had instrumented occipitocervical fusion using low-dose BMP-2. Methods A retrospective review of the medical records was performed, and the patients were followed for 5 years. Two patients under 10 years of age with upper cervical instability were treated with occipitocervical instrumented fusion using rigid occipitocervical fixation techniques along with conventionally available low-dose BMP-2. A Medline and PubMed literature search was conducted using the terms "bone morphogenetic protein," "BMP," "rh-BMP2," "bone graft substitutes," and "pediatric cervical spine." Results Solid occipitocervical fusion was achieved in both pediatric patients. There were no reported perioperative or follow-up complications. At 5-year follow-up, radiographs in both patients showed successful occipital cervical fusion without evidence of instrumentation failure or changes in the occipitocervical alignment. To date, there are few published reports on this topic. Complications and the appropriate dosage application in the pediatric posterior cervical spine remain unknown. Conclusions We describe two pediatric patients with upper cervical instability who achieved successful occipital cervical fusion without complication using off-label BMP-2. This report underscores the potential for BMP-2 to achieve successful arthrodesis of the posterior occipitocervical junction in pediatric patients. Use should be judicious as complications and long-term outcomes of pediatric BMP-2 use remain undefined in the existing literature.
Collapse
Affiliation(s)
- Robert W. Molinari
- Department of Orthopaedic Surgery, University of Rochester, Rochester, New York, United States,Address for correspondence Robert W. Molinari, MD Department of Orthopaedic SurgeryUniversity of Rochester, 601 Elmwood AvenueBox 665, Rochester, NY 14562United States
| | | |
Collapse
|
31
|
Reintjes SL, Amankwah EK, Rodriguez LF, Carey CC, Tuite GF. Allograft versus autograft for pediatric posterior cervical and occipito-cervical fusion: a systematic review of factors affecting fusion rates. J Neurosurg Pediatr 2016; 17:187-202. [PMID: 26496632 DOI: 10.3171/2015.6.peds1562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Fusion rates are high for children undergoing posterior cervical fusion (PCF) and occipito-cervical fusion (OCF). Autologous bone has been widely used as the graft material of choice, despite the risk of donor-site morbidity associated with harvesting the bone, possibly because very low fusion rates were reported with posterior allograft cervical fusions in children several decades ago. Higher overall fusion rates using allograft in adults, associated with improvements in internal fixation techniques and the availability of osteoinductive substances such as bone morphogenetic protein (BMP), have led to heightened enthusiasm for the use of bank bone during pediatric PCF. A systematic review was performed to study factors associated with successful bone fusion, including the type of bone graft used. METHODS The authors performed a comprehensive PubMed search of English-language articles pertaining to PCF and OCF in patients less than 18 years old. Of the 561 abstracts selected, 148 articles were reviewed, resulting in 60 articles that had sufficient detail to be included in the analysis. A meta-regression analysis was performed to determine if and how age, fusion technique, levels fused, fusion substrate, BMP use, postoperative bracing, and radiographic fusion criteria were related to the pooled prevalence estimates. A systematic review of the literature was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. RESULTS A total of 604 patients met the specific inclusion and exclusion criteria. The overall fusion rate was 93%, with a mean age of 9.3 years and mean follow-up of 38.7 months. A total of 539 patients had fusion with autograft (94% fusion rate) and 65 patients with allograft (80% fusion rate). Multivariate meta-regression analysis showed that higher fusion rates were associated with OCF compared with fusions that excluded the occiput (p < 0.001), with the use of autograft instead of allograft (p < 0.001), and with the use of CT to define fusion instead of plain radiography alone. The type of internal fixation, the use of BMP, patient age, and the duration of follow-up were not found to be associated with fusion rates in the multivariate analysis. CONCLUSIONS Fusion rates for PCF are high, with higher rates of fusion seen when autograft is used as the bone substrate and when the occiput is included in the fusion construct. Further study of the use of allograft as a viable alternative to autograft bone fusion is warranted because limited data are available regarding the use of allograft in combination with more rigid internal fixation techniques and osteoinductive substances, both of which may enhance fusion rates with allograft.
Collapse
Affiliation(s)
- Stephen L Reintjes
- Neuroscience Institute, and.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida; and
| | - Ernest K Amankwah
- Department of Clinical and Translational Research, All Children's Hospital/Johns Hopkins Medicine, St. Petersburg
| | - Luis F Rodriguez
- Neuroscience Institute, and.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida; and
| | - Carolyn C Carey
- Neuroscience Institute, and.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida; and
| | - Gerald F Tuite
- Neuroscience Institute, and.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida; and.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Kobayashi E, Flückiger L, Fujioka-Kobayashi M, Sawada K, Sculean A, Schaller B, Miron RJ. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig 2016; 20:2353-2360. [DOI: 10.1007/s00784-016-1719-1] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023]
|
33
|
Fujioka-Kobayashi M, Sawada K, Kobayashi E, Schaller B, Zhang Y, Miron RJ. Recombinant Human Bone Morphogenetic Protein 9 (rhBMP9) Induced Osteoblastic Behavior on a Collagen Membrane Compared With rhBMP2. J Periodontol 2016; 87:e101-7. [PMID: 26751345 DOI: 10.1902/jop.2016.150561] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) has previously been characterized as one of the most osteogenic growth factors of the BMP family. To the best of the authors' knowledge, previous experiments have only used adenovirus transfection (gene therapy). With the recent development of recombinant human BMP9 (rhBMP9), the present study investigates the osteopromotive potential of BMP9 versus rhBMP2 when loaded onto collagen membranes. METHODS ST2 stromal bone marrow cells were seeded onto: 1) control; 2) low-dose rhBMP2 (10 ng/mL); 3) high-dose rhBMP2 (100 ng/mL); 4) low-dose rhBMP9 (10 ng/mL); and 5) high-dose rhBMP9 (100 ng/mL) porcine collagen membranes. The following parameters were compared among groups: 1) cell adhesion (at 8 hours); 2) cell proliferation (at 1, 3, and 5 days); 3) real-time polymerase chain reaction for genes encoding runt-related transcription factor 2; 4) alkaline phosphatase (ALP); 5) bone sialoprotein ([BSP] at 3 and 14 days); and 6) alizarin red staining (at 14 days). RESULTS rhBMP2 and rhBMP9 demonstrated little effect on cell attachment and proliferation; however, pronounced increases were observed in osteoblast differentiation. All groups significantly induced ALP messenger RNA (mRNA) levels at 3 days and BSP levels at 14 days; however, high-dose rhBMP9 showed significantly higher values compared with all other groups for ALP levels (five-fold increase at 3 days and two-fold increase at 14 days). Alizarin red staining further revealed both concentrations of rhBMP9 induced up to three-fold more staining compared with rhBMP2. CONCLUSIONS Results indicate that the combination of collagen membranes with rhBMP9 induced significantly higher ALP mRNA expression and alizarin red staining compared with rhBMP2. These findings suggest that rhBMP9 may be a suitable growth factor for future regenerative procedures in bone biology.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Operative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland.,Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kosaku Sawada
- Department of Operative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland.,Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Eizaburo Kobayashi
- Department of Operative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Benoit Schaller
- Department of Operative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, Wuhan University, Wuhan, China
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern.,Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL
| |
Collapse
|
34
|
Dufrane D, Docquier PL, Delloye C, Poirel HA, André W, Aouassar N. Scaffold-free Three-dimensional Graft From Autologous Adipose-derived Stem Cells for Large Bone Defect Reconstruction: Clinical Proof of Concept. Medicine (Baltimore) 2015; 94:e2220. [PMID: 26683933 PMCID: PMC5058905 DOI: 10.1097/md.0000000000002220] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long bone nonunion in the context of congenital pseudarthrosis or carcinologic resection (with intercalary bone allograft implantation) is one of the most challenging pathologies in pediatric orthopedics. Autologous cancellous bone remains the gold standard in this context of long bone nonunion reconstruction, but with several clinical limitations. We then assessed the feasibility and safety of human autologous scaffold-free osteogenic 3-dimensional (3D) graft (derived from autologous adipose-derived stem cells [ASCs]) to cure a bone nonunion in extreme clinical and pathophysiological conditions. Human ASCs (obtained from subcutaneous adipose tissue of 6 patients and expanded up to passage 4) were incubated in osteogenic media and supplemented with demineralized bone matrix to obtain the scaffold-free 3D osteogenic structure as confirmed in vitro by histomorphometry for osteogenesis and mineralization. The 3D "bone-like" structure was finally transplanted for 3 patients with bone tumor and 3 patients with bone pseudarthrosis (2 congenital, 1 acquired) to assess the clinical feasibility, safety, and efficacy. Although minor clones with structural aberrations (aneuploidies, such as tri or tetraploidies or clonal trisomy 7 in 6%-20% of cells) were detected in the undifferentiated ASCs at passage 4, the osteogenic differentiation significantly reduced these clonal anomalies. The final osteogenic product was stable, did not rupture with forceps manipulation, did not induce donor site morbidity, and was easily implanted directly into the bone defect. No acute (<3 mo) side effects, such as impaired wound healing, pain, inflammatory reaction, and infection, or long-term side effects, such as tumor development, were associated with the graft up to 4 years after transplantation. We report for the first time that autologous ASC can be fully differentiated into a 3D osteogenic-like implant without any scaffold. We demonstrated that this engineered tissue can safely promote osteogenesis in extreme conditions of bone nonunions with minor donor site morbidity and no oncological side effects.
Collapse
Affiliation(s)
- Denis Dufrane
- From the Endocrine Cell Therapy, Center of Tissue and Cell Therapy, Cliniques Universitaires Saint-Luc, Brussels, Belgium (DD, WA, NA); Orthopedic Surgery Service, Department of Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium (P-LD, CD); and Center for Human Genetics, Cliniques Universitaires Saint-Luc - Université Catholique de Louvain, Brussels, Belgium (HAP)
| | | | | | | | | | | |
Collapse
|
35
|
Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 60:45-53. [PMID: 26706505 DOI: 10.1016/j.msec.2015.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/13/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022]
Abstract
Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway.
Collapse
|
36
|
Anders M, Mutty C, Cornwall A. Geographic variation in fasciotomy during operative management of tibia fractures. J Orthop 2015; 13:225-9. [PMID: 27408482 DOI: 10.1016/j.jor.2015.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Diagnosis and treatment of acute or impending compartment syndrome (ACS) remains a clinical challenge. ACS is a clinical diagnosis, and may be associated with variation in its definition, as well as individual threshold for fasciotomy. We examined regional and state variation in rates of lower extremity fasciotomy associated with operatively managed tibia fractures. METHODS A total of 313,344 surgically treated tibia fractures were identified via Current Procedural Terminology (CPT) codes using PearlDiver, a private-payer medical record database. Data from the PearlDiver database was compared to the National Trauma Data Bank trauma registry data to corroborate calculated fasciotomy rates. RESULTS The aggregate United States fasciotomy rate derived from PearlDiver was 2.57%. State fasciotomy rates were wide-ranging (0.03%-11.86%) with an average state rate of 2.22% (n = 47, SD = 2.27). CONCLUSIONS There was significant state-to-state variation in the use of fasciotomy during operative management of tibial fractures. Various factors may have contributed to the observed difference of state fasciotomy rates. LEVEL OF EVIDENCE This is a Level III epidemiological study retrospectively comparing geographic rates of fasciotomy during operative management of tibia fractures.
Collapse
Affiliation(s)
- Mark Anders
- State University of New York at Buffalo, Dept. of Orthopaedics, Erie County Medical Center, Buffalo, NY 14215, United States
| | - Christopher Mutty
- State University of New York at Buffalo, Dept. of Orthopaedics, Erie County Medical Center, Buffalo, NY 14215, United States
| | - Allison Cornwall
- State University of New York at Buffalo, Dept. of Orthopaedics, Erie County Medical Center, Buffalo, NY 14215, United States
| |
Collapse
|