1
|
Stevens AR, Hadis M, Phillips A, Thareja A, Milward M, Belli A, Palin W, Davies DJ, Ahmed Z. Implantable and transcutaneous photobiomodulation promote neuroregeneration and recovery of lost function after spinal cord injury. Bioeng Transl Med 2024; 9:e10674. [PMID: 39545078 PMCID: PMC11558183 DOI: 10.1002/btm2.10674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 11/17/2024] Open
Abstract
Spinal cord injury (SCI) is a cause of profound and irreversible damage, with no effective therapy to promote functional recovery. Photobiomodulation (PBM) may provide a viable therapeutic approach using red or near-infrared light to promote recovery after SCI by mitigating neuroinflammation and preventing neuronal apoptosis. Our current study aimed to optimize PBM dose regimens and develop and validate the efficacy of an invasive PBM delivery paradigm for SCI. Dose optimization studies were performed using a serum withdrawal model of injury in cultures of primary adult rat dorsal root ganglion neurons (DRGN). Implantable and transcutaneous PBM delivery protocols were developed and validated using cadaveric modeling. The efficacy of PBM in promoting recovery after SCI in vivo was studied in a dorsal column crush injury model of SCI in adult rats. Optimal neuroprotection in vitro was achieved between 4 and 22 mW/cm2. 11 mW/cm2 for 1 min per day (0.66 J/cm2) increased cell viability by 45% over 5 days (p <0.0001), increasing neurite outgrowth by 25% (p <0.01). A method for invasive application of PBM was developed using a diffusion-tipped optogenetics fiber optic. Delivery methods for PBM were developed and validated for both invasive (iPBM) and noninvasive (transcutaneous) (tcPBM) application. iPBM and tcPBM (24 mW/cm2 at spinal cord, 1 min per day (1.44 J/cm2) up to 7 days) increased activation of regeneration-associated protein at 3 days after SCI, increasing GAP43+ axons in DRGN from 18.0% (control) to 41.4% ± 10.5 (iPBM) and 45.8% ± 3.4 (tcPBM) (p <0.05). This corresponded to significant improvements at 6 weeks post-injury in functional locomotor and sensory function recovery (p <0.01), axonal regeneration (p <0.01), and reduced lesion size (p <0.01). Our results demonstrated that PBM achieved a significant therapeutic benefit after SCI, either using iPBM or tcPBM application and can potentially be developed for clinical use in SCI patients.
Collapse
Affiliation(s)
- Andrew R. Stevens
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
- NIHR Surgical Reconstruction and Microbiology Research CentreUniversity Hospitals BirminghamBirminghamUK
- Phototherapy Research Group, School of DentistryUniversity of BirminghamBirminghamUK
| | - Mohammed Hadis
- Phototherapy Research Group, School of DentistryUniversity of BirminghamBirminghamUK
- School of DentistryUniversity of BirminghamBirminghamUK
| | - Alice Phillips
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
| | - Abhinav Thareja
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
| | - Michael Milward
- Phototherapy Research Group, School of DentistryUniversity of BirminghamBirminghamUK
- School of DentistryUniversity of BirminghamBirminghamUK
| | - Antonio Belli
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
- NIHR Surgical Reconstruction and Microbiology Research CentreUniversity Hospitals BirminghamBirminghamUK
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
| | - William Palin
- Phototherapy Research Group, School of DentistryUniversity of BirminghamBirminghamUK
- School of DentistryUniversity of BirminghamBirminghamUK
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
| | - David J. Davies
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
- NIHR Surgical Reconstruction and Microbiology Research CentreUniversity Hospitals BirminghamBirminghamUK
- Phototherapy Research Group, School of DentistryUniversity of BirminghamBirminghamUK
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
| | - Zubair Ahmed
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
- NIHR Surgical Reconstruction and Microbiology Research CentreUniversity Hospitals BirminghamBirminghamUK
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
2
|
Zhang J, Chen Y, Zhao Y, Wang P, Ding H, Liu C, Lyu J, Le W. Terahertz Irradiation Improves Cognitive Impairments and Attenuates Alzheimer's Neuropathology in the APP SWE/PS1 DE9 Mouse: A Novel Therapeutic Intervention for Alzheimer's Disease. Neurosci Bull 2024; 40:857-871. [PMID: 37971654 PMCID: PMC11250709 DOI: 10.1007/s12264-023-01145-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the deposition of amyloid-β (Aβ), neurofibrillary tangles, neuroinflammation, and neurodegeneration in the brain. In recent years, considering the unsatisfied benefits of pharmacological therapies, non-pharmacological therapy has become a research hotspot for AD intervention. Terahertz (THz) waves with a range between microwave and infrared regions in the electromagnetic spectrum and high permeability to a wide range of materials have great potential in the bioengineering field. However, its biological impacts on the central nervous system, under either physiological or pathological conditions, are poorly investigated. In this study, we first measured the 0.14 THz waves penetration across the skull of a C57BL/6 mouse and found the percentage of THz penetration to be ~70%, guaranteeing that THz waves can reach the relevant brain regions. We then exposed the APPSWE/PS1DE9 mouse model of AD to repeated low-frequency THz waves on the head. We demonstrated that THz waves treatment significantly improved the cognitive impairment and alleviated AD neuropathology including Aβ deposition and tau hyperphosphorylation in the AD mice. Moreover, THz waves treatment effectively attenuated mitochondrial impairment, neuroinflammation, and neuronal loss in the AD mouse brain. Our findings reveal previously unappreciated beneficial effects of THz waves treatment in AD and suggest that THz waves may have the potential to be used as a novel therapeutic intervention for this devastating disease.
Collapse
Affiliation(s)
- Jun Zhang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Yixin Chen
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Yarui Zhao
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Panpan Wang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Hongbin Ding
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Junhong Lyu
- Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116011, China.
- Department of Neurology and Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
3
|
Shen Q, Guo H, Yan Y. Photobiomodulation for Neurodegenerative Diseases: A Scoping Review. Int J Mol Sci 2024; 25:1625. [PMID: 38338901 PMCID: PMC10855709 DOI: 10.3390/ijms25031625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases involve the progressive dysfunction and loss of neurons in the central nervous system and thus present a significant challenge due to the absence of effective therapies for halting or reversing their progression. Based on the characteristics of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), which have prolonged incubation periods and protracted courses, exploring non-invasive physical therapy methods is essential for alleviating such diseases and ensuring that patients have an improved quality of life. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits and functions by stimulating, healing, regenerating, and protecting organizations at risk of injury, degradation, or death. Over the last two decades, PBM has gained widespread recognition as a non-invasive physical therapy method, showing efficacy in pain relief, anti-inflammatory responses, and tissue regeneration. Its application has expanded into the fields of neurology and psychiatry, where extensive research has been conducted. This paper presents a review and evaluation of studies investigating PBM in neurodegenerative diseases, with a specific emphasis on recent applications in AD and PD treatment for both animal and human subjects. Molecular mechanisms related to neuron damage and cognitive impairment are scrutinized, offering valuable insights into PBM's potential as a non-invasive therapeutic strategy.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haoyun Guo
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yihua Yan
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (H.G.); (Y.Y.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
4
|
Bicknell B, Liebert A, Herkes G. Parkinson's Disease and Photobiomodulation: Potential for Treatment. J Pers Med 2024; 14:112. [PMID: 38276234 PMCID: PMC10819946 DOI: 10.3390/jpm14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease and is increasing in incidence. The combination of motor and non-motor symptoms makes this a devastating disease for people with Parkinson's disease and their care givers. Parkinson's disease is characterised by mitochondrial dysfunction and neuronal death in the substantia nigra, a reduction in dopamine, accumulation of α-synuclein aggregates and neuroinflammation. The microbiome-gut-brain axis is also important in Parkinson's disease, involved in the spread of inflammation and aggregated α-synuclein. The mainstay of Parkinson's disease treatment is dopamine replacement therapy, which can reduce some of the motor signs. There is a need for additional treatment options to supplement available medications. Photobiomodulation (PBM) is a form of light therapy that has been shown to have multiple clinical benefits due to its enhancement of the mitochondrial electron transport chain and the subsequent increase in mitochondrial membrane potential and ATP production. PBM also modulates cellular signalling and has been shown to reduce inflammation. Clinically, PBM has been used for decades to improve wound healing, treat pain, reduce swelling and heal deep tissues. Pre-clinical experiments have indicated that PBM has the potential to improve the clinical signs of Parkinson's disease and to provide neuroprotection. This effect is seen whether the PBM is directed to the head of the animal or to other parts of the body (remotely). A small number of clinical trials has given weight to the possibility that using PBM can improve both motor and non-motor clinical signs and symptoms of Parkinson's disease and may potentially slow its progression.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead 2145, Australia;
- Sydney Adventist Hospital, Wahroonga 2076, Australia
- Faculty of medicine and Health, Sydney University, Camperdown 2050, Australia
| | - Geoffrey Herkes
- Neurologist, Sydney Adventist Hospital, Wahroonga 2076, Australia;
- College of Health and Medicine, Australian National University, Canberra 2600, Australia
| |
Collapse
|
5
|
Gordon LC, Martin KL, Torres N, Benabid A, Mitrofanis J, Stone J, Moro C, Johnstone DM. Remote photobiomodulation targeted at the abdomen or legs provides effective neuroprotection against parkinsonian MPTP insult. Eur J Neurosci 2023; 57:1611-1624. [PMID: 36949610 PMCID: PMC10947039 DOI: 10.1111/ejn.15973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023]
Abstract
Photobiomodulation (PBM)-the irradiation of tissue with low-intensity light-mitigates neuropathology in rodent models of Parkinson's disease (PD) when targeted at the head ('transcranial PBM'). In humans, however, attenuation of light energy by the scalp and skull necessitates a different approach. We have reported that targeting PBM at the body also protects the brain by a mechanism that spreads from the irradiated tissue ('remote PBM'), although the optimal peripheral tissue target for remote PBM is currently unclear. This study compared the neuroprotective efficacy of remote PBM targeting the abdomen or leg with transcranial PBM, in mouse and non-human primate models of PD. In a pilot study, the neurotoxin MPTP was used to induce PD in non-human primates; PBM (670 nm, 50 mW/cm2 , 6 min/day) of the abdomen (n = 1) was associated with fewer clinical signs and more surviving midbrain dopaminergic cells relative to MPTP-injected non-human primates not treated with PBM. Validation studies in MPTP-injected mice (n = 10 per group) revealed a significant rescue of midbrain dopaminergic cells in mice receiving PBM to the abdomen (~80%, p < .0001) or legs (~80%, p < .0001), with comparable rescue of axonal terminals in the striatum. Strikingly, this degree of neuroprotection was at least as, if not more, pronounced than that achieved with transcranial PBM. These findings confirm that remote PBM provides neuroprotection against MPTP-induced destruction of the key circuitry underlying PD, with both the abdomen and legs serving as viable remote targets. This should provide the impetus for a comprehensive investigation of remote PBM-induced neuroprotection in other models of PD and, ultimately, human patients.
Collapse
Affiliation(s)
- Luke C. Gordon
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Kristy L. Martin
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Napoleon Torres
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | | | - John Mitrofanis
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | - Jonathan Stone
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Cecile Moro
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | - Daniel M. Johnstone
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
- School of Biomedical Sciences & PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
6
|
Moro C, Valverde A, Dole M, Hoh Kam J, Hamilton C, Liebert A, Bicknell B, Benabid AL, Magistretti P, Mitrofanis J. The effect of photobiomodulation on the brain during wakefulness and sleep. Front Neurosci 2022; 16:942536. [PMID: 35968381 PMCID: PMC9366035 DOI: 10.3389/fnins.2022.942536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Over the last seventy years or so, many previous studies have shown that photobiomodulation, the use of red to near infrared light on body tissues, can improve central and peripheral neuronal function and survival in both health and in disease. These improvements are thought to arise principally from an impact of photobiomodulation on mitochondrial and non-mitochondrial mechanisms in a range of different cell types, including neurones. This impact has downstream effects on many stimulatory and protective genes. An often-neglected feature of nearly all of these improvements is that they have been induced during the state of wakefulness. Recent studies have shown that when applied during the state of sleep, photobiomodulation can also be of benefit, but in a different way, by improving the flow of cerebrospinal fluid and the clearance of toxic waste-products from the brain. In this review, we consider the potential differential effects of photobiomodulation dependent on the state of arousal. We speculate that the effects of photobiomodulation is on different cells and systems depending on whether it is applied during wakefulness or sleep, that it may follow a circadian rhythm. We speculate further that the arousal-dependent photobiomodulation effects are mediated principally through a biophoton – ultra-weak light emission – network of communication and repair across the brain.
Collapse
Affiliation(s)
- Cecile Moro
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Audrey Valverde
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Marjorie Dole
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Jaimie Hoh Kam
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | | | - Ann Liebert
- Governance and Research Department, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Brian Bicknell
- Faculty of Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | | | - Pierre Magistretti
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - John Mitrofanis
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, United Kingdom
- *Correspondence: John Mitrofanis,
| |
Collapse
|
7
|
Marashian SM, Hashemian M, Pourabdollah M, Nasseri M, Mahmoudian S, Reinhart F, Eslaminejad A. Photobiomodulation Improves Serum Cytokine Response in Mild to Moderate COVID-19: The First Randomized, Double-Blind, Placebo Controlled, Pilot Study. Front Immunol 2022; 13:929837. [PMID: 35874678 PMCID: PMC9304695 DOI: 10.3389/fimmu.2022.929837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 01/03/2023] Open
Abstract
BackgroundBecause the major event in COVID-19 is the release of pre- and inflammatory cytokines, finding a reliable therapeutic strategy to inhibit this release, help patients manage organ damage and avoid ICU admission or severe disease progression is of paramount importance. Photobiomodulation (PBM), based on numerous studies, may help in this regard, and the present study sought to evaluate the effects of said technology on cytokine reduction.MethodsThis study was conducted in the 2nd half of 2021. The current study included 52 mild-to-moderately ill COVID-19, hospitalized patients. They were divided in two groups: a Placebo group and a PBM group, treated with PBM (620-635 nm light via 8 LEDs that provide an energy density of 45.40 J/cm2 and a power density of 0.12 W/cm2), twice daily for three days, along with classical approved treatment. 28 patients were in Placebo group and 24 in PBM group. In both groups, blood samples were taken four times in three days and serum IL-6, IL-8, IL-10, and TNF-α levels were determined.ResultsDuring the study period, in PBM group, there was a significant decrease in serum levels of IL-6 (-82.5% +/- 4, P<0.001), IL-8 (-54.4% ± 8, P<0.001), and TNF-α (-82.4% ± 8, P<0.001), although we did not detect a significant change in IL-10 during the study. The IL-6/IL-10 Ratio also improved in PBM group. The Placebo group showed no decrease or even an increase in these parameters. There were no reported complications or sequelae due to PBM therapy throughout the study.ConclusionThe major cytokines in COVID-19 pathophysiology, including IL-6, IL-8, and TNF-α, responded positively to PBM therapy and opened a new window for inhibiting and managing a cytokine storm within only 3-10 days.
Collapse
Affiliation(s)
- Seyed Mehran Marashian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihan Pourabdollah
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansour Nasseri
- Department of Immunology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Saeed Mahmoudian
- National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Florian Reinhart
- Medical Research & Innovation Department, Medical and Biomedical Consultancy Office “Innolys”, Illkirch-Graffenstaden, France
- *Correspondence: Florian Reinhart,
| | - Alireza Eslaminejad
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ahrabi B, Tabatabaei Mirakabad FS, Niknazar S, Payvandi AA, Ahmady Roozbahany N, Ahrabi M, Torkamani SD, Abbaszadeh HA. Photobiomodulation Therapy and Cell Therapy Improved Parkinson's Diseases by Neuro-regeneration and Tremor Inhibition. J Lasers Med Sci 2022; 13:e28. [PMID: 36743130 PMCID: PMC9841383 DOI: 10.34172/jlms.2022.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
Abstract
Introduction: Parkinson's disease (PD) is a progressive and severe neurodegenerative disorder of the central nervous system (CNS). The most prominent features of this disease are cell reduction in the substantia nigra and accumulation of α-synuclein, especially in the brainstem, spinal cord, and cortical areas. In addition to drug-based treatment, other therapies such as surgery, cell therapy, and laser therapy can be considered. In this study, articles on cell therapy and laser therapy for PD have been collected to evaluate the improvement of motor function, cell differentiation, and dopaminergic cell proliferation. Methods: Articles were collected from four electronic databases: PubMed, Scopus, Google Scholar, and Web of Science from 2010 to 2022. The keywords were "photobiomodulation", "low-level light therapy", "Low-level laser therapy", "near-infrared light", "Parkinson's disease", "Parkinsonism", and "stem cell therapy". About 100 related articles were included in the study. Results: The results of the studies showed that cell therapy and laser therapy are useful in the treatment of PD, and despite their limitations, they can be useful in improving PD. Conclusion: Concomitant use of cell therapy and photobiomodulation therapy can improve the symptoms of PD.
Collapse
Affiliation(s)
- Behnaz Ahrabi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Payvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahnaz Ahrabi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaysteh Dordshaikh Torkamani
- Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to Hojjat-Allah Abbaszadeh, Laser Application in Medical Sciences Research Center and Department of Biology and Anatomical Sciences, school of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. P.O. Box: 19395-4719. Tel: +98-21-23872555;
| |
Collapse
|
9
|
Davies DJ, Hadis M, Di Pietro V, Lazzarino G, Forcione M, Harris G, Stevens AR, Soon WC, Goldberg Oppenheimer P, Milward M, Belli A, Palin WM. Photobiomodulation reduces hippocampal apoptotic cell death and produces a Raman spectroscopic “signature”. PLoS One 2022; 17:e0264533. [PMID: 35239693 PMCID: PMC8893683 DOI: 10.1371/journal.pone.0264533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Apoptotic cell death within the brain represents a significant contributing factor to impaired post-traumatic tissue function and poor clinical outcome after traumatic brain injury. After irradiation with light in the wavelength range of 600–1200 nm (photobiomodulation), previous investigations have reported a reduction in apoptosis in various tissues. This study investigates the effect of 660 nm photobiomodulation on organotypic slice cultured hippocampal tissue of rats, examining the effect on apoptotic cell loss. Tissue optical Raman spectroscopic changes were evaluated. A significantly higher proportion of apoptotic cells 62.8±12.2% vs 48.6±13.7% (P<0.0001) per region were observed in the control group compared with the photobiomodulation group. After photobiomodulation, Raman spectroscopic observations demonstrated 1440/1660 cm-1 spectral shift. Photobiomodulation has the potential for therapeutic utility, reducing cell loss to apoptosis in injured neurological tissue, as demonstrated in this in vitro model. A clear Raman spectroscopic signal was observed after apparent optimal irradiation, potentially integrable into therapeutic light delivery apparatus for real-time dose metering.
Collapse
Affiliation(s)
- David J. Davies
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute of Health Research Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham’ Edgbaston, Birmingham, United Kingdom
- * E-mail:
| | - Mohammed Hadis
- Photobiology Research Group, School of Dentistry, College of Medical and Dental Science, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Giuseppe Lazzarino
- Department of Chemical Sciences, Laboratory of Biochemistry, University of Catania, Catania, Italy
| | - Mario Forcione
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute of Health Research Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham’ Edgbaston, Birmingham, United Kingdom
| | - Georgia Harris
- Faculty of Chemical and Biological Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Andrew R. Stevens
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute of Health Research Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham’ Edgbaston, Birmingham, United Kingdom
| | - Wai Cheong Soon
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Pola Goldberg Oppenheimer
- Faculty of Chemical and Biological Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Michael Milward
- Photobiology Research Group, School of Dentistry, College of Medical and Dental Science, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Antonio Belli
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute of Health Research Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham’ Edgbaston, Birmingham, United Kingdom
| | - William M. Palin
- Photobiology Research Group, School of Dentistry, College of Medical and Dental Science, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Yang M, Yang Z, Wang P, Sun Z. Current application and future directions of photobiomodulation in central nervous diseases. Neural Regen Res 2021; 16:1177-1185. [PMID: 33269767 PMCID: PMC8224127 DOI: 10.4103/1673-5374.300486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023] Open
Abstract
Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions. Photobiomodulation can promote neurogenesis and elicit anti-apoptotic, anti-inflammatory and antioxidative responses. Its therapeutic effects have been demonstrated in studies on neurological diseases, peripheral nerve injuries, pain relief and wound healing. We conducted a comprehensive literature review of the application of photobiomodulation in patients with central nervous system diseases in February 2019. The NCBI PubMed database, EMBASE database, Cochrane Library and ScienceDirect database were searched. We reviewed 95 papers and analyzed. Photobiomodulation has wide applicability in the treatment of stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, major depressive disorder, and other diseases. Our analysis provides preliminary evidence that PBM is an effective therapeutic tool for the treatment of central nervous system diseases. However, additional studies with adequate sample size are needed to optimize treatment parameters.
Collapse
Affiliation(s)
- Muyue Yang
- Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Yang
- Core Facility of West China Hospital, Chengdu, Sichuan Province, China
| | - Pu Wang
- Department of Rehabilitation Medicine, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Zhihui Sun
- Department of Psychosomatic Medicine, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Johnstone DM, Hamilton C, Gordon LC, Moro C, Torres N, Nicklason F, Stone J, Benabid AL, Mitrofanis J. Exploring the Use of Intracranial and Extracranial (Remote) Photobiomodulation Devices in Parkinson's Disease: A Comparison of Direct and Indirect Systemic Stimulations. J Alzheimers Dis 2021; 83:1399-1413. [PMID: 33843683 DOI: 10.3233/jad-210052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In recent times, photobiomodulation has been shown to be beneficial in animal models of Parkinson's disease, improving locomotive behavior and being neuroprotective. Early observations in people with Parkinson's disease have been positive also, with improvements in the non-motor symptoms of the disease being evident most consistently. Although the precise mechanisms behind these improvements are not clear, two have been proposed: direct stimulation, where light reaches and acts directly on the distressed neurons, and remote stimulation, where light influences cells and/or molecules that provide systemic protection, thereby acting indirectly on distressed neurons. In relation to Parkinson's disease, given that the major zone of pathology lies deep in the brain and that light from an extracranial or external photobiomodulation device would not reach these vulnerable regions, stimulating the distressed neurons directly would require intracranial delivery of light using a device implanted close to the vulnerable regions. For indirect systemic stimulation, photobiomodulation could be applied to either the head and scalp, using a transcranial helmet, or to a more remote body part (e.g., abdomen, leg). In this review, we discuss the evidence for both the direct and indirect neuroprotective effects of photobiomodulation in Parkinson's disease and propose that both types of treatment modality, when working together using both intracranial and extracranial devices, provide the best therapeutic option.
Collapse
Affiliation(s)
| | | | - Luke C Gordon
- Department of Physiology, University of Sydney, Australia
| | - Cecile Moro
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - Napoleon Torres
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - Frank Nicklason
- Department of Anatomy, University of Sydney, Australia.,Geriatric Medicine, Royal Hobart Hospital, Hobart, Australia
| | - Jonathan Stone
- Department of Physiology, University of Sydney, Australia
| | - Alim-Louis Benabid
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - John Mitrofanis
- Department of Anatomy, University of Sydney, Australia.,University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| |
Collapse
|
12
|
You J, Bragin A, Liu H, Li L. Preclinical studies of transcranial photobiomodulation in the neurological diseases. TRANSLATIONAL BIOPHOTONICS 2021. [DOI: 10.1002/tbio.202000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jing You
- Department of Biomedical Engineering University of North Texas Denton Texas USA
| | - Anatol Bragin
- Department of Neurology University of California Los Angeles Los Angeles California USA
- Brain Research Institute University of California Los Angeles Los Angeles California USA
| | - Hanli Liu
- Department of Bioengineering University of Texas at Arlington Arlington Texas USA
| | - Lin Li
- Department of Biomedical Engineering University of North Texas Denton Texas USA
- Department of Neurology University of California Los Angeles Los Angeles California USA
| |
Collapse
|
13
|
Prasuhn J, Davis RL, Kumar KR. Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front Cell Dev Biol 2021; 8:615461. [PMID: 33469539 PMCID: PMC7813753 DOI: 10.3389/fcell.2020.615461] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The underlying pathophysiology of Parkinson's disease is complex, but mitochondrial dysfunction has an established and prominent role. This is supported by an already large and rapidly growing body of evidence showing that the role of mitochondrial (dys)function is central and multifaceted. However, there are clear gaps in knowledge, including the dilemma of explaining why inherited mitochondriopathies do not usually present with parkinsonian symptoms. Many aspects of mitochondrial function are potential therapeutic targets, including reactive oxygen species production, mitophagy, mitochondrial biogenesis, mitochondrial dynamics and trafficking, mitochondrial metal ion homeostasis, sirtuins, and endoplasmic reticulum links with mitochondria. Potential therapeutic strategies may also incorporate exercise, microRNAs, mitochondrial transplantation, stem cell therapies, and photobiomodulation. Despite multiple studies adopting numerous treatment strategies, clinical trials to date have generally failed to show benefit. To overcome this hurdle, more accurate biomarkers of mitochondrial dysfunction are required to detect subtle beneficial effects. Furthermore, selecting study participants early in the disease course, studying them for suitable durations, and stratifying them according to genetic and neuroimaging findings may increase the likelihood of successful clinical trials. Moreover, treatments involving combined approaches will likely better address the complexity of mitochondrial dysfunction in Parkinson's disease. Therefore, selecting the right patients, at the right time, and using targeted combination treatments, may offer the best chance for development of an effective novel therapy targeting mitochondrial dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, Sydney, NSW, Australia.,Department of Neurogenetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
14
|
Liu YL, Gong SY, Xia ST, Wang YL, Peng H, Shen Y, Liu CF. Light therapy: a new option for neurodegenerative diseases. Chin Med J (Engl) 2020; 134:634-645. [PMID: 33507006 PMCID: PMC7990011 DOI: 10.1097/cm9.0000000000001301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT Given the increasing incidence of neurodegenerative disease (ND), recent research efforts have intensified the search for curative treatments. Despite significant research, however, existing therapeutic options for ND can only slow down the progression of the disease, but not provide a cure. Light therapy (LT) has been used to treat some mental and sleep disorders. This review illustrates recent studies of the use of LT in patients with ND and highlights its potential for clinical applications. The literature was collected from PubMed through June 2020. Selected studies were primarily English articles or articles that could be obtained with English abstracts and Chinese main text. Articles were not limited by type. Additional potential publications were also identified from the bibliographies of identified articles and the authors' reference libraries. The identified literature suggests that LT is a safe and convenient physical method of treatment. It may alleviate sleep disorders, depression, cognitive function, and other clinical symptoms. However, some studies have reported limited or no effects. Therefore, LT represents an attractive therapeutic approach for further investigation in ND. LT is an effective physical form of therapy and a new direction for research into treatments for ND. However, it requires further animal experiments to elucidate mechanisms of action and large, double-blind, randomized, and controlled trials to explore true efficacy in patients with ND.
Collapse
Affiliation(s)
- Yu-Lu Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Si-Yi Gong
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shu-Ting Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ya-Li Wang
- Department of Neurology, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu 215008, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215006 China
| | - Yun Shen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology, Suqian First Hospital, Suqian, Jiangsu 223800, China
| |
Collapse
|
15
|
Fekete Z, Horváth ÁC, Zátonyi A. Infrared neuromodulation:a neuroengineering perspective. J Neural Eng 2020; 17:051003. [PMID: 33055373 DOI: 10.1088/1741-2552/abb3b2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infrared neuromodulation (INM) is a branch of photobiomodulation that offers direct or indirect control of cellular activity through elevation of temperature in a spatially confined region of the target tissue. Research on INM started about 15 ago and is gradually attracting the attention of the neuroscience community, as numerous experimental studies have provided firm evidence on the safe and reproducible excitation and inhibition of neuronal firing in both in vitro and in vivo conditions. However, its biophysical mechanism is not fully understood and several engineered interfaces have been created to investigate infrared stimulation in both the peripheral and central nervous system. In this review, recent applications and present knowledge on the effects of INM on cellular activity are summarized, and an overview of the technical approaches to deliver infrared light to cells and to interrogate the optically evoked response is provided. The micro- and nanoengineered interfaces used to investigate the influence of INM are described in detail.
Collapse
Affiliation(s)
- Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
16
|
Photobiomodulation for Parkinson's Disease in Animal Models: A Systematic Review. Biomolecules 2020; 10:biom10040610. [PMID: 32326425 PMCID: PMC7225948 DOI: 10.3390/biom10040610] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Photobiomodulation (PBM) might be an effective treatment for Parkinson’s disease (PD) in human patients. PBM of the brain uses red or near infrared light delivered from a laser or an LED at relatively low power densities, onto the head (or other body parts) to stimulate the brain and prevent degeneration of neurons. PD is a progressive neurodegenerative disease involving the loss of dopamine-producing neurons in the substantia nigra deep within the brain. PD is a movement disorder that also shows various other symptoms affecting the brain and other organs. Treatment involves dopamine replacement therapy or electrical deep brain stimulation. The present systematic review covers reports describing the use of PBM to treat laboratory animal models of PD, in an attempt to draw conclusions about the best choice of parameters and irradiation techniques. There have already been clinical trials of PBM reported in patients, and more are expected in the coming years. PBM is particularly attractive as it is a non-pharmacological treatment, without any major adverse effects (and very few minor ones).
Collapse
|
17
|
Foo ASC, Soong TW, Yeo TT, Lim KL. Mitochondrial Dysfunction and Parkinson's Disease-Near-Infrared Photobiomodulation as a Potential Therapeutic Strategy. Front Aging Neurosci 2020; 12:89. [PMID: 32308618 PMCID: PMC7145956 DOI: 10.3389/fnagi.2020.00089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
As the main driver of energy production in eukaryotes, mitochondria are invariably implicated in disorders of cellular bioenergetics. Given that dopaminergic neurons affected in Parkinson's disease (PD) are particularly susceptible to energy fluctuations by their high basal energy demand, it is not surprising to note that mitochondrial dysfunction has emerged as a compelling candidate underlying PD. A recent approach towards forestalling dopaminergic neurodegeneration in PD involves near-infrared (NIR) photobiomodulation (PBM), which is thought to enhance mitochondrial function of stimulated cells through augmenting the activity of cytochrome C oxidase. Notwithstanding this, our understanding of the neuroprotective mechanism of PBM remains far from complete. For example, studies focusing on the effects of PBM on gene transcription are limited, and the mechanism through which PBM exerts its effects on distant sites (i.e., its "abscopal effect") remains unclear. Also, the clinical application of NIR in PD proves to be challenging. Efficacious delivery of NIR light to the substantia nigra pars compacta (SNpc), the primary site of disease pathology in PD, is fraught with technical challenges. Concerted efforts focused on understanding the biological effects of PBM and improving the efficiency of intracranial NIR delivery are therefore essential for its successful clinical translation. Nonetheless, PBM represents a potential novel therapy for PD. In this review, we provide an update on the role of mitochondrial dysfunction in PD and how PBM may help mitigate the neurodegenerative process. We also discussed clinical translation aspects of this treatment modality using intracranially implanted NIR delivery devices.
Collapse
Affiliation(s)
- Aaron Song Chuan Foo
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Division of Neurosurgery, Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
18
|
Fasciani I, Petragnano F, Aloisi G, Marampon F, Rossi M, Coppolino MF, Rossi R, Longoni B, Scarselli M, Maggio R. A New Threat to Dopamine Neurons: The Downside of Artificial Light. Neuroscience 2020; 432:216-228. [PMID: 32142863 DOI: 10.1016/j.neuroscience.2020.02.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
Growing awareness of adverse impacts of artificial light on human health has led to recognize light pollution as a significant global environmental issue. Despite, a large number of studies in rodent and monkey models of Parkinson's disease have reported that near infrared light has neuroprotective effects on dopaminergic neurons, recent findings have shown that prolonged exposure of rodents and birds to fluorescent artificial light results in an increase of neuromelanin granules in substantia nigra and loss of dopaminergic neurons. The observed detrimental effect seems to be dependent on a direct effect of light on the substantia nigra rather than a secondary effect of the alterations of circadian rhythms. Moreover, inferences from animal models to human studies have shown a positive correlation between the prevalence of Parkinson's disease and light pollution. The present article discusses experimental evidence supporting a potentially deleterious impact of light on dopaminergic neurons and highlights the mechanisms whereby light might damage neuronal tissue. Moreover, it analyses epidemiological evidence that suggests light pollution to be an environmental risk factor for Parkinson's disease.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Maria Francesca Coppolino
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Rossi
- Ph D Programme in Neuroscience, University Tor Vergata, Rome, Italy
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
19
|
O'Brien JA, Austin PJ. Effect of Photobiomodulation in Rescuing Lipopolysaccharide-Induced Dopaminergic Cell Loss in the Male Sprague-Dawley Rat. Biomolecules 2019; 9:biom9080381. [PMID: 31430990 PMCID: PMC6723099 DOI: 10.3390/biom9080381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Photobiomodulation (PBM) provides neuroprotection against dopaminergic cell death and associated motor deficits in rodent and primate models of Parkinson’s disease (PD). However, it has not yet been tested in the lipopolysaccharide (LPS) model of PD, which leads to dopaminergic cell death through microglia-evoked neuroinflammation. We investigated whether transcranial PBM could protect against dopaminergic cell death within the substantia nigra in male Sprague–Dawley rats following supranigral LPS injection. PBM fully protected rats from 10 µg LPS which would have otherwise caused 15% cell loss, but there was no significant neuroprotection at a 20 µg dose that led to a 50% lesion. Cell loss at this dose varied according to the precise site of injection and correlated with increased local numbers of highly inflammatory amoeboid microglia. Twenty microgram LPS caused motor deficits in the cylinder, adjusted stepping and rotarod tests that correlated with dopaminergic cell loss. While PBM caused no significant improvement at the group level, motor performance on all three tests no longer correlated with the lesion size caused by 20 µg LPS in PBM-treated rats, suggesting extranigral motor improvements in some animals. These results provide support for PBM as a successful neuroprotective therapy against the inflammatory component of early PD, provided inflammation has not reached a devastating level, as well as potential benefits in other motor circuitries.
Collapse
Affiliation(s)
- Jayden A O'Brien
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Paul J Austin
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
20
|
Parkinson’s disease and light: The bright and the Dark sides. Brain Res Bull 2019; 150:290-296. [DOI: 10.1016/j.brainresbull.2019.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023]
|
21
|
Hong N. Photobiomodulation as a treatment for neurodegenerative disorders: current and future trends. Biomed Eng Lett 2019; 9:359-366. [PMID: 31456895 DOI: 10.1007/s13534-019-00115-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Photobiomodulation (PBM) is a rapidly growing as an innovative therapeutic modality for various types of diseases in recent years. Neuronal degeneration is irreversible process and it is proven to be difficult to slow down or stop the progression. Pharmacologic approaches to slow neuronal degeneration have been studied, but are limited due to concerns about the side effects. Therefore, it is necessary to develop a new therapeutic approach to stabilize neuronal degeneration and achieve neuronal protection against several neurodegenerative diseases. In this review, we have introduced several previous studies showing the positive effect of PBM over neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and different types of epilepsy. Despite excellent outcomes of animal researches, not many clinical studies are conducted or showed positive outcome of PBM against neurodegenerative disease. To achieve clinical application of PBM against neurodegenerative disorder, determination of exact mechanism and establishment of effective clinical protocol seems to be necessary.
Collapse
Affiliation(s)
- Namgue Hong
- Department of Pre-medical Science, College of Medicine, Dankook University, Cheonan, 31116 Republic of Korea
| |
Collapse
|
22
|
Kemper KJ. “Let there be light.” Research on phototherapy, light therapy, and photobiomodulation for healing – Alternative therapy becomes mainstream. Complement Ther Med 2018; 41:A1-A6. [DOI: 10.1016/j.ctim.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 2018; 55:6601-6636. [PMID: 29327206 DOI: 10.1007/s12035-017-0852-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson's disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
Collapse
|
24
|
Hamilton C, Hamilton D, Nicklason F, El Massri N, Mitrofanis J. Exploring the use of transcranial photobiomodulation in Parkinson's disease patients. Neural Regen Res 2018; 13:1738-1740. [PMID: 30136687 PMCID: PMC6128061 DOI: 10.4103/1673-5374.238613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - David Hamilton
- Department of Anatomy, University of Sydney, Sydney, Australia
| | - Frank Nicklason
- Department of Geriatric Medicine, Royal Hobart Hospital, Hobart; Department of Anatomy, University of Sydney, Sydney, Australia
| | - Nabil El Massri
- Department of Anatomy, University of Sydney, Sydney, Australia
| | - John Mitrofanis
- Department of Anatomy, University of Sydney, Sydney, Australia
| |
Collapse
|
25
|
Remote tissue conditioning - An emerging approach for inducing body-wide protection against diseases of ageing. Ageing Res Rev 2017; 37:69-78. [PMID: 28552720 DOI: 10.1016/j.arr.2017.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
We have long accepted that exercise is 'good for us'; that - put more rigorously - moderate exercise is associated with not just aerobic fitness but also reduced morbidity and reduced mortality from cardiovascular disease and even malignancies. Caloric restriction (moderate hunger) and our exposure to dietary phytochemicals are also emerging as stresses which are 'good for us' in the same sense. This review focuses on an important extension of this concept: that stress localized within the body (e.g. in a limb) can induce resilience in tissues throughout the body. We describe evidence for the efficacy of two 'remote' protective interventions - remote ischemic conditioning and remote photobiomodulation - and discuss the mechanisms underlying their protective actions. While the biological phenomenon of remote tissue conditioning is only partially understood, it holds promise for protecting critical-to-life tissues while mitigating risks and practical barriers to direct conditioning of these tissues.
Collapse
|
26
|
Romeo S, Vitale F, Viaggi C, di Marco S, Aloisi G, Fasciani I, Pardini C, Pietrantoni I, Di Paolo M, Riccitelli S, Maccarone R, Mattei C, Capannolo M, Rossi M, Capozzo A, Corsini GU, Scarnati E, Lozzi L, Vaglini F, Maggio R. Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not. Brain Res 2017; 1662:87-101. [PMID: 28263713 DOI: 10.1016/j.brainres.2017.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 11/29/2022]
Abstract
We investigated the effects of continuous artificial light exposure on the mouse substantia nigra (SN). A three month exposure of C57Bl/6J mice to white fluorescent light induced a 30% reduction in dopamine (DA) neurons in SN compared to controls, accompanied by a decrease of DA and its metabolites in the striatum. After six months of exposure, neurodegeneration progressed slightly, but the level of DA returned to the basal level, while the metabolites increased with respect to the control. Three month exposure to near infrared LED light (∼710nm) did not alter DA neurons in SN, nor did it decrease DA and its metabolites in the striatum. Furthermore mesencephalic cell viability, as tested by [3H]DA uptake, did not change. Finally, we observed that 710nm LED light, locally conveyed in the rat SN, could modulate the firing activity of extracellular-recorded DA neurons. These data suggest that light can be detrimental or beneficial to DA neurons in SN, depending on the source and wavelength.
Collapse
Affiliation(s)
- Stefania Romeo
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Flora Vitale
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Cristina Viaggi
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Stefano di Marco
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Gabriella Aloisi
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Irene Fasciani
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Carla Pardini
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Ilaria Pietrantoni
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mattia Di Paolo
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Serena Riccitelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Rita Maccarone
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Claudia Mattei
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marta Capannolo
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MA 20892, United States
| | - Annamaria Capozzo
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giovanni U Corsini
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Eugenio Scarnati
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Luca Lozzi
- Department of Physical and Chemical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Vaglini
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Roberto Maggio
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
27
|
Johnstone DM, Moro C, Stone J, Benabid AL, Mitrofanis J. Turning On Lights to Stop Neurodegeneration: The Potential of Near Infrared Light Therapy in Alzheimer's and Parkinson's Disease. Front Neurosci 2016; 9:500. [PMID: 26793049 PMCID: PMC4707222 DOI: 10.3389/fnins.2015.00500] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's and Parkinson's disease are the two most common neurodegenerative disorders. They develop after a progressive death of many neurons in the brain. Although therapies are available to treat the signs and symptoms of both diseases, the progression of neuronal death remains relentless, and it has proved difficult to slow or stop. Hence, there is a need to develop neuroprotective or disease-modifying treatments that stabilize this degeneration. Red to infrared light therapy (λ = 600-1070 nm), and in particular light in the near infrared (NIr) range, is emerging as a safe and effective therapy that is capable of arresting neuronal death. Previous studies have used NIr to treat tissue stressed by hypoxia, toxic insult, genetic mutation and mitochondrial dysfunction with much success. Here we propose NIr therapy as a neuroprotective or disease-modifying treatment for Alzheimer's and Parkinson's patients.
Collapse
Affiliation(s)
| | - Cécile Moro
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| | - Jonathan Stone
- Department of Physiology, University of Sydney Sydney, NSW, Australia
| | - Alim-Louis Benabid
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| | - John Mitrofanis
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus Grenoble, France
| |
Collapse
|