1
|
Ognard J, El Hajj G, Verma O, Ghozy S, Kadirvel R, Kallmes DF, Brinjikji W. Advances in endovascular brain computer interface: Systematic review and future implications. J Neurosci Methods 2025; 420:110471. [PMID: 40355001 DOI: 10.1016/j.jneumeth.2025.110471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/21/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Brain-computer interfaces (BCIs) translate neural activity into real-world commands. While traditional invasive BCIs necessitate craniotomy, endovascular BCIs offer a minimally invasive alternative using the venous system for electrode placement. NEW METHOD This systematic review evaluates the technical feasibility, safety, and clinical outcomes of endovascular BCIs, discussing their future implications. A systematic review was conducted per PRISMA guidelines. The search spanned PubMed, Web of Science, and Scopus databases using keywords related to neural interfaces and endovascular approaches. Studies were included if they reported on endovascular BCIs in preclinical or clinical settings. Dual independent screening and extraction focused on electrode material, recording capabilities, safety parameters, and clinical efficacy. RESULTS From 1385 initial publications, 26 met the inclusion criteria. Seventeen studies investigated the Stentrode device. Among the 24 preclinical studies, 16 used ovine or rodent models, and 9 addressed engineering or simulation aspects. Two clinical studies reported six ALS patients successfully using an endovascular BCI for digital communication. Preclinical data established the endovascular ovine model, demonstrating stable neural recordings and vascular changes with long-term implantation. Key challenges include thrombosis risk, long-term electrode stability, and anatomical variability. COMPARISON WITH EXISTING METHODS Endovascular BCI reduced invasiveness, improved safety profiles, with comparable neural recording fidelity to invasive methods, and promising preliminary clinical outcomes in severely paralyzed patients. CONCLUSIONS Early results are promising, but clinical data remain scarce. Further research is needed to optimize signal processing, enhance electrode biocompatibility, and refine endovascular procedures for broader clinical applications.
Collapse
Affiliation(s)
- Julien Ognard
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Univ Brest, LATIM, INSERM UMR1101, CHU Brest, France.
| | - Gerard El Hajj
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Onam Verma
- Post-Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sherief Ghozy
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ramanathan Kadirvel
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Wen B, Su L, Zhang Y, Wang A, Zhao H, Wu J, Gan Z, Zhang L, Kang X. Fabrication of micro-wire stent electrode as a minimally invasive endovascular neural interface for vascular electrocorticography using laser ablation method. Biomed Phys Eng Express 2025; 11:035010. [PMID: 40106847 DOI: 10.1088/2057-1976/adc266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
Objective. Minimally invasive endovascular stent electrode is a currently emerging technology in neural engineering with minimal damage to the neural tissue. However, the typical stent electrode still requires resistive welding and is relatively large, limiting its application mainly on the large animal or thick vessels. In this study, we investigated the feasibility of laser ablation of micro-wire stent electrode with a diameter as small as 25μmand verified it in the superior sagittal sinus (SSS) of a rat.Approach. We have developed a laser ablation technology to expose the electrode sites of the micro-wire on both sides without damaging the wire itself. During laser ablation, we applied a new method to fix and realign the micro-wires. The micro-wire stent electrode was fabricated by carefully assemble the micro-wire and stent. We tested the electrochemical performances of the electrodes as a neural interface. Finally, we deployed the stent electrode in a rat to verified the feasibility.Main result. Based on the proposed micro-wire stent electrode, we demonstrated that the stent electrode could be successfully deployed in a rat. With the benefit of the smaller design and laser fabrication technology, it can be fitted into a catheter with an inner diameter of 0.6mm. The vascular electrocorticography can be detected during the acute recording, making it promising in the application of small animals and thin vessels.Significance. The method we proposed combines the advantages of endovascular micro-wire electrode and stent, helping make the electrodes smaller. This study provided an alternative method for deploying micro-wire electrodes into thinner vessels as an endovascular neural interface.
Collapse
Affiliation(s)
- Bo Wen
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Lu Su
- Huashan Hospital Fudan University, Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Shanghai, People's Republic of China
| | - Yuan Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Aiping Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Hongchen Zhao
- Huashan Hospital Fudan University, Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Shanghai, People's Republic of China
| | - Jianjun Wu
- Huashan Hospital Fudan University, Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Shanghai, People's Republic of China
| | - Zhongxue Gan
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Lihua Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Xiaoyang Kang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
- Huashan Hospital Fudan University, Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Harris AR, Ruslim M, Xin H, Shen Z, Liu J, Spencer T, Garrett D, Grayden DB, John SE. Endovascular neural stimulation with platinum and platinum black modified electrodes. Sci Rep 2025; 15:9676. [PMID: 40113852 PMCID: PMC11926064 DOI: 10.1038/s41598-025-93941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Recent work has shown the ability to record neural behaviour in pre-clinical studies from an endovascular location for over a year. Previous work on stimulating neural tissue from an endovascular location has also shown motor-evoked responses in sheep. However, endovascular stimulation requires high currents and can result in electrode degradation. This study aimed to modify an endovascular electrode to increase its charge injection capacity for efficacious neural stimulation. The platinum endovascular electrode was modified with platinum black and characterised by electrochemical and microscopic techniques. The stability of the electrode coating was assessed after a 7-day continuous stimulation paradigm. Modelling of the neural activating function was performed for central and peripheral neural anatomy with both electrode materials. Platinum black coatings had a substantially larger electroactive area than uncoated platinum. This resulted in increased electrode admittance, charge storage capacity and charge injection capacity while reducing the total impedance at 10 Hz and polarisation voltage. The coated electrode was comparatively more electrochemically stable than uncoated platinum following the 7-day continuous stimulation protocol. Modelling of the neural activating function indicated a substantial increase in the electrode-neuron distance which could be safely stimulated using platinum black coated electrodes. By comparison of electrochemical response with neural modelling, we have demonstrated the feasibility of safe stimulation of neural tissue using an endovascular neural interface, opening the possibility of a new, minimally invasive neural stimulation paradigm.
Collapse
Affiliation(s)
- Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia.
| | - Marko Ruslim
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Huakun Xin
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Zhiyi Shen
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - JingYang Liu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Tom Spencer
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - David Garrett
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - David B Grayden
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
- Graeme Clark Institute, University of Melbourne, Melbourne, 3010, Australia
| | - Sam E John
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia.
| |
Collapse
|
4
|
Kashyap V, Ashby M, Stanslaski S, Nguyen K, Hageman K, Chang YC, Khalessi AA. Feasibility of Endovascular Deep Brain Stimulation of Anterior Nucleus of the Thalamus for Refractory Epilepsy. Oper Neurosurg (Hagerstown) 2025; 28:79-87. [PMID: 38869291 PMCID: PMC11631012 DOI: 10.1227/ons.0000000000001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Deep brain stimulation (DBS) has developed into an effective therapy for several disease states including treatment-resistant Parkinson disease and medically intractable essential tremor, as well as segmental, generalized and cervical dystonia, and obsessive-compulsive disorder (OCD). Dystonia and OCD are approved with Humanitarian Device Exemption. In addition, DBS is also approved for the treatment of epilepsy in the anterior nucleus of the thalamus. Although overall considered an effective treatment for Parkinson disease and epilepsy, a number of specific factors determine the treatment success for DBS including careful patient selection, effective postoperative programming of DBS devices and accurate electrode placement. Furthermore, invasiveness of the procedure is a rate limiter for patient adoption. It is desired to explore a less invasive way to deliver DBS therapy. METHODS Here, we report for the first time the direct comparison of endovascular and parenchymal DBS in a triplicate ovine model using the anterior nucleus of the thalamus as the parenchymal target for refractory epilepsy. RESULTS Triplicate ovine studies show comparable sensing resolution and stimulation performance of endovascular DBS with parenchymal DBS. CONCLUSION The results from this feasibility study opens up a new frontier for minimally invasive DBS therapy.
Collapse
Affiliation(s)
- Varun Kashyap
- Department of Research and Technology, Medtronic Neurovascular, Irvine, California, USA
| | - Mark Ashby
- Department of Research and Technology, Medtronic Neurovascular, Irvine, California, USA
| | - Scott Stanslaski
- Department of Research and Technology, Medtronic Neuromodulation, Minneapolis, Minnesota, USA
| | - Kevin Nguyen
- Department of Research and Technology, Medtronic Neurovascular, Irvine, California, USA
| | - Kristin Hageman
- Department of Research and Technology, Medtronic Neuromodulation, Minneapolis, Minnesota, USA
| | - Yao-Chuan Chang
- Department of Research and Technology, Medtronic Neuromodulation, Minneapolis, Minnesota, USA
| | - Alexander A. Khalessi
- Department of Radiology and Neurosciences, Don and Karen Cohn Chancellor's Endowed Chair of Neurological Surgery, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
5
|
He Q, Yang Y, Ge P, Li S, Chai X, Luo Z, Zhao J. The brain nebula: minimally invasive brain-computer interface by endovascular neural recording and stimulation. J Neurointerv Surg 2024; 16:1237-1243. [PMID: 38388478 PMCID: PMC11671944 DOI: 10.1136/jnis-2023-021296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
A brain-computer interface (BCI) serves as a direct communication channel between brain activity and external devices, typically a computer or robotic limb. Advances in technology have led to the increasing use of intracranial electrical recording or stimulation in the treatment of conditions such as epilepsy, depression, and movement disorders. This indicates that BCIs can offer clinical neurological rehabilitation for patients with disabilities and functional impairments. They also provide a means to restore consciousness and functionality for patients with sequelae from major brain diseases. Whether invasive or non-invasive, the collected cortical or deep signals can be decoded and translated for communication. This review aims to provide an overview of the advantages of endovascular BCIs compared with conventional BCIs, along with insights into the specific anatomical regions under study. Given the rapid progress, we also provide updates on ongoing clinical trials and the prospects for current research involving endovascular electrodes.
Collapse
Affiliation(s)
- Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Center for Neurological Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Research Center for Rehabilitation Technical Aids, Beijing, China
- Chinese Institute for Brain Research, Beijing, People's Republic of China
- Beijing Institute of Brain Disorders, Beijing, People's Republic of China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sining Li
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Xiaoke Chai
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongqiu Luo
- Department of Neurosurgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Center for Neurological Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
6
|
Wang X, Wu S, Yang H, Bao Y, Li Z, Gan C, Deng Y, Cao J, Li X, Wang Y, Ren C, Yang Z, Zhao Z. Intravascular delivery of an ultraflexible neural electrode array for recordings of cortical spiking activity. Nat Commun 2024; 15:9442. [PMID: 39487147 PMCID: PMC11530632 DOI: 10.1038/s41467-024-53720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Although intracranial neural electrodes have significantly contributed to both fundamental research and clinical treatment of neurological diseases, their implantation requires invasive surgery to open craniotomies, which can introduce brain damage and disrupt normal brain functions. Recent emergence of endovascular neural devices offers minimally invasive approaches for neural recording and stimulation. However, existing endovascular neural devices are unable to resolve single-unit activity in large animal models or human patients, impeding a broader application as neural interfaces in clinical practice. Here, we present the ultraflexible implantable neural electrode as an intravascular device (uFINE-I) for recording brain activity at single-unit resolution. We successfully implanted uFINE-Is into the sheep occipital lobe by penetrating through the confluence of sinuses and recorded both local field potentials (LFPs) and multi-channel single-unit spiking activity under spontaneous and visually evoked conditions. Imaging and histological analysis revealed minimal tissue damage and immune response. The uFINE-I provides a practical solution for achieving high-resolution neural recording with minimal invasiveness and can be readily transferred to clinical settings for future neural interface applications such as brain-machine interfaces (BMIs) and the treatment of neurological diseases.
Collapse
Affiliation(s)
- Xingzhao Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shun Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hantao Yang
- Shanghai Geriatric Medical Center, Shanghai, China
- Zhongshan Hospital, Shanghai, China
| | - Yu Bao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- Fudan University, Shanghai, China
| | - Changchun Gan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Junyan Cao
- University of Shanghai for Science and Technology, Shanghai, China
| | - Xue Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yun Wang
- Zhongshan Hospital, Shanghai, China
- Fudan University, Shanghai, China
| | - Chi Ren
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | | | - Zhengtuo Zhao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Benatti HR, Anagnostakou V, Taghian T, Hall EF, Nath S, Heilman CB, Beneduce BM, Leporati A, Raskett C, Epshtein M, King R, Gounis MJ, Malek AM, Gray-Edwards HL. A minimally invasive endovascular approach to the cerebellopontine angle cistern enables broad CNS biodistribution of scAAV9-CB-GFP. Mol Ther 2024; 32:3346-3355. [PMID: 39192584 PMCID: PMC11489529 DOI: 10.1016/j.ymthe.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
Neurological disorders pose a challenge for targeted therapy due to restricted access of therapeutic agents to the central nervous system (CNS). Current methods are limited by procedure-related risks, invasiveness, and insufficient CNS biodistribution. A novel percutaneous transvenous technology, currently in clinical trials for communicating hydrocephalus, offers a minimally invasive approach by providing endovascular access to the cerebrospinal fluid-filled cerebellopontine angle (CPA) cistern. We hypothesized that drug delivery to the CPA cistern could yield widespread CNS distribution. Using an ovine model, we compared the biodistribution of scAAV9-CB-GFP following CPA cistern infusion with previously reported cisterna magna (CM) administration. Targeting both the CPA cistern and CM in sheep, we employed a lumbar spine-inserted microcatheter under fluoroscopy. CPA delivery of AAV9 demonstrated biodistribution and transduction in the cerebral cortices, striatum, thalamus, midbrain, cerebellum, and spinal cord, with minor liver distribution comparable to CM. The favorable safety profile in humans with hydrocephalus suggests that percutaneous endovascular injection into the CPA could offer a clinically safer and minimally invasive delivery system for CNS gene and cell-based therapies.
Collapse
Affiliation(s)
- Hector Ribeiro Benatti
- Horae Gene Therapy Center, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Vania Anagnostakou
- New England Center for Stroke Research, Department of Radiology, UMass Chan Medical School, 55 N Lake Avenue, Worcester, MA 01655, USA
| | - Toloo Taghian
- Horae Gene Therapy Center, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA; New England Center for Stroke Research, Department of Radiology, UMass Chan Medical School, 55 N Lake Avenue, Worcester, MA 01655, USA
| | - Erin F Hall
- Horae Gene Therapy Center, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Sarah Nath
- Horae Gene Therapy Center, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Carl B Heilman
- Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | | | - Anita Leporati
- New England Center for Stroke Research, Department of Radiology, UMass Chan Medical School, 55 N Lake Avenue, Worcester, MA 01655, USA
| | - Christopher Raskett
- New England Center for Stroke Research, Department of Radiology, UMass Chan Medical School, 55 N Lake Avenue, Worcester, MA 01655, USA
| | - Mark Epshtein
- New England Center for Stroke Research, Department of Radiology, UMass Chan Medical School, 55 N Lake Avenue, Worcester, MA 01655, USA
| | - Robert King
- New England Center for Stroke Research, Department of Radiology, UMass Chan Medical School, 55 N Lake Avenue, Worcester, MA 01655, USA
| | - Matthew J Gounis
- New England Center for Stroke Research, Department of Radiology, UMass Chan Medical School, 55 N Lake Avenue, Worcester, MA 01655, USA
| | - Adel M Malek
- Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA.
| | - Heather L Gray-Edwards
- Horae Gene Therapy Center, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA; New England Center for Stroke Research, Department of Radiology, UMass Chan Medical School, 55 N Lake Avenue, Worcester, MA 01655, USA.
| |
Collapse
|
8
|
Mitchell P, Lee SCM, Yoo PE, Morokoff A, Sharma RP, Williams DL, MacIsaac C, Howard ME, Irving L, Vrljic I, Williams C, Bush S, Balabanski AH, Drummond KJ, Desmond P, Weber D, Denison T, Mathers S, O’Brien TJ, Mocco J, Grayden DB, Liebeskind DS, Opie NL, Oxley TJ, Campbell BCV. Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients: The Stentrode With Thought-Controlled Digital Switch (SWITCH) Study. JAMA Neurol 2023; 80:270-278. [PMID: 36622685 PMCID: PMC9857731 DOI: 10.1001/jamaneurol.2022.4847] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 01/10/2023]
Abstract
Importance Brain-computer interface (BCI) implants have previously required craniotomy to deliver penetrating or surface electrodes to the brain. Whether a minimally invasive endovascular technique to deliver recording electrodes through the jugular vein to superior sagittal sinus is safe and feasible is unknown. Objective To assess the safety of an endovascular BCI and feasibility of using the system to control a computer by thought. Design, Setting, and Participants The Stentrode With Thought-Controlled Digital Switch (SWITCH) study, a single-center, prospective, first in-human study, evaluated 5 patients with severe bilateral upper-limb paralysis, with a follow-up of 12 months. From a referred sample, 4 patients with amyotrophic lateral sclerosis and 1 with primary lateral sclerosis met inclusion criteria and were enrolled in the study. Surgical procedures and follow-up visits were performed at the Royal Melbourne Hospital, Parkville, Australia. Training sessions were performed at patients' homes and at a university clinic. The study start date was May 27, 2019, and final follow-up was completed January 9, 2022. Interventions Recording devices were delivered via catheter and connected to subcutaneous electronic units. Devices communicated wirelessly to an external device for personal computer control. Main Outcomes and Measures The primary safety end point was device-related serious adverse events resulting in death or permanent increased disability. Secondary end points were blood vessel occlusion and device migration. Exploratory end points were signal fidelity and stability over 12 months, number of distinct commands created by neuronal activity, and use of system for digital device control. Results Of 4 patients included in analyses, all were male, and the mean (SD) age was 61 (17) years. Patients with preserved motor cortex activity and suitable venous anatomy were implanted. Each completed 12-month follow-up with no serious adverse events and no vessel occlusion or device migration. Mean (SD) signal bandwidth was 233 (16) Hz and was stable throughout study in all 4 patients (SD range across all sessions, 7-32 Hz). At least 5 attempted movement types were decoded offline, and each patient successfully controlled a computer with the BCI. Conclusions and Relevance Endovascular access to the sensorimotor cortex is an alternative to placing BCI electrodes in or on the dura by open-brain surgery. These final safety and feasibility data from the first in-human SWITCH study indicate that it is possible to record neural signals from a blood vessel. The favorable safety profile could promote wider and more rapid translation of BCI to people with paralysis. Trial Registration ClinicalTrials.gov Identifier: NCT03834857.
Collapse
Affiliation(s)
- Peter Mitchell
- Department of Radiology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Sarah C. M. Lee
- Neurology, Calvary Healthcare Bethlehem, Parkdale, Australia
| | | | - Andrew Morokoff
- Parkville Neurosurgery, The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Rahul P. Sharma
- Stanford Healthcare Cardiovascular Medicine, Stanford University, Stanford, California
| | - Daryl L. Williams
- Department of Anaesthesia and Pain Management, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Christopher MacIsaac
- Intensive Care Department, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Mark E. Howard
- Victorian Respiratory Support Service, Austin Health, Heidelberg, Australia
| | - Lou Irving
- Peter MacCallum Cancer Centre, The University of Melbourne, The Royal Melbourne Hospital, Melbourne, Australia
| | - Ivan Vrljic
- Department of Radiology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Cameron Williams
- Department of Neurology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Steven Bush
- Department of Neurology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Anna H. Balabanski
- Department of Neurology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
- Melbourne Brain Centre, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
- Department of Neuroscience, Alfred Brain, Alfred Health, Melbourne, Australia
| | - Katharine J. Drummond
- Department of Neurosurgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Patricia Desmond
- Department of Radiology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Douglas Weber
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Timothy Denison
- Institute of Biomedical Engineering, The University of Oxford, Oxford, United Kingdom
| | - Susan Mathers
- Neurology, Calvary Healthcare Bethlehem, Parkdale, Australia
| | - Terence J. O’Brien
- Department of Neurology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
- Department of Neuroscience, The Central Clinical School, Monash University and Alfred Health, Melbourne, Australia
| | - J. Mocco
- Department of Neurosurgery, Klingenstein Clinical Center, The Mount Sinai Hospital, New York, New York
| | - David B. Grayden
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Australia
| | - David S. Liebeskind
- UCLA Comprehensive Stroke Center, Department of Neurology, University of California, Los Angeles
| | - Nicholas L. Opie
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, Australia
- Synchron, Carlton, Australia
| | - Thomas J. Oxley
- Synchron Inc, New York, New York
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Bruce C. V. Campbell
- Department of Neurology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
- Melbourne Brain Centre, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
9
|
Thielen B, Xu H, Fujii T, Rangwala SD, Jiang W, Lin M, Kammen A, Liu C, Selvan P, Song D, Mack WJ, Meng E. Making a case for endovascular approaches for neural recording and stimulation. J Neural Eng 2023; 20:10.1088/1741-2552/acb086. [PMID: 36603221 PMCID: PMC9928900 DOI: 10.1088/1741-2552/acb086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
There are many electrode types for recording and stimulating neural tissue, most of which necessitate direct contact with the target tissue. These electrodes range from large, scalp electrodes which are used to non-invasively record averaged, low frequency electrical signals from large areas/volumes of the brain, to penetrating microelectrodes which are implanted directly into neural tissue and interface with one or a few neurons. With the exception of scalp electrodes (which provide very low-resolution recordings), each of these electrodes requires a highly invasive, open brain surgical procedure for implantation, which is accompanied by significant risk to the patient. To mitigate this risk, a minimally invasive endovascular approach can be used. Several types of endovascular electrodes have been developed to be delivered into the blood vessels in the brain via a standard catheterization procedure. In this review, the existing body of research on the development and application of endovascular electrodes is presented. The capabilities of each of these endovascular electrodes is compared to commonly used direct-contact electrodes to demonstrate the relative efficacy of the devices. Potential clinical applications of endovascular recording and stimulation and the advantages of endovascular versus direct-contact approaches are presented.
Collapse
Affiliation(s)
- Brianna Thielen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Huijing Xu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Tatsuhiro Fujii
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani D. Rangwala
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charles Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Neurorestoration Center, University of Southern California, Los Angeles, CA, USA
| | - Pradeep Selvan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - William J. Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
John SE, Donegan S, Scordas TC, Qi W, Sharma P, Liyanage K, Wilson S, Birchall I, Ooi A, Oxley TJ, May CN, Grayden DB, Opie NL. Vascular remodeling in sheep implanted with endovascular neural interface. J Neural Eng 2022; 19. [PMID: 36240737 DOI: 10.1088/1741-2552/ac9a77] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 12/24/2022]
Abstract
Objective.The aim of this work was to assess vascular remodeling after the placement of an endovascular neural interface (ENI) in the superior sagittal sinus (SSS) of sheep. We also assessed the efficacy of neural recording using an ENI.Approach.The study used histological analysis to assess the composition of the foreign body response. Micro-CT images were analyzed to assess the profiles of the foreign body response and create a model of a blood vessel. Computational fluid dynamic modeling was performed on a reconstructed blood vessel to evaluate the blood flow within the vessel. Recording of brain activity in sheep was used to evaluate efficacy of neural recordings.Main results.Histological analysis showed accumulated extracellular matrix material in and around the implanted ENI. The extracellular matrix contained numerous macrophages, foreign body giant cells, and new vascular channels lined by endothelium. Image analysis of CT slices demonstrated an uneven narrowing of the SSS lumen proportional to the stent material within the blood vessel. However, the foreign body response did not occlude blood flow. The ENI was able to record epileptiform spiking activity with distinct spike morphologies.Significance. This is the first study to show high-resolution tissue profiles, the histological response to an implanted ENI and blood flow dynamic modeling based on blood vessels implanted with an ENI. The results from this study can be used to guide surgical planning and future ENI designs; stent oversizing parameters to blood vessel diameter should be considered to minimize detrimental vascular remodeling.
Collapse
Affiliation(s)
- Sam E John
- The Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Sam Donegan
- The Department of Medicine, University of Melbourne, Victoria, Australia
| | - Theodore C Scordas
- The Department of Medicine, University of Melbourne, Victoria, Australia
| | - Weijie Qi
- The Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Prayshita Sharma
- The Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Kishan Liyanage
- The Department of Medicine, University of Melbourne, Victoria, Australia
| | - Stefan Wilson
- The Department of Medicine, University of Melbourne, Victoria, Australia
| | - Ian Birchall
- Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Andrew Ooi
- The Department of Mechanical Engineering, University of Melbourne, Victoria, Australia
| | - Thomas J Oxley
- The Department of Medicine, University of Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - David B Grayden
- The Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia.,Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Victoria, Australia
| | - Nicholas L Opie
- The Department of Medicine, University of Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| |
Collapse
|
11
|
Jumaa MA, Salahuddin H, Burgess R. The Future of Endovascular Therapy. Neurology 2021; 97:S185-S193. [PMID: 34785617 DOI: 10.1212/wnl.0000000000012807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 04/13/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE OF THE REVIEW This article summarizes a broad range of the most recent advances and future directions in stroke diagnostics, endovascular robotics, and neuromodulation. RECENT FINDINGS In the past 5 years, the field of interventional neurology has seen major technological advances for the diagnosis and treatment of cerebrovascular diseases. Several new technologies became available to aid in complex prehospital stroke triage, stroke diagnosis, and interpretation of radiologic findings. Robotics and neuromodulation promise to expand access to established treatments and broaden neuroendovascular indications. SUMMARY Mobile applications offer a solution to simplify prehospital diagnostic and transfer decisions. Several prehospital devices are also under development to improve the accuracy of detection of large vessel occlusion (LVO). Artificial intelligence is now routinely used in early diagnosis of LVO and for detecting salvageability of the affected brain parenchyma. Technological advances have also paved the way to incorporate endovascular robotics and neuromodulation into practice. This may expand the deliverability of established treatments and facilitate the development of cutting-edge treatments for other complex neurologic diseases.
Collapse
Affiliation(s)
- Mouhammad A Jumaa
- From the Department of Neurology, ProMedica Neurosciences Institute; and Department of Neurology, University of Toledo College of Medicine, OH.
| | - Hisham Salahuddin
- From the Department of Neurology, ProMedica Neurosciences Institute; and Department of Neurology, University of Toledo College of Medicine, OH
| | - Richard Burgess
- From the Department of Neurology, ProMedica Neurosciences Institute; and Department of Neurology, University of Toledo College of Medicine, OH
| |
Collapse
|
12
|
Opie NL, O'Brien TJ. The potential of closed-loop endovascular neurostimulation as a viable therapeutic approach for drug-resistant epilepsy: A critical review. Artif Organs 2021; 46:337-348. [PMID: 34101849 DOI: 10.1111/aor.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Over the last few decades, biomedical implants have successfully delivered therapeutic electrical stimulation to reduce the frequency and severity of seizures in people with drug-resistant epilepsy. However, neurostimulation approaches require invasive surgery to implant stimulating electrodes, and surgical, medical, and hardware complications are not uncommon. An endovascular approach provides a potentially safer and less invasive surgical alternative. This article critically evaluates the feasibility of endovascular closed-loop neuromodulation for the treatment of epilepsy. By reviewing literature that reported the impact of direct electrical stimulation to reduce the frequency of epileptic seizures, we identified clinically validated extracranial, cortical, and deep cortical neural targets. We identified veins in close proximity to these targets and evaluated the potential of delivering an endovascular implant to these veins based on their diameter. We then compared the risks and benefits of existing technology to describe a benchmark of clinical safety and efficacy that would need to be achieved for endovascular neuromodulation to provide therapeutic benefit. For the majority of brain regions that have been clinically demonstrated to reduce seizure occurrence in response to delivered electrical stimulation, vessels of appropriate diameter for delivery of an endovascular electrode to these regions could be achieved. This includes delivery to the vagus nerve via the 13.2 ± 0.9 mm diameter internal jugular vein, the motor cortex via the 6.5 ± 1.7 mm diameter superior sagittal sinus, and the cerebellum via the 7.7 ± 1.4 mm diameter sigmoid sinus or 6.2 ± 1.4 mm diameter transverse sinus. Deep cerebral targets can also be accessed with an endovascular approach, with the 1.9 ± 0.5 mm diameter internal cerebral vein and 1.2-mm-diameter thalamostriate vein lying in close proximity to the anterior and centromedian nuclei of the thalamus, respectively. This work identified numerous veins that are in close proximity to conventional stimulation targets that are of a diameter large enough for delivery and deployment of an endovascular electrode array, supporting future work to assess clinical efficacy and chronic safety of an endovascular approach to deliver therapeutic neurostimulation.
Collapse
Affiliation(s)
- Nicholas L Opie
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,Synchron Inc., San Francisco, CA, USA
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Oxley TJ, Yoo PE, Rind GS, Ronayne SM, Lee CMS, Bird C, Hampshire V, Sharma RP, Morokoff A, Williams DL, MacIsaac C, Howard ME, Irving L, Vrljic I, Williams C, John SE, Weissenborn F, Dazenko M, Balabanski AH, Friedenberg D, Burkitt AN, Wong YT, Drummond KJ, Desmond P, Weber D, Denison T, Hochberg LR, Mathers S, O'Brien TJ, May CN, Mocco J, Grayden DB, Campbell BCV, Mitchell P, Opie NL. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. J Neurointerv Surg 2021; 13:102-108. [PMID: 33115813 PMCID: PMC7848062 DOI: 10.1136/neurintsurg-2020-016862] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Implantable brain-computer interfaces (BCIs), functioning as motor neuroprostheses, have the potential to restore voluntary motor impulses to control digital devices and improve functional independence in patients with severe paralysis due to brain, spinal cord, peripheral nerve or muscle dysfunction. However, reports to date have had limited clinical translation. METHODS Two participants with amyotrophic lateral sclerosis (ALS) underwent implant in a single-arm, open-label, prospective, early feasibility study. Using a minimally invasive neurointervention procedure, a novel endovascular Stentrode BCI was implanted in the superior sagittal sinus adjacent to primary motor cortex. The participants undertook machine-learning-assisted training to use wirelessly transmitted electrocorticography signal associated with attempted movements to control multiple mouse-click actions, including zoom and left-click. Used in combination with an eye-tracker for cursor navigation, participants achieved Windows 10 operating system control to conduct instrumental activities of daily living (IADL) tasks. RESULTS Unsupervised home use commenced from day 86 onwards for participant 1, and day 71 for participant 2. Participant 1 achieved a typing task average click selection accuracy of 92.63% (100.00%, 87.50%-100.00%) (trial mean (median, Q1-Q3)) at a rate of 13.81 (13.44, 10.96-16.09) correct characters per minute (CCPM) with predictive text disabled. Participant 2 achieved an average click selection accuracy of 93.18% (100.00%, 88.19%-100.00%) at 20.10 (17.73, 12.27-26.50) CCPM. Completion of IADL tasks including text messaging, online shopping and managing finances independently was demonstrated in both participants. CONCLUSION We describe the first-in-human experience of a minimally invasive, fully implanted, wireless, ambulatory motor neuroprosthesis using an endovascular stent-electrode array to transmit electrocorticography signals from the motor cortex for multiple command control of digital devices in two participants with flaccid upper limb paralysis.
Collapse
Affiliation(s)
- Thomas J Oxley
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Synchron, Inc, Campbell, California, USA
| | - Peter E Yoo
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Synchron, Inc, Campbell, California, USA
| | - Gil S Rind
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Synchron, Inc, Campbell, California, USA
| | - Stephen M Ronayne
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Synchron, Inc, Campbell, California, USA
| | - C M Sarah Lee
- Neurology, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | - Christin Bird
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Rahul P Sharma
- Interventional Cardiology, Cardiovascular Medicine Faculty, Stanford University, Stanford, California, USA
| | - Andrew Morokoff
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Neurosurgery, Melbourne Health, Parkville, Victoria, Australia
| | | | | | - Mark E Howard
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia
| | - Lou Irving
- Respiratory Medicine, Melbourne Health, Parkville, Victoria, Australia
| | - Ivan Vrljic
- Radiology, Melbourne Health, Parkville, Victoria, Australia
| | | | - Sam E John
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Frank Weissenborn
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Madeleine Dazenko
- Neurology, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | | | | | - Anthony N Burkitt
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Yan T Wong
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | - Katharine J Drummond
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Neurosurgery, Melbourne Health, Parkville, Victoria, Australia
| | - Patricia Desmond
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Radiology, Melbourne Health, Parkville, Victoria, Australia
| | - Douglas Weber
- Department of Mechanical Engineering and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Timothy Denison
- Synchron, Inc, Campbell, California, USA
- Institute of Biomedical Engineering, Oxford University, Oxford, Oxfordshire, UK
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Susan Mathers
- Neurology, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | - Terence J O'Brien
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Neurology, Melbourne Health, Parkville, Victoria, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - J Mocco
- Neurosurgery, The Mount Sinai Health System, New York, New York, USA
| | - David B Grayden
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Bruce C V Campbell
- Medicine, University of Melbourne, Parkville, Victoria, Australia
- Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Peter Mitchell
- Radiology, Melbourne Health, Parkville, Victoria, Australia
| | - Nicholas L Opie
- Vascular Bionics Laboratory, Departments of Medicine, Neurology and Surgery, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Synchron, Inc, Campbell, California, USA
| |
Collapse
|
14
|
Soldozy S, Young S, Kumar JS, Capek S, Felbaum DR, Jean WC, Park MS, Syed HR. A systematic review of endovascular stent-electrode arrays, a minimally invasive approach to brain-machine interfaces. Neurosurg Focus 2020; 49:E3. [PMID: 32610291 DOI: 10.3171/2020.4.focus20186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/20/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this study was to systematically review the feasibility and safety of minimally invasive neurovascular approaches to brain-machine interfaces (BMIs). METHODS A systematic literature review was performed using the PubMed database for studies published between 1986 and 2019. All studies assessing endovascular neural interfaces were included. Additional studies were selected based on review of references of selected articles and review articles. RESULTS Of the 53 total articles identified in the original literature search, 12 studies were ultimately selected. An additional 10 articles were included from other sources, resulting in a total of 22 studies included in this systematic review. This includes primarily preclinical studies comparing endovascular electrode recordings with subdural and epidural electrodes, as well as studies evaluating stent-electrode gauge and material type. In addition, several clinical studies are also included. CONCLUSIONS Endovascular stent-electrode arrays provide a minimally invasive approach to BMIs. Stent-electrode placement has been shown to be both efficacious and safe, although further data are necessary to draw comparisons between subdural and epidural electrode measurements given the heterogeneity of the studies included. Greater access to deep-seated brain regions is now more feasible with stent-electrode arrays; however, further validation is needed in large clinical trials to optimize this neural interface. This includes the determination of ideal electrode material type, venous versus arterial approaches, the feasibility of deep brain stimulation, and more streamlined computational decoding techniques.
Collapse
Affiliation(s)
- Sauson Soldozy
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Steven Young
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Jeyan S Kumar
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Stepan Capek
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Daniel R Felbaum
- 2Department of Neurosurgery, Georgetown University, Washington, DC; and
| | - Walter C Jean
- 3Department of Neurosurgery, George Washington University, Washington, DC
| | - Min S Park
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Hasan R Syed
- 1Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
15
|
Raza SA, Opie NL, Morokoff A, Sharma RP, Mitchell PJ, Oxley TJ. Endovascular Neuromodulation: Safety Profile and Future Directions. Front Neurol 2020; 11:351. [PMID: 32390937 PMCID: PMC7193719 DOI: 10.3389/fneur.2020.00351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
Endovascular neuromodulation is an emerging technology that represents a synthesis between interventional neurology and neural engineering. The prototypical endovascular neural interface is the StentrodeTM, a stent-electrode array which can be implanted into the superior sagittal sinus via percutaneous catheter venography, and transmits signals through a transvenous lead to a receiver located subcutaneously in the chest. Whilst the StentrodeTM has been conceptually validated in ovine models, questions remain about the long term viability and safety of this device in human recipients. Although technical precedence for venous sinus stenting already exists in the setting of idiopathic intracranial hypertension, long term implantation of a lead within the intracranial veins has never been previously achieved. Contrastingly, transvenous leads have been successfully employed for decades in the setting of implantable cardiac pacemakers and defibrillators. In the current absence of human data on the StentrodeTM, the literature on these structurally comparable devices provides valuable lessons that can be translated to the setting of endovascular neuromodulation. This review will explore this literature in order to understand the potential risks of the StentrodeTM and define avenues where further research and development are necessary in order to optimize this device for human application.
Collapse
Affiliation(s)
- Samad A Raza
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Nicholas L Opie
- Department of Medicine, Vascular Bionics Laboratory, Melbourne Brain Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Morokoff
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Rahul P Sharma
- Interventional Cardiology, Stanford Health Care, Palo Alto, CA, United States
| | - Peter J Mitchell
- Department of Radiology, The University of Melbourne & The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Thomas J Oxley
- Department of Medicine, Vascular Bionics Laboratory, Melbourne Brain Centre, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Medicine and Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurosurgery, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
16
|
Kinaci A, Bergmann W, Bleys RL, van der Zwan A, van Doormaal TP. Histologic Comparison of the Dura Mater among Species. Comp Med 2020; 70:170-175. [PMID: 32014084 DOI: 10.30802/aalas-cm-19-000022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biocompatibility, biodegradation, feasibility, and efficacy of medical devices like dural sealants and substitutes are often evaluated in various animal models. However, none of these studies explain the rationale for choosing a particular species, and a systematic interspecies comparison of the dura is not available. We hypothesized that histologic characteristics of the dura would differ among species. We systematically investigated basic characteristics of the dura, including thickness, composition, and fibroblast orientation of the dura mater, in 34 samples representing 10 animal species and compared these features with human dura by using hematoxylin and eosin staining and light microscopy. Dura showed many similarities between species in terms of composition. In all species, dura consisted of at least one fibrovascular layer, which contained collagen, fibroblasts, and blood vessels, and a dural border cell layer beneath the fibrovascular layer. Differences between species included the number of fibrovascular layers, fibroblast orientation, and dural thickness. Human dura was the thickest (564 μm) followed by equine (313 μm), bovine (311 μm), and porcine (304 μm) dura. Given the results of this study and factors such as gross anatomy, feasibility, housing, and ethical considerations, we recommend the use of a porcine model for dural research, especially for in vivo studies.
Collapse
Affiliation(s)
- Ahmet Kinaci
- Department of Neurology and Neurosurgery, Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Technology Institute, Utrecht, The Netherlands;,
| | - Wilhelmina Bergmann
- Division ofPathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ronald Law Bleys
- Department of Anatomy, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Albert van der Zwan
- Department of Neurology and Neurosurgery, Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Technology Institute, Utrecht, The Netherlands
| | - Tristan Pc van Doormaal
- Department of Neurology and Neurosurgery, Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Technology Institute, Utrecht, The Netherlands; Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Affiliation(s)
- Sam E John
- Department of Biomedical Engineering, The University of Melbourne , Melbourne , Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne , Melbourne , Australia
| | | |
Collapse
|
18
|
Ngan CGY, Kapsa RMI, Choong PFM. Strategies for neural control of prosthetic limbs: from electrode interfacing to 3D printing. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1927. [PMID: 31207952 PMCID: PMC6631966 DOI: 10.3390/ma12121927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 01/28/2023]
Abstract
Limb amputation is a major cause of disability in our community, for which motorised prosthetic devices offer a return to function and independence. With the commercialisation and increasing availability of advanced motorised prosthetic technologies, there is a consumer need and clinical drive for intuitive user control. In this context, rapid additive fabrication/prototyping capacities and biofabrication protocols embrace a highly-personalised medicine doctrine that marries specific patient biology and anatomy to high-end prosthetic design, manufacture and functionality. Commercially-available prosthetic models utilise surface electrodes that are limited by their disconnect between mind and device. As such, alternative strategies of mind-prosthetic interfacing have been explored to purposefully drive the prosthetic limb. This review investigates mind to machine interfacing strategies, with a focus on the biological challenges of long-term harnessing of the user's cerebral commands to drive actuation/movement in electronic prostheses. It covers the limitations of skin, peripheral nerve and brain interfacing electrodes, and in particular the challenges of minimising the foreign-body response, as well as a new strategy of grafting muscle onto residual peripheral nerves. In conjunction, this review also investigates the applicability of additive tissue engineering at the nerve-electrode boundary, which has led to pioneering work in neural regeneration and bioelectrode development for applications at the neuroprosthetic interface.
Collapse
Affiliation(s)
- Catherine G Y Ngan
- Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne 3065, VIC, Australia.
- Biofab3D@ACMD, St Vincent's Hospital Melbourne, Melbourne 3065, VIC, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, Wollongong 2500, NSW, Australia.
| | - Rob M I Kapsa
- Biofab3D@ACMD, St Vincent's Hospital Melbourne, Melbourne 3065, VIC, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, Wollongong 2500, NSW, Australia.
- Department of Medicine, The University of Melbourne, Melbourne 3065, VIC, Australia.
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne 3065, VIC, Australia.
| | - Peter F M Choong
- Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne 3065, VIC, Australia.
- Biofab3D@ACMD, St Vincent's Hospital Melbourne, Melbourne 3065, VIC, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, Wollongong 2500, NSW, Australia.
- Department of Orthopaedics, St Vincent's Hospital, Melbourne 3065, VIC, Australia.
| |
Collapse
|
19
|
Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nat Biomed Eng 2018; 2:907-914. [DOI: 10.1038/s41551-018-0321-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
|
20
|
Opie NL, John SE, Rind GS, Ronayne SM, May CN, Grayden DB, Oxley TJ. Effect of Implant Duration, Anatomical Location and Electrode Orientation on Bandwidth Recorded with a Chronically Implanted Endovascular Stent-Electrode Array. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1074-1077. [PMID: 30440577 DOI: 10.1109/embc.2018.8512385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Access to the brain to implant recording electrodes has conventionally required a craniotomy. To mitigate risks of open brain surgery, we previously developed a stent-electrode array that can be delivered to the cortex via cerebral vessels. Following implantation of a stent-electrode array (Stentrode) in a large animal model, we investigated the longevity of highquality signals, by measuring bandwidth in animals implanted for up to six months; no signal degradation was observed. We also investigated whether bandwidth was influenced by implant location with respect to the superior sagittal sinus and branching cortical veins; it was not. Finally, we assessed whether electrode orientation had an impact on recording quality. There was no significant difference in bandwidths from electrodes facing different orientations. Interestingly, electrodes facing the skull (180°) were still able to record neural information with high fidelity. Consequently, a minimally invasive surgical approach combined with a stent-electrode array is a safe and efficacious technique to acquire neural signals over a chronic duration.
Collapse
|
21
|
Gerboni G, John SE, Rind GS, Ronayne SM, May CN, Oxley TJ, Grayden DB, Opie NL, Wong YT. Visual evoked potentials determine chronic signal quality in a stent-electrode endovascular neural interface. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aad714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
John SE, Opie NL, Wong YT, Rind GS, Ronayne SM, Gerboni G, Bauquier SH, O'Brien TJ, May CN, Grayden DB, Oxley TJ. Signal quality of simultaneously recorded endovascular, subdural and epidural signals are comparable. Sci Rep 2018; 8:8427. [PMID: 29849104 PMCID: PMC5976775 DOI: 10.1038/s41598-018-26457-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Recent work has demonstrated the feasibility of minimally-invasive implantation of electrodes into a cortical blood vessel. However, the effect of the dura and blood vessel on recording signal quality is not understood and may be a critical factor impacting implementation of a closed-loop endovascular neuromodulation system. The present work compares the performance and recording signal quality of a minimally-invasive endovascular neural interface with conventional subdural and epidural interfaces. We compared bandwidth, signal-to-noise ratio, and spatial resolution of recorded cortical signals using subdural, epidural and endovascular arrays four weeks after implantation in sheep. We show that the quality of the signals (bandwidth and signal-to-noise ratio) of the endovascular neural interface is not significantly different from conventional neural sensors. However, the spatial resolution depends on the array location and the frequency of recording. We also show that there is a direct correlation between the signal-noise-ratio and classification accuracy, and that decoding accuracy is comparable between electrode arrays. These results support the consideration for use of an endovascular neural interface in a clinical trial of a novel closed-loop neuromodulation technology.
Collapse
Affiliation(s)
- Sam E John
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia. .,Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, (RMH), The University of Melbourne, Parkville, Australia. .,Florey Institute of Neuroscience and Mental Health, Parkville, Australia. .,SmartStent Pty Ltd, Parkville, Australia.
| | - Nicholas L Opie
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, (RMH), The University of Melbourne, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,SmartStent Pty Ltd, Parkville, Australia
| | - Yan T Wong
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.,Department of Physiology and Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Australia
| | - Gil S Rind
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, (RMH), The University of Melbourne, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,SmartStent Pty Ltd, Parkville, Australia
| | - Stephen M Ronayne
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, (RMH), The University of Melbourne, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,SmartStent Pty Ltd, Parkville, Australia
| | - Giulia Gerboni
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.,Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, (RMH), The University of Melbourne, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Sebastien H Bauquier
- Department of Veterinary Science, The University of Melbourne, Werribee, Australia
| | - Terence J O'Brien
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, (RMH), The University of Melbourne, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.,Centre for Neural Engineering, The University of Melbourne, Carlton, Australia
| | - Thomas J Oxley
- Vascular Bionics Laboratory, Department of Medicine, Royal Melbourne Hospital, (RMH), The University of Melbourne, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,SmartStent Pty Ltd, Parkville, Australia
| |
Collapse
|