1
|
Li R, Zhang C, Rao Y, Yuan TF. Deep brain stimulation of fornix for memory improvement in Alzheimer's disease: A critical review. Ageing Res Rev 2022; 79:101668. [PMID: 35705176 DOI: 10.1016/j.arr.2022.101668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Memory reflects the brain function in encoding, storage and retrieval of the data or information, which is a fundamental ability for any live organism. The development of approaches to improve memory attracts much attention due to the underlying mechanistic insight and therapeutic potential to treat neurodegenerative diseases with memory loss, such as Alzheimer's disease (AD). Deep brain stimulation (DBS), a reversible, adjustable, and non-ablative therapy, has been shown to be safe and effective in many clinical trials for neurodegenerative and neuropsychiatric disorders. Among all potential regions with access to invasive electrodes, fornix is considered as it is the major afferent and efferent connection of the hippocampus known to be closely associated with learning and memory. Indeed, clinical trials have demonstrated that fornix DBS globally improved cognitive function in a subset of patients with AD, indicating fornix can serve as a potential target for neurosurgical intervention in treating memory impairment in AD. The present review aims to provide a better understanding of recent progresses in the application of fornix DBS for ameliorating memory impairments in AD patients.
Collapse
Affiliation(s)
- Ruofan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxia Rao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Laboratory Animal Science, Fudan University, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wu L, Canna A, Narvaez O, Ma J, Sang S, Lehto LJ, Sierra A, Tanila H, Zhang Y, Gröhn O, Low WC, Filip P, Mangia S, Michaeli S. Orientation selective DBS of entorhinal cortex and medial septal nucleus modulates activity of rat brain areas involved in memory and cognition. Sci Rep 2022; 12:8565. [PMID: 35595790 PMCID: PMC9122972 DOI: 10.1038/s41598-022-12383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
The recently introduced orientation selective deep brain stimulation (OS-DBS) technique freely controls the direction of the electric field's spatial gradient by using multiple contacts with independent current sources within a multielectrode array. The goal of OS-DBS is to align the electrical field along the axonal track of interest passing through the stimulation site. Here we utilized OS-DBS with a planar 3-channel electrode for stimulating the rat entorhinal cortex (EC) and medial septal nucleus (MSN), two promising areas for DBS treatment of Alzheimer's disease. The brain responses to OS-DBS were monitored by whole brain functional magnetic resonance imaging (fMRI) at 9.4 T with Multi-Band Sweep Imaging with Fourier Transformation (MB-SWIFT). Varying the in-plane OS-DBS stimulation angle in the EC resulted in activity modulation of multiple downstream brain areas involved in memory and cognition. Contrary to that, no angle dependence of brain activations was observed when stimulating the MSN, consistent with predictions based on the electrode configuration and on the main axonal directions of the targets derived from diffusion MRI tractography and histology. We conclude that tuning the OS-DBS stimulation angle modulates the activation of brain areas relevant to Alzheimer's disease, thus holding great promise in the DBS treatment of the disease.
Collapse
Affiliation(s)
- Lin Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Antonietta Canna
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Omar Narvaez
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Sheng Sang
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Lauri J Lehto
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Alejandra Sierra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yuan Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Pavel Filip
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
- Radiology Department, Center for MR Research, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Cole RC, Okine DN, Yeager BE, Narayanan NS. Neuromodulation of cognition in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:435-455. [PMID: 35248205 DOI: 10.1016/bs.pbr.2022.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neuromodulation is a widely used treatment for motor symptoms of Parkinson's disease (PD). It can be a highly effective treatment as a result of knowledge of circuit dysfunction associated with motor symptoms in PD. However, the mechanisms underlying cognitive symptoms of PD are less well-known, and the effects of neuromodulation on these symptoms are less consistent. Nonetheless, neuromodulation provides a unique opportunity to modulate motor and cognitive circuits while minimizing off-target side effects. We review the modalities of neuromodulation used in PD and the potential implications for cognitive symptoms. There have been some encouraging findings with both invasive and noninvasive modalities of neuromodulation, and there are promising advances being made in the field of therapeutic neuromodulation. Substantial work is needed to determine which modulation targets are most effective for the different types of cognitive deficits of PD.
Collapse
Affiliation(s)
- Rachel C Cole
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Derrick N Okine
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Brooke E Yeager
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
4
|
Jiang Y, Liu D, Zhang X, Liu H, Zhang C, Zhang J. Modulation of the rat hippocampal-cortex network and episodic-like memory performance following entorhinal cortex stimulation. CNS Neurosci Ther 2022; 28:448-457. [PMID: 34964261 PMCID: PMC8841309 DOI: 10.1111/cns.13795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Entorhinal cortex (EC) deep brain stimulation (DBS) has shown a memory enhancement effect. However, its brain network modulation mechanisms remain unclear. The present study aimed to investigate the functional connectivity in the rat hippocampal-cortex network and episodic-like memory performance following EC-DBS. METHODS 7.0 T functional MRI (fMRI) scans and episodic-like memory tests were performed 3 days and 28 days after EC-DBS in healthy rats. The fMRI data processing was focused on the power spectra, functional connectivity, and causality relationships in the hippocampal-cortex network. In addition, the exploration ratio for each object and the discrimination ratio of the "when" and "where" factors were calculated in the behavioral tests. RESULTS EC-DBS increased the power spectra and the functional connectivity in the prefrontal- and hippocampal-related networks 3 days after stimulation and recovered 4 weeks later. Both networks exhibited a strengthened connection with the EC after EC-DBS. Further seed-based functional connectivity comparisons showed increased connectivity among the prefrontal cortex, hippocampus and EC, especially on the ipsilateral side of DBS. The dentate gyrus is a hub region closely related to both the EC and the prefrontal cortex and receives information flow from both. Moreover, acute EC-DBS also enhanced the discrimination ratio of the "where" factor in the episodic-like memory test on Day 3. CONCLUSION EC-DBS caused a reversible modulation effect on functional connectivity in the hippocampal-cortex network and episodic-like memory performance.
Collapse
Affiliation(s)
- Yin Jiang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - De‐Feng Liu
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xin Zhang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Huan‐Guang Liu
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jian‐Guo Zhang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Afthinos A, Themistocleous C, Herrmann O, Fan H, Lu H, Tsapkini K. The Contribution of Working Memory Areas to Verbal Learning and Recall in Primary Progressive Aphasia. Front Neurol 2022; 13:698200. [PMID: 35250797 PMCID: PMC8892377 DOI: 10.3389/fneur.2022.698200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Recent evidence of domain-specific working memory (WM) systems has identified the areas and networks which are involved in phonological, orthographic, and semantic WM, as well as in higher level domain-general WM functions. The contribution of these areas throughout the process of verbal learning and recall is still unclear. In the present study, we asked, what is the contribution of domain-specific specialized WM systems in the course of verbal learning and recall? To answer this question, we regressed the perfusion data from pseudo-continuous arterial spin labeling (pCASL) MRI with all the immediate, consecutive, and delayed recall stages of the Rey Auditory Verbal Learning Test (RAVLT) from a group of patients with Primary Progressive Aphasia (PPA), a neurodegenerative syndrome in which language is the primary deficit. We found that the early stages of verbal learning involve the areas with subserving phonological processing (left superior temporal gyrus), as well as semantic WM memory (left angular gyrus, AG_L). As learning unfolds, areas with subserving semantic WM (AG_L), as well as lexical/semantic (inferior temporal and fusiform gyri, temporal pole), and episodic memory (hippocampal complex) become more involved. Finally, a delayed recall depends entirely on semantic and episodic memory areas (hippocampal complex, temporal pole, and gyri). Our results suggest that AG_L subserving domain-specific (semantic) WM is involved only during verbal learning, but a delayed recall depends only on medial and cortical temporal areas.
Collapse
Affiliation(s)
- Alexandros Afthinos
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Olivia Herrmann
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hongli Fan
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Kyrana Tsapkini
| |
Collapse
|
6
|
Azmi H. Neuromodulation for Cognitive Disorders: In Search of Lazarus? Neurol India 2021; 68:S288-S296. [PMID: 33318364 DOI: 10.4103/0028-3886.302469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Alzheimer's disease (AD) and other forms of dementia can have a large impact on patients, their families, and for the society as a whole. Current medical treatments have not shown enough potential in treating or altering the course of the disease. Deep brain stimulation (DBS) has shown great neuromodulatory potential in Parkinson's disease, and there is a growing body of evidence for justifying its use in cognitive disorders. At the same time there is mounting interest at less invasive and alternative modes of neuromodulation for the treatment of AD. This manuscript is a brief review of the infrastructure of memory, the current understanding of the pathophysiology of AD, and the body of preclinical and clinical evidence for noninvasive and invasive neuromodulation modalities for the treatment of cognitive disorders and AD in particular.
Collapse
Affiliation(s)
- Hooman Azmi
- Department of Neurosurgery, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack; New Jersey Brain and Spine Center, Oradell, New Jersey, USA
| |
Collapse
|
7
|
Helbing C, Angenstein F. Frequency-dependent electrical stimulation of fimbria-fornix preferentially affects the mesolimbic dopamine system or prefrontal cortex. Brain Stimul 2020; 13:753-764. [PMID: 32289705 DOI: 10.1016/j.brs.2020.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND The fimbria/fornix fiber system is an essential part of the hippocampal-VTA loop, and therefore activities that are propagated through this fiber system control the activity of the mesolimbic dopamine system. OBJECTIVES/HYPOTHESIS We hypothesized that stimulation of the fimbria/fornix with an increasing number of electrical pulses would cause increasing activity of the mesolimbic dopamine system, which coincides with concurrent changes in neuronal activities in target regions of the mesolimbic dopaminergic system. METHODS Right fimbria/fornix fibers were electrically stimulated with different pulse protocols. Stimulus-induced changes in neuronal activities were visualized with BOLD-fMRI, whereas stimulus-induced release of dopamine, as measured for the activity of the mesolimbic dopamine system, was determined in the nucleus accumbens with in vivo fast-scan cyclic voltammetry. RESULTS Dependent on the protocol, electrical fimbria/fornix stimulation caused BOLD responses in various targets of the mesolimbic dopamine system. Stimulation in the low theta frequency range (5 Hz) triggered significant BOLD responses mainly in the hippocampal formation, infralimbic cortex, and septum. Stimulation in the beta frequency range (20 Hz) caused additional activation in the medial prefrontal cortex (mPFC), nucleus accumbens, striatum, and VTA. Stimulation in the high-gamma frequency range (100 Hz) caused further activation in the hippocampus proper and mPFC. The strong activation in the mPFC during 100 Hz stimulations depended not only on the number of pulses but also on the frequency. Thus, short bursts of 5 or 20 high-frequency pulses caused stronger activation in the mPFC than continuous 5 or 20 Hz pulses. In contrast, high-frequency burst fimbria/fornix stimulation did not further activate the mesolimbic dopamine system when compared to continuous 5 or 20 Hz pulse stimulation. CONCLUSIONS There exists a frequency-dependent dissociation between BOLD responses and activation of the dopaminergic system. Low frequencies were more efficient to activate the mesolimbic dopamine system, whereas high frequencies were more efficient to trigger BOLD responses in target regions of the mesolimbic dopamine system, particularly the mPFC.
Collapse
Affiliation(s)
- Cornelia Helbing
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany.
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany; Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
8
|
Abstract
Traumatic brain injury (TBI) represents a major clinical and economic challenge for health systems worldwide, and it is considered one of the leading causes of disability in young adults. The recent development of brain-computer interface (BCI) tools to target cognitive and motor impairments has led to the exploration of these techniques as potential therapeutic tools in patients with TBI. However, little evidence has been gathered so far to support applicability and efficacy of BCIs for TBI in a clinical setting. In the present chapter, results from studies using BCI approaches in conscious patients with TBI or in animal models of TBI as well as an overview of future directions in the use of BCIs to treat cognitive symptoms in this patient population will be presented.
Collapse
Affiliation(s)
- Virginia Conde
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Clinical Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.
| |
Collapse
|
9
|
Chang CW, Lo YC, Lin SH, Yang SH, Lin HC, Lin TC, Li SJ, Hsieh CCJ, Ro V, Chung YJ, Chang YC, Lee CW, Kuo CH, Chen SY, Chen YY. Modulation of Theta-Band Local Field Potential Oscillations Across Brain Networks With Central Thalamic Deep Brain Stimulation to Enhance Spatial Working Memory. Front Neurosci 2019; 13:1269. [PMID: 32038122 PMCID: PMC6988804 DOI: 10.3389/fnins.2019.01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 01/06/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established technique for the treatment of movement and psychiatric disorders through the modulation of neural oscillatory activity and synaptic plasticity. The central thalamus (CT) has been indicated as a potential target for stimulation to enhance memory. However, the mechanisms underlying local field potential (LFP) oscillations and memory enhancement by CT-DBS remain unknown. In this study, we used CT-DBS to investigate the mechanisms underlying the changes in oscillatory communication between the CT and hippocampus, both of which are involved in spatial working memory. Local field potentials (LFPs) were recorded from microelectrode array implanted in the CT, dentate gyrus, cornu ammonis (CA) region 1, and CA region 3. Functional connectivity (FC) strength was assessed by LFP-LFP coherence calculations for these brain regions. In addition, a T-maze behavioral task using a rat model was performed to assess the performance of spatial working memory. In DBS group, our results revealed that theta oscillations significantly increased in the CT and hippocampus compared with that in sham controls. As indicated by coherence, the FC between the CT and hippocampus significantly increased in the theta band after CT-DBS. Moreover, Western blotting showed that the protein expressions of the dopamine D1 and α4-nicotinic acetylcholine receptors were enhanced, whereas that of the dopamine D2 receptor decreased in the DBS group. In conclusion, the use of CT-DBS resulted in elevated theta oscillations, increased FC between the CT and hippocampus, and altered synaptic plasticity in the hippocampus, suggesting that CT-DBS is an effective approach for improving spatial working memory.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan.,Department of Neurology, School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, National Yang Ming University, Taipei, Taiwan
| | - Ting-Chun Lin
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Christine Chin-Jung Hsieh
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming University, Academia Sinica, Taipei, Taiwan
| | - Vina Ro
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yueh-Jung Chung
- Department and Institute of Physiology, National Yang Ming University, Taipei, Taiwan
| | - Yun-Chi Chang
- Department and Institute of Physiology, National Yang Ming University, Taipei, Taiwan
| | - Chi-Wei Lee
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department and Institute of Physiology, National Yang Ming University, Taipei, Taiwan
| | - Chao-Hung Kuo
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Veterans General Hospital, Neurological Institute, Taipei, Taiwan.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan.,Department of Surgery, School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming University, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Kundu B, Brock AA, Englot DJ, Butson CR, Rolston JD. Deep brain stimulation for the treatment of disorders of consciousness and cognition in traumatic brain injury patients: a review. Neurosurg Focus 2019; 45:E14. [PMID: 30064315 DOI: 10.3171/2018.5.focus18168] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a looming epidemic, growing most rapidly in the elderly population. Some of the most devastating sequelae of TBI are related to depressed levels of consciousness (e.g., coma, minimally conscious state) or deficits in executive function. To date, pharmacological and rehabilitative therapies to treat these sequelae are limited. Deep brain stimulation (DBS) has been used to treat a number of pathologies, including Parkinson disease, essential tremor, and epilepsy. Animal and clinical research shows that targets addressing depressed levels of consciousness include components of the ascending reticular activating system and areas of the thalamus. Targets for improving executive function are more varied and include areas that modulate attention and memory, such as the frontal and prefrontal cortex, fornix, nucleus accumbens, internal capsule, thalamus, and some brainstem nuclei. The authors review the literature addressing the use of DBS to treat higher-order cognitive dysfunction and disorders of consciousness in TBI patients, while also offering suggestions on directions for future research.
Collapse
Affiliation(s)
| | | | - Dario J Englot
- 2Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | |
Collapse
|
11
|
Cutsuridis V. Memory Prosthesis: Is It Time for a Deep Neuromimetic Computing Approach? Front Neurosci 2019; 13:667. [PMID: 31333399 PMCID: PMC6624412 DOI: 10.3389/fnins.2019.00667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Memory loss, one of the most dreaded afflictions of the human condition, presents considerable burden on the world's health care system and it is recognized as a major challenge in the elderly. There are only a few neuromodulation treatments for memory dysfunctions. Open loop deep brain stimulation is such a treatment for memory improvement, but with limited success and conflicting results. In recent years closed-loop neuroprosthesis systems able to simultaneously record signals during behavioral tasks and generate with the use of internal neural factors the precise timing of stimulation patterns are presented as attractive alternatives and show promise in memory enhancement and restoration. A few such strides have already been made in both animals and humans, but with limited insights into their mechanisms of action. Here, I discuss why a deep neuromimetic computing approach linking multiple levels of description, mimicking the dynamics of brain circuits, interfaced with recording and stimulating electrodes could enhance the performance of current memory prosthesis systems, shed light into the neurobiology of learning and memory and accelerate the progress of memory prosthesis research. I propose what the necessary components (nodes, structure, connectivity, learning rules, and physiological responses) of such a deep neuromimetic model should be and what type of data are required to train/test its performance, so it can be used as a true substitute of damaged brain areas capable of restoring/enhancing their missing memory formation capabilities. Considerations to neural circuit targeting, tissue interfacing, electrode placement/implantation, and multi-network interactions in complex cognition are also provided.
Collapse
|
12
|
Khan IS, D'Agostino EN, Calnan DR, Lee JE, Aronson JP. Deep Brain Stimulation for Memory Modulation: A New Frontier. World Neurosurg 2019; 126:638-646. [DOI: 10.1016/j.wneu.2018.12.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
|
13
|
Krautwald K, Mahnke L, Angenstein F. Electrical Stimulation of the Lateral Entorhinal Cortex Causes a Frequency-Specific BOLD Response Pattern in the Rat Brain. Front Neurosci 2019; 13:539. [PMID: 31191231 PMCID: PMC6547013 DOI: 10.3389/fnins.2019.00539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Although deep brain stimulation of the entorhinal cortex has recently shown promise in the treatment of early forms of cognitive decline, the underlying neurophysiological processes remain elusive. Therefore, the lateral entorhinal cortex (LEC) was stimulated with trains of continuous 5 Hz and 20 Hz pulses or with bursts of 100 Hz pulses to visualize activated neuronal networks, i.e., neuronal responses in the dentate gyrus and BOLD responses in the entire brain were simultaneously recorded. Electrical stimulation of the LEC caused a wide spread pattern of BOLD responses. Dependent on the stimulation frequency, BOLD responses were only triggered in the amygdala, infralimbic, prelimbic, and dorsal peduncular cortex (5 Hz), or in the nucleus accumbens, piriform cortex, dorsal medial prefrontal cortex, hippocampus (20 Hz), and contralateral entorhinal cortex (100 Hz). In general, LEC stimulation caused stronger BOLD responses in frontal cortex regions than in the hippocampus. Identical stimulation of the perforant pathway, a fiber bundle projecting from the entorhinal cortex to the dentate gyrus, hippocampus proper, and subiculum, mainly elicited significant BOLD responses in the hippocampus but rarely in frontal cortex regions. Consequently, BOLD responses in frontal cortex regions are mediated by direct projections from the LEC rather than via signal propagation through the hippocampus. Thus, the beneficial effects of deep brain stimulation of the entorhinal cortex on cognitive skills might depend more on an altered prefrontal cortex than hippocampal function.
Collapse
Affiliation(s)
- Karla Krautwald
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Liv Mahnke
- Department Functional Architecture of Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
14
|
Nakamichi N, Nakao S, Masuo Y, Koike A, Matsumura N, Nishiyama M, Al-Shammari AH, Sekiguchi H, Sutoh K, Usumi K, Kato Y. Hydrolyzed Salmon Milt Extract Enhances Object Recognition and Location Memory Through an Increase in Hippocampal Cytidine Nucleoside Levels in Normal Mice. J Med Food 2019; 22:408-415. [DOI: 10.1089/jmf.2018.4285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Noritaka Nakamichi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shunsuke Nakao
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ayaka Koike
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoto Matsumura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Misa Nishiyama
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Aya Hasan Al-Shammari
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Keita Sutoh
- Life Science Institute Co., Ltd., Tokyo, Japan
| | - Koji Usumi
- Life Science Institute Co., Ltd., Tokyo, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
15
|
Hampel H, Toschi N, Babiloni C, Baldacci F, Black KL, Bokde AL, Bun RS, Cacciola F, Cavedo E, Chiesa PA, Colliot O, Coman CM, Dubois B, Duggento A, Durrleman S, Ferretti MT, George N, Genthon R, Habert MO, Herholz K, Koronyo Y, Koronyo-Hamaoui M, Lamari F, Langevin T, Lehéricy S, Lorenceau J, Neri C, Nisticò R, Nyasse-Messene F, Ritchie C, Rossi S, Santarnecchi E, Sporns O, Verdooner SR, Vergallo A, Villain N, Younesi E, Garaci F, Lista S. Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology. J Alzheimers Dis 2018; 64:S47-S105. [PMID: 29562524 PMCID: PMC6008221 DOI: 10.3233/jad-179932] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Precision Neurology development process implements systems theory with system biology and neurophysiology in a parallel, bidirectional research path: a combined hypothesis-driven investigation of systems dysfunction within distinct molecular, cellular, and large-scale neural network systems in both animal models as well as through tests for the usefulness of these candidate dynamic systems biomarkers in different diseases and subgroups at different stages of pathophysiological progression. This translational research path is paralleled by an "omics"-based, hypothesis-free, exploratory research pathway, which will collect multimodal data from progressing asymptomatic, preclinical, and clinical neurodegenerative disease (ND) populations, within the wide continuous biological and clinical spectrum of ND, applying high-throughput and high-content technologies combined with powerful computational and statistical modeling tools, aimed at identifying novel dysfunctional systems and predictive marker signatures associated with ND. The goals are to identify common biological denominators or differentiating classifiers across the continuum of ND during detectable stages of pathophysiological progression, characterize systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate endophenotypes and candidate surrogate markers. Achieving these goals is key to the ultimate development of early and effective individualized treatment of ND, such as Alzheimer's disease. The Alzheimer Precision Medicine Initiative (APMI) and cohort program (APMI-CP), as well as the Paris based core of the Sorbonne University Clinical Research Group "Alzheimer Precision Medicine" (GRC-APM) were recently launched to facilitate the passageway from conventional clinical diagnostic and drug development toward breakthrough innovation based on the investigation of the comprehensive biological nature of aging individuals. The APMI movement is gaining momentum to systematically apply both systems neurophysiology and systems biology in exploratory translational neuroscience research on ND.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Department of Radiology, “Athinoula A. Martinos” Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, Rome, Italy
- Institute for Research and Medical Care, IRCCS “San Raffaele Pisana”, Rome, Italy
| | - Filippo Baldacci
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - René S. Bun
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Francesco Cacciola
- Unit of Neurosurgery, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Enrica Cavedo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- IRCCS “San Giovanni di Dio-Fatebenefratelli”, Brescia, Italy
| | - Patrizia A. Chiesa
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Olivier Colliot
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France; Department of Neuroradiology, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Neurology, AP-HP, Hôpital de la Pitié-Salpêtrière, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Paris, France
| | - Cristina-Maria Coman
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Bruno Dubois
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Stanley Durrleman
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France
| | - Maria-Teresa Ferretti
- IREM, Institute for Regenerative Medicine, University of Zurich, Zürich, Switzerland
- ZNZ Neuroscience Center Zurich, Zürich, Switzerland
| | - Nathalie George
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Épinière, ICM, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France
| | - Remy Genthon
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Marie-Odile Habert
- Département de Médecine Nucléaire, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Paris, France
| | - Karl Herholz
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Foudil Lamari
- AP-HP, UF Biochimie des Maladies Neuro-métaboliques, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Stéphane Lehéricy
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle Épinière - ICM, F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Jean Lorenceau
- Institut de la Vision, INSERM, Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, CNRS UMR7210, Paris, France
| | - Christian Neri
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, CNRS UMR 8256, Institut de Biologie Paris-Seine (IBPS), Place Jussieu, F-75005, Paris, France
| | - Robert Nisticò
- Department of Biology, University of Rome “Tor Vergata” & Pharmacology of Synaptic Disease Lab, European Brain Research Institute (E.B.R.I.), Rome, Italy
| | - Francis Nyasse-Messene
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Simone Rossi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Department of Medicine, Surgery and Neurosciences, Section of Human Physiology University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- IU Network Science Institute, Indiana University, Bloomington, IN, USA
| | | | - Andrea Vergallo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicolas Villain
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | | | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Casa di Cura “San Raffaele Cassino”, Cassino, Italy
| | - Simone Lista
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| |
Collapse
|
16
|
|
17
|
Peräkylä J, Sun L, Lehtimäki K, Peltola J, Öhman J, Möttönen T, Ogawa KH, Hartikainen KM. Causal Evidence from Humans for the Role of Mediodorsal Nucleus of the Thalamus in Working Memory. J Cogn Neurosci 2017; 29:2090-2102. [DOI: 10.1162/jocn_a_01176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
The mediodorsal nucleus of the thalamus (MD), with its extensive connections to the lateral pFC, has been implicated in human working memory and executive functions. However, this understanding is based solely on indirect evidence from human lesion and imaging studies and animal studies. Direct, causal evidence from humans is missing. To obtain direct evidence for MD's role in humans, we studied patients treated with deep brain stimulation (DBS) for refractory epilepsy. This treatment is thought to prevent the generalization of a seizure by disrupting the functioning of the patient's anterior nuclei of the thalamus (ANT) with high-frequency electric stimulation. This structure is located superior and anterior to MD, and when the DBS lead is implanted in ANT, tip contacts of the lead typically penetrate through ANT into the adjoining MD. To study the role of MD in human executive functions and working memory, we periodically disrupted and recovered MD's function with high-frequency electric stimulation using DBS contacts reaching MD while participants performed a cognitive task engaging several aspects of executive functions. We hypothesized that the efficacy of executive functions, specifically working memory, is impaired when the functioning of MD is perturbed by high-frequency stimulation. Eight participants treated with ANT-DBS for refractory epilepsy performed a computer-based test of executive functions while DBS was repeatedly switched ON and OFF at MD and at the control location (ANT). In comparison to stimulation of the control location, when MD was stimulated, participants committed 2.26 times more errors in general (total errors; OR = 2.26, 95% CI [1.69, 3.01]) and 2.86 times more working memory-related errors specifically (incorrect button presses; OR = 2.88, CI [1.95, 4.24]). Similarly, participants committed 1.81 more errors in general (OR = 1.81, CI [1.45, 2.24]) and 2.08 times more working memory-related errors (OR = 2.08, CI [1.57, 2.75]) in comparison to no stimulation condition. “Total errors” is a composite score consisting of basic error types and was mostly driven by working memory-related errors. The facts that MD and a control location, ANT, are only few millimeters away from each other and that their stimulation produces very different results highlight the location-specific effect of DBS rather than regionally unspecific general effect. In conclusion, disrupting and recovering MD's function with high-frequency electric stimulation modulated participants' online working memory performance providing causal, in vivo evidence from humans for the role of MD in human working memory.
Collapse
Affiliation(s)
| | | | | | | | - Juha Öhman
- Tampere University Hospital
- University of Tampere
| | | | | | | |
Collapse
|
18
|
Orihara K, Odemuyiwa SO, Stefura WP, Ilarraza R, HayGlass KT, Moqbel R. Neurotransmitter signalling via NMDA receptors leads to decreased T helper type 1-like and enhanced T helper type 2-like immune balance in humans. Immunology 2017; 153:368-379. [PMID: 28940416 DOI: 10.1111/imm.12846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/17/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022] Open
Abstract
Given the pivotal roles that CD4+ T cell imbalance plays in human immune disorders, much interest centres on better understanding influences that regulate human helper T-cell subset dominance in vivo. Here, using primary CD4+ T cells and short-term T helper type 1 (Th1) and Th2-like lines, we investigated roles and mechanisms by which neurotransmitter receptors may influence human type 1 versus type 2 immunity. We hypothesized that N-methyl-d-aspartate receptors (NMDA-R), which play key roles in memory and learning, can also regulate human CD4+ T cell function through induction of excitotoxicity. Fresh primary CD4+ T cells from healthy donors express functional NMDA-R that are strongly up-regulated upon T cell receptor (TCR) mediated activation. Synthetic and physiological NMDA-R agonists elicited Ca2+ flux and led to marked inhibition of type 1 but not type 2 or interleukin-10 cytokine responses. Among CD4+ lines, NMDA and quinolinic acid preferentially reduced cytokine production, Ca2+ flux, proliferation and survival of Th1-like cells through increased induction of cell death whereas Th2-like cells were largely spared. Collectively, the findings demonstrate that (i) NMDA-R is rapidly up-regulated upon CD4+ T cell activation in humans and (ii) Th1 versus Th2 cell functions such as proliferation, cytokine production and cell survival are differentially affected by NMDA-R agonists. Differential cytokine production and proliferative capacity of Th1 versus Th2 cells is attributable in part to increased physiological cell death among fully committed Th1 versus Th2 cells, leading to increased Th2-like dominance. Hence, excitotoxicity, beyond its roles in neuronal plasticity, may contribute to ongoing modulation of human T cell responses.
Collapse
Affiliation(s)
- Kanami Orihara
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Solomon O Odemuyiwa
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - William P Stefura
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Ramses Ilarraza
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kent T HayGlass
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Redwan Moqbel
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Silkis IG. Hypothetical neurochemical mechanisms of paradoxical sleep deficiency in Alzheimer’s disease. NEUROCHEM J+ 2017. [DOI: 10.1134/s181971241702012x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Front Neurosci 2016; 10:584. [PMID: 28082858 PMCID: PMC5186786 DOI: 10.3389/fnins.2016.00584] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery.
Collapse
Affiliation(s)
- Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Marc W Slutzky
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical CenterDurham, NC, USA; Department of Neurobiology, Duke University Medical CenterDurham, NC, USA; Research and Surgery Services, Durham Veterans Affairs Medical CenterDurham, NC, USA
| |
Collapse
|
21
|
Basiago A, Binder DK. Effects of Deep Brain Stimulation on Autonomic Function. Brain Sci 2016; 6:brainsci6030033. [PMID: 27537920 PMCID: PMC5039462 DOI: 10.3390/brainsci6030033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson's disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target.
Collapse
Affiliation(s)
- Adam Basiago
- School of Medicine, University of California, Riverside, CA 92521, USA.
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, 1247 Webber Hall, Riverside, CA 92521, USA.
| |
Collapse
|