1
|
Junaid M, Lee EJ, Lim SB. Single-cell and spatial omics: exploring hypothalamic heterogeneity. Neural Regen Res 2025; 20:1525-1540. [PMID: 38993130 PMCID: PMC11688568 DOI: 10.4103/nrr.nrr-d-24-00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Eun Jeong Lee
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| |
Collapse
|
2
|
Mofatteh M, Mohamed A, Mashayekhi MS, Skandalakis GP, Neudorfer C, Arfaie S, MohanaSundaram A, Sabahi M, Anand A, Aboulhosn R, Liao X, Horn A, Ashkan K. Deep brain stimulation of the hypothalamic region: a systematic review. Acta Neurochir (Wien) 2025; 167:33. [PMID: 39904782 PMCID: PMC11794333 DOI: 10.1007/s00701-025-06430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Deep brain stimulation (DBS) has been successfully used for the treatment of circuitopathies including movement, anxiety, and behavioral disorders. The hypothalamus is a crucial integration center for many peripheral and central pathways relating to cardiovascular, metabolic, and behavioral functions and constitutes a potential target for neuromodulation in treatment-refractory conditions. To conduct a systematic review, investigating hypothalamic targets in DBS, their indications, and the primary clinical findings. METHODS PubMed, Scopus, and Web of Science databases were searched in accordance with the PRISMA guideline to identify papers published in English studying DBS of the hypothalamus in humans. RESULTS After screening 3,148 papers, 34 studies consisting of 412 patients published over two decades were included in the final review. Hypothalamic DBS was indicated in refractory headaches (n = 238, 57.8%), aggressive behavior (n = 100, 24.3%), mild Alzheimer's disease (n = 58, 14.1%), trigeminal neuralgia in multiple sclerosis (n = 5, 1.2%), Prader-Willi syndrome (n = 4, 0.97%), and atypical facial pain (n = 3, 0.73%). The posterior hypothalamus was the most common DBS target site across 30 studies (88.2%). 262 (63.6%) participants were males, and 110 (26.7%) were females. 303 (73.5%) patients were adults whereas 33 (8.0%) were pediatrics. The lowest mean age of participants was 15.25 ± 4.6 years for chronic refractory aggressiveness, and the highest was 68.5 ± 7.9 years in Alzheimer's disease patients. The mean duration of the disease ranged from 2.2 ± 1.7 (mild Alzheimer's disease) to 19.8 ± 10.1 years (refractory headaches). 213 (51.7%) patients across 29 studies (85.3%) reported symptom improvements which ranged from 23.1% to 100%. 25 (73.5%) studies reported complications, most of which were associated with higher voltage stimulations. CONCLUSIONS DBS of the hypothalamus is feasible in selected patients with various refractory conditions ranging from headaches to aggression in both pediatric and adult populations. Future large-scale studies with long-term follow-up are required to validate the safety and efficacy data and extend these findings.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
- Neuro International Collaboration (NIC), London, UK.
| | - Abdulkadir Mohamed
- Medical Sciences Division, University of Oxford, Oxford, UK
- Neuro International Collaboration (NIC), Oxford, UK
| | - Mohammad Sadegh Mashayekhi
- Faculty of Medicine, Division of Neurosurgery, University of Ottawa, Ottawa, ON, Canada
- Neuro International Collaboration (NIC), Vancouver, Ottawa, ON, Canada
| | - Georgios P Skandalakis
- Department of Neurosurgery, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Clemens Neudorfer
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, corporate member of, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Saman Arfaie
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Neurosurgery, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Neuro International Collaboration (NIC), Montreal, QC, Canada
| | | | - Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Ayush Anand
- Koirala Institute of Health Sciences, B. P, Dharan, Nepal
| | | | - Xuxing Liao
- Department of Neurosurgery, First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Departments of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Keyoumars Ashkan
- Neuro International Collaboration (NIC), London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- King's Health Partners Academic Health Sciences Centre, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Caria A. A Hypothalamic Perspective of Human Socioemotional Behavior. Neuroscientist 2024; 30:399-420. [PMID: 36703298 DOI: 10.1177/10738584221149647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Historical evidence from stimulation and lesion studies in animals and humans demonstrated a close association between the hypothalamus and typical and atypical socioemotional behavior. A central hypothalamic contribution to regulation of socioemotional responses was also provided indirectly by studies on oxytocin and arginine vasopressin. However, a limited number of studies have so far directly investigated the contribution of the hypothalamus in human socioemotional behavior. To reconsider the functional role of the evolutionarily conserved hypothalamic region in regulating human social behavior, here I provide a synthesis of neuroimaging investigations showing that the hypothalamus is involved in multiple and diverse facets of human socioemotional behavior through widespread functional interactions with other cortical and subcortical regions. These neuroimaging findings are then integrated with recent optogenetics studies in animals demonstrating that the hypothalamus plays a more active role in eliciting socioemotional responses and is not simply a downstream effector of higher-level brain systems. Building on the aforementioned evidence, the hypothalamus is argued to substantially contribute to a continuum of human socioemotional behaviors promoting survival and preservation of the species that extends from exploratory and approaching responses facilitating social bonding to aggressive and avoidance responses aimed to protect and defend formed relationships.
Collapse
Affiliation(s)
- Andrea Caria
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
4
|
Kovács P, Kitka T, Bali ZK, Nagy LV, Bodó A, Kovács-Öller T, Péterfi Z, Hernádi I. Chemogenetic inhibition of the lateral hypothalamus effectively reduces food intake in rats in a translational proof-of-concept study. Sci Rep 2024; 14:11402. [PMID: 38762561 PMCID: PMC11102470 DOI: 10.1038/s41598-024-62014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Despite the therapeutic potential of chemogenetics, the method lacks comprehensive preclinical validation, hindering its progression to human clinical trials. We aimed to validate a robust but simple in vivo efficacy assay in rats which could support chemogenetic drug discovery by providing a quick, simple and reliable animal model. Key methodological parameters such as adeno-associated virus (AAV) serotype, actuator drug, dose, and application routes were investigated by measuring the food-intake-reducing effect of chemogenetic inhibition of the lateral hypothalamus (LH) by hM4D(Gi) designer receptor stimulation. Subcutaneous deschloroclozapine in rats transfected with AAV9 resulted in a substantial reduction of food-intake, comparable to the efficacy of exenatide. We estimated that the effect of deschloroclozapine lasts 1-3 h post-administration. AAV5, oral administration of deschloroclozapine, and clozapine-N-oxide were also effective but with slightly less potency. The strongest effect on food-intake occurred within the first 30 min after re-feeding, suggesting this as the optimal experimental endpoint. This study demonstrates that general chemogenetic silencing of the LH can be utilized as an optimal, fast and reliable in vivo experimental model for conducting preclinical proof-of-concept studies in order to validate the in vivo effectiveness of novel chemogenetic treatments. We also hypothesize based on our results that universal LH silencing with existing and human translatable genetic neuroengineering techniques might be a viable strategy to affect food intake and influence obesity.
Collapse
Affiliation(s)
- Péter Kovács
- VRG Therapeutics, Füvészkert utca 3., Budapest, 1083, Hungary
| | - Tamás Kitka
- VRG Therapeutics, Füvészkert utca 3., Budapest, 1083, Hungary
| | - Zsolt Kristóf Bali
- Grastyán Endre Translational Research Centre, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary.
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 20 Ifjúság str., Pécs, 7624, Hungary.
| | - Lili Veronika Nagy
- Grastyán Endre Translational Research Centre, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 20 Ifjúság str., Pécs, 7624, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
| | - Angelika Bodó
- Grastyán Endre Translational Research Centre, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 20 Ifjúság str., Pécs, 7624, Hungary
| | - Tamás Kovács-Öller
- Department of Neurobiology, Faculty of Sciences, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
- Histology and Light Microscopy Core Facility, Szentágothai Research Centre, University of Pécs, 20 Ifjúság str., Pécs, 7624, Hungary
| | - Zalán Péterfi
- VRG Therapeutics, Füvészkert utca 3., Budapest, 1083, Hungary
| | - István Hernádi
- Grastyán Endre Translational Research Centre, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 20 Ifjúság str., Pécs, 7624, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
- Institute of Physiology, Medical School, University of Pécs, 12 Szigeti út, Pécs, 7624, Hungary
| |
Collapse
|
5
|
Ruggeri A, Nerland S, Mørch-Johnsen L, Jørgensen KN, Barth C, Wortinger LA, Andreou D, Andreassen OA, Agartz I. Hypothalamic Subunit Volumes in Schizophrenia and Bipolar Spectrum Disorders. Schizophr Bull 2024; 50:533-544. [PMID: 38206841 PMCID: PMC11059784 DOI: 10.1093/schbul/sbad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND The hypothalamus is central to many hormonal and autonomous nervous system pathways. Emerging evidence indicates that these pathways may be disrupted in schizophrenia and bipolar disorder. Yet, few studies have examined the volumes of hypothalamic subunits in these patient groups. We compared hypothalamic subunit volumes in individuals with psychotic disorders to healthy controls. STUDY DESIGN We included 344 patients with schizophrenia spectrum disorders (SCZ), 340 patients with bipolar disorders (BPD), and 684 age- and-sex-matched healthy controls (CTR). Total hypothalamus and five hypothalamic subunit volumes were extracted from T1-weighted magnetic resonance imaging (MRI) using an automated Bayesian segmentation method. Regression models, corrected for age, age2, sex, and segmentation-based intracranial volume (sbTIV), were used to examine diagnostic group differences, interactions with sex, and associations with clinical symptoms, antipsychotic medication, antidepressants and mood stabilizers. STUDY RESULTS SCZ had larger volumes in the left inferior tubular subunit and smaller right anterior-inferior, right anterior-superior, and right posterior hypothalamic subunits compared to CTR. BPD did not differ significantly from CTR for any hypothalamic subunit volume, however, there was a significant sex-by-diagnosis interaction. Analyses stratified by sex showed smaller right hypothalamus and right posterior subunit volumes in male patients, but not female patients, relative to same-sex controls. There was a significant association between BPD currently taking antipsychotic medication and the left inferior tubular subunits volumes. CONCLUSIONS Our results show regional-specific alterations in hypothalamus subunit volumes in individuals with SCZ, with relevance to HPA-axis dysregulation, circadian rhythm disruption, and cognition impairment.
Collapse
Affiliation(s)
- Aurora Ruggeri
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Grålum, Norway
- Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laura Anne Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dimitrios Andreou
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
6
|
Shimada M, Omae Y, Kakita A, Gabdulkhaev R, Hitomi Y, Miyagawa T, Honda M, Fujimoto A, Tokunaga K. Identification of region-specific gene isoforms in the human brain using long-read transcriptome sequencing. SCIENCE ADVANCES 2024; 10:eadj5279. [PMID: 38266094 PMCID: PMC10807796 DOI: 10.1126/sciadv.adj5279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
In neurological and neuropsychiatric diseases, different brain regions are affected, and differences in gene expression patterns could potentially explain this mechanism. However, limited studies have precisely explored gene expression in different regions of the human brain. In this study, we performed long-read RNA sequencing on three different brain regions of the same individuals: the cerebellum, hypothalamus, and temporal cortex. Despite stringent filtering criteria excluding isoforms predicted to be artifacts, over half of the isoforms expressed in multiple samples across multiple regions were found to be unregistered in the GENCODE reference. We then especially focused on genes with different major isoforms in each brain region, even with similar overall expression levels, and identified that many of such genes including GAS7 might have distinct roles in dendritic spine and neuronal formation in each region. We also found that DNA methylation might, in part, drive different isoform expressions in different regions. These findings highlight the significance of analyzing isoforms expressed in disease-relevant sites.
Collapse
Affiliation(s)
- Mihoko Shimada
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ramil Gabdulkhaev
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Taku Miyagawa
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Makoto Honda
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Japan Somnology Center and Seiwa Hospital, Institute of Neuropsychiatry, Tokyo, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| |
Collapse
|
7
|
Qiao X, Lu L, Zhou K, Tan L, Liu X, Ni J, Hou Y, Liang J, Dou H. The correlation between proteoglycan 2 and neuropsychiatric systemic lupus erythematosus. Clin Immunol 2022; 239:109042. [PMID: 35568106 DOI: 10.1016/j.clim.2022.109042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023]
Abstract
The proposed pathogenesis of neuropsychiatric systemic lupus erythematosus (NPSLE) mainly includes ischemia and neuroinflammation mechanisms. Protein encoded by Proteoglycan 2 (PRG2) mRNA is involved in the immune process related to eosinophils, also being found in the placenta and peripheral blood of pregnant women. We evaluated the correlation between PRG2 and NPSLE for the first time and found that PRG2 protein is overexpressed in the serum of patients with NPSLE and correlated with the SLE disease activity index (SLEDAI) subset scores of psychosis. Moreover, we investigated the correlation between hippocampal PRG2 level and hippocampally dependent learning and memory ability in MRL/lpr mice, and discovered that the number of PRG2+GFAP+ astrocytes in the cortex and hypothalamus and the number of PRG2+IBA-1+ microglia in the hippocampus and cortex significantly increased in the MRL/lpr mice. These data provided a reference for the follow-up exploration of the role of PRG2 in SLE or other diseases.
Collapse
Affiliation(s)
- Xiaoyue Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Kangxing Zhou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Xuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
8
|
Parvizi J, Veit MJ, Barbosa DA, Kucyi A, Perry C, Parker JJ, Shivacharan RS, Chen F, Yih J, Gross JJ, Fisher R, McNab JA, Falco-Walter J, Halpern CH. Complex negative emotions induced by electrical stimulation of the human hypothalamus. Brain Stimul 2022; 15:615-623. [DOI: 10.1016/j.brs.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022] Open
|
9
|
Khahera AS, Li Y, Steinberg GK. Cavernous malformations of the hypothalamus: a single-institution series of 12 cases and review of the literature. J Neurosurg 2021; 135:1617-1626. [PMID: 34020425 DOI: 10.3171/2020.10.jns201419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE There remains a paucity of literature on hypothalamic cavernous malformations (HCMs). Here, the authors present the largest series of HCMs to date and review the literature to gain additional insight into this rare disease subset. METHODS A prospectively managed database was retrospectively reviewed for patients diagnosed with symptomatic HCM and treated surgically between 1987 and 2019. Data gathered included demographics, presenting signs, radiological measurements, surgical approach, and postoperative events. Functional outcome was measured using the modified Rankin Scale (mRS) and Glasgow Outcome Scale-Extended (GOSE) pre- and postoperatively. A PRISMA guideline systematic review of HCM in the literature was performed. RESULTS Our cohort study consisted of 12 patients with symptomatic, and radiographically confirmed, HCM treated with microsurgery by the senior author (G.K.S.). An additional 16 surgically or conservatively managed patients were also identified from the literature, and the authors analyzed the data of all 28 patients (with 54% of patients being male; mean age 39 ± 16 years, range 10-68 years). Patients harboring HCMs most commonly presented with headache (16/28, 57%), short-term memory impairment (11/28, 39%), and gait disturbance (8/28, 32%). Radiographically, lesions most commonly involved the mammillary region (18/23, 78%), the tuberal/infundibulum region (13/23, 57%), and the preoptic/lamina terminalis region (12/23, 52%), with a mean diameter of 2.5 ± 1.4 cm (range 0.8-7 cm) at presentation. Acute hemorrhage was identified in 96% (23/24) of patients on presentation, with 96% (23/24) intraparenchymal and 29% (7/24) intraventricular. Of 24 patients who were managed surgically, gross-total resection (GTR) was achieved in 88% (21/24) of cases. There were no reports of perioperative infarction or mortality. With a mean follow-up period of 41 months (range 0.5-309 months), 77% (20/26) of patients experienced functional improvement, while 12% (3/26) had no change, and 12% (3/26) experienced increased disability. In our cohort of 12 patients, 83% (10/12) continued to report symptoms at the last follow-up (mean 4.8 years, range 0.1-25.7 years). However, there was a significant improvement in mRS score noted after surgery (mean 1.4 vs 3.1, p = 0.0026) and a trend toward improvement in GOSE score (mean 6.3 vs 5.1, p = 0.09). CONCLUSIONS Hemorrhage from HCMs can cause a symptomatic mass effect on adjacent eloquent structures. While patients are unlikely to be deficit free following surgery, GTR allows for functional improvement and reduces recurrent hemorrhage rates. Microsurgery remains a viable option for symptomatic HCMs in experienced hands.
Collapse
|
10
|
He Z, Jiang Y, Gu S, Wu D, Qin D, Feng G, Ma X, Huang JH, Wang F. The Aversion Function of the Limbic Dopaminergic Neurons and Their Roles in Functional Neurological Disorders. Front Cell Dev Biol 2021; 9:713762. [PMID: 34616730 PMCID: PMC8488171 DOI: 10.3389/fcell.2021.713762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
The Freudian theory of conversion suggested that the major symptoms of functional neurological disorders (FNDs) are due to internal conflicts at motivation, especially at the sex drive or libido. FND patients might behave properly at rewarding situations, but they do not know how to behave at aversive situations. Sex drive is the major source of dopamine (DA) release in the limbic area; however, the neural mechanism involved in FND is not clear. Dopaminergic (DAergic) neurons have been shown to play a key role in processing motivation-related information. Recently, DAergic neurons are found to be involved in reward-related prediction error, as well as the prediction of aversive information. Therefore, it is suggested that DA might change the rewarding reactions to aversive reactions at internal conflicts of FND. So DAergic neurons in the limbic areas might induce two major motivational functions: reward and aversion at internal conflicts. This article reviewed the recent advances on studies about DAergic neurons involved in aversive stimulus processing at internal conflicts and summarizes several neural pathways, including four limbic system brain regions, which are involved in the processing of aversion. Then the article discussed the vital function of these neural circuits in addictive behavior, depression treatment, and FNDs. In all, this review provided a prospect for future research on the aversion function of limbic system DA neurons and the therapy of FNDs.
Collapse
Affiliation(s)
- Zhengming He
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yao Jiang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Dandan Wu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Duo Qin
- School of Foreign Languages, China University of Geosciences, Wuhan, China
| | - Guangkui Feng
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianjun Ma
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jason H Huang
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Scullen T, Teja N, Song SH, Couldwell M, Carr C, Mathkour M, Lee DJ, Tubbs RS, Dallapiazza RF. Use of stereoelectroencephalography beyond epilepsy: a systematic review. World Neurosurg 2021; 155:96-108. [PMID: 34217862 DOI: 10.1016/j.wneu.2021.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Tyler Scullen
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Nikhil Teja
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Hanover, New Hampshire, USA
| | - Seo Ho Song
- Geisel School of Medicine, Dartmouth University, Hanover, New Hampshire, USA
| | - Mitchell Couldwell
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Chris Carr
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Mansour Mathkour
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Darrin J Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - R Shane Tubbs
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA; Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana, USA; Department of Anatomical Sciences, St. George's University, Grenada
| | - Robert F Dallapiazza
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA.
| |
Collapse
|
12
|
Wang M, Jiao Y, Zeng C, Zhang C, He Q, Yang Y, Tu W, Qiu H, Shi H, Zhang D, Kang D, Wang S, Liu AL, Jiang W, Cao Y, Zhao J. Chinese Cerebrovascular Neurosurgery Society and Chinese Interventional & Hybrid Operation Society, of Chinese Stroke Association Clinical Practice Guidelines for Management of Brain Arteriovenous Malformations in Eloquent Areas. Front Neurol 2021; 12:651663. [PMID: 34177760 PMCID: PMC8219979 DOI: 10.3389/fneur.2021.651663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: The aim of this guideline is to present current and comprehensive recommendations for the management of brain arteriovenous malformations (bAVMs) located in eloquent areas. Methods: An extended literature search on MEDLINE was performed between Jan 1970 and May 2020. Eloquence-related literature was further screened and interpreted in different subcategories of this guideline. The writing group discussed narrative text and recommendations through group meetings and online video conferences. Recommendations followed the Applying Classification of Recommendations and Level of Evidence proposed by the American Heart Association/American Stroke Association. Prerelease review of the draft guideline was performed by four expert peer reviewers and by the members of Chinese Stroke Association. Results: In total, 809 out of 2,493 publications were identified to be related to eloquent structure or neurological functions of bAVMs. Three-hundred and forty-one publications were comprehensively interpreted and cited by this guideline. Evidence-based guidelines were presented for the clinical evaluation and treatment of bAVMs with eloquence involved. Topics focused on neuroanatomy of activated eloquent structure, functional neuroimaging, neurological assessment, indication, and recommendations of different therapeutic managements. Fifty-nine recommendations were summarized, including 20 in Class I, 30 in Class IIa, 9 in Class IIb, and 2 in Class III. Conclusions: The management of eloquent bAVMs remains challenging. With the evolutionary understanding of eloquent areas, the guideline highlights the assessment of eloquent bAVMs, and a strategy for decision-making in the management of eloquent bAVMs.
Collapse
Affiliation(s)
- Mingze Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaoqi Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wenjun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hancheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - A-li Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Gamma Knife Center, Beijing Neurosurgical Institute, Beijing, China
| | - Weijian Jiang
- Department of Vascular Neurosurgery, Chinese People's Liberation Army Rocket Army Characteristic Medical Center, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Kuijper FM, Mahajan UV, Ku S, Barbosa DAN, Alessi SM, Stein SC, Kampman KM, Bentzley BS, Halpern CH. Deep Brain Stimulation Compared With Contingency Management for the Treatment of Cocaine Use Disorders: A Threshold and Cost-Effectiveness Analysis. Neuromodulation 2021; 25:253-262. [PMID: 34028131 DOI: 10.1111/ner.13410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/13/2021] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Cocaine is the second most frequently used illicit drug worldwide (after cannabis), and cocaine use disorder (CUD) related deaths increased globally by 80% from 1990 to 2013. There is yet to be a regulatory-approved treatment. Emerging preclinical evidence indicates that deep brain stimulation (DBS) of the nucleus accumbens may be a therapeutic option. Prior to expanding the costly investigation of DBS for treatment of CUD, it is important to ensure societal cost-effectiveness. AIMS We conducted a threshold and cost-effectiveness analysis to determine the success rate at which DBS would be equivalent to contingency management (CM), recently identified as the most efficacious therapy for treatments of CUDs. MATERIALS AND METHODS Quality of life, efficacy, and safety parameters for CM were obtained from previous literature. Costs were calculated from a societal perspective. Our model predicted the utility benefit based on quality-adjusted-life-years (QALYs) and incremental-cost-effectiveness-ratio resulting from two treatments on a one-, two-, and five-year timeline. RESULTS On a one-year timeline, DBS would need to impart a success rate (i.e., cocaine free) of 70% for it to yield the same utility benefit (0.492 QALYs per year) as CM. At no success rate would DBS be more cost-effective (incremental-cost-effectiveness-ratio <$50,000) than CM during the first year. Nevertheless, as DBS costs are front-loaded, DBS would need to achieve success rates of 74% and 51% for its cost-effectiveness to exceed that of CM over a two- and five-year period, respectively. CONCLUSIONS We find DBS would not be cost-effective in the short-term (one year) but may be cost-effective in longer timelines. Since DBS holds promise to potentially be a cost-effective treatment for CUDs, future randomized controlled trials should be performed to assess its efficacy.
Collapse
Affiliation(s)
- Fiene Marie Kuijper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Uma V Mahajan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Seul Ku
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Sherman C Stein
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle M Kampman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brandon S Bentzley
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Rizzi M, Gambini O, Marras CE. Posterior hypothalamus as a target in the treatment of aggression: From lesioning to deep brain stimulation. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:95-106. [PMID: 34266615 DOI: 10.1016/b978-0-12-819973-2.00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intermittent explosive disorder can be described as a severe "affective aggression" condition, for which drugs and other supportive therapies are not fully effective. In the first half of the 19th century, experimental studies progressively increased knowledge of aggressive disorders. A neurobiologic approach revealed the posterior hypothalamic region as a key structure for the modulation of aggression. In the 1960s, patients with severe aggressive disorder, frequently associated with intellectual disability, were treated by bilateral stereotactic lesioning of the posterior hypothalamic area, with efficacy. This therapy was later abandoned because of issues related to the misuse of psychosurgery. In the last 2 decades, however, the same diencephalic target has been selected for the reversible treatment by deep brain stimulation, with success. This chapter presents a comprehensive approach to posterior hypothalamic surgery for the treatment of severely aggressive patients and discusses the experimental steps that allowed this surgical target to be selected. Surgical experiences are reported, together with considerations on target features and related encephalic circuits.
Collapse
Affiliation(s)
- Michele Rizzi
- "C.Munari" Epilepsy Surgery Center, Department of Neuroscience, ASST GOM Niguarda, Milan, Italy.
| | - Orsola Gambini
- Department of Health of Sciences, University of Milan, Milan, Italy; CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
15
|
Bernstein HG, Keilhoff G, Steiner J. The implications of hypothalamic abnormalities for schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:107-120. [PMID: 34266587 DOI: 10.1016/b978-0-12-819973-2.00008-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Until a few years ago, the hypothalamus was believed to play only a marginal role in schizophrenia pathophysiology. However, recent findings show that this rather small brain region involved in many pathways found disrupted-in schizophrenia. Gross anatomic abnormalities (volume changes of the third ventricle, the hypothalamus, and its individual nuclei) as well as alterations at the cellular level (circumscribed loss of neurons) can be observed. Further, increased or decreased expression of hypothalamic peptides such as oxytocin, vasopressin, several factors involved in the regulation of appetite and satiety, endogenous opiates, products of schizophrenia susceptibility genes as well as of enzymes involved in neurotransmitter and neuropeptide metabolism have been reported in schizophrenia and/or animal models of the disease. Remarkably, although profound disturbances of the hypothalamus-pituitary-adrenal axis, hypothalamus-pituitary-thyroid axis, and the hypothalamus-pituitary-gonadal axis are typical signs of schizophrenia, there is currently no evidence for alterations in the expression of hypothalamic-releasing and inhibiting factors that control these hormonal axes. Finally, the implications of hypothalamus for disease-related disturbances of the sleep-wakefulness cycle and neuroimmune dysfunctions in schizophrenia are outlined.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany.
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
16
|
Miller HA, Dean ES, Pletcher SD, Leiser SF. Cell non-autonomous regulation of health and longevity. eLife 2020; 9:62659. [PMID: 33300870 PMCID: PMC7728442 DOI: 10.7554/elife.62659] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022] Open
Abstract
As the demographics of the modern world skew older, understanding and mitigating the effects of aging is increasingly important within biomedical research. Recent studies in model organisms demonstrate that the aging process is frequently modified by an organism’s ability to perceive and respond to changes in its environment. Many well-studied pathways that influence aging involve sensory cells, frequently neurons, that signal to peripheral tissues and promote survival during the presence of stress. Importantly, this activation of stress response pathways is often sufficient to improve health and longevity even in the absence of stress. Here, we review the current landscape of research highlighting the importance of cell non-autonomous signaling in modulating aging from C. elegans to mammals. We also discuss emerging concepts including retrograde signaling, approaches to mapping these networks, and development of potential therapeutics.
Collapse
Affiliation(s)
- Hillary A Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, United States
| | - Elizabeth S Dean
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States
| | - Scott D Pletcher
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States
| | - Scott F Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
17
|
Katsevman GA, Razzaq B, Serrano CA. Hypothalamic Cavernomas: Pediatric Case Report with 8.5-Year Follow-up and Review of the Literature. World Neurosurg 2020; 146:6-13. [PMID: 33080404 DOI: 10.1016/j.wneu.2020.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cavernous malformations (cavernomas) are angiographically occult vascular lesions that can present symptomatically or be discovered incidentally. Rarely, they present in the hypothalamus or in children. CASE DESCRIPTION We describe the case of a 14-year-old male patient who presented with headaches and fever and was found to have a hypothalamic cavernoma that hemorrhaged. It was managed expectantly, with 1 rehemorrhage 21 months later, and the patient remains asymptomatic to this day aside from headaches. CONCLUSIONS This is to our knowledge the youngest case of a hypothalamic cavernoma to be reported and includes 8.5 years of follow-up and imaging. In addition, a literature review is performed that summarizes the 11 previously reported cases of hypothalamic cavernomas, including associated symptoms, management options, and outcomes.
Collapse
Affiliation(s)
- Gennadiy A Katsevman
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia, USA.
| | - Bayan Razzaq
- School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Cesar A Serrano
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
18
|
Neural mechanisms of aggression across species. Nat Neurosci 2020; 23:1317-1328. [PMID: 33046890 DOI: 10.1038/s41593-020-00715-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Aggression is a social behavior essential for securing resources and defending oneself and family. Thanks to its indispensable function in competition and thus survival, aggression exists widely across animal species, including humans. Classical works from Tinbergen and Lorenz concluded that instinctive behaviors including aggression are mediated by hardwired brain circuitries that specialize in processing certain sensory inputs to trigger stereotyped motor outputs. They further suggest that instinctive behaviors are influenced by an animal's internal state and past experiences. Following this conceptual framework, here we review our current understanding regarding the neural substrates underlying aggression generation, highlighting an evolutionarily conserved 'core aggression circuit' composed of four subcortical regions. We further discuss the neural mechanisms that support changes in aggression based on the animal's internal state. We aim to provide an overview of features of aggression and the relevant neural substrates across species, highlighting findings in rodents, primates and songbirds.
Collapse
|
19
|
Neudorfer C, Germann J, Elias GJB, Gramer R, Boutet A, Lozano AM. A high-resolution in vivo magnetic resonance imaging atlas of the human hypothalamic region. Sci Data 2020; 7:305. [PMID: 32934244 PMCID: PMC7492465 DOI: 10.1038/s41597-020-00644-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
The study of the hypothalamus and its topological changes provides valuable insights into underlying physiological and pathological processes. Owing to technological limitations, however, in vivo atlases detailing hypothalamic anatomy are currently lacking in the literature. In this work we aim to overcome this shortcoming by generating a high-resolution in vivo anatomical atlas of the human hypothalamic region. A minimum deformation averaging (MDA) pipeline was employed to produce a normalized, high-resolution template from multimodal magnetic resonance imaging (MRI) datasets. This template was used to delineate hypothalamic (n = 13) and extrahypothalamic (n = 12) gray and white matter structures. The reliability of the atlas was evaluated as a measure for voxel-wise volume overlap among raters. Clinical application was demonstrated by superimposing the atlas into datasets of patients diagnosed with a hypothalamic lesion (n = 1) or undergoing hypothalamic (n = 1) and forniceal (n = 1) deep brain stimulation (DBS). The present template serves as a substrate for segmentation of brain structures, specifically those featuring low contrast. Conversely, the segmented hypothalamic atlas may inform DBS programming procedures and may be employed in volumetric studies.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Robert Gramer
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada.
| |
Collapse
|
20
|
Morphofunctional Alterations of the Hypothalamus and Social Behavior in Autism Spectrum Disorders. Brain Sci 2020; 10:brainsci10070435. [PMID: 32650534 PMCID: PMC7408098 DOI: 10.3390/brainsci10070435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
An accumulating body of evidence indicates a tight relationship between the endocrine system and abnormal social behavior. Two evolutionarily conserved hypothalamic peptides, oxytocin and arginine-vasopressin, because of their extensively documented function in supporting and regulating affiliative and socio-emotional responses, have attracted great interest for their critical implications for autism spectrum disorders (ASD). A large number of controlled trials demonstrated that exogenous oxytocin or arginine-vasopressin administration can mitigate social behavior impairment in ASD. Furthermore, there exists long-standing evidence of severe socioemotional dysfunctions after hypothalamic lesions in animals and humans. However, despite the major role of the hypothalamus for the synthesis and release of oxytocin and vasopressin, and the evident hypothalamic implication in affiliative behavior in animals and humans, a rather small number of neuroimaging studies showed an association between this region and socioemotional responses in ASD. This review aims to provide a critical synthesis of evidences linking alterations of the hypothalamus with impaired social cognition and behavior in ASD by integrating results of both anatomical and functional studies in individuals with ASD as well as in healthy carriers of oxytocin receptor (OXTR) genetic risk variant for ASD. Current findings, although limited, indicate that morphofunctional anomalies are implicated in the pathophysiology of ASD and call for further investigations aiming to elucidate anatomical and functional properties of hypothalamic nuclei underlying atypical socioemotional behavior in ASD.
Collapse
|
21
|
LaBella A, Cao X, Petersen E, Lubinsky R, Biegon A, Zhao W, Goldan AH. High-Resolution Depth-Encoding PET Detector Module with Prismatoid Light-Guide Array. J Nucl Med 2020; 61:1528-1533. [PMID: 32111684 DOI: 10.2967/jnumed.119.239343] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
Depth-encoding detectors with single-ended readout provide a practical, cost-effective approach for constructing high-resolution and high-sensitivity PET scanners. However, the current iteration of such detectors uses a uniform glass light-guide to achieve depth encoding, resulting in nonuniform performance throughout the detector array due to suboptimal intercrystal light sharing. We introduce Prism-PET, a single-ended-readout PET detector module with a segmented light-guide composed of an array of prismatoids that introduce enhanced, deterministic light sharing. Methods: High-resolution PET detector modules were fabricated with single-ended readout of polished multicrystal lutetium yttrium orthosilicate scintillator arrays directly coupled 4-to-1 and 9-to-1 to arrays of 3 × 3 mm silicon photomultiplier pixels. Each scintillator array was coupled at the nonreadout side to a light-guide (one 4-to-1 module with a uniform glass light-guide, one 4-to-1 Prism-PET module, and one 9-to-1 Prism-PET module) to introduce intercrystal light sharing, which closely mimics the behavior of dual-ended readout, with the additional benefit of improved crystal identification. Flood histogram data were acquired using a 3-MBq 22Na source to characterize crystal identification and energy resolution. Lead collimation was used to acquire data at specific depths to determine depth-of-interaction (DOI) resolution. Results: The flood histogram measurements showed excellent and uniform crystal separation throughout the Prism-PET modules, whereas the uniform glass light-guide module had performance degradation at the edges and corners. A DOI resolution of 5.0 mm full width at half maximum (FWHM) and an energy resolution of 13% FWHM were obtained in the uniform glass light-guide module. By comparison, the 4-to-1 coupled Prism-PET module achieved a DOI resolution of 2.5 mm FWHM and an energy resolution of 9% FWHM. Conclusion: PET scanners based on our Prism-PET modules with segmented prismatoid light-guide arrays can achieve high and uniform spatial resolution (9-to-1 coupling with ∼1-mm crystals), high sensitivity (20-mm-thick detectors and intercrystal Compton scatter recovery), good energy and timing resolutions (using polished crystals and after applying DOI correction), and compact size (depth encoding eliminates parallax error and permits smaller ring-diameter).
Collapse
Affiliation(s)
- Andy LaBella
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York
| | - Xinjie Cao
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York; and
| | - Eric Petersen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, New York
| | - Rick Lubinsky
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Anat Biegon
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Wei Zhao
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Amir H Goldan
- Department of Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
22
|
Ma S, Zhang C, Yuan TF, Steele D, Voon V, Sun B. Neurosurgical treatment for addiction: lessons from an untold story in China and a path forward. Natl Sci Rev 2019; 7:702-712. [PMID: 34692088 PMCID: PMC8288968 DOI: 10.1093/nsr/nwz207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Addiction is a major public-health crisis associated with significant disability and mortality. Although various pharmacological and behavioral treatments are currently available, the clinical efficacy of these treatments is limited. Given this situation, there is a growing interest in finding an effective neurosurgical treatment for addiction. First, we discuss the use of ablative surgery in treating addiction. We focus on the rise and fall of nucleus accumbens ablation for addiction in China. Subsequently, we review recent studies that have explored the efficacy and safety of deep-brain-stimulation treatment for addiction. We conclude that neurosurgical procedures, particularly deep-brain stimulation, have a potentially valuable role in the management of otherwise intractable addictive disorders. Larger well-controlled clinical trials, however, are needed to assess clinical efficacy and safety. We end by discussing several key issues involved in this clinical field and identifying some areas of progress.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ti-fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Douglas Steele
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee DD1 4HN, UK
| | - Valerie Voon
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Bomin Sun
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
23
|
Roberts BL, Bennett BJ, Bennett CM, Carroll JM, Dalbøge LS, Hall C, Hassouneh W, Heppner KM, Kirigiti MA, Lindsley SR, Tennant KG, True CA, Whittle A, Wolf AC, Roberts CT, Tang-Christensen M, Sleeman MW, Cowley MA, Grove KL, Kievit P. Reelin is modulated by diet-induced obesity and has direct actions on arcuate proopiomelanocortin neurons. Mol Metab 2019; 26:18-29. [PMID: 31230943 PMCID: PMC6667498 DOI: 10.1016/j.molmet.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 11/26/2022] Open
Abstract
Objective Reelin (RELN) is a large glycoprotein involved in synapse maturation and neuronal organization throughout development. Deficits in RELN signaling contribute to multiple psychological disorders, such as autism spectrum disorder, schizophrenia, and bipolar disorder. Nutritional stress alters RELN expression in brain regions associated with these disorders; however, the involvement of RELN in the neural circuits involved in energy metabolism is unknown. The RELN receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR) are involved in lipid metabolism and expressed in the hypothalamus. Here we explored the involvement of RELN in hypothalamic signaling and the impact of diet-induced obesity (DIO) on this system. Methods Adult male mice were fed a chow diet or maintained on a high-fat diet (HFD) for 12–16 weeks. HFD-fed DIO mice exhibited decreased ApoER2 and VLDLR expression and increased RELN protein in the hypothalamus. Electrophysiology was used to determine the mechanism by which the central fragment of RELN (CF-RELN) acts on arcuate nucleus (ARH) satiety-promoting proopiomelanocortin (POMC) neurons and the impact of DIO on this circuitry. Results CF-RELN exhibited heterogeneous presynaptic actions on inhibitory inputs onto ARH-POMC-EGFP neurons and consistent postsynaptic actions. Additionally, central administration of CF-RELN caused a significant increase in ARH c-Fos expression and an acute decrease in food intake and body weight. Conclusions We conclude that RELN signaling is modulated by diet, that RELN is involved in synaptic signaling onto ARH-POMC neurons, and that altering central CF-RELN levels can impact food intake and body weight. Diet-induced obesity alters reelin protein levels and expression of ApoER2 and VLDLR. Reelin has direct, but divergent actions on GABAergic inputs onto POMC neurons. Central administration of reelin protein decreases food intake and body weight.
Collapse
Affiliation(s)
- Brandon L Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Baylin J Bennett
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Camdin M Bennett
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Julie M Carroll
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | | | - Colin Hall
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Wafa Hassouneh
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | | | - Melissa A Kirigiti
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Sarah R Lindsley
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Katherine G Tennant
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Cadence A True
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Andrew Whittle
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Anitra C Wolf
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | | | - Mark W Sleeman
- Department of Physiology, Monash University Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Michael A Cowley
- Department of Physiology, Monash University Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Kevin L Grove
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA.
| |
Collapse
|
24
|
Formolo DA, Gaspar JM, Melo HM, Eichwald T, Zepeda RJ, Latini A, Okun MS, Walz R. Deep Brain Stimulation for Obesity: A Review and Future Directions. Front Neurosci 2019; 13:323. [PMID: 31057350 PMCID: PMC6482165 DOI: 10.3389/fnins.2019.00323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
The global prevalence of obesity has been steadily increasing. Although pharmacotherapy and bariatric surgeries can be useful adjuvants in the treatment of morbid obesity, they may lose long-term effectiveness. Obesity result largely from unbalanced energy homeostasis. Palatable and densely caloric foods may affect the brain overlapped circuits involved with homeostatic hypothalamus and hedonic feeding. Deep brain stimulation (DBS) consists of delivering electrical impulses to specific brain targets to modulate a disturbed neuronal network. In selected patients, DBS has been shown to be safe and effective for movement disorders. We review all the cases reports and series of patients treated with DBS for obesity using a PubMed search and will address the following obesity-related issues: (i) the hypothalamic regulation of homeostatic feeding; (ii) the reward mesolimbic circuit and hedonic feeding; (iii) basic concepts of DBS as well as the rationale for obesity treatment; (iv) perspectives and challenges in obesity DBS. The small number of cases provides preliminary evidence for the safety and the tolerability of a potential DBS approach. The ventromedial (n = 2) and lateral (n = 8) hypothalamic nuclei targets have shown mixed and disappointing outcomes. Although nucleus accumbens (n = 7) targets were more encouraging for the outcomes of body weight reduction and behavioral control for eating, there was one suicide reported after 27 months of follow-up. The authors did not attribute the suicide to DBS therapy. The identification of optimal brain targets, appropriate programming strategies and the development of novel technologies will be important as next steps to move DBS closer to a clinical application. The identification of electrical control signals may provide an opportunity for closed-loop adaptive DBS systems to address obesity. Metabolic and hormonal sensors such as glycemic levels, leptin, and ghrelin levels are candidate control signals for DBS. Focused excitation or alternatively inhibition of regions of the hypothalamus may provide better outcomes compared to non-selective DBS. Utilization of the NA delta oscillation or other physiological markers from one or multiple regions in obesity-related brain network is a promising approach. Experienced multidisciplinary team will be critical to improve the risk-benefit ratio for this approach.
Collapse
Affiliation(s)
- Douglas A Formolo
- Center for Applied Neuroscience, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Joana M Gaspar
- Laboratory of Bioenergetics and Oxidative Stress, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Hiago M Melo
- Center for Applied Neuroscience, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tuany Eichwald
- Laboratory of Bioenergetics and Oxidative Stress, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ramiro Javier Zepeda
- Department of Neuroscience, Faculty of Medicine, Chile University and Health Science Institute, O'Higgins University, Santiago, Chile
| | - Alexandra Latini
- Laboratory of Bioenergetics and Oxidative Stress, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Roger Walz
- Center for Applied Neuroscience, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Brazil.,Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, United States.,Graduate Program in Medical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.,Department of Internal Medicine, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
25
|
The hypothalamus and neuropsychiatric disorders: psychiatry meets microscopy. Cell Tissue Res 2018; 375:243-258. [DOI: 10.1007/s00441-018-2849-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
|
26
|
Messina G, Broggi G, Levi V, Franzini A. Deep brain stimulation for trigeminal autonomic cephalalgias. Expert Rev Neurother 2018; 18:421-426. [PMID: 29671647 DOI: 10.1080/14737175.2018.1462702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Introduction: Deep brain stimulation (DBS) of the posterior hypothalamic region (pHyr) has been shown to be efficacious for more than a half of patients suffering from trigeminal autonomic cephalalgias (TACs); nonetheless, controversies about the mechanisms of action and the actual site of stimulation have arisen in recent years.Areas covered: Firstly, a review of the most recent literature on the subject is presented, stressing the critical points that could, in the future, make a difference for optimal management of patients afflicted by these life-threating diseases. Hypothalamic functional anatomy, experimental data and pathophysiological hypotheses are reported.Expert commentary: About 32% of patients who underwent DBS for TACs are pain-free. The determination of the pHyr region seems to be crucial for the generation of pain attack in these pathologies, although other structures are involved in complex mechanisms and circuits that interact with each other. Neurophysiological data, combined with more advanced experimental models, are of primary importance regarding our understanding of what the real target is, and how to overcome the issue of refractory patients.
Collapse
Affiliation(s)
- Giuseppe Messina
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Broggi
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Division of Neurosurgery, Istituto Clinico Città Studi, Milan, Italy
| | - Vincenzo Levi
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Franzini
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
27
|
De Salles AAF, Barbosa DAN, Fernandes F, Abucham J, Nazato DM, Oliveira JD, Cury A, Biasi A, Rossi R, Lasagno C, Bueno PT, Santos RHN, Damiani LP, Gorgulho AA. An Open-Label Clinical Trial of Hypothalamic Deep Brain Stimulation for Human Morbid Obesity: BLESS Study Protocol. Neurosurgery 2018. [DOI: 10.1093/neuros/nyy024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
BACKGROUND
Human morbid obesity is increasing worldwide in an alarming way. The hypothalamus is known to mediate its mechanisms. Deep brain stimulation (DBS) of the ventromedial hypothalamus (VMH) may be an alternative to treat patients refractory to standard medical and surgical therapies.
OBJECTIVE
To assess the safety, identify possible side effects, and to optimize stimulation parameters of continuous VMH-DBS. Additionally, this study aims to determine if continuous VMH-DBS will lead to weight loss by causing changes in body composition, basal metabolism, or food intake control.
METHODS
The BLESS study is a feasibility study, single-center open-label trial. Six patients (body mass index > 40) will undergo low-frequency VMH-DBS. Data concerning timing, duration, frequency, severity, causal relationships, and associated electrical stimulation patterns regarding side effects or weight changes will be recorded.
EXPECTED OUTCOMES
We expect to demonstrate the safety, identify possible side effects, and to optimize electrophysiological parameters related to VMH-DBS. No clinical or behavioral adverse changes are expected. Weight loss ≥ 3% of the basal weight after 3 mo of electrical stimulation will be considered adequate. Changes in body composition and increase in basal metabolism are expected. The amount of food intake is likely to remain unchanged.
DISCUSSION
The design of this study protocol is to define the safety of the procedure, the surgical parameters important for target localization, and additionally the safety of long-term stimulation of the VMH in morbidly obese patients. Novel neurosurgical approaches to treat metabolic and autonomic diseases can be developed based on the data made available by this investigation.
Collapse
Affiliation(s)
- Antonio A F De Salles
- Neuroscience Institute—Heart Hospital (HCor Neuro), University of São Paulo (USP), São Paulo, Brazil
- Research Institute—Heart Hospital (HCor IEP), University of São Paulo (USP), São Paulo, Brazil
| | - Daniel A N Barbosa
- Neuroscience Institute—Heart Hospital (HCor Neuro), University of São Paulo (USP), São Paulo, Brazil
| | - Fernando Fernandes
- Neuroscience Institute—Heart Hospital (HCor Neuro), University of São Paulo (USP), São Paulo, Brazil
- Department of Psychiatry, University of São Paulo (USP), São Paulo, Brazil
| | - Julio Abucham
- Department of Medicine, University Federal of São Paulo (UNIFESP), São Paulo, Brazil
| | - Debora M Nazato
- Department of Medicine, University Federal of São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana D Oliveira
- Research Institute—Heart Hospital (HCor IEP), University of São Paulo (USP), São Paulo, Brazil
| | - Abrão Cury
- Department of Medicine, University Federal of São Paulo (UNIFESP), São Paulo, Brazil
| | - Alexandre Biasi
- Neuroscience Institute—Heart Hospital (HCor Neuro), University of São Paulo (USP), São Paulo, Brazil
| | - Ronaldo Rossi
- Research Institute—Heart Hospital (HCor IEP), University of São Paulo (USP), São Paulo, Brazil
| | - Camila Lasagno
- Research Institute—Heart Hospital (HCor IEP), University of São Paulo (USP), São Paulo, Brazil
| | - Priscila T Bueno
- Research Institute—Heart Hospital (HCor IEP), University of São Paulo (USP), São Paulo, Brazil
| | - Renato H N Santos
- Research Institute—Heart Hospital (HCor IEP), University of São Paulo (USP), São Paulo, Brazil
| | - Lucas P Damiani
- Research Institute—Heart Hospital (HCor IEP), University of São Paulo (USP), São Paulo, Brazil
| | - Alessandra A Gorgulho
- Neuroscience Institute—Heart Hospital (HCor Neuro), University of São Paulo (USP), São Paulo, Brazil
- Research Institute—Heart Hospital (HCor IEP), University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|