1
|
Daoust F, Dallaire F, Tavera H, Ember K, Guiot MC, Petrecca K, Leblond F. Preliminary study demonstrating cancer cells detection at the margins of whole glioblastoma specimens with Raman spectroscopy imaging. Sci Rep 2025; 15:6453. [PMID: 39987144 PMCID: PMC11846850 DOI: 10.1038/s41598-025-87109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 01/16/2025] [Indexed: 02/24/2025] Open
Abstract
Intraoperative Raman spectroscopy uses near-infrared laser light to gain molecular information without causing damage. It can be used in vivo or ex vivo without exogenous contrast agents. Clinically, the technique was primarily used with machine learning for in situ tumor detection with fiberoptics probes analyzing tissue at sub-millimeter scales one point at the time. Here we report the development of a whole-specimen spectroscopic imaging system designed to detect cancer cells at the margins of surgical specimens. The system has a field of view covering a square area of side one centimeter with a pixel size of a quarter of a millimeter . First, a tumor detection model was developed from data acquired using a point-probe in 24 glioblastoma patients that had a detection sensitivity of 90% and a specificity of 95%. That model was then used to produce cancer prediction maps of nine glioblastoma specimens from five patients with validation based on histopathology analyses. The results preliminarily demonstrate the instrument was able to detect tissue areas associated with cancer cells from the Raman peaks associated with the amino acids phenylalanine and tryptophan as well as the relative concentration of lipids and proteins linked with deformations of the CH2 and CH3 bonds.
Collapse
Affiliation(s)
- François Daoust
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Frédérick Dallaire
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Hugo Tavera
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Katherine Ember
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Marie-Christine Guiot
- Division of Neuropathology, Department of Pathology, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Frederic Leblond
- Polytechnique Montréal, Montreal, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
- Institut du Cancer de Montréal, Montreal, Canada.
| |
Collapse
|
2
|
Abo-Elnour DE, Pichardo-Rojas PS, Abdalla YE, Salama MK, Elboraay T, Rizk MA, Negida A, Raslan AM. Comparative efficacy of awake and asleep motor mapping in glioma surgery: A meta-analysis of 3011 patients. Neurosurg Rev 2024; 47:859. [PMID: 39560794 DOI: 10.1007/s10143-024-03080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024]
Abstract
Standard of care in glioma surgery involves maximal-safe resection. Intraoperative stimulation mapping can improve the extent of resection in eloquent area tumors. Resection is performed during awake craniotomy (AC) or under general anesthesia (GA). Considering the advances in glioma management, an updated meta-analysis is needed. We identified studies evaluating surgical outcomes in adult patients undergoing glioma resection in motor areas, comparing AC and GA mapping until November 2023. Twenty-four observational studies and one randomized controlled trial met our inclusion criteria, adding 3011 patients. The mean extent of resection was 92.2% (95%CI = 89.9%-94.5%) for AC and 92.5% (95%CI = 89.6%-95.3%) for GA. Immediate deficit revealed a nonsignificant risk ratio (RR) of 0.96 favoring AC (95%CI = 0.66-1.41, p = 0.84). Similarly, long-term deficits showed a nonsignificant RR of 1.33 favoring GA (95%CI = 0.91-1.95, p = 0.14). Karnofsky performance score (KPS) analysis revealed a nonsignificant mean difference of 2.32 favoring GA (95%CI = -6.10-10.73, p = 0.59). Intraoperative stimulation-induced seizures analysis yielded a nonsignificant RR of 0.73 (95% CI = 0.27-1.97, p = 0.53) favoring AC. Postoperative seizure analysis showed a significant RR of 0.64 (95% CI = 0.44-0.94, p = 0.02) favoring AC. This meta-analysis suggests that AC and GA are comparable approaches to maximize extent of resection and achieve safe resection in eloquent glioma surgery. These findings can offer guidance to neurosurgeons in the decision-making process.
Collapse
Affiliation(s)
- Dina Essam Abo-Elnour
- Faculty of Medicine, Zagazig University, Zagazig, Egypt.
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA.
| | - Pavel Salvador Pichardo-Rojas
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Yomna Emad Abdalla
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA
| | - Moaz Khaled Salama
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA
| | - Toka Elboraay
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA
| | - Marwa Abdelazim Rizk
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA
| | - Ahmed Negida
- Medical Research Group of Egypt, Negida Academy LLC, Arlington, MA, USA
- Parkinson's and Movement Disorder Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health and Science University, Portland, USA
| |
Collapse
|
3
|
Yazbeck M, Kassem N, Nassar N, Farhat H, Dabboucy B, Tlaiss Y, Comair Y. The effect of resection of gliomas of the primary motor and sensory cortex on functional recovery and seizure outcome: A 10-year retrospective study. Surg Neurol Int 2024; 15:228. [PMID: 39108387 PMCID: PMC11301816 DOI: 10.25259/sni_158_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/10/2024] [Indexed: 09/10/2024] Open
Abstract
Background Gliomas, the most common primary brain tumors, pose surgical challenges in eloquent cortex regions due to potential deficits affecting patients' quality of life (QOL) and increased mortality risk. This study investigates motor and sensory recovery postresection of Rolandic cortex gliomas in 40 patients, alongside seizure outcomes and the efficacy of intraoperative techniques such as awake craniotomy. Methods This was a 10-year monocentric retrospective study based on the experience of a neurosurgeon in the resection of Rolandic gliomas and its impact on 40 patients' QOL in a period from 2011 to 2020. The primary outcomes were tumor recurrence and the efficacy of the surgery defined as survival status, seizure status, and sensory and motor neurological deficits. Data collection included demographic, tumor, and surgical outcome variables. The extent of resection (EOR) was classified as gross total resection (GTR) (EOR ≥95%) or subtotal resection (EOR <95%). Statistical analysis involved descriptive statistics and inferential tests for outcome comparisons. Results Patients were aged an average of 42.3 ± 14 years and distributed between 72.5% of males and 27.5% of females. The most common presentation was seizures (65%). The tumor was located in the frontal lobe at 65%, the motor at 75%, and the top tumor pathology was oligodendroglioma (42.5%). The recurrence rate in the study was 20% (8 of 40), and the 1-year survival rate was 92.5%. After the resection, significant improvement was shown in Karnofsky's performance status (P = 0.007), in normal daily activities (P = 0.001), in fine motor skills (P = 0.020), and work hobbies (P = 0.046). No statistically significant improvement was shown in seizures and deficit rates. Recurrence was not associated with the demographic characteristics, clinical presentation, tumor-related characteristics (location, area, side, and mutation), tumor resection, and adjuvant treatment (P > 0.05). Conclusion GTR of Rolandic gliomas can be achieved with the use of meticulous stimulation mapping, and complete functional recovery is attainable despite common belief.
Collapse
Affiliation(s)
- Mohamad Yazbeck
- Department of Neurosurgery, Lebanese University, Beirut, Lebanon
| | - Nour Kassem
- Department of Neurosurgery, Lebanese University, Beirut, Lebanon
| | - Nabil Nassar
- Department of Neurosurgery, Lebanese University, Beirut, Lebanon
| | - Hadi Farhat
- Department of Neurosurgery, University of Balamand, Beirut, Lebanon
| | - Baraa Dabboucy
- Department of Neurosurgery, Lebanese University, Beirut, Lebanon
| | - Yehya Tlaiss
- Department of Neurosurgery, University of Balamand, Beirut, Lebanon
| | - Youssef Comair
- Department of Neurosurgery, Lebanese University, Beirut, Lebanon
| |
Collapse
|
4
|
Ricciuti RA, Mancini F, Guzzi G, Marruzzo D, Dario A, Della Puppa A, Ricci A, Barbanera A, Talacchi A, Schwarz A, Germanò A, Raco A, Colamaria A, Santoro A, Boccaletti R, Conti C, Conti C, Cenci N, Cossandi C, Bernucci C, Lucantoni C, Costella GB, Garbossa D, Zotta DC, De Gonda F, Esposito F, Giordano F, D'Andrea G, Piatelli G, Zona G, Spena G, Tringali G, Barbagallo G, Giussani C, Gladi M, Landi A, Lavano A, Morabito L, Mastronardi L, Locatelli M, D'Agruma M, Lanotte MM, Montano N, Santonocito OS, Pompucci A, de Falco R, Randi F, Bruscella S, Sartori I, Signorelli F, Tosatto L, Trignani R, Esposito V, Innocenzi G, Paolini S, Vitiello V, Cavallo MA, Sala F. The "state of the art" of intraoperative neurophysiological monitoring: An Italian neurosurgical survey. BRAIN & SPINE 2024; 4:102796. [PMID: 38698806 PMCID: PMC11063224 DOI: 10.1016/j.bas.2024.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 05/05/2024]
Abstract
Introduction Intraoperative Neurophysiological Monitoring (IOM) is widely used in neurosurgery but specific guidelines are lacking. Therefore, we can assume differences in IOM application between Neurosurgical centers. Research question The section of Functional Neurosurgery of the Italian Society of Neurosurgery realized a survey aiming to obtain general data on the current practice of IOM in Italy. Materials and methods A 22-item questionnaire was designed focusing on: volume procedures, indications, awake surgery, experience, organization and equipe. The questionnaire has been sent to Italian Neurosurgery centers. Results A total of 54 centers completed the survey. The annual volume of surgeries range from 300 to 2000, and IOM is used in 10-20% of the procedures. In 46% of the cases is a neurologist or a neurophysiologist who performs IOM. For supra-tentorial pathology, almost all perform MEPs (94%) SSEPs (89%), direct cortical stimulation (85%). All centers perform IOM in spinal surgery and 95% in posterior fossa surgery. Among the 50% that perform peripheral nerve surgery, all use IOM. Awake surgery is performed by 70% of centers. The neurosurgeon is the only responsible for IOM in 35% of centers. In 83% of cases IOM implementation is adequate to the request. Discussion and conclusions The Italian Neurosurgical centers perform IOM with high level of specialization, but differences exist in organization, techniques, and expertise. Our survey provides a snapshot of the state of the art in Italy and it could be a starting point to implement a consensus on the practice of IOM.
Collapse
Affiliation(s)
| | | | - Giusy Guzzi
- Neurosurgery, AOU Ospedaliero Mater Domini di Catanzaro, Italy
| | | | | | | | | | - Andrea Barbanera
- Department of Neurosurgery, AON SS. Antonio e Biagio e Cesare Arrigo H, Alessandria, Italy
| | - Andrea Talacchi
- Unit of Neurosurgery, AO San Giovanni Addolorata, Roma, Italy
| | | | - Antonino Germanò
- Unit of Neurosurgery, AOU Policlinico G. Martino di Messina, Italy
| | - Antonino Raco
- Neurosurgery Clinic, Azienda Ospedaliera Sant’Andrea, Roma, Italy
| | - Antonio Colamaria
- Unit of Neurosurgery, Azienda Ospedaliera Policlinico Riuniti Foggia, Foggia, Italy
| | - Antonio Santoro
- Neurosurgery Clinic, Azienda Ospedaliera Universitaria, La Sapienza Policlinico Umberto I° Roma, Roma, Italy
| | | | - Carlo Conti
- Unit of Neurosurgery, Azienda Ospedaliera S. Maria, Terni, Italy
| | - Carlo Conti
- Unit of Neurosurgery, ARNAS G.Brotzu, Cagliari, Italy
| | - Nunzia Cenci
- Neurosurgery, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Christian Cossandi
- Unit of Neurosurgery, AOU Maggiore Della Carità di Novara, Novara, Italy
| | | | | | | | - Diego Garbossa
- Neurosurgery Clinic, AOU Città Della Salute e Della Scienza di Torino, Italy
| | | | | | - Felice Esposito
- Neurosurgery Clinic, A.O.U. Policlinico Federico II - Università Degli Studi di Napoli, Italy
| | - Flavio Giordano
- Unit of Pediatric Neurosurgery, Meyer Children's Hospital IRCCS, Firenze, Italy
- University of Florence, Italy
| | | | | | - Gianluigi Zona
- Neurosurgery Clinic, IRCCS Policlinico San Martino, Genova, Italy
| | | | | | | | - Carlo Giussani
- Neurosurgery Clinic, IRCCS Fondazione Ospedale San Gerardo Dei Tintori di Monza, Università Bicocca, Milano, Italy
| | - Maurizio Gladi
- Neurosurgery Clinic, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, Italy
| | - Andrea Landi
- Neurosurgery Clinic, Azienda Ospedaliera Universitaria di Padova, Italy
| | - Angelo Lavano
- Neurosurgery, AOU Ospedaliero Mater Domini di Catanzaro, Italy
| | | | | | - Marco Locatelli
- Neurosurgery Clinic, Fondazione IRCCS Ospedale Maggiore Policlinico di Milano, Università Degli Studi di Milano, Italy
| | | | - Michele Maria Lanotte
- Unit of Functional Neurosurgery, AOU Città Della Salute e Della Scienza di Torino, Italy
| | - Nicola Montano
- Neurosurgery Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | | | | | - Raffaele de Falco
- Neurosurgery, Ospedale Santa Maria Delle Grazie di Pozzuoli, Napoli, Italy
| | - Franco Randi
- Neurosurgery, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Sara Bruscella
- Neurosurgery, AORN Sant'Anna e San Sebastiano, Caserta, Italy
| | - Ivana Sartori
- Unit of Epilepsy Neurosurgery, ASST GOM Niguarda, Milano, Italy
| | | | | | | | | | | | | | | | | | - Francesco Sala
- Neurosurgery Clinic, Azienda Ospedaliera Universitaria di Verona, Verona, Italy
| |
Collapse
|
5
|
Mohamed AA, Alshaibi R, Faragalla S, Mohamed Y, Lucke-Wold B. Updates on management of gliomas in the molecular age. World J Clin Oncol 2024; 15:178-194. [PMID: 38455131 PMCID: PMC10915945 DOI: 10.5306/wjco.v15.i2.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/06/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
Gliomas are primary brain tumors derived from glial cells of the central nervous system, afflicting both adults and children with distinct characteristics and therapeutic challenges. Recent developments have ushered in novel clinical and molecular prognostic factors, reshaping treatment paradigms based on classification and grading, determined by histological attributes and cellular lineage. This review article delves into the diverse treatment modalities tailored to the specific grades and molecular classifications of gliomas that are currently being discussed and used clinically in the year 2023. For adults, the therapeutic triad typically consists of surgical resection, chemotherapy, and radiotherapy. In contrast, pediatric gliomas, due to their diversity, require a more tailored approach. Although complete tumor excision can be curative based on the location and grade of the glioma, certain non-resectable cases demand a chemotherapy approach usually involving, vincristine and carboplatin. Additionally, if surgery or chemotherapy strategies are unsuccessful, Vinblastine can be used. Despite recent advancements in treatment methodologies, there remains a need of exploration in the literature, particularly concerning the efficacy of treatment regimens for isocitrate dehydrogenase type mutant astrocytomas and fine-tuned therapeutic approaches tailored for pediatric cohorts. This review article explores into the therapeutic modalities employed for both adult and pediatric gliomas in the context of their molecular classification.
Collapse
Affiliation(s)
- Ali Ahmed Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Rakan Alshaibi
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States
| | - Steven Faragalla
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Youssef Mohamed
- College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
6
|
Mathur R, Wang Q, Schupp PG, Nikolic A, Hilz S, Hong C, Grishanina NR, Kwok D, Stevers NO, Jin Q, Youngblood MW, Stasiak LA, Hou Y, Wang J, Yamaguchi TN, Lafontaine M, Shai A, Smirnov IV, Solomon DA, Chang SM, Hervey-Jumper SL, Berger MS, Lupo JM, Okada H, Phillips JJ, Boutros PC, Gallo M, Oldham MC, Yue F, Costello JF. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective. Cell 2024; 187:446-463.e16. [PMID: 38242087 PMCID: PMC10832360 DOI: 10.1016/j.cell.2023.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024]
Abstract
Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.
Collapse
Affiliation(s)
- Radhika Mathur
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick G Schupp
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ana Nikolic
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nadia R Grishanina
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Darwin Kwok
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lena Ann Stasiak
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angees, CA, USA
| | - Marisa Lafontaine
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ivan V Smirnov
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David A Solomon
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Janine M Lupo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angees, CA, USA
| | - Marco Gallo
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB; Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Sattari SA, Rincon-Torroella J, Sattari AR, Feghali J, Yang W, Kim JE, Xu R, Jackson CM, Mukherjee D, Lin SC, Gallia GL, Comair YG, Weingart J, Huang J, Bettegowda C. Awake Versus Asleep Craniotomy for Patients With Eloquent Glioma: A Systematic Review and Meta-Analysis. Neurosurgery 2024; 94:38-52. [PMID: 37489887 DOI: 10.1227/neu.0000000000002612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Awake vs asleep craniotomy for patients with eloquent glioma is debatable. This systematic review and meta-analysis sought to compare awake vs asleep craniotomy for the resection of gliomas in the eloquent regions. METHODS MEDLINE and PubMed were searched from inception to December 13, 2022. Primary outcomes were the extent of resection (EOR), overall survival (month), progression-free survival (month), and rates of neurological deficit, Karnofsky performance score, and seizure freedom at the 3-month follow-up. Secondary outcomes were duration of operation (minute) and length of hospital stay (LOS) (day). RESULTS Fifteen studies yielded 2032 patients, from which 800 (39.4%) and 1232 (60.6%) underwent awake and asleep craniotomy, respectively. The meta-analysis concluded that the awake group had greater EOR (mean difference [MD] = MD = 8.52 [4.28, 12.76], P < .00001), overall survival (MD = 2.86 months [1.35, 4.37], P = .0002), progression-free survival (MD = 5.69 months [0.75, 10.64], P = .02), 3-month postoperative Karnofsky performance score (MD = 13.59 [11.08, 16.09], P < .00001), and 3-month postoperative seizure freedom (odds ratio = 8.72 [3.39, 22.39], P < .00001). Furthermore, the awake group had lower 3-month postoperative neurological deficit (odds ratio = 0.47 [0.28, 0.78], P = .004) and shorter LOS (MD = -2.99 days [-5.09, -0.88], P = .005). In addition, the duration of operation was similar between the groups (MD = 37.88 minutes [-34.09, 109.86], P = .30). CONCLUSION Awake craniotomy for gliomas in the eloquent regions benefits EOR, survival, postoperative neurofunctional outcomes, and LOS. When feasible, the authors recommend awake craniotomy for surgical resection of gliomas in the eloquent regions.
Collapse
Affiliation(s)
- Shahab Aldin Sattari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Ali Reza Sattari
- Department of Surgery, Saint Agnes Hospital, Baltimore , Maryland , USA
| | - James Feghali
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Wuyang Yang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Risheng Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Shih-Chun Lin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Youssef G Comair
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| |
Collapse
|
8
|
Raygor KP, Rinaldo L, Dubnicoff TB, Shih T, Chang EF, Abla AA. Awake Craniotomy and Electrocorticography-Guided Extended Lesionectomy of Motor Cortex Cavernoma: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown) 2023; 25:e286. [PMID: 37441797 DOI: 10.1227/ons.0000000000000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Kunal P Raygor
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Lorenzo Rinaldo
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Todd B Dubnicoff
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Tina Shih
- Department of Neurology, University of California, San Francisco, California, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
9
|
Peters DR, Halimi F, Ozduman K, Levivier M, Conti A, Reyns N, Tuleasca C. Resection of the contrast-enhancing tumor in diffuse gliomas bordering eloquent areas using electrophysiology and 5-ALA fluorescence: evaluation of resection rates and neurological outcome-a systematic review and meta-analysis. Neurosurg Rev 2023; 46:185. [PMID: 37498398 PMCID: PMC10374773 DOI: 10.1007/s10143-023-02064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Independently, both 5-aminolevulinic acid (5-ALA) and intraoperative neuromonitoring (IONM) have been shown to improve outcomes with high-grade gliomas (HGG). The interplay and overlap of both techniques are scarcely reported in the literature. We performed a systematic review and meta-analysis focusing on the concomitant use of 5-ALA and intraoperative mapping for HGG located within eloquent cortex. Using PRISMA guidelines, we reviewed articles published between May 2006 and December 2022 for patients with HGG in eloquent cortex who underwent microsurgical resection using intraoperative mapping and 5-ALA fluorescence guidance. Extent of resection was the primary outcome. The secondary outcome was new neurological deficit at day 1 after surgery and persistent at day 90 after surgery. Overall rate of complete resection of the enhancing tumor (CRET) was 73.3% (range: 61.9-84.8%, p < .001). Complete 5-ALA resection was performed in 62.4% (range: 28.1-96.7%, p < .001). Surgery was stopped due to mapping findings in 20.5% (range: 15.6-25.4%, p < .001). Neurological decline at day 1 after surgery was 29.2% (range: 9.8-48.5%, p = 0.003). Persistent neurological decline at day 90 after surgery was 4.6% (range: 0.4-8.7%, p = 0.03). Maximal safe resection guided by IONM and 5-ALA for high-grade gliomas in eloquent areas is achievable in a high percentage of cases (73.3% CRET and 62.4% complete 5-ALA resection). Persistent neurological decline at postoperative day 90 is as low as 4.6%. A balance between 5-ALA and IONM should be maintained for a better quality of life while maximizing oncological control.
Collapse
Affiliation(s)
- David R Peters
- Department of Neurosurgery, Atrium Health, Charlotte, NC, USA.
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Floriana Halimi
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Koray Ozduman
- Department of Neurosurgery, School of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Marc Levivier
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alfredo Conti
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Dipartimento Di Scienze Biomediche E Neuromotorie (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Nicolas Reyns
- Neurosurgery and Neurooncology Service, Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Lille, France
| | - Constantin Tuleasca
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL, LTS-5), Lausanne, Switzerland
| |
Collapse
|
10
|
Li Y, Guo J, Zhang K, Wei H, Fan J, Yu S, Li T, Yang X. Diffusion tensor imaging versus intraoperative subcortical mapping for glioma resection: a systematic review and meta-analysis. Neurosurg Rev 2023; 46:154. [PMID: 37380888 PMCID: PMC10307847 DOI: 10.1007/s10143-023-02058-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Maintaining the integrity of crucial fiber tracts allows functional preservation and improved recovery in patients with glioma resection. Diffusion tensor imaging (DTI) and intraoperative subcortical mapping (ISM) are commonly required for pre- and intraoperative assessment of white matter fibers. This study investigated differences of clinical outcomes in glioma resection aided by DTI or ISM. A comprehensive literature retrieval of the PubMed and Embase databases identified several DTI or ISM studies in 2000-2022. Clinical data, including extent of resection (EOR) and postoperative neurological deficits, was collected and statistically analyzed. Heterogeneity was regressed by a random effect model and the Mann-Whitney U test was used to test statistical significance. Publication bias was assessed by Egger test. A total of 14 studies with a pooled cohort of 1837 patients were included. Patients undergoing DTI-navigated glioma surgery showed a higher rate of gross total resection (GTR) than ISM-assisted surgical resection (67.88%, [95% CI 0.55-0.79] vs. 45.73%, [95% CI 0.29-0.63], P = 0.032). The occurrence of early postoperative functional deficit (35.45%, [95% CI 0.13-0.61] vs. 35.60% [95% CI 0.20-0.53], P = 1.000), late postoperative functional deficit (6.00%, [95% CI 0.02-0.11] vs. 4.91% [95% CI 0.03-0.08], P = 1.000) and severe postoperative functional deficit (2.21%, [95% CI 0-0.08] vs. 5.93% [95% CI 0.01-0.16], P = 0.393) were similar between the DTI and ISM group, respectively. While DTI-navigation resulted in a higher rate of GTR, the occurrence of postoperative neurological deficits between DTI and ISM groups was comparable. Together, these data indicate that both techniques could safely facilitate glioma resection.
Collapse
Affiliation(s)
- Yiming Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiahe Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Zhang
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Huijie Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jikang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Xuejun Yang
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China.
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing, China.
| |
Collapse
|
11
|
Al-Adli NN, Young JS, Sibih YE, Berger MS. Technical Aspects of Motor and Language Mapping in Glioma Patients. Cancers (Basel) 2023; 15:cancers15072173. [PMID: 37046834 PMCID: PMC10093517 DOI: 10.3390/cancers15072173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Gliomas are infiltrative primary brain tumors that often invade functional cortical and subcortical regions, and they mandate individualized brain mapping strategies to avoid postoperative neurological deficits. It is well known that maximal safe resection significantly improves survival, while postoperative deficits minimize the benefits associated with aggressive resections and diminish patients’ quality of life. Although non-invasive imaging tools serve as useful adjuncts, intraoperative stimulation mapping (ISM) is the gold standard for identifying functional cortical and subcortical regions and minimizing morbidity during these challenging resections. Current mapping methods rely on the use of low-frequency and high-frequency stimulation, delivered with monopolar or bipolar probes either directly to the cortical surface or to the subcortical white matter structures. Stimulation effects can be monitored through patient responses during awake mapping procedures and/or with motor-evoked and somatosensory-evoked potentials in patients who are asleep. Depending on the patient’s preoperative status and tumor location and size, neurosurgeons may choose to employ these mapping methods during awake or asleep craniotomies, both of which have their own benefits and challenges. Regardless of which method is used, the goal of intraoperative stimulation is to identify areas of non-functional tissue that can be safely removed to facilitate an approach trajectory to the equator, or center, of the tumor. Recent technological advances have improved ISM’s utility in identifying subcortical structures and minimized the seizure risk associated with cortical stimulation. In this review, we summarize the salient technical aspects of which neurosurgeons should be aware in order to implement intraoperative stimulation mapping effectively and safely during glioma surgery.
Collapse
Affiliation(s)
- Nadeem N. Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
- School of Medicine, Texas Christian University, Fort Worth, TX 76109, USA
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| | - Youssef E. Sibih
- School of Medicine, University of California, San Francisco, CA 94131, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| |
Collapse
|
12
|
Song Y, Surgenor JV, Leeds ZT, Kanter JH, Martinez-Camblor P, Smith WJ, Boone MD, Abess AT, Evans LT, Kobylarz EJ. Variables associated with cortical motor mapping thresholds: A retrospective data review with a unique case of interlimb motor facilitation. Front Neurol 2023; 14:1150670. [PMID: 37114230 PMCID: PMC10128911 DOI: 10.3389/fneur.2023.1150670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Intraoperative neuromonitoring (IONM) is crucial to preserve eloquent neurological functions during brain tumor resections. We observed a rare interlimb cortical motor facilitation phenomenon in a patient with recurrent high-grade glioma undergoing craniotomy for tumor resection; the patient's upper arm motor evoked potentials (MEPs) increased in amplitude significantly (up to 44.52 times larger, p < 0.001) following stimulation of the ipsilateral posterior tibial nerve at 2.79 Hz. With the facilitation effect, the cortical MEP stimulation threshold was reduced by 6 mA to maintain appropriate continuous motor monitoring. It likely has the benefit of reducing the occurrence of stimulation-induced seizures and other adverse events associated with excessive stimulation. Methods We conducted a retrospective data review including 120 patients who underwent brain tumor resection with IONM at our center from 2018 to 2022. A broad range of variables collected pre-and intraoperatively were reviewed. The review aimed to determine: (1) whether we overlooked this facilitation phenomenon in the past, (2) whether this unique finding is related to any specific demographic information, clinical presentation, stimulation parameter (s) or anesthesia management, and (3) whether it is necessary to develop new techniques (such as facilitation methods) to reduce cortical stimulation intensity during intraoperative functional mapping. Results There is no evidence suggesting that clinical presentation, stimulation configuration, or intraoperative anesthesia management of the patient with the facilitation effect were significantly different from our general patient cohort. Even though we did not identify the same facilitation effect in any of these patients, we were able to determine that stimulation thresholds for motor mapping are significantly associated with the location of stimulation (p = 0.003) and the burst suppression ratio (BSR) (p < 0.001). Stimulation-induced seizures, although infrequent (4.05%), could occur unexpectedly even when the BSR was 70%. Discussion We postulated that functional reorganization and neuronal hyperexcitability induced by glioma progression and repeated surgeries were probable underlying mechanisms of the interlimb facilitation phenomenon. Our retrospective review also provided a practical guide to cortical motor mapping in brain tumor patients under general anesthesia. We also underscored the need for developing new techniques to reduce the stimulation intensity and, hence, seizure occurrence.
Collapse
Affiliation(s)
- Yinchen Song
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- *Correspondence: Yinchen Song,
| | - James V. Surgenor
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Haverford College, Haverford, PA, United States
| | - Zachary T. Leeds
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - John H. Kanter
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Pablo Martinez-Camblor
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - William J. Smith
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - M. Dustin Boone
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Alexander T. Abess
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Linton T. Evans
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Erik J. Kobylarz
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
13
|
Nguyen AM, Huynh NT, Nguyen TTP. Intraoperative cortical and subcortical stimulation for lesions related to eloquent motor cortex and corticospinal tract in a developing country. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
Steineke TC, Barbery D. Extended reality platform for minimally invasive endoscopic evacuation of deep-seated intracerebral hemorrhage: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2022; 4:CASE21390. [PMID: 36593677 PMCID: PMC9514282 DOI: 10.3171/case21390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 07/08/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Extended reality (XR) offers an interactive visualization platform that combines virtual reality (VR) for preoperative planning and augmented reality (AR) for intraoperative navigation overlay. OBSERVATIONS XR was used for treating a case of spontaneous intracerebral hemorrhage (ICH) requiring neurosurgical intervention to decompress a hemorrhage in the subcortical area involving the thalamus that was starting to compress the midbrain. The selected surgical technique was an endoscopic aspiration combined with neurosurgical navigation. Because of the deep-seated location of this ICH, a patient-specific 360XR model rendered using Surgical Theater was used for preoperative planning and intraoperative navigation to allow for enhanced visualization and understanding of the pathology and surrounding anatomy. LESSONS The XR platform enabled visualization of critical structures near the ICH by extracting and highlighting the white matter tracts from magnetic resonance imaging (MRI) with tractography, which improved preoperative planning beyond using state-of-the-art neuronavigation techniques alone. Once the trajectory was set, the model was integrated with the neuronavigation system, and the planned approach was referenced throughout the procedure to evacuate the clots without further injuring the brain. The patient tolerated the procedure well and was doing well 11 months after his spontaneous ICH.
Collapse
Affiliation(s)
- Thomas C. Steineke
- Department of Neurosurgery, JFK Neuroscience Institute at Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey; and
| | | |
Collapse
|
15
|
Carrabba G, Fiore G, Di Cristofori A, Bana C, Borellini L, Zarino B, Conte G, Triulzi F, Rocca A, Giussani C, Caroli M, Locatelli M, Bertani G. Diffusion tensor imaging, intra-operative neurophysiological monitoring and small craniotomy: Results in a consecutive series of 103 gliomas. Front Oncol 2022; 12:897147. [PMID: 36176387 PMCID: PMC9513471 DOI: 10.3389/fonc.2022.897147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Diffusion tensor imaging (DTI) allows visualization of the main white matter tracts while intraoperative neurophysiological monitoring (IONM) represents the gold standard for surgical resection of gliomas. In recent years, the use of small craniotomies has gained popularity thanks to neuronavigation and to the low morbidity rates associated with shorter surgical procedures. The aim of this study was to review a series of patients operated for glioma using DTI, IONM, and tumor-targeted craniotomies. The retrospective analysis included patients with supratentorial glioma who met the following inclusion criteria: preoperative DTI, intraoperative IONM, tumor-targeted craniotomy, pre- and postoperative MRI, and complete clinical charts. The DTI was performed on a 3T scanner. The IONM included electroencephalography (EEG), transcranial (TC) and/or cortical motor-evoked potentials (MEP), electrocorticography (ECoG), and direct electrical stimulation (DES). Outcomes included postoperative neurological deficits, volumetric extent of resection (EOR), and overall survival (OS). One hundred and three patients (61 men, 42 women; mean age 54 ± 14 years) were included and presented the following WHO histologies: 65 grade IV, 19 grade III, and 19 grade II gliomas. After 3 months, only three patients had new neurological deficits. The median postoperative volume was 0cc (IQR 3). The median OS for grade IV gliomas was 15 months, while for low-grade gliomas it was not reached. In our experience, a small craniotomy and a tumor resection supported by IONM and DTI permitted to achieve satisfactory results in terms of neurological outcomes, EOR, and OS for glioma patients.
Collapse
Affiliation(s)
- Giorgio Carrabba
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
- *Correspondence: Giorgio Carrabba,
| | - Giorgio Fiore
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Andrea Di Cristofori
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
| | - Cristina Bana
- Neurophysiopathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milano, Italy
| | - Linda Borellini
- Neurophysiopathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milano, Italy
| | - Barbara Zarino
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Conte
- Neuroradiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milano, Milano, Italy
| | - Fabio Triulzi
- Neuroradiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milano, Milano, Italy
| | - Alessandra Rocca
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Carlo Giussani
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Manuela Caroli
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Marco Locatelli
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
- Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Giulio Bertani
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Yoo J, Park HH, Kang SG, Chang JH. Recent Update on Neurosurgical Management of Brain Metastasis. Brain Tumor Res Treat 2022; 10:164-171. [PMID: 35929114 PMCID: PMC9353165 DOI: 10.14791/btrt.2022.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022] Open
Abstract
Brain metastasis (BM), classified as a secondary brain tumor, is the most common malignant central nervous system tumor whose median overall survival is approximately 6 months. However, the survival rate of patients with BMs has increased with recent advancements in immunotherapy and targeted therapy. This means that clinicians should take a more active position in the treatment paradigm that passively treats BMs. Because patients with BM are treated in a variety of clinical settings, treatment planning requires a more sophisticated decision-making process than that for other primary malignancies. Therefore, an accurate prognostic prediction is essential, for which a graded prognostic assessment that reflects next-generation sequencing can be helpful. It is also essential to understand the indications for various treatment modalities, such as surgical resection, stereotactic radiosurgery, and whole-brain radiotherapy and consider their advantages and disadvantages when choosing a treatment plan. Surgical resection serves a limited auxiliary function in BM, but it can be an essential therapeutic approach for increasing the survival rate of specific patients; therefore, this must be thoroughly recognized during the treatment process. The ultimate goal of surgical resection is maximal safe resection; to this end, neuronavigation, intraoperative neuro-electrophysiologic assessment including evoked potential, and the use of fluorescent materials could be helpful. In this review, we summarize the considerations for neurosurgical treatment in a rapidly changing treatment environment.
Collapse
Affiliation(s)
- Jihwan Yoo
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hun Ho Park
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Morshed RA, Lee AT, Wang EJ, Young JS, Cha S, Hervey-Jumper SL, Berger MS. Functional outcomes after resection of middle frontal gyrus diffuse gliomas. J Neurosurg 2022; 137:1-8. [PMID: 34798608 DOI: 10.3171/2021.8.jns211624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/06/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The clinical outcomes for patients undergoing resection of diffuse glioma within the middle frontal gyrus (MFG) are understudied. Anatomically, the MFG is richly interconnected to known language areas, and nearby subcortical fibers are at risk during resection. The goal of this study was to determine the functional outcomes and intraoperative mapping results related to resection of MFG gliomas. Additionally, the study aimed to evaluate if subcortical tract disruption on imaging correlated with functional outcomes. METHODS The authors performed a retrospective review of 39 patients with WHO grade II-IV diffuse gliomas restricted to only the MFG and underlying subcortical region that were treated with resection and had no prior treatment. Intraoperative mapping results and postoperative neurological deficits by discharge and 90 days were assessed. Diffusion tensor imaging (DTI) tractography was used to assess subcortical tract integrity on pre- and postoperative imaging. RESULTS The mean age of the cohort was 37.9 years at surgery, and the median follow-up was 5.1 years. The mean extent of resection was 98.9% for the cohort. Of the 39 tumors, 24 were left sided (61.5%). Thirty-six patients (92.3%) underwent intraoperative mapping, with 59% of patients undergoing an awake craniotomy. No patients had positive cortical mapping sites overlying the tumor, and 12 patients (33.3%) had positive subcortical stimulation sites. By discharge, 8 patients had language dysfunction, and 5 patients had mild weakness. By 90 days, 2 patients (5.1%) had persistent mild hand weakness only. There were no persistent language deficits by 90 days. On univariate analysis, preoperative tumor size (p = 0.0001), positive subcortical mapping (p = 0.03), preoperative tumor invasion of neighboring subcortical tracts on DTI tractography (p = 0.0003), and resection cavity interruption of subcortical tracts on DTI tractography (p < 0.0001) were associated with an increased risk of having a postoperative deficit by discharge. There were no instances of complete subcortical tract transections in the cohort. CONCLUSIONS MFG diffuse gliomas may undergo extensive resection with minimal risk for long-term morbidity. Partial subcortical tract interruption may lead to transient but not permanent deficits. Subcortical mapping is essential to reduce permanent morbidity during resection of MFG tumors by avoiding complete transection of critical subcortical tracts.
Collapse
Affiliation(s)
- Ramin A Morshed
- 1Department of Neurological Surgery, University of California, San Francisco, California
| | - Anthony T Lee
- 1Department of Neurological Surgery, University of California, San Francisco, California
| | - Elaina J Wang
- 2Warren Alpert Medical School, Brown University, Providence, Rhode Island; and
| | - Jacob S Young
- 1Department of Neurological Surgery, University of California, San Francisco, California
| | - Soonmee Cha
- 3Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Shawn L Hervey-Jumper
- 1Department of Neurological Surgery, University of California, San Francisco, California
| | - Mitchel S Berger
- 1Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|
18
|
Lee CZ, Poon CCM. An Update of Neuroanesthesia for Intraoperative Brain Mapping Craniotomy. Neurosurgery 2022; 90:1-6. [PMID: 33647962 DOI: 10.1093/neuros/nyab022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/13/2020] [Indexed: 01/06/2023] Open
Abstract
The perioperative multidisciplinary team approach has probably been best exemplified by the care of awake craniotomy patients. Advancement in anesthesia and meticulous perioperative care has supported the safety and complexity of the surgical and mapping efforts in glioma resection. The discussions in this review will emphasize on anesthetic and perioperative management strategies to prevent complications and minimize their effects if they occur, including current practice guidelines in anesthesia, updates on the applications of anesthetic medications, and emerging devices. Planning the anesthetic and perioperative management is based on understanding the pharmacology of the medications, the goals of different stages of the surgery and mapping, and anticipating potential problems.
Collapse
Affiliation(s)
- Chanhung Z Lee
- Department of Anesthesia and Perioperative Care, University of California , San Francisco, San Francisco, California, USA
| | - Clara C M Poon
- Department of Anaesthesiology, Queen Mary Hospital, University of Hong Kong , Hong Kong
| |
Collapse
|
19
|
Functional outcomes, extent of resection, and bright/vague fluorescence interface in resection of glioblastomas involving the motor pathways assisted by 5-ALA. Acta Neurochir (Wien) 2022; 164:3267-3274. [PMID: 36087121 PMCID: PMC9705449 DOI: 10.1007/s00701-022-05358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA) fluorescence can maximize perirolandic glioblastoma (GBM) resection with low rates of postoperative sequelae. Our purpose was to present the outcomes of our experience and compare them with other literature reports to investigate the potential influence of different intraoperative monitoring strategies and to evaluate the role of intraoperative data on neurological and radiological outcomes in our series. METHODS We retrospectively analyzed our prospectively collected database of GBM involving the motor pathways. Each patient underwent tumor exeresis with intraoperative 5-ALA fluorescence visualization. Our monitoring strategy was based on direct stimulation (DS), combined with cortical or transcranial MEPs. The radiological outcome was evaluated with CRET vs. residual tumor, and the neurological outcome as improved, unchanged, or worsened. We also performed a literature review to compare our results with state-of-the-art on the subject. RESULTS Sixty-five patients were included. CRET was 63.1%, permanent postoperative impairment was 1.5%, and DS's lowest motor threshold was 5 mA. In the literature, CRET was 25-73%, permanent postoperative impairment 3-16%, and DS lowest motor threshold was 1-3 mA. Our monitoring strategy identified a motor pathway in 60% of cases in faint fluorescent tissue, and its location in bright/faint fluorescence was predictive of CRET (p < 0.001). A preoperative motor deficit was associated with a worse clinical outcome (p < 0.001). Resection of bright fluorescent tissue was stopped in 26%, and fluorescence type of residual tumor was associated with higher CRET grades (p < 0.001). CONCLUSIONS Based on the data presented and the current literature, distinct monitoring strategies can achieve different onco-functional outcomes in 5-ALA-guided resection of a glioblastoma (GBM) motor pathway. Intraoperatively, functional and fluorescence data close to a bright/vague interface could be helpful to predict onco-functional outcomes.
Collapse
|
20
|
Giampiccolo D, Nunes S, Cattaneo L, Sala F. Functional Approaches to the Surgery of Brain Gliomas. Adv Tech Stand Neurosurg 2022; 45:35-96. [PMID: 35976447 DOI: 10.1007/978-3-030-99166-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Sonia Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- Center for Mind and Brain Sciences (CIMeC) and Center for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy.
| |
Collapse
|
21
|
Salvati LF, De Marco R, Palmieri G, Minardi M, Massara A, Pesaresi A, Cagetti B, Melcarne A, Garbossa D. The Relevant Role of Navigated Tractography in Speech Eloquent Area Glioma Surgery: Single Center Experience. Brain Sci 2021; 11:brainsci11111436. [PMID: 34827434 PMCID: PMC8616013 DOI: 10.3390/brainsci11111436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Gliomas are among the most challenging pathologies for neurosurgeons due to their infiltrative and recurrent nature in functionally relevant regions. Current knowledge confirms that gross total resection highly influence survival in patient with glioma. However, surgery performed in eloquent brain area, could seriously compromise the quality of life in patient with reduced life expectancy even more if it concerns the language function. Methods: 18 right-handed patients with perisylvian gliomas on the left hemisphere were prospectively analyzed over a period of 12 months. Standardized preoperative Diffusion-Tensor-Imaging based tractography of the five main language Tracts (Arcuate Fasciculus, Frontal Aslant Tract, Inferior Fronto-Occipital Fasciculus, Inferior Longitudinal Fasciculus, Uncinate Fasciculus) was navigated during the surgical procedure. Using a validated method, correlations were made between the pre-operative fascicles and their possible infiltration and surgical damage. The language status was assessed using the Aachen Aphasia Test. Results: In all nine patients who developed a permanent disorder there was pre-operative involvement of at least one fascicle and resection of at least one of these. In this way, areas of high risk of permanent language damage have emerged as a result of surgical injury: the temporoparietal junction, the middle portion of the FAT and the temporal stem. Conclusions: Navigated tractography has proven to be a user-friendly tool that can assess perioperative risk, guide surgical resection, and help the neurosurgeon to find that balance between tumor resection and function preservation.
Collapse
Affiliation(s)
- Luca Francesco Salvati
- Department of Neurosurgery, Santa Corona Hospital, Asl2 Liguria, 17027 Pietra Ligure, Italy;
- Correspondence:
| | - Raffaele De Marco
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Giuseppe Palmieri
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Massimiliano Minardi
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Armando Massara
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Alessandro Pesaresi
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Bernarda Cagetti
- Department of Neurosurgery, Santa Corona Hospital, Asl2 Liguria, 17027 Pietra Ligure, Italy;
| | - Antonio Melcarne
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Diego Garbossa
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| |
Collapse
|
22
|
Aaronson DM, Martinez Del Campo E, Boerger TF, Conway B, Cornell S, Tate M, Mueller WM, Chang EF, Krucoff MO. Understanding Variable Motor Responses to Direct Electrical Stimulation of the Human Motor Cortex During Brain Surgery. Front Surg 2021; 8:730367. [PMID: 34660677 PMCID: PMC8517489 DOI: 10.3389/fsurg.2021.730367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
Direct electrical stimulation of the brain is the gold standard technique used to define functional-anatomical relationships during neurosurgical procedures. Areas that respond to stimulation are considered “critical nodes” of circuits that must remain intact for the subject to maintain the ability to perform certain functions, like moving and speaking. Despite its routine use, the neurophysiology underlying downstream motor responses to electrical stimulation of the brain, such as muscle contraction or movement arrest, is poorly understood. Furthermore, varying and sometimes counterintuitive responses can be seen depending on how and where the stimulation is applied, even within the human primary motor cortex. Therefore, here we review relevant neuroanatomy of the human motor system, provide a brief historical perspective on electrical brain stimulation, explore mechanistic variations in stimulation applications, examine neurophysiological properties of different parts of the motor system, and suggest areas of future research that can promote a better understanding of the interaction between electrical stimulation of the brain and its function.
Collapse
Affiliation(s)
- Daniel M Aaronson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Timothy F Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian Conway
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah Cornell
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew Tate
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Edward F Chang
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, United States
| | - Max O Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
23
|
Gogos AJ, Young JS, Pereira MP, Morshed RA, Potts MB, Hervey-Jumper SL, Berger MS. Surgical management of incidentally discovered low-grade gliomas. J Neurosurg 2021; 135:480-487. [PMID: 33007758 DOI: 10.3171/2020.6.jns201296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/01/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although most patients with low-grade glioma (LGG) present after a seizure, a small proportion is diagnosed after neuroimaging is performed for a sign or symptom unrelated to the tumor. While these tumors invariably grow, some surgeons argue for a watchful waiting approach. Here, the authors report on their experience in the surgical treatment of patients with incidental LGG (iLGG) and describe the neurological outcomes, survival, and complications. METHODS Relevant cases were identified from a prospective registry of patients undergoing glioma resection at the University of California, San Francisco, between 1997 and 2019. Cases were considered iLGG when the lesion was noted on imaging performed for a reason unrelated to the tumor. Demographic, clinical, pathological, and imaging data were extracted from the electronic medical record. Tumor volumes, growth, and extent of resection were calculated from pre- and postoperative volumetric FLAIR sequences. RESULTS One hundred thirteen of 657 (17.2%) first-time resections for LGG were for incidental lesions. The most common reasons for the discovery of an iLGG were headaches (without mass effect, 34.5%) or trauma (16.8%). Incidental tumors were no different from symptomatic lesions in terms of laterality or location, but they were significantly smaller (22.5 vs 57.5 cm3, p < 0.0001). There was no difference in diagnosis between patients with iLGG and those with symptomatic LGG (sLGG), incorporating both molecular and pathological data. The median preoperative observation time for iLGG was 3.1 months (range 1 month-12 years), and there was a median growth rate of 3.9 cm3/year. Complete resection of the FLAIR abnormality was achieved in 57% of patients with incidental lesions but only 23.8% of symptomatic lesions (p < 0.001), and the residual volumes were smaller for iLGGs (2.9 vs 13.5 cm3, p < 0.0001). Overall survival was significantly longer for patients with incidental tumors (median survival not reached for patients with iLGG vs 14.6 years for those with sLGG, p < 0.0001). There was a 4.4% rate of neurological deficits at 6 months. CONCLUSIONS The authors present the largest cohort of iLGGs. Patient age, tumor location, and molecular genetics were not different between iLGGs and sLGGs. Incidental tumors were smaller, a greater extent of resection could be achieved, and overall survival was improved compared to those for patients with sLGG. Operative morbidity and rates of neurological deficit were acceptably low; thus, the authors advocate upfront surgical intervention aimed at maximal safe resection for these incidentally discovered lesions.
Collapse
Affiliation(s)
- Andrew J Gogos
- 1Department of Neurological Surgery, University of California, San Francisco
| | - Jacob S Young
- 1Department of Neurological Surgery, University of California, San Francisco
| | - Matheus P Pereira
- 2School of Medicine, University of California, San Francisco, California; and
| | - Ramin A Morshed
- 1Department of Neurological Surgery, University of California, San Francisco
| | - Matthew B Potts
- 3Department of Neurological Surgery, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Mitchel S Berger
- 1Department of Neurological Surgery, University of California, San Francisco
| |
Collapse
|
24
|
Targeting Primary Motor Cortex (M1) Functional Components in M1 Gliomas Enhances Safe Resection and Reveals M1 Plasticity Potentials. Cancers (Basel) 2021; 13:cancers13153808. [PMID: 34359709 PMCID: PMC8345096 DOI: 10.3390/cancers13153808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Primary-Motor-Cortex (M1) hosts two functional components, at its posterior and anterior borders, the first being faster and more excitable than the second. Our study reports a novel technique for the on-line identification of these functional components during M1 tumors resection. It reports for the first time the potential plastic reorganization of M1 and specifically how its functional organization is affected by a growing tumor and correlated to clinical, tumor-related factors and patient motor functional performance. It also shows for the first time that detecting the M1 functional architecture and targeting the two M1 functional components facilitates tumor resection, increasing the rate of complete tumor removal, while maintaining the patient’s functional motor capacity. Abstract Primary-Motor-Cortex (M1) hosts two functional components, at its posterior and anterior borders, being the first faster and more excitable. We developed a mapping-technique for M1 components identification and determined their functional cortical-subcortical architecture in M1 gliomas and the impact of their identification on tumor resection and motor performance. A novel advanced mapping technique was used in 102 tumors within M1 or CorticoSpinal-Tract to identify M1-two components. High-Frequency-stimulation (2–5 pulses) with an on-line qualitative and quantitative analysis of motor responses was used; the two components’ cortical/subcortical spatial distribution correlated to clinical, tumor-related factor and patients’ motor outcome; a cohort treated with standard-mapping was used for comparison. The two functional components were always identified on-line; in tumors not affecting M1, its functional segregation was preserved. In M1 tumors, two architectures, both preserving the two components, were disclosed: in 50%, a normal cortical/subcortical architecture emerged, while 50% revealed a distorted architecture with loss of anatomical reference and somatotopy, not associated with tumor histo-molecular features or volume, but with a previous treatment. Motor performance was maintained, suggesting functional compensation. By preserving the highest and resecting the lowest excitability component, the complete-resection increased with low morbidity. The real-time identification of two M1 functional components and the preservation of the highest excitability one increases safe resection, revealing M1 plasticity potentials.
Collapse
|
25
|
Rossi M, Puglisi G, Conti Nibali M, Viganò L, Sciortino T, Gay L, Leonetti A, Zito P, Riva M, Bello L. Asleep or awake motor mapping for resection of perirolandic glioma in the nondominant hemisphere? Development and validation of a multimodal score to tailor the surgical strategy. J Neurosurg 2021; 136:16-29. [PMID: 34144525 DOI: 10.3171/2020.11.jns202715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Resection of glioma in the nondominant hemisphere involving the motor areas and pathways requires the use of brain-mapping techniques to spare essential sites subserving motor control. No clear indications are available for performing motor mapping under either awake or asleep conditions or for the best mapping paradigm (e.g., resting or active, high-frequency [HF] or low-frequency [LF] stimulation) that provides the best oncological and functional outcomes when tailored to the clinical context. This work aimed to identify clinical and imaging factors that influence surgical strategy (asleep motor mapping vs awake motor mapping) and that are associated with the best functional and oncological outcomes and to design a "motor mapping score" for guiding tumor resection in this area. METHODS The authors evaluated a retrospective series of patients with nondominant-hemisphere glioma-located or infiltrating within 2 cm anteriorly or posteriorly to the central sulcus and affecting the primary motor cortex, its fibers, and/or the praxis network-who underwent operations with asleep (HF monopolar probe) or awake (LF and HF probes) motor mapping. Clinical and imaging variables were used to design a motor mapping score. A prospective series of patients was used to validate this motor mapping score. RESULTS One hundred thirty-five patients were retrospectively analyzed: 69 underwent operations with asleep (HF stimulation) motor mapping, and 66 underwent awake (LF and HF stimulation and praxis task evaluation) motor mapping. Previous motor (strength) deficit, previous treatment (surgery/radiotherapy), tumor volume > 30 cm3, and tumor involvement of the praxis network (on MRI) were identified and used to design the mapping score. Motor deficit, previous treatment, and location within or close to the central sulcus favor use of asleep motor mapping; large tumor volume and involvement of the praxis network favor use of awake motor mapping. The motor mapping score was validated in a prospective series of 52 patients-35 underwent operations with awake motor mapping and 17 with asleep motor mapping on the basis of the score indications-who had a low rate of postoperative motor-praxis deficit (3%) and a high extent of resection (median 97%; complete resection in > 70% of patients). CONCLUSIONS Extensive resection of tumor involving the eloquent areas for motor control is feasible, and when an appropriate mapping strategy is applied, the incidence of postoperative motor-praxis deficit is low. Asleep (HF stimulation) motor mapping is preferable for lesions close to or involving the central sulcus and/or in patients with preoperative strength deficit and/or history of previous treatment. When a patient has no motor deficit or previous treatment and has a lesion (> 30 cm3) involving the praxis network, awake mapping is preferable.
Collapse
Affiliation(s)
- Marco Rossi
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| | - Guglielmo Puglisi
- 2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and.,3Neurosurgical Oncology Unit, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano
| | - Marco Conti Nibali
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| | - Luca Viganò
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| | - Tommaso Sciortino
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| | - Lorenzo Gay
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| | - Antonella Leonetti
- 2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and.,3Neurosurgical Oncology Unit, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano
| | - Paola Zito
- 4Department of Anesthesia and Intensive Care, Humanitas Research Hospital, IRCCS, Rozzano, Italy
| | - Marco Riva
- 2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and.,3Neurosurgical Oncology Unit, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano
| | - Lorenzo Bello
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, and.,2Neurosurgical Oncology Unit, IRCCS Istituto Ortopedico Galeazzi, Milano; and
| |
Collapse
|
26
|
Asimakidou E, Abut PA, Raabe A, Seidel K. Motor Evoked Potential Warning Criteria in Supratentorial Surgery: A Scoping Review. Cancers (Basel) 2021; 13:2803. [PMID: 34199853 PMCID: PMC8200078 DOI: 10.3390/cancers13112803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/31/2022] Open
Abstract
During intraoperative monitoring of motor evoked potentials (MEP), heterogeneity across studies in terms of study populations, intraoperative settings, applied warning criteria, and outcome reporting exists. A scoping review of MEP warning criteria in supratentorial surgery was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sixty-eight studies fulfilled the eligibility criteria. The most commonly used alarm criteria were MEP signal loss, which was always a major warning sign, followed by amplitude reduction and threshold elevation. Irreversible MEP alterations were associated with a higher number of transient and persisting motor deficits compared with the reversible changes. In almost all studies, specificity and Negative Predictive Value (NPV) were high, while in most of them, sensitivity and Positive Predictive Value (PPV) were rather low or modest. Thus, the absence of an irreversible alteration may reassure the neurosurgeon that the patient will not suffer a motor deficit in the short-term and long-term follow-up. Further, MEPs perform well as surrogate markers, and reversible MEP deteriorations after successful intervention indicate motor function preservation postoperatively. However, in future studies, a consensus regarding the definitions of MEP alteration, critical duration of alterations, and outcome reporting should be determined.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Pablo Alvarez Abut
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
- Department of Neurosurgery, Clínica 25 de Mayo, 7600 Mar del Plata, Argentina
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Kathleen Seidel
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| |
Collapse
|
27
|
Gogos AJ, Young JS, Morshed RA, Avalos LN, Noss RS, Villanueva-Meyer JE, Hervey-Jumper SL, Berger MS. Triple motor mapping: transcranial, bipolar, and monopolar mapping for supratentorial glioma resection adjacent to motor pathways. J Neurosurg 2021; 134:1728-1737. [PMID: 32502996 DOI: 10.3171/2020.3.jns193434] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/31/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Maximal safe resection of gliomas near motor pathways is facilitated by intraoperative mapping. The authors and other groups have described the use of bipolar or monopolar direct stimulation to identify functional tissue, as well as transcranial or transcortical motor evoked potentials (MEPs) to monitor motor pathways. Here, the authors describe their initial experience using all 3 modalities to identify, monitor, and preserve cortical and subcortical motor systems during glioma surgery. METHODS Intraoperative mapping data were extracted from a prospective registry of glioma resections near motor pathways. Additional demographic, clinical, pathological, and imaging data were extracted from the electronic medical record. All patients with new or worsened postoperative motor deficits were followed for at least 6 months. RESULTS Between January 2018 and August 2019, 59 operations were performed in 58 patients. Overall, patients in 6 cases (10.2%) had new or worse immediate postoperative deficits. Patients with temporary deficits all had at least Medical Research Council grade 4/5 power. Only 2 patients (3.4%) had permanently worsened deficits after 6 months, both of which were associated with diffusion restriction consistent with ischemia within the corticospinal tract. One patient's deficit improved to 4/5 and the other to 4/5 proximally and 3/5 distally in the lower limb, allowing ambulation following rehabilitation. Subcortical motor pathways were identified in 51 cases (86.4%) with monopolar high-frequency stimulation, but only in 6 patients using bipolar stimulation. Transcranial or cortical MEPs were diminished in only 6 cases, 3 of which had new or worsened deficits, with 1 permanent deficit. Insula location (p = 0.001) and reduction in MEPs (p = 0.01) were the only univariate predictors of new or worsened postoperative deficits. Insula location was the only predictor of permanent deficits (p = 0.046). The median extent of resection was 98.0%. CONCLUSIONS Asleep triple motor mapping is safe and resulted in a low rate of deficits without compromising the extent of resection.
Collapse
Affiliation(s)
| | | | | | | | - Roger S Noss
- 3Neuromonitoring Service, University of California, San Francisco, California
| | | | | | | |
Collapse
|
28
|
Rossi M, Sciortino T, Conti Nibali M, Gay L, Viganò L, Puglisi G, Leonetti A, Howells H, Fornia L, Cerri G, Riva M, Bello L. Clinical Pearls and Methods for Intraoperative Motor Mapping. Neurosurgery 2021; 88:457-467. [PMID: 33476393 PMCID: PMC7884143 DOI: 10.1093/neuros/nyaa359] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Resection of brain tumors involving motor areas and pathways requires the identification and preservation of various cortical and subcortical structures involved in motor control at the time of the procedure, in order to maintain the patient's full motor capacities. The use of brain mapping techniques has now been integrated into clinical practice for many years, as they help the surgeon to identify the neural structures involved in motor functions. A common definition of motor function, as well as knowledge of its neural organization, has been continuously evolving, underlining the need for implementing intraoperative strategies at the time of the procedure. Similarly, mapping strategies have been subjected to continuous changes, enhancing the likelihood of preservation of full motor capacities. As a general rule, the motor mapping strategy should be as flexible as possible and adapted strictly to the individual patient and clinical context of the tumor. In this work, we present an overview of current knowledge of motor organization, indications for motor mapping, available motor mapping, and monitoring strategies, as well as their advantages and limitations. The use of motor mapping improves resection and outcomes in patients harboring tumors involving motor areas and pathways, and should be considered the gold standard in the resection of this type of tumor.
Collapse
Affiliation(s)
- Marco Rossi
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Tommaso Sciortino
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Marco Conti Nibali
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Gay
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Luca Viganò
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Guglielmo Puglisi
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Antonella Leonetti
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Luca Fornia
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Gabriella Cerri
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Marco Riva
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Bello
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
29
|
Morsy AA, Ismail AM, Nasr YM, Waly SH, Abdelhameed EA. Predictors of stimulation-induced seizures during perirolandic glioma resection using intraoperative mapping techniques. Surg Neurol Int 2021; 12:117. [PMID: 33880222 PMCID: PMC8053429 DOI: 10.25259/sni_873_2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Intraoperative mapping techniques maximize safety and efficacy during perirolandic glioma resection but may induce seizures and limit the procedure. We aim to report the incidence and predictors of stimulation-induced seizures during mapping either patient is awake or under general anesthesia (GA). METHODS Retrospective analysis of 64 patients (40 awake and 24 GA) with perirolandic glioma underwent resection using intraoperative mapping techniques between 2014 and 2019. Preoperative data, operative details, postoperative neurological status, and extent of resection (EOR) were analyzed. Predictors of intraoperative seizures were assessed. RESULTS The mean cortical and subcortical stimulation intensities needed to evoke motor responses were significantly lower in awake cases than in GA patients (4.9 ± 0.42 vs. 8.9 ± 1.2 mA) and (8.3 ± 0.62 vs. 12.1 ± 1.1 mA), respectively (P = 0.01). Incidence of intraoperative seizures was lower but statistically non-significant in awake cases (10% vs. 12.5%) (P = 0.76). Preoperative multiple antiepileptic drugs (AEDs) (P = 0.03) and low-grade glioma (P = 0.04) were statistically significant predictors for intraoperative seizures. Mean EOR in awake cases was 92.03% and 90.05% in GA cases (P = 0.23). Postoperative deficits were permanent after 3 months only in 5% of awake patients versus 8.3% of GA group (P = 0.59). CONCLUSION Awake craniotomy with intraoperative mapping can be done safely for perirolandic gliomas with lower but statistically nonsignificant incidence of intraoperative seizures and this could be attributed to statistically significant lower stimulation intensities required for mapping. Preoperative multiple AEDs and low-grade glioma are significant predictors for intraoperative seizures.
Collapse
Affiliation(s)
- Ahmed A Morsy
- Department of Neurosurgery, Zagazig University, Zagazig, Alsharkia, Egypt
| | - Ayman M Ismail
- Department of Neurosurgery, Zagazig University, Zagazig, Alsharkia, Egypt
| | - Yasser M Nasr
- Department of Anesthesia and Surgical Intensive Care, Zagazig University, Zagazig, Alsharkia, Egypt
| | - Salwa H Waly
- Department of Anesthesia and Surgical Intensive Care, Zagazig University, Zagazig, Alsharkia, Egypt
| | | |
Collapse
|
30
|
The corticotegmental connectivity as an integral component of the descending extrapyramidal pathway: novel and direct structural evidence stemming from focused fiber dissections. Neurosurg Rev 2021; 44:3283-3296. [PMID: 33564983 DOI: 10.1007/s10143-021-01489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
This study opts to investigate the thus far ill-defined intra-hemispheric topography, morphology, and connectivity of the extrapyramidal fibers that originate from the frontoparietal cortex and project to the tegmental area and to explore structural correlations to the pyramidal pathway. To this end, twenty normal adult, formalin-fixed cerebral hemispheres were studied through the fiber micro-dissection technique. Stepwise and in-tandem medial to lateral and lateral to medial dissections were carried out in all specimens. The cortical termination of the fibers under investigation was carefully defined, and their entry zone at the tegmental area was meticulously recorded. We consistently identified the corticotegmental tract (CTT) as a distinct fiber pathway lying in the white matter of the genu and posterior limb of the internal capsule and travelling medial to the corticospinal tract (CST) and lateral to the thalamic radiations. The CTT exhibits a fan-shaped configuration and can be classified into three discrete segments: a rostral one receiving fibers from BA8 (pre-SMA, frontal eye fields, dorsal prefrontal cortex), a middle one arising from areas BA4 and BA6 (primary motor cortex and premotor cortex), and a caudal one stemming from areas BA1/2/3 (somatosensory cortex). The anatomical location, configuration, trajectory, and axonal connectivity of this tract are attuned to the descending component of the extrapyramidal system, and therefore, it is believed to be implicated in locomotion, postural control, motor inhibition, and motor modification. Our results provide further support on the emerging concept of a dynamic, parallel, and delocalized theory for complex human motor behavior.
Collapse
|
31
|
Giampiccolo D, Parisi C, Meneghelli P, Tramontano V, Basaldella F, Pasetto M, Pinna G, Cattaneo L, Sala F. Long-term motor deficit in brain tumour surgery with preserved intra-operative motor-evoked potentials. Brain Commun 2021; 3:fcaa226. [PMID: 33615216 PMCID: PMC7884605 DOI: 10.1093/braincomms/fcaa226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Muscle motor-evoked potentials are commonly monitored during brain tumour surgery in motor areas, as these are assumed to reflect the integrity of descending motor pathways, including the corticospinal tract. However, while the loss of muscle motor-evoked potentials at the end of surgery is associated with long-term motor deficits (muscle motor-evoked potential-related deficits), there is increasing evidence that motor deficit can occur despite no change in muscle motor-evoked potentials (muscle motor-evoked potential-unrelated deficits), particularly after surgery of non-primary regions involved in motor control. In this study, we aimed to investigate the incidence of muscle motor-evoked potential-unrelated deficits and to identify the associated brain regions. We retrospectively reviewed 125 consecutive patients who underwent surgery for peri-Rolandic lesions using intra-operative neurophysiological monitoring. Intraoperative changes in muscle motor-evoked potentials were correlated with motor outcome, assessed by the Medical Research Council scale. We performed voxel–lesion–symptom mapping to identify which resected regions were associated with short- and long-term muscle motor-evoked potential-associated motor deficits. Muscle motor-evoked potentials reductions significantly predicted long-term motor deficits. However, in more than half of the patients who experienced long-term deficits (12/22 patients), no muscle motor-evoked potential reduction was reported during surgery. Lesion analysis showed that muscle motor-evoked potential-related long-term motor deficits were associated with direct or ischaemic damage to the corticospinal tract, whereas muscle motor-evoked potential-unrelated deficits occurred when supplementary motor areas were resected in conjunction with dorsal premotor regions and the anterior cingulate. Our results indicate that long-term motor deficits unrelated to the corticospinal tract can occur more often than currently reported. As these deficits cannot be predicted by muscle motor-evoked potentials, a combination of awake and/or novel asleep techniques other than muscle motor-evoked potentials monitoring should be implemented.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Cristiano Parisi
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Pietro Meneghelli
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Vincenzo Tramontano
- Division of Neurology and Intraoperative Neurophysiology Unit, University Hospital, Verona, Italy
| | - Federica Basaldella
- Division of Neurology and Intraoperative Neurophysiology Unit, University Hospital, Verona, Italy
| | - Marco Pasetto
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Giampietro Pinna
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| | - Luigi Cattaneo
- CIMEC-Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy
| |
Collapse
|
32
|
Aung T, Punia V, Katagiri M, Prayson R, Wang I, Gonzalez-Martinez JA. The feasibility and value of extraoperative and adjuvant intraoperative stereoelectroencephalography in rolandic and perirolandic epilepsies. J Neurosurg Pediatr 2021; 27:36-46. [PMID: 33096530 DOI: 10.3171/2020.6.peds2099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/01/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The objective of this study was to illustrate the feasibility and value of extra- and intraoperative stereoelectroencephalography (SEEG) in patients who underwent resection in rolandic and perirolandic regions. METHODS The authors retrospectively reviewed all consecutive patients with at least 1 year of postoperative follow-up who underwent extra- and intraoperative SEEG monitoring between January 2015 and January 2017. RESULTS Four patients with pharmacoresistant rolandic and perirolandic focal epilepsy were identified, who underwent conventional extraoperative invasive SEEG evaluations followed by adjuvant intraoperative SEEG recordings. Conventional extraoperative SEEG evaluations demonstrated ictal and interictal epileptiform activities involving eloquent rolandic and perirolandic cortical areas in all patients. Following extraoperative monitoring, patients underwent preplanned staged resections guided by simultaneous and continuous adjuvant intraoperative SEEG monitoring. Resections, guided by electrode contacts of interest in 3D boundaries, were performed while continuous real-time electrographic data from SEEG recordings were obtained. Staged approaches of resections were performed until there was intraoperative resolution of synchronous rolandic/perirolandic cortex epileptic activities. All patients in the cohort achieved complete seizure freedom (Engel class IA) during the follow-up period ranging from 18 to 50 months. Resection resulted in minimal neurological deficit; 3 patients experienced transient, distal plantar flexion weakness (mild foot drop). CONCLUSIONS The seizure and functional outcome results of this highly preselected group of patients testifies to the feasibility and demonstrates the value of the combined benefits of both intra- and extraoperative SEEG recordings when resecting the rolandic and perirolandic areas. The novel hybrid method allows a more refined and precise identification of the epileptogenic zone. Consequently, tailored resections can be performed to minimize morbidity as well as to achieve adequate seizure control.
Collapse
Affiliation(s)
- Thandar Aung
- Departments of1Neurology and
- 3Department of Neurology, Epilepsy Center, Barrow Neurological Institute, Phoenix, Arizona
| | | | - Masaya Katagiri
- Departments of1Neurology and
- 6Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Richard Prayson
- 5Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | | | - Jorge A Gonzalez-Martinez
- 2Neurosurgery, Epilepsy Center, and
- 4Department of Neurosurgery, Epilepsy and Movement Disorders Division, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| |
Collapse
|
33
|
Morshed RA, Young JS, Lee AT, Berger MS, Hervey-Jumper SL. Clinical Pearls and Methods for Intraoperative Awake Language Mapping. Neurosurgery 2020; 89:143-153. [PMID: 33289505 DOI: 10.1093/neuros/nyaa440] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Intraoperative language mapping of tumor and peritumor tissue is a well-established technique for avoiding permanent neurological deficits and maximizing extent of resection. Although there are several components of language that may be tested intraoperatively (eg, naming, writing, reading, and repetition), there is a lack of consistency in how patients are tested intraoperatively as well as the techniques involved to ensure safety during an awake procedure. Here, we review appropriate patient selection, neuroanesthetic techniques, cortical and subcortical language mapping stimulation paradigms, and selection of intraoperative language tasks used during awake craniotomies. We also expand on existing language mapping reviews by considering how intensity and timing of electrical stimulation may impact interpretation of mapping results.
Collapse
|
34
|
Abstract
Intraoperative functional mapping of tumor and peri-tumor tissue is a well-established technique for avoiding permanent neurologic deficits and maximizing extent of resection. Motor, language, and other cognitive domains may be assessed with intraoperative tasks. This article describes techniques used for motor and language mapping including awake mapping considerations in addition to less traditional intraoperative testing paradigms for cognition. It also discusses complications associated with mapping and insights into complication avoidance.
Collapse
|
35
|
Kosyrkova AV, Goryainov SA, Ogurtsova AA, Okhlopkov VA, Kravchuk AD, Batalov AI, Afandiev RM, Bayev AA, Pogosbekyan EL, Pronin IN, Zakharova NE, Danilov GV, Strunina YV, Potapov AA. [Comparative analysis of mono- and bipolar pyramidal tract mapping in patients with supratentorial tumors adjacent to motor areas: comparison of data at 64 stimulation points]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:29-40. [PMID: 33095531 DOI: 10.17116/neiro20208405129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To compare monopolar and bipolar mapping in point-by-point fashion by using of threshold amperage, frequency of positive motor responses and the number of muscles involved in response. MATERIAL AND METHODS A prospective non-randomized study included 14 patients with supratentorial tumors who underwent surgery in 2018-2019. All neoplasms were localized within 2 cm from the motor cortex and pyramidal tract. Age of patients ranged from 25 to 74 years. There were 9 women and 5 men. Eight patients had malignant glioma (grade III - 4, grade IV - 4), 6 patients - meningioma. Motor functions were assessed in all patients before and after surgery (1, 7 days and 3 months later) by using of a 5-point scale. In addition to routine neurophysiological monitoring, comparative mono- and bipolar mapping of the pyramidal tract within the bed of excised tumor was carried out at the end of surgery. The points of motor responses were marked. Comparative analysis of mono- and bipolar stimulation at identical points included threshold amperage, frequency of positive motor responses and the number of muscles involved in response (leg, forearm, hand, facial muscles). Brain MRI was performed in early postoperative period for assessment of resection quality. RESULTS There were 64 points of motor responses in 14 patients. The number of these points ranged from 2 to 8 per a patient (mean 5 points). Motor responses were recorded in 57 points during monopolar and bipolar stimulation, in other 7 points - only during monopolar stimulation. Amperage of monopolar stimulation was 3-15 mA, bipolar stimulation - 2.5-25 mA. Threshold amperage (7.37 mA for monopolar stimulation and 8.88 mA for bipolar stimulation; p=0.12), frequency of positive motor responses and the number of muscles involved in response (p=0.1 and p=0.73) were similar. Seven (50%) patients had neurological deterioration in early postoperative period (4 patients with glial tumors and 3 patients with meningiomas). At the same time, only 2 patients (14.3%) had persistent neurological deficit (both patients with infiltrative meningioma). According to postoperative MRI in T1+C mode, resection volume was 100% in 1 patient with contrast-enhanced glioma and 94% in another one. According to FLAIR MRI data, resection volume exceeded 70% in 2 patients with non-enhancing glioma and less than 70% in 2 patients. Meningioma resection volume was estimated according to postoperative T1+C MRI data and made up over 90% in 4 patients. CONCLUSION Monopolar stimulation is a reliable method of pyramidal tract identification in supratentorial brain tumor surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A A Bayev
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - G V Danilov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A A Potapov
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
36
|
Gabrovsky N, Laleva M, Poptodorov G, Velinov N, Kamenova M, Kaneva R, Gabrovsky S. Impact of surgical treatment on the performance status of patients with high-grade gliomas. Neurol Res 2020; 42:1074-1079. [PMID: 32892718 DOI: 10.1080/01616412.2020.1802147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The objective of our study is to evaluate the impact of neurosurgical operative treatment on the performance status assessed by the Karnofsky Performance Scale (KPS) in patients with HGG for the first, for the second intervention and for the different age groups. METHODS A group of 425 patients operated consecutively for high-grade gliomas were included in this study. The performance status was evaluated preoperatively and 15 days postoperatively with the KPS. Analyses for the different histological grade, tumor locations and age groups divided by decades have been made. RESULTS The initial, preoperative KPS score for patients with grade III tumor was 77.65 and for grade IV - 71.35. Following the first operation mean KPS has a statistically significant increase and reaches 82.24 and 78.41, respectively. The improvement of the performance status after the first operation was significant for all relevant age groups, including the sixth, seventh and eighth decades. Although the obtained mean KPS scores after the second operation did not show improvement there was also no clear evidence for worsening in this group of patients (n = 100) and the negative results obtained were not statistically significant. CONCLUSION According to our study, the first operation has a beneficial effect on the performance status in patients with HGG. The results for the second operation are more ambiguous, but there is no clear evidence for worsening of the KPS score after the second intervention. These results were relevant for all age groups, so we may expect amelioration in the performance status even in older patients.
Collapse
Affiliation(s)
- Nikolay Gabrovsky
- Department of Neurosurgery, University Hospital Pirogov , Sofia, Bulgaria
| | - Maria Laleva
- Department of Neurosurgery, University Hospital Pirogov , Sofia, Bulgaria
| | - George Poptodorov
- Department of Neurosurgery, University Hospital Pirogov , Sofia, Bulgaria
| | - Nikolay Velinov
- Department of Neurosurgery, University Hospital Pirogov , Sofia, Bulgaria
| | | | - Radka Kaneva
- Molecular Medicine Center, Medical University of Sofia , Sofia, Bulgaria
| | - Stefan Gabrovsky
- Department of Neurosurgery, University Hospital Pirogov , Sofia, Bulgaria
| |
Collapse
|
37
|
Rossi M, Conti Nibali M, Viganò L, Puglisi G, Howells H, Gay L, Sciortino T, Leonetti A, Riva M, Fornia L, Cerri G, Bello L. Resection of tumors within the primary motor cortex using high-frequency stimulation: oncological and functional efficiency of this versatile approach based on clinical conditions. J Neurosurg 2020; 133:642-654. [PMID: 31398706 DOI: 10.3171/2019.5.jns19453] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/08/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Brain mapping techniques allow one to effectively approach tumors involving the primary motor cortex (M1). Tumor resectability and maintenance of patient integrity depend on the ability to successfully identify motor tracts during resection by choosing the most appropriate neurophysiological paradigm for motor mapping. Mapping with a high-frequency (HF) stimulation technique has emerged as the most efficient tool to identify motor tracts because of its versatility in different clinical settings. At present, few data are available on the use of HF for removal of tumors predominantly involving M1. METHODS The authors retrospectively analyzed a series of 102 patients with brain tumors within M1, by reviewing the use of HF as a guide. The neurophysiological protocols adopted during resections were described and correlated with patients' clinical and tumor imaging features. Feasibility of mapping, extent of resection, and motor function assessment were used to evaluate the oncological and functional outcome to be correlated with the selected neurophysiological parameters used for guiding resection. The study aimed to define the most efficient protocol to guide resection for each clinical condition. RESULTS The data confirmed HF as an efficient tool for guiding resection of M1 tumors, affording 85.3% complete resection and only 2% permanent morbidity. HF was highly versatile, adapting the stimulation paradigm and the probe to the clinical context. Three approaches were used. The first was a "standard approach" (HF "train of 5," using a monopolar probe) applied in 51 patients with no motor deficit and seizure control, harboring a well-defined tumor, showing contrast enhancement in most cases, and reaching the M1 surface. Complete resection was achieved in 72.5%, and 2% had permanent morbidity. The second approach was an "increased train approach," that is, an increase in the number of pulses (7-9) and of pulse duration, using a monopolar probe. This second approach was applied in 8 patients with a long clinical history, previous treatment (surgery, radiation therapy, chemotherapy), motor deficit at admission, poor seizure control, and mostly high-grade gliomas or metastases. Complete resection was achieved in 87.5% using this approach, along with 0% permanent morbidity. The final approach was a "reduced train approach," which was the combined use of train of 2 or train of 1 pulses associated with the standard approach, using a monopolar or bipolar probe. This approach was used in 43 patients with a long clinical history and poorly controlled seizures, harboring tumors with irregular borders without contrast enhancement (low or lower grade), possibly not reaching the cortical surface. Complete resection was attained in 88.4%, and permanent morbidity was found in 2.3%. CONCLUSIONS Resection of M1 tumors is feasible and safe. By adapting the stimulation paradigm and probe appropriately to the clinical context, the best resection and functional results can be achieved.
Collapse
Affiliation(s)
- Marco Rossi
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology
| | - Marco Conti Nibali
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology
| | - Luca Viganò
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology
| | - Guglielmo Puglisi
- 2Laboratory of Motor Control, Department of Medical Biotechnology and Translational Medicine; and
| | - Henrietta Howells
- 2Laboratory of Motor Control, Department of Medical Biotechnology and Translational Medicine; and
| | - Lorenzo Gay
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology
| | - Tommaso Sciortino
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology
| | - Antonella Leonetti
- 2Laboratory of Motor Control, Department of Medical Biotechnology and Translational Medicine; and
| | - Marco Riva
- 3Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano and Humanitas Research Hospital, IRCCS, Milano, Italy
| | - Luca Fornia
- 2Laboratory of Motor Control, Department of Medical Biotechnology and Translational Medicine; and
| | - Gabriella Cerri
- 2Laboratory of Motor Control, Department of Medical Biotechnology and Translational Medicine; and
| | - Lorenzo Bello
- 1Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology
| |
Collapse
|
38
|
Broggi M, Zattra CM, Tringali G, Acerbi F. Commentary: Novel Use of Stimulating Fence-Post Technique for Functional Mapping of Subcortical White Matter During Tumor Resection: A Technical Case Series. Oper Neurosurg (Hagerstown) 2020; 19:E222-E223. [PMID: 32348480 DOI: 10.1093/ons/opaa111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Costanza M Zattra
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giovanni Tringali
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
39
|
Suarez-Meade P, Marenco-Hillembrand L, Prevatt C, Murguia-Fuentes R, Mohamed A, Alsaeed T, Lehrer EJ, Brigham T, Ruiz-Garcia H, Sabsevitz D, Middlebrooks EH, Bechtle PS, Quinones-Hinojosa A, Chaichana KL. Awake vs. asleep motor mapping for glioma resection: a systematic review and meta-analysis. Acta Neurochir (Wien) 2020; 162:1709-1720. [PMID: 32388682 DOI: 10.1007/s00701-020-04357-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Intraoperative stimulation (IS) mapping has become the preferred standard treatment for eloquent tumors as it permits a more accurate identification of functional areas, allowing surgeons to achieve higher extents of resection (EOR) and decrease postoperative morbidity. For lesions adjacent to the perirolandic area and descending motor tracts, mapping can be done with both awake craniotomy (AC) and under general anesthesia (GA). OBJECTIVE We aimed to determine which anesthetic protocol-AC vs. GA-provides better patient outcomes by comparing EOR and postoperative morbidity for surgeries using IS mapping in gliomas located near or in motor areas of the brain. METHODS A systematic literature search was carried out to identify relevant studies from 1983 to 2019. Seven databases were screened. A total of 2351 glioma patients from 17 studies were analyzed. RESULTS A random-effects meta-analysis revealed a trend towards a higher mean EOR in AC [90.1% (95% C.I. 85.8-93.8)] than with GA [81.7% (95% C.I. 72.4-89.7)] (p = 0.06). Neurological deficits were divided by timing and severity for analysis. There was no significant difference in early neurological deficits [20.9% (95% C.I. 4.1-45.0) vs. 25.4% (95% C.I. 13.6-39.2)] (p = 0.74), late neurological deficits [17.1% (95% C.I. 0.0-50.0) vs. 3.8% (95% C.I. 1.1-7.6)] (p = 0.06), or in non-severe [28.4% (95% C.I. 0.0-88.5) vs. 20.1% (95% C.I. 7.1-32.2)] (p = 0.72), and severe morbidity [2.6% (95% C.I. 0.0-15.5) vs. 4.5% (95% C.I. 1.1-9.6)] (p = 0.89) between patients who underwent AC versus GA, respectively. CONCLUSION Mapping during resection of gliomas located in or near the perirolandic area and descending motor tracts can be safely carried out with both AC and GA.
Collapse
Affiliation(s)
- Paola Suarez-Meade
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Lina Marenco-Hillembrand
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Calder Prevatt
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Ricardo Murguia-Fuentes
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Alea Mohamed
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Thannon Alsaeed
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tara Brigham
- Mayo Clinic Libraries, Mayo Clinic, Jacksonville, FL, USA
| | - Henry Ruiz-Garcia
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - David Sabsevitz
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Perry S Bechtle
- Anesthesiology Department, Mayo Clinic, Jacksonville, FL, USA
| | | | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
40
|
Awake glioma surgery: technical evolution and nuances. J Neurooncol 2020; 147:515-524. [PMID: 32270374 DOI: 10.1007/s11060-020-03482-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Multiple studies have demonstrated that improved extent of resection is associated with longer overall survival for patients with both high and low grade glioma. Awake craniotomy was developed as a technique for maximizing resection whilst preserving neurological function. METHODS We performed a comprehensive review of the literature describing the history, indications, techniques and outcomes of awake craniotomy for patients with glioma. RESULTS The technique of awake craniotomy evolved to become an essential tool for resection of glioma. Many perceived contraindications can now be managed. We describe in detail our preferred technique, the testing paradigms utilized, and critically review the literature regarding functional and oncological outcome. CONCLUSIONS Awake craniotomy with mapping has become the gold standard for safely maximizing extent of resection for tumor in or near eloquent brain. Cortical and subcortical mapping methods have been refined and the technique is associated with an extremely low rate of complications.
Collapse
|
41
|
Han SJ, Teton Z, Gupta K, Kawamoto A, Raslan AM. Novel Use of Stimulating Fence-Post Technique for Functional Mapping of Subcortical White Matter During Tumor Resection: A Technical Case Series. Oper Neurosurg (Hagerstown) 2020; 19:264-270. [DOI: 10.1093/ons/opaa027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/12/2020] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Maximal safe resection remains a key principle in infiltrating glioma management. Stimulation mapping is a key adjunct for minimizing functional morbidity while “fence-post” procedures use catheters or dye to mark the tumor border at the start of the procedure prior to brain shift.
Objective
To report a novel technique using stereotactically placed electrodes to guide tumor resection near critical descending subcortical fibers.
Methods
Navigated electrodes were placed prior to tumor resection along the deep margin bordering presumed eloquent tracts. Stimulation was administered through these depth electrodes for subcortical motor and language mapping.
Results
Twelve patients were included in this preliminary technical report. Seven patients (7/12, 58%) were in asleep cases, while the other 5 cases (5/12, 42%) were performed awake. Mapping of motor fibers was performed in 8 cases, and language mapping was done in 1 case. In 3 cases, both motor and language mapping were performed using the same depth electrode spanning corticospinal tract and the arcuate fasciculus.
Conclusion
Stereotactic depth electrode placement coupled with stimulation mapping of white matter tracts can be used concomitantly to demarcate the border between deep tumor margins and eloquent brain, thus helping to maximize extent of resection while minimizing functional morbidity.
Collapse
Affiliation(s)
- Seunggu Jude Han
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Zoe Teton
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
- Department of Neurology, Oregon Health & Science University, Portland, Oregon
| | - Kunal Gupta
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Aaron Kawamoto
- School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
42
|
Azad TD, Duffau H. Limitations of functional neuroimaging for patient selection and surgical planning in glioma surgery. Neurosurg Focus 2020; 48:E12. [DOI: 10.3171/2019.11.focus19769] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/01/2019] [Indexed: 11/06/2022]
Abstract
The optimal surgical management of gliomas requires a balance between surgical cytoreduction and preservation of neurological function. Preoperative functional neuroimaging, such as functional MRI (fMRI) and diffusion tensor imaging (DTI), has emerged as a possible tool to inform patient selection and surgical planning. However, evidence that preoperative fMRI or DTI improves extent of resection, limits neurological morbidity, and broadens surgical indications in classically eloquent areas is lacking. In this review, the authors describe facets of functional neuroimaging techniques that may limit their impact on neurosurgical oncology and critically evaluate the evidence supporting fMRI and DTI for patient selection and operative planning in glioma surgery. The authors also propose alternative applications for functional neuroimaging in the care of glioma patients.
Collapse
Affiliation(s)
- Tej D. Azad
- 1Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland; and
| | - Hugues Duffau
- 2Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier, France
| |
Collapse
|
43
|
Bowden SG, Han SJ. The Evolving Role of the Oncologic Neurosurgeon: Looking Beyond Extent of Resection in the Modern Era. Front Oncol 2018; 8:406. [PMID: 30319971 PMCID: PMC6167541 DOI: 10.3389/fonc.2018.00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Neurosurgeons have played an essential role in glioma management and research for over a century. While the past twenty years have played witness to many exciting developments in glioma biology, diagnosis, and classification, relatively few novel, effective treatment strategies have been introduced. The role of neurosurgery in glioma management has been clarified, with a large body of evidence in support of maximal safe resection. However, neurosurgeons have also played a critical role in translational research during this period. The development of new MRI technologies has benefited greatly from validation with stereotactically-targeted human tissue. Careful banking of surgically acquired tissue was key to the development of a new classification scheme for glioma. Similarly, we have garnered a considerably deeper understanding of molecular and genetic properties of glioma through analysis of large surgical specimens. As our classification schemes become more sophisticated, incorporating targeted tissue sampling into the development of novel treatment strategies becomes essential. Such ex vivo analysis could be instrumental in determining mechanisms of treatment failure or success. Modern tumor neurosurgeons should consider themselves surgical neuro-oncologists, with engagement in translational research essential to furthering the field and improving outlooks for our patients.
Collapse
Affiliation(s)
- Stephen G Bowden
- Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Seunggu Jude Han
- Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|