1
|
Atkinson-Clement C, Howett D, Alkhawashki M, Ross J, Slater B, Gatica M, Balezeau F, Zhang C, Sallet J, Petkov C, Kaiser M. Temporal dynamics of offline transcranial ultrasound stimulation. CURRENT RESEARCH IN NEUROBIOLOGY 2025; 8:100148. [PMID: 40161488 PMCID: PMC11950745 DOI: 10.1016/j.crneur.2025.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Transcranial ultrasound stimulation (TUS) is a promising non-invasive neuromodulation modality, characterized by deep-brain accuracy and the capability to induce longer-lasting effects. However, most TUS datasets are underpowered, hampering efforts to identify TUS longevity and temporal dynamics. This primate case was studied awake with over 50 fMRI datasets, with and without left anterior hippocampus TUS. We therefore amassed the highest-powered TUS dataset to date required to reveal TUS longevity and dynamics. Most of the effects were found in the TUS region itself and alongside the default mode and sensorimotor networks. Seed-based functional connectivity exhibited a time-constrained alteration which dissipated ∼60 min post-TUS. Intrinsic activity measure and regional homogeneity displayed extended diffusivity and longer durations. This high-powered dataset allowed predicting TUS using pre-stimulation features that can now extend to modeling of individuals scanned less extensively. This case report reveals the diversity of TUS temporal dynamics to help to advance long-lasting human applications.
Collapse
Affiliation(s)
| | - David Howett
- School of Psychological Science, University of Bristol, United Kingdom
| | | | - James Ross
- Precision Imaging, School of Medicine, University of Nottingham, United Kingdom
| | - Ben Slater
- Biosciences Institute, Newcastle University Medical School, United Kingdom
| | - Marilyn Gatica
- Precision Imaging, School of Medicine, University of Nottingham, United Kingdom
- NPLab, Network Science Institute, Northeastern University London, London, United Kingdom
| | - Fabien Balezeau
- Biosciences Institute, Newcastle University Medical School, United Kingdom
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, China
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, United Kingdom
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Chris Petkov
- Biosciences Institute, Newcastle University Medical School, United Kingdom
- Department of Neurosurgery, University of Iowa, USA
| | - Marcus Kaiser
- Precision Imaging, School of Medicine, University of Nottingham, United Kingdom
- School of Computing Science, Newcastle University, United Kingdom
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Han Q, Wang D, Geng D. Structural plasticity of the contralesional subfields of hippocampus and amygdala in patients with IDH-mutant astrocytoma and oligodendroglioma. Neuroradiology 2025:10.1007/s00234-025-03648-4. [PMID: 40387914 DOI: 10.1007/s00234-025-03648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE To detect the structural plasticity of the contralesional hippocampus and amygdala in patients with unilateral IDH-mutant astrocytoma and oligodendroglioma, and to compare the differences between these two types of tumors. METHODS 3D T1-weighted MRI images were collected from 46 patients with left-hemispheric tumors (IDH-mutant astrocytoma, n = 22; oligodendroglioma, n = 24) and 23 healthy controls (HCs). Volumetric differences in the subregional volumes of the hippocampus and amygdala were assessed using FreeSurfer software. The differences were compared across groups. RESULTS In comparison to HCs, patients with unilateral IDH-mutant astrocytoma and oligodendroglioma exhibited a significantly larger volume of the hippocampal fissure in the contralesional hippocampus (p = 0.021, p = 0.041). In the astrocytoma group, volumetric increases were also observed in the contralesional amygdala subregions, including the medial-nucleus (p = 0.009), central-nucleus (p = 0.011), and cortical-nucleus (p = 0.039). Compared to the oligodendroglioma group, the astrocytoma group demonstrated significantly larger gray matter volume in the subiculum head (p = 0.008) of the contralesional hippocampus, as well as in the anterior amygdaloid area (AAA) (p = 0.044), central-nucleus (p = 0.025), and cortical-nucleus (p = 0.021) of the contralesional amygdala. CONCLUSION These findings provide robust evidence of macrostructural plasticity in the contralateral hippocampus and amygdala in patients with unilateral IDH-mutant astrocytomas and oligodendrogliomas. Furthermore, the structural differences between tumor types may reflect distinct effects on brain plasticity and variations in tumor invasiveness. These insights could contribute to optimization of clinical management strategies and personalized cognitive rehabilitation strategies for glioma patients.
Collapse
Affiliation(s)
- Qiuyue Han
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China.
| |
Collapse
|
3
|
Herzberg MP, Nielsen AN, Luby J, Sylvester CM. Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions. Neuropsychopharmacology 2024; 50:124-136. [PMID: 39103496 PMCID: PMC11525577 DOI: 10.1038/s41386-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Neuroplasticity during sensitive periods, the molecular and cellular process of enduring neural change in response to external stimuli during windows of high environmental sensitivity, is crucial for adaptation to expected environments and has implications for psychiatry. Animal research has characterized the developmental sequence and neurobiological mechanisms that govern neuroplasticity, yet gaps in our ability to measure neuroplasticity in humans limit the clinical translation of these principles. Here, we present a roadmap for the development and validation of neuroimaging and electrophysiology measures that index neuroplasticity to begin to address these gaps. We argue that validation of measures to track neuroplasticity in humans will elucidate the etiology of mental illness and inform the type and timing of mental health interventions to optimize effectiveness. We outline criteria for evaluating putative neuroimaging measures of plasticity in humans including links to neurobiological mechanisms shown to govern plasticity in animal models, developmental change that reflects heightened early life plasticity, and prediction of neural and/or behavior change. These criteria are applied to three putative measures of neuroplasticity using electroencephalography (gamma oscillations, aperiodic exponent of power/frequency) or functional magnetic resonance imaging (amplitude of low frequency fluctuations). We discuss the use of these markers in psychiatry, envision future uses for clinical and developmental translation, and suggest steps to address the limitations of the current putative neuroimaging measures of plasticity. With additional work, we expect these markers will significantly impact mental health and be used to characterize mechanisms, devise new interventions, and optimize developmental trajectories to reduce psychopathology risk.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Joan Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Marzetti L, Basti A, Guidotti R, Baldassarre A, Metsomaa J, Zrenner C, D’Andrea A, Makkinayeri S, Pieramico G, Ilmoniemi RJ, Ziemann U, Romani GL, Pizzella V. Exploring Motor Network Connectivity in State-Dependent Transcranial Magnetic Stimulation: A Proof-of-Concept Study. Biomedicines 2024; 12:955. [PMID: 38790917 PMCID: PMC11118810 DOI: 10.3390/biomedicines12050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
State-dependent non-invasive brain stimulation (NIBS) informed by electroencephalography (EEG) has contributed to the understanding of NIBS inter-subject and inter-session variability. While these approaches focus on local EEG characteristics, it is acknowledged that the brain exhibits an intrinsic long-range dynamic organization in networks. This proof-of-concept study explores whether EEG connectivity of the primary motor cortex (M1) in the pre-stimulation period aligns with the Motor Network (MN) and how the MN state affects responses to the transcranial magnetic stimulation (TMS) of M1. One thousand suprathreshold TMS pulses were delivered to the left M1 in eight subjects at rest, with simultaneous EEG. Motor-evoked potentials (MEPs) were measured from the right hand. The source space functional connectivity of the left M1 to the whole brain was assessed using the imaginary part of the phase locking value at the frequency of the sensorimotor μ-rhythm in a 1 s window before the pulse. Group-level connectivity revealed functional links between the left M1, left supplementary motor area, and right M1. Also, pulses delivered at high MN connectivity states result in a greater MEP amplitude compared to low connectivity states. At the single-subject level, this relation is more highly expressed in subjects that feature an overall high cortico-spinal excitability. In conclusion, this study paves the way for MN connectivity-based NIBS.
Collapse
Affiliation(s)
- Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Alessio Basti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Roberto Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Johanna Metsomaa
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany (U.Z.)
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, 00076 Aalto, Finland
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, 72076 Tübingen, Germany
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON M6J 1H1, Canada
| | - Antea D’Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Saeed Makkinayeri
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giulia Pieramico
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Risto J. Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, 00076 Aalto, Finland
| | - Ulf Ziemann
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany (U.Z.)
- Department of Neurology & Stroke, University of Tübingen, 72076 Tübingen, Germany
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| |
Collapse
|
5
|
Cai S, Liang Y, Wang Y, Fan Z, Qi Z, Liu Y, Chen F, Jiang C, Shi Z, Wang L, Zhang L. Shared and malignancy-specific functional plasticity of dynamic brain properties for patients with left frontal glioma. Cereb Cortex 2024; 34:bhad445. [PMID: 38011109 DOI: 10.1093/cercor/bhad445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
The time-varying brain activity may parallel the disease progression of cerebral glioma. Assessment of brain dynamics would better characterize the pathological profile of glioma and the relevant functional remodeling. This study aims to investigate the dynamic properties of functional networks based on sliding-window approach for patients with left frontal glioma. The generalized functional plasticity due to glioma was characterized by reduced dynamic amplitude of low-frequency fluctuation of somatosensory networks, reduced dynamic functional connectivity between homotopic regions mainly involving dorsal attention network and subcortical nuclei, and enhanced subcortical dynamic functional connectivity. Malignancy-specific functional remodeling featured a chaotic modification of dynamic amplitude of low-frequency fluctuation and dynamic functional connectivity for low-grade gliomas, and attenuated dynamic functional connectivity of the intrahemispheric cortico-subcortical connections and reduced dynamic amplitude of low-frequency fluctuation of the bilateral caudate for high-grade gliomas. Network dynamic activity was clustered into four distinct configuration states. The occurrence and dwell time of the weakly connected state were reduced in patients' brains. Support vector machine model combined with predictive dynamic features achieved an averaged accuracy of 87.9% in distinguishing low- and high-grade gliomas. In conclusion, dynamic network properties are highly predictive of the malignant grade of gliomas, thus could serve as new biomarkers for disease characterization.
Collapse
Affiliation(s)
- Siqi Cai
- Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchao Liang
- Department of Neurosurgery, Beijing Tiantan Hospital of Capital Medical University, Beijing 10070, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital of Capital Medical University, Beijing 10070, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yufei Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518025, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518025, China
| | - Chunxiang Jiang
- Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Lei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital of Capital Medical University, Beijing 10070, China
| | - Lijuan Zhang
- Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Moretto M, Silvestri E, Facchini S, Anglani M, Cecchin D, Corbetta M, Bertoldo A. The dynamic functional connectivity fingerprint of high-grade gliomas. Sci Rep 2023; 13:10389. [PMID: 37369744 DOI: 10.1038/s41598-023-37478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Resting state fMRI has been used in many studies to investigate the impact of brain tumours on functional connectivity (FC). However, these studies have so far assumed that FC is stationary, disregarding the fact that the brain fluctuates over dynamic states. Here we utilised resting state fMRI data from 33 patients with high-grade gliomas and 33 healthy controls to examine the dynamic interplay between resting-state networks and to gain insights into the impact of brain tumours on functional dynamics. By employing Hidden Markov Models, we demonstrated that functional dynamics persist even in the presence of a high-grade glioma, and that patients exhibited a global decrease of connections strength, as well as of network segregation. Furthermore, through a multivariate analysis, we demonstrated that patients' cognitive scores are highly predictive of pathological dynamics, thus supporting our hypothesis that functional dynamics could serve as valuable biomarkers for better understanding the traits of high-grade gliomas.
Collapse
Affiliation(s)
- Manuela Moretto
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy
| | - Erica Silvestri
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy
| | - Silvia Facchini
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Neuroscience, University of Padova, 35121, Padova, Italy
| | | | - Diego Cecchin
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Unit of Nuclear Medicine, University of Padova, 35121, Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Neuroscience, University of Padova, 35121, Padova, Italy
- Venetian Institute of Molecular Medicine, 35131, Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy.
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy.
| |
Collapse
|
7
|
Yang W, Wang X, Liu H, Li M, Liu X, Lin N, Hu L, Han R. Electroencephalography characteristics of patients with supratentorial glioma in different consciousness states induced by propofol. Neurosci Lett 2023; 808:137284. [PMID: 37142112 DOI: 10.1016/j.neulet.2023.137284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
Gliomas are the most common primary intracranial malignant tumors. Some of these patients exhibit previously clinically undetected neurological deficits after sedation. The absence of neurophysiological evidence for this phenomenon limits the use of time-sensitive monitoring methods. The study aims to compare differences between glioma patients under sedation and those without intracranial lesions by comparing their EEG features. Twenty-one patients without intracranial tumors and 21 with frontal lobe supratentorial gliomas were enrolled. The EEG power spectrum of the glioma group was comparable to that of the control group for both sides of the brain (P>0.05 for all frequencies). Compared with those without intracranial lesions, the weighted phase lag index (wPLI) in the alpha and beta bands on the non-occupied side decreased. Glioma patients had weaker functional connectivity during sedation than patients without intracranial lesions, manifesting as reduced functional connectivity on the non-occupied side.
Collapse
Affiliation(s)
- Wanning Yang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xinxin Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Haiyang Liu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Muhan Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xiaoyuan Liu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Nan Lin
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
8
|
Ge H, Yan Z, Liu D, Qi W, Chen S, Yang K, Liu H, Zou Y, Hu X, Liu Y, Chen J. Synergetic reorganization of the contralateral structure and function in patients with unilateral frontal glioma. Front Neurosci 2022; 16:1016693. [PMID: 36213734 PMCID: PMC9538327 DOI: 10.3389/fnins.2022.1016693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Objective This study aimed to investigate the contralateral structural and functional plasticity induced by frontal gliomas. Methods Patients with left (n = 49) or right (n = 52) frontal diffuse glioma were enrolled along with 35 age- matched healthy controls (HCs). The gray-matter volumes (GMVs) of the contralesional region were measured using the voxel-based morphometry (VBM) analysis. Additionally, the amplitude of low-frequency fluctuation (ALFF) of the contralesional region was calculated via resting state functional magnetic resonance imaging (MRI) to assess functional alterations. Result The GMV of the contralateral orbitofrontal cortex of the right or left frontal gliomas was significantly larger than the corresponding GMV in the controls. In the patients with right frontal glioma, the GMV and ALFF in the left inferior frontal gyrus were significantly increased compared with those in the controls. Conclusion Glioma invasion of the frontal lobe can induce contralateral structural compensation and functional compensation, which show synergy in the left inferior frontal gyrus. Our findings explain why patients with unilateral frontal glioma can have functional balance, and offer the possibility of preserving the brain function while maximizing tumor removal.
Collapse
Affiliation(s)
- Honglin Ge
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinhua Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yong Liu,
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Jiu Chen,
| |
Collapse
|
9
|
Contralesional Cortical and Network Features Associated with Preoperative Language Deficit in Glioma Patients. Cancers (Basel) 2022; 14:cancers14184469. [PMID: 36139629 PMCID: PMC9496725 DOI: 10.3390/cancers14184469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Gliomas that infiltrate eloquent areas can damage the corresponding cortical or subcortical structures, leading to language dysfunction. A total of 20–40% of eloquent area glioma patients have language deficits. Gliomas anchored in eloquent areas cause varying degrees of language impairment. A tumor’s size, grade, location, and contralesional compensation may explain these differences. This study aimed to retrospectively explore gray and white matter plasticity in the contralesional hemisphere of patients with gliomas in the eloquent area using VBM and DTI network analysis. Abstract Lower-grade Gliomas anchored in eloquent areas cause varying degrees of language impairment. Except for a tumor’s features, contralesional compensation may explain these differences. Therefore, studying changes in the contralateral hemisphere can provide insights into the underlying mechanisms of language function compensation in patients with gliomas. This study included 60 patients with eloquent-area or near-eloquent-area gliomas. The participants were grouped according to the degree of language defect. T1 and diffusion tensor imaging were obtained. The contralesional cortical volume and the subcortical network were compared between groups. Patients with unimpaired language function showed elevated cortical volume in the midline areas of the frontal and temporal lobes. In subcortical networks, the group also had the highest global efficiency and shortest global path length. Ten nodes had intergroup differences in nodal efficiency, among which four nodes were in the motor area and four nodes were in the language area. Linear correlation was observed between the efficiency of the two nodes and the patient’s language function score. Functional compensation in the contralesional hemisphere may alleviate language deficits in patients with gliomas. Structural compensation mainly occurs in the contralesional midline area in the frontal and temporal lobes, and manifests as an increase in cortical volume and subcortical network efficiency.
Collapse
|
10
|
Zhang Y, Xu H, Liu Y, Yang K, Zou Y, Liu H. Stable functional compensation within hippocampal-subregion networks in patients with temporal glioma before and after surgery. Front Neurosci 2022; 16:991406. [PMID: 36117628 PMCID: PMC9475067 DOI: 10.3389/fnins.2022.991406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Objective To identify whether tumor invasion of the temporal lobe induces functional compensation of the hippocampal-subregion (HIPsub) network connectivity before surgery, and to further validate the stability of this functional compensation within the HIPsub network in patients with temporal glioma tumor (TTumor) after surgical resection of the tumor. Methods In the first cohort, analysis of HIPsub functional connectivity (FC) was conducted to identify the functional compensation of the altered HIPsub connectivity pattern in TTumor through a pattern classification approach. Then, the second cohort investigated whether functional compensation in TTumor patients changed after surgical resection of the tumor. Results In the first cohort, this study identified altered HIPsub network connectivity patterns and its functional compensation regions (i.e., left parahippocampal gyrus and bilateral cerebellum anterior lobe) in TTumor patients. Second, the altered HIPsub network connectivity patterns had the power to discriminate TTumor patients from healthy controls (CN) on an individual subject basis, with an AUC of 97.0%, sensitivity of 93.5%, and specificity of 90.3%. Finally, in the second cohort, we found that functional connectivities of functional compensation regions within the HIPsub network in TTumor patients did not change between before and after surgery. Conclusion This study provides novel evidence regarding functional compensation within the HIPsub network in TTumor patients. It has been suggested that the fine hippocampal subregion was more sensitive, which reveals functional compensation induced by tumor invasion of the temporal lobe. Furthermore, this study verified the stability and persistence of this functional compensation in TTumor patients after surgical resection of the tumor.
Collapse
Affiliation(s)
- Yuhai Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honghao Xu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Hongyi Liu,
| |
Collapse
|
11
|
Kirkman MA, Hunn BHM, Thomas MSC, Tolmie AK. Influences on cognitive outcomes in adult patients with gliomas: A systematic review. Front Oncol 2022; 12:943600. [PMID: 36033458 PMCID: PMC9407441 DOI: 10.3389/fonc.2022.943600] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
People with brain tumors, including those previously treated, are commonly affected by a range of neurocognitive impairments involving executive function, memory, attention, and social/emotional functioning. Several factors are postulated to underlie this relationship, but evidence relating to many of these factors is conflicting and does not fully explain the variation in cognitive outcomes seen in the literature and in clinical practice. To address this, we performed a systematic literature review to identify and describe the range of factors that can influence cognitive outcomes in adult patients with gliomas. A literature search was performed of Ovid MEDLINE, PsychINFO, and PsycTESTS from commencement until September 2021. Of 9,998 articles identified through the search strategy, and an additional 39 articles identified through other sources, 142 were included in our review. The results confirmed that multiple factors influence cognitive outcomes in patients with gliomas. The effects of tumor characteristics (including location) and treatments administered are some of the most studied variables but the evidence for these is conflicting, which may be the result of methodological and study population differences. Tumor location and laterality overall appear to influence cognitive outcomes, and detection of such an effect is contingent upon administration of appropriate cognitive tests. Surgery appears to have an overall initial deleterious effect on cognition with a recovery in most cases over several months. A large body of evidence supports the adverse effects of radiotherapy on cognition, but the role of chemotherapy is less clear. To contrast, baseline cognitive status appears to be a consistent factor that influences cognitive outcomes, with worse baseline cognition at diagnosis/pre-treatment correlated with worse long-term outcomes. Similarly, much evidence indicates that anti-epileptic drugs have a negative effect on cognition and genetics also appear to have a role. Evidence regarding the effect of age on cognitive outcomes in glioma patients is conflicting, and there is insufficient evidence for gender and fatigue. Cognitive reserve, brain reserve, socioeconomic status, and several other variables discussed in this review, and their influence on cognition and recovery, have not been well-studied in the context of gliomas and are areas for focus in future research. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42017072976.
Collapse
Affiliation(s)
- Matthew A. Kirkman
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Benjamin H. M. Hunn
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurosurgery, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Michael S. C. Thomas
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Andrew K. Tolmie
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
| |
Collapse
|
12
|
Di G, Tan M, Xu R, Zhou W, Duan K, Hu Z, Cao X, Zhang H, Jiang X. Altered Structural and Functional Patterns Within Executive Control Network Distinguish Frontal Glioma-Related Epilepsy. Front Neurosci 2022; 16:916771. [PMID: 35692418 PMCID: PMC9179179 DOI: 10.3389/fnins.2022.916771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022] Open
Abstract
Background The tumor invasion of the frontal lobe induces changes in the executive control network (ECN). It remains unclear whether epileptic seizures in frontal glioma patients exacerbate the structural and functional alterations within the ECN, and whether these changes can be used to identify glioma-related seizures at an early stage. This study aimed to investigate the altered structural and functional patterns of ECN in frontal gliomas without epilepsy (non-FGep) and frontal gliomas with epilepsy (FGep) and to evaluate whether the patterns can accurately distinguish glioma-related epilepsy. Methods We measured gray matter (GM) volume, regional homogeneity (ReHo), and functional connectivity (FC) within the ECN to identify the structural and functional changes in 50 patients with frontal gliomas (29 non-FGep and 21 FGep) and 39 healthy controls (CN). We assessed the relationships between the structural and functional changes and cognitive function using partial correlation analysis. Finally, we applied a pattern classification approach to test whether structural and functional abnormalities within the ECN can distinguish non-FGep and FGep from CN subjects. Results Within the ECN, non-FGep and FGep showed increased local structure (GM) and function (ReHo), and decreased FC between brain regions compared to CN. Also, non-FGep and FGep showed differential patterns of structural and functional abnormalities within the ECN, and these abnormalities are more severe in FGep than in non-FGep. Lastly, FC between the right superior frontal gyrus and right dorsolateral prefrontal cortex was positively correlated with episodic memory scores in non-FGep and FGep. In particular, the support vector machine (SVM) classifier based on structural and functional abnormalities within ECN could accurately distinguish non-FGep and FGep from CN, and FGep from non-FGep on an individual basis with very high accuracy, area under the curve (AUC), sensitivity, and specificity. Conclusion Tumor invasion of the frontal lobe induces local structural and functional reorganization within the ECN, exacerbated by the accompanying epileptic seizures. The ECN abnormalities can accurately distinguish the presence or absence of epileptic seizures in frontal glioma patients. These findings suggest that differential ECN patterns can assist in the early identification and intervention of epileptic seizures in frontal glioma patients.
Collapse
Affiliation(s)
- Guangfu Di
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Mingze Tan
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Rui Xu
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Wei Zhou
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Kaiqiang Duan
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zongwen Hu
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaoxiang Cao
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hongchuang Zhang
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaochun Jiang
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
- *Correspondence: Xiaochun Jiang,
| |
Collapse
|
13
|
Fang S, Li L, Weng S, Guo Y, Zhong Z, Fan X, Jiang T, Wang Y. Contralesional Sensorimotor Network Participates in Motor Functional Compensation in Glioma Patients. Front Oncol 2022; 12:882313. [PMID: 35530325 PMCID: PMC9072743 DOI: 10.3389/fonc.2022.882313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Some gliomas in sensorimotor areas induce motor deficits, while some do not. Cortical destruction and reorganization contribute to this phenomenon, but detailed reasons remain unclear. This study investigated the differences of the functional connectivity and topological properties in the contralesional sensorimotor network (cSMN) between patients with motor deficit and those with normal motor function. Methods We retrospectively reviewed 65 patients (32 men) between 2017 and 2020. The patients were divided into four groups based on tumor laterality and preoperative motor status (deficit or non-deficit). Thirty-three healthy controls (18 men) were enrolled after matching for sex, age, and educational status. Graph theoretical measurement was applied to reveal alterations of the topological properties of the cSMN by analyzing resting-state functional MRI. Results The results for patients with different hemispheric gliomas were similar. The clustering coefficient, local efficiency, transitivity, and vulnerability of the cSMN significantly increased in the non-deficit group and decreased in the deficit group compared to the healthy group (p < 0.05). Moreover, the nodes of the motor-related thalamus showed a significantly increased nodal efficiency and nodal local efficiency in the non-deficit group and decreased in the deficit group compared with the healthy group (p < 0.05). Conclusions We posited the existence of two stages of alterations of the preoperative motor status. In the compensatory stage, the cSMN sacrificed stability to acquire high efficiency and to compensate for impaired motor function. With the glioma growing and the motor function being totally damaged, the cSMN returned to a stable state and maintained healthy hemispheric motor function, but with low efficiency.
Collapse
Affiliation(s)
- Shengyu Fang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lianwang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shimeng Weng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuhao Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhang Zhong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Research Unit of Accurate Diagnosis, Treatment and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Huang HW, Zhang XK, Li HY, Wang YG, Jing B, Chen Y, Patel MB, Ely EW, Liu YO, Zhou JX, Lin S, Zhang GB. Higher Grade Glioma Increases the Risk of Postoperative Delirium: Deficient Brain Compensation Might Be a Potential Mechanism of Postoperative Delirium. Front Aging Neurosci 2022; 14:822984. [PMID: 35493935 PMCID: PMC9045131 DOI: 10.3389/fnagi.2022.822984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The brain compensation mechanism in postoperative delirium (POD) has not been reported. We uncovered the mechanism by exploring the association between POD and glioma grades, and the relationship between preoperative brain structural and functional compensation with POD in patients with frontal glioma. Methods A total of 335 adult patients with glioma were included. The multivariable analysis examined the association between tumor grade and POD. Then, 20 patients with left frontal lobe glioma who had presurgical structural and functional MRI data and Montreal Cognitive Assessment (MoCA) in this cohort were analyzed. We measured the gray matter volume (GMV) and functional connectivity (FC) in patients with (n = 8) and without (n = 12) POD and healthy controls (HCs, n = 29) to detect the correlation between the structural and functional alteration and POD. Results The incidence of POD was 37.3%. Multivariable regression revealed that high-grade glioma had approximately six times the odds of POD. Neuroimaging data showed that compared with HC, the patients with left frontal lobe glioma showed significantly increased GMV of the right dorsal lateral prefrontal cortex (DLPFC) in the non-POD group and decreased GMV of right DLPFC in the POD group, and the POD group exhibited significantly decreased FC of right DLPFC, and the non-POD group showed the increasing tendency. Partial correlation analysis showed that GMV in contralesional DLPFC were positively correlated with preoperative neurocognition, and the GMV and FC in contralesional DLPFC were negatively correlated with POD. Conclusions Our findings suggested that insufficient compensation for injured brain regions involving cognition might be more vulnerable to suffering from POD.
Collapse
Affiliation(s)
- Hua-Wei Huang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Kang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Hao-Yi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Yong-Gang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - You Chen
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, United States
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Mayur B. Patel
- Section of Surgical Sciences, Department of Surgery and Neurosurgery, Division of Trauma, Surgical Critical Care, and Emergency General Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Geriatric Research, Education, and Clinical Center Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - E. Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ya-Ou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jian-Xin Zhou,
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- *Correspondence: Jian-Xin Zhou,
| | - Guo-Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- *Correspondence: Jian-Xin Zhou,
| |
Collapse
|
15
|
Su H, Fu S, Liu M, Yin Y, Hua K, Meng S, Jiang G, Quan X. Altered Spontaneous Brain Activity and Functional Integration in Hemodialysis Patients With End-Stage Renal Disease. Front Neurol 2022; 12:801336. [PMID: 35222228 PMCID: PMC8863739 DOI: 10.3389/fneur.2021.801336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Using the amplitude of low-frequency fluctuation (ALFF) and functional connectivity (FC) algorithm to study the alteration of brain function in hemodialysis patients with end-stage renal disease (ESRD). Patients and Methods We recruited 20 patients with ESRD on regular hemodialysis and 17 healthy controls (HCs). All of the participants underwent resting-state fMRI (rs-fMRI), neuropsychological tests, and blood biochemical examination. The individual ALFF values between the two groups were tested by an independent sample t-test. Then, we set the altered ALFF brain areas as seed regions of interest (ROIs), and FC analysis was used to investigate the functional integration patterns between the seed ROI and the voxels within the whole brain. Results The ALFF values of the right precuneus and angular gyrus (RAG) in the ESRD group were lower than those in the HC subjects, but the right precentral gyrus showed higher ALFF values in patients. Hemoglobin (Hb) was negatively correlated with the ALFF values of the right precentral gyrus, and the ALFF values of the right precuneus were negatively correlated with line-tracing test (LTT) scores in patients with ESRD. Patients with ESRD show decreased connectivity between the RAG and the left precuneus, right superior frontal gyrus (RSFG), and the connectivity within the RAG was weak. In addition, FC in the RAG-right cuneus, right precuneus-left supramarginal gyrus was enhanced in the patient group. Conclusion Our research suggested that, in hemodialysis patients with ESRD, the brain areas with abnormal spontaneous brain activity and FC are mainly located in the default mode network (DMN) regions. Hb and the LTT results were correlated with abnormal spontaneous brain activity. These findings provide additional evidence to understand the possible underlying neuropathological mechanisms in patients with ESRD.
Collapse
Affiliation(s)
- Huanhuan Su
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Mengchen Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Kelei Hua
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shandong Meng
- Department of Organ Transplantation, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guihua Jiang
| | - Xianyue Quan
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Xianyue Quan
| |
Collapse
|
16
|
What Can Resting-State fMRI Data Analysis Explain about the Functional Brain Connectivity in Glioma Patients? Tomography 2022; 8:267-280. [PMID: 35202187 PMCID: PMC8878995 DOI: 10.3390/tomography8010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Resting-state functional MRI has been increasingly implemented in imaging protocols for the study of functional connectivity in glioma patients as a sequence able to capture the activity of brain networks and to investigate their properties without requiring the patients’ cooperation. The present review aims at describing the most recent results obtained through the analysis of resting-state fMRI data in different contexts of interest for brain gliomas: the identification and localization of functional networks, the characterization of altered functional connectivity, and the evaluation of functional plasticity in relation to the resection of the glioma. An analysis of the literature showed that significant and promising results could be achieved through this technique in all the aspects under investigation. Nevertheless, there is room for improvement, especially in terms of stability and generalizability of the outcomes. Further research should be conducted on homogeneous samples of glioma patients and at fixed time points to reduce the considerable variability in the results obtained across and within studies. Future works should also aim at establishing robust metrics for the assessment of the disruption of functional connectivity and its recovery at the single-subject level.
Collapse
|
17
|
Lin Y, Liu J, Shi W. Interactive relationship between neuronal circuitry and glioma: A narrative review. GLIOMA 2022. [DOI: 10.4103/glioma.glioma_15_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Huang Z, Li G, Li Z, Sun S, Zhang Y, Hou Z, Xie J. Contralesional Structural Plasticity in Different Molecular Pathologic Subtypes of Insular Glioma. Front Neurol 2021; 12:636573. [PMID: 33935941 PMCID: PMC8079625 DOI: 10.3389/fneur.2021.636573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Neuroplasticity may preserve neurologic function in insular glioma, thereby improving prognosis following resection. However, the anatomic and molecular bases of this phenomenon are not known. To address this gap in knowledge, the present study investigated contralesional compensation in different molecular pathologic subtypes of insular glioma by high-resolution three-dimensional T1-weighted structural magnetic resonance imaging. A total of 52 patients with insular glioma were examined. We compared the gray matter volume (GMV) of the contralesional insula according to histological grade [low-grade glioma (LGG) and high-grade glioma (HGG)] and molecular pathology status [isocitrate dehydrogenase (IDH) mutation, telomerase reverse-transcriptase (TERT) promoter mutation, and 1p19q codeletion] by voxel-based morphometry (VBM). A cluster of 320 voxels in contralesional insula with higher GMV was observed in glioma with IDH mutation as compared to IDH wild-type tumors by region of interest-based VBM analysis (family-wise error-corrected at p < 0.05). The GMV of the entire contralesional insula was also larger in insular glioma patients with IDH mutation than in patients with wild-type IDH. However, there was no association between histological grade, TERT promoter mutation, or 1p19q codeletion and GMV in the contralesional insula. Thus, IDH mutation is associated with greater structural compensation in insular glioma. These findings may be useful for predicting neurocognitive and functional outcomes in patients undergoing resection surgery.
Collapse
Affiliation(s)
- Zhenxing Huang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Centre for Neurological Diseases, Beijing, China
| | - Gen Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Centre for Neurological Diseases, Beijing, China
| | - Zhenye Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Centre for Neurological Diseases, Beijing, China
| | - Shengjun Sun
- China National Clinical Research Centre for Neurological Diseases, Beijing, China.,Neuroimaging Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- China National Clinical Research Centre for Neurological Diseases, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Centre for Neurological Diseases, Beijing, China
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Centre for Neurological Diseases, Beijing, China
| |
Collapse
|
19
|
Yang J, Gohel S, Zhang Z, Hatzoglou V, Holodny AI, Vachha BA. Glioma-Induced Disruption of Resting-State Functional Connectivity and Amplitude of Low-Frequency Fluctuations in the Salience Network. AJNR Am J Neuroradiol 2021; 42:551-558. [PMID: 33384293 DOI: 10.3174/ajnr.a6929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Cognitive challenges are prevalent in survivors of glioma, but their neurobiology is incompletely understood. The purpose of this study was to investigate the effect of glioma presence and tumor characteristics on resting-state functional connectivity and amplitude of low-frequency fluctuations of the salience network, a key neural network associated with cognition. MATERIALS AND METHODS Sixty-nine patients with glioma (mean age, 48.74 [SD, 14.32] years) who underwent resting-state fMRI were compared with 31 healthy controls (mean age, 49.68 [SD, 15.54] years). We identified 4 salience network ROIs: left/right dorsal anterior cingulate cortex and left/right anterior insula. Average salience network resting-state functional connectivity and amplitude of low-frequency fluctuations within the 4 salience network ROIs were computed. RESULTS Patients with gliomas showed decreased overall salience network resting-state functional connectivity (P = .001) and increased amplitude of low-frequency fluctuations in all salience network ROIs (P < .01) except in the left dorsal anterior cingulate cortex. Compared with controls, patients with left-sided gliomas showed increased amplitude of low-frequency fluctuations in the right dorsal anterior cingulate cortex (P = .002) and right anterior insula (P < .001), and patients with right-sided gliomas showed increased amplitude of low-frequency fluctuations in the left anterior insula (P = .002). Anterior tumors were associated with decreased salience network resting-state functional connectivity (P < .001) and increased amplitude of low-frequency fluctuations in the right anterior insula, left anterior insula, and right dorsal anterior cingulate cortex. Patients with high-grade gliomas had decreased salience network resting-state functional connectivity compared with healthy controls (P < .05). The right anterior insula showed increased amplitude of low-frequency fluctuations in patients with grade II and IV gliomas compared with controls (P < .01). CONCLUSIONS By demonstrating decreased resting-state functional connectivity and an increased amplitude of low-frequency fluctuations related to the salience network in patients with glioma, this study adds to our understanding of the neurobiology underpinning observable cognitive deficits in these patients. In addition to more conventional functional connectivity, amplitude of low-frequency fluctuations is a promising functional-imaging biomarker of tumor-induced vascular and neural pathology.
Collapse
Affiliation(s)
- J Yang
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- New York University Grossman School of Medicine (J.Y.), New York University, New York, New York
| | - S Gohel
- Department of Health Informatics (S.G.), Rutgers University School of Health Professions, Newark, New Jersey
| | - Z Zhang
- Epidemiology and Biostatistics (Z.Z.)
| | - V Hatzoglou
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- Brain Tumor Center (V.H., A.I.H., B.A.V.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (V.H., A.I.H., B.A.V.), Weill Medical College of Cornell University, New York, New York
| | - A I Holodny
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- Brain Tumor Center (V.H., A.I.H., B.A.V.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (V.H., A.I.H., B.A.V.), Weill Medical College of Cornell University, New York, New York
- Department of Neuroscience (A.I.H.), Weill-Cornell Graduate School of the Medical Sciences, New York, New York
| | - B A Vachha
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- Brain Tumor Center (V.H., A.I.H., B.A.V.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (V.H., A.I.H., B.A.V.), Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
20
|
Yang PH, Hacker CD, Patel B, Daniel AGS, Leuthardt EC. Resting-State Functional Magnetic Resonance Imaging Networks as a Quantitative Metric for Impact of Neurosurgical Interventions. Front Neurosci 2021; 15:665016. [PMID: 34776836 PMCID: PMC8585791 DOI: 10.3389/fnins.2021.665016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
Objective: Resting-state functional MRI (rs-fMRI) has been used to evaluate brain network connectivity as a result of intracranial surgery but has not been used to compare different neurosurgical procedures. Laser interstitial thermal therapy (LITT) is an alternative to conventional craniotomy for the treatment of brain lesions such as tumors and epileptogenic foci. While LITT is thought of as minimally invasive, its effect on the functional organization of the brain is still under active investigation and its impact on network changes compared to conventional craniotomy has not yet been explored. We describe a novel computational method for quantifying and comparing the impact of two neurosurgical procedures on brain functional connectivity. Methods: We used a previously described seed-based correlation analysis to generate resting-state network (RSN) correlation matrices, and compared changes in correlation patterns within and across RSNs between LITT and conventional craniotomy for treatment of 24 patients with singular intracranial tumors at our institution between 2014 and 2017. Specifically, we analyzed the differences in patient-specific changes in the within-hemisphere correlation patterns of the contralesional hemisphere. Results: In a post-operative follow-up period up to 2 years within-hemisphere connectivity of the contralesional hemisphere after surgery was more highly correlated to the pre-operative state in LITT patients when compared to craniotomy patients (P = 0.0287). Moreover, 4 out of 11 individual RSNs demonstrated significantly higher degrees of correlation between pre-operative and post-operative network connectivity in patients who underwent LITT (all P < 0.05). Conclusion: Rs-fMRI may be used as a quantitative metric to determine the impact of different neurosurgical procedures on brain functional connectivity. Global and individual network connectivity in the contralesional hemisphere may be more highly preserved after LITT when compared to craniotomy for the treatment of brain tumors.
Collapse
Affiliation(s)
- Peter H Yang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Carl D Hacker
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Andy G S Daniel
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States.,Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, United States.,Brain Laser Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
21
|
Duffau H. Functional Mapping before and after Low-Grade Glioma Surgery: A New Way to Decipher Various Spatiotemporal Patterns of Individual Neuroplastic Potential in Brain Tumor Patients. Cancers (Basel) 2020; 12:E2611. [PMID: 32933174 PMCID: PMC7565450 DOI: 10.3390/cancers12092611] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Intraoperative direct electrostimulation mapping (DEM) is currently the gold-standard for glioma surgery, since functional-based resection allows an optimization of the onco-functional balance (increased resection with preserved quality of life). Besides intrasurgical awake mapping of conation, cognition, and behavior, preoperative mapping by means of functional neuroimaging (FNI) and transcranial magnetic stimulation (TMS) has increasingly been utilized for surgical selection and planning. However, because these techniques suffer from several limitations, particularly for direct functional mapping of subcortical white matter pathways, DEM remains crucial to map neural connectivity. On the other hand, non-invasive FNI and TMS can be repeated before and after surgical resection(s), enabling longitudinal investigation of brain reorganization, especially in slow-growing tumors like low-grade gliomas. Indeed, these neoplasms generate neuroplastic phenomena in patients with usually no or only slight neurological deficits at diagnosis, despite gliomas involving the so-called "eloquent" structures. Here, data gained from perioperative FNI/TMS mapping methods are reviewed, in order to decipher mechanisms underpinning functional cerebral reshaping induced by the tumor and its possible relapse, (re)operation(s), and postoperative rehabilitation. Heterogeneous spatiotemporal patterns of rearrangement across patients and in a single patient over time have been evidenced, with structural changes as well as modifications of intra-hemispheric (in the ipsi-lesional and/or contra-lesional hemisphere) and inter-hemispheric functional connectivity. Such various fingerprints of neural reconfiguration were correlated to different levels of cognitive compensation. Serial multimodal studies exploring neuroplasticity might lead to new management strategies based upon multistage therapeutic approaches adapted to the individual profile of functional reallocation.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Institute of Functional Genomics, INSERM U-1191, University of Montpellier, 34298 Montpellier, France
| |
Collapse
|
22
|
Liu Y, Hu G, Yu Y, Jiang Z, Yang K, Hu X, Li Z, Liu D, Zou Y, Liu H, Chen J. Structural and Functional Reorganization Within Cognitive Control Network Associated With Protection of Executive Function in Patients With Unilateral Frontal Gliomas. Front Oncol 2020; 10:794. [PMID: 32528887 PMCID: PMC7266965 DOI: 10.3389/fonc.2020.00794] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 11/18/2022] Open
Abstract
Background: The cognitive control network (CCN) is widely considered to be a frontoparietal circuit that is involved in executive function. This study aimed to investigate the structural and functional plasticity within the CCN in unilateral frontal gliomas, which are associated with the protection of executive functions. Methods: To detect structural and functional changes within the CCN, we measured gray matter (GM) volume, regional homogeneity, the amplitude of low-frequency fluctuation (ALFF), degree centrality, and functional connectivity within the CCN in 37 patients with gliomas invading the left frontal lobe (n = 16) or the right frontal lobe (n = 21) and 40 healthy controls (CNs). Partial correlation analysis was performed to assess the association between the altered structural and functional indices and executive function. Results: When the tumor invaded the left frontal lobe, the patients showed reduced ALFF in the dorsal medial prefrontal cortex (dmPFC) within the CCN and increased ALFF in the right superior parietal cortex (rSP) within the CCN compared to the CNs. When the tumor invaded the right frontal lobe, the patients showed significantly increased GM volume and ALFF in the left superior parietal cortex (lSP) within the CCN compared to the CNs. Furthermore, the patients showed significantly increased functional connectivities between the lSP and the dmPFC and between the lSP and the rSP within the CCN compared to the CNs. Increased ALFF in the lSP within the CCN was positively correlated with executive function. Conclusions: Tumors invading the frontal lobe induced contralesional structural and functional reorganization within the posterior CCN in patients with unilateral frontal gliomas. This further suggests that the contralesional superior parietal cortex acts as a functional compensation hub within the CCN, which may protect it against the detrimental effects of tumor invasion on executive functions.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Yu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Zijuan Jiang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Xinhua Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Zonghong Li
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|