1
|
Romero-Garcia N, Robba C, Monleón B, Ruiz-Zarco A, Pascual-González M, Ruiz-Pacheco A, Perdomo F, García-Pérez ML, Mugarra A, García L, Carbonell J, Premraj L, Taccone FS, Badenes R. Neurological outcomes and mortality following hyperoxemia in adult patients with acute brain injury: an updated meta-analysis and meta-regression. Crit Care 2025; 29:167. [PMID: 40270034 PMCID: PMC12020189 DOI: 10.1186/s13054-025-05387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND The aim of this study was to evaluate the association of arterial hyperoxemia with neurological outcomes and mortality in adults with acute brain injury (ABI). METHODS Six electronic databases, including MEDLINE, Embase and online registers of clinical trials, were systematically searched from inception to June 1 st, 2024. Studies comparing the effects of hyperoxemia versus no hyperoxemia on outcomes of hospitalized adult patients with ABI-related conditions (e.g. traumatic brain injury, post-cardiac arrest, subarachnoid hemorrhage, intracerebral hemorrhage, and ischemic stroke) were included according to PRISMA guidelines. Data were pooled using a random-effects model for unadjusted and covariate-adjusted odds ratios. The primary outcome was poor neurological outcome as defined by each individual study, and the secondary outcome was all-cause mortality. Subgroup analyses were conducted based on principal diagnosis, timing of outcome measures, oxygenation thresholds, among other factors. Meta-regression was applied to identify sources of heterogeneity. RESULTS After 7,849 nonduplicated records were screened, 66 studies fulfilled eligibility criteria for systematic review. The meta-analysis including 24 studies (16,635 patients) revealed that patients with hyperoxemia are 1.29 times more likely to develop poor neurological outcomes (unadjusted OR, 1.295; 95% Confidence Interval, CI 1.040-1.616) compared with those with no hyperoxemia, particularly in subarachnoid hemorrhage and ischemic stroke subgroups. The meta-analysis including 35 studies (98,207 patients) revealed that all-cause mortality is 1.13 times more likely (OR 1.13; 95% CI 1.002-1.282) in patients with hyperoxemia compared with no hyperoxemia. CONCLUSIONS In our study we found that hyperoxemia is significantly associated with an increased risk of poor neurological outcomes and mortality in patients with acute brain injury compared to those with no hyperoxemia. Our results suggest the importance of carefully adjusting oxygenation strategies in neurocritical ICUs.
Collapse
Affiliation(s)
- Nekane Romero-Garcia
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain.
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain.
- Faculty of Medicine. Avda Department of Surgery, University of Valencia, Blasco Ibáñez 15, 46010, Valencia, Spain.
| | - Chiara Robba
- Anaesthesia and Intensive Care, IRCCS Policlinico San Martino, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Berta Monleón
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Ana Ruiz-Zarco
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Maria Pascual-González
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Alberto Ruiz-Pacheco
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
- Faculty of Medicine. Avda Department of Surgery, University of Valencia, Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Felipe Perdomo
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Maria Luisa García-Pérez
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
- Faculty of Medicine. Avda Department of Surgery, University of Valencia, Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Ana Mugarra
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Laura García
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Jose Carbonell
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
- Faculty of Medicine. Avda Department of Surgery, University of Valencia, Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Lavienraj Premraj
- Griffith University School of Medicine and Dentistry, Southport, QLD, Australia
| | - Fabio Silvio Taccone
- Service Des Soins Intensifs, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Rafael Badenes
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
- Faculty of Medicine. Avda Department of Surgery, University of Valencia, Blasco Ibáñez 15, 46010, Valencia, Spain
| |
Collapse
|
2
|
Catalano J, Savage S, Olaussen A, Gantner D, Mitra B. Hyperoxia and unfavourable outcome in patients with non-traumatic subarachnoid haemorrhage: A systematic review and meta-analysis. J Clin Neurosci 2025; 131:110939. [PMID: 39615056 DOI: 10.1016/j.jocn.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND It is common practice to administer oxygen to neurocritical patients in the Intensive Care Unit (ICU). Consequent hyperoxia has been associated with unfavourable outcomes including in patients with brain injury, after cardiac arrest, sepsis, and traumatic brain injury. The aim of this systematic review was to explore the association between hyperoxia exposure and unfavourable outcome in patients following a non-traumatic subarachnoid haemorrhage (SAH). METHODS Systematic searches of Medline, Embase, Emcare, CINAHL and PubMed were performed in February 2024 using key words for SAH and hyperoxia. Non-human studies, articles in languages other than English, studies that did not measure blood oxygenation levels via pulse oximetry or arterial blood gas analyses, and studies exploring traumatic SAH were excluded. The Newcastle-Ottawa Risk of Bias tool (NOS) was used to assess the quality of included manuscripts. The primary outcome was a composite outcome combining mortality or poor functional neurological outcome. Secondary outcomes included mortality, poor functional neurological outcome, and development of delayed cerebral ischaemia (DCI). RESULTS The literature search yielded 1,219 non-duplicate articles published after 1 January 2000, of which 21 articles were reviewed as full-texts and nine were included in this review. All included studies were rated good/high quality using the NOS. Hyperoxia exposure was associated with increased risk of adverse composite outcome of death or unfavourable functional neurological outcome (odds ratio (OR) 1.61, 95% confidence interval (CI) 1.19-2.16), poor functional neurological outcome alone (OR 1.79, 95% CI 1.33-2.42) and development of DCI (OR 2.63, 95% CI 1.79-3.85). The association of hyperoxia and hospital mortality alone was not statistically significant (OR 1.42, 95% CI 0.98-2.04). CONCLUSION Hyperoxia may contribute to unfavourable outcomes and the development of DCI after an non-traumatic SAH. Trials using restrictive oxygen therapy among patients with SAH are indicated.
Collapse
Affiliation(s)
- Jackson Catalano
- Emergency & Trauma Centre, Alfred Health, 55 Commercial Rd, Melbourne VIC 3004, Australia; School of Public Health & Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne VIC 3004, Australia.
| | - Simon Savage
- School of Public Health & Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne VIC 3004, Australia
| | - Alexander Olaussen
- School of Public Health & Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne VIC 3004, Australia
| | - Dashiell Gantner
- School of Public Health & Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne VIC 3004, Australia; Department of Intensive Care, Alfred Health, 55 Commercial Rd, Melbourne VIC 3004, Australia
| | - Biswadev Mitra
- Emergency & Trauma Centre, Alfred Health, 55 Commercial Rd, Melbourne VIC 3004, Australia; School of Public Health & Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne VIC 3004, Australia
| |
Collapse
|
3
|
Earl M, Maharaj R. Association Between Early Hyperoxemia Exposure and Intensive Care Unit Mortality in Intracerebral Hemorrhage: An Observational Cohort Analysis. Neurocrit Care 2024; 41:963-973. [PMID: 38898309 DOI: 10.1007/s12028-024-02021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Supraphysiologic levels of oxygen could have potential adverse effects on the brain that may be dose and time dependent in patients with brain injury. We therefore aimed to assess whether exposure to excess supplemental oxygen, measured as time-weighted mean exposure to hyperoxemia, was associated with intensive care unit (ICU) mortality in patients with intracerebral hemorrhage (ICH). METHODS In this single-center retrospective cohort study, we included all patients admitted to our ICU with a diagnosis of primary spontaneous ICH. To provide a longitudinal measure of hyperoxemia exposure, we calculated the hyperoxemia dose, defined as the area under the partial pressure of oxygen in arterial blood (PaO2) time curve above the threshold PaO2 value of 100 mm Hg (13.3 kPa) divided by the number of hours of potential exposure. To provide consistent potential exposure windows and limit bias from informative censoring, nested subsets were created with progressively longer exposure periods (0-1 day, 0-2 days, 0-3 days, 0-4 days, 0-5 days, 0-6 days, 0-7 days). We used multivariable Cox regression, with hyperoxemia dose as a time-dependent covariate, to model ICU mortality. Admission ICH and Acute Physiology and Chronic Health Evaluation II scores were included as predictor covariables. A step-function extended Cox model was also fitted. RESULTS Between September 2019 and July 2022, 275 patients met the inclusion criteria, with 24,588 arterial blood gas results available for analysis. The mean age was 57.19 years (± 13.99), 59.64% were male, 23.64% had an infratentorial origin of hemorrhage, and ICU mortality was 35.64%. Almost all patients (97.45%) were exposed to hyperoxemia during their ICU admission. Cox regression modeling showed an association between hyperoxemia dose and ICU mortality (hazard ratio 1.15, confidence interval 1.05-1.25, p = 0.003). This association was observed in the 0-1 day subset in the step-function extended Cox model (hazard ratio 1.19, confidence interval 1.06-1.35, p = 0.005) but not in any of the subsequent exposure periods. CONCLUSIONS In patients with ICH admitted to the ICU, we observed an association between hyperoxemia dose and ICU mortality. Further prospective study is required to inform guidance on early systemic oxygen targets in ICH.
Collapse
Affiliation(s)
- Mark Earl
- Department of Critical Care Medicine, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK.
- Department of Neuroanaesthesia and Neurocritical Care, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| | - Ritesh Maharaj
- Department of Critical Care Medicine, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
- School of Health and Social Care Research, King's College London, Strand, London, WC2R 2LS, UK
- Department of Health Policy, London School of Economics, Houghton St, London, WC2A 2AE, UK
| |
Collapse
|
4
|
Beynon C, Bernhard M, Brenner T, Dietrich M, Fiedler-Kalenka MO, Nusshag C, Weigand MA, Reuß CJ, Michalski D, Jungk C. [Focus on neurosurgical intensive care medicine 2022-2024 : Summary of selected studies in intensive care medicine]. DIE ANAESTHESIOLOGIE 2024; 73:771-780. [PMID: 39347842 DOI: 10.1007/s00101-024-01471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Christopher Beynon
- Neurochirurgische Klinik, Universitätsklinikum Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland.
| | - Michael Bernhard
- Zentrale Notaufnahme, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, Düsseldorf, Deutschland
| | - Thorsten Brenner
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
| | - Maximilian Dietrich
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | | | - Christian Nusshag
- Klinik für Endokrinologie, Stoffwechsel und klinische Chemie/Sektion Nephrologie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Markus A Weigand
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Christopher J Reuß
- Klinik für Anästhesiologie und operative Intensivmedizin, Klinikum Stuttgart, Stuttgart, Deutschland
| | - Dominik Michalski
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - Christine Jungk
- Neurochirurgische Klinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
5
|
Zhang K, Liang F, Wu Y, Wang X, Hou X, Zhang Z, Yu Y, Wang Y, Han R. Associations of arterial oxygen partial pressure with all‑cause mortality in critically ill ischemic stroke patients: a retrospective cohort study from MIMIC IV 2.2. BMC Anesthesiol 2024; 24:355. [PMID: 39367296 PMCID: PMC11451185 DOI: 10.1186/s12871-024-02750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND As a supportive treatment, the effectiveness of oxygen therapy in ischemic stroke (IS) patients remains unclear. This study aimed to evaluate the relationships between arterial partial pressure of oxygen (PaO2) and both consciousness at discharge and all-cause mortality risk in ICU IS patients. METHODS Blood gas measurements for all patients diagnosed with IS were extracted from the MIMIC-IV database. Patients were classified into four groups based on their average PaO2 during the first ICU day: hypoxemia (PaO2 < 80 mmHg), normoxemia (PaO2 80-120 mmHg), mild hyperoxemia (PaO2 121-199 mmHg), and moderate/severe hyperoxemia (PaO2 ≥ 200 mmHg). The primary endpoint was 90-day all-cause mortality. Secondary outcomes included the level of consciousness at discharge, assessed by the Glasgow Coma Scale (GCS), and 30-day all-cause mortality. Multivariate Cox regression and Restricted cubic spline (RCS) analysis were used to investigate the relationship between mean PaO2 and mortality, and to assess the nonlinear association between exposure and outcomes. RESULTS This study included a total of 946 IS patients. The cumulative incidence of 30-day and 90-day all-cause mortality increased with decreasing PaO2 levels. RCS analysis revealed a nonlinear relationship between PaO2 and the risk of 30-day all-cause mortality (nonlinear P < 0.0001, overall P < 0.0001), as well as a nonlinear association between PaO2 and 90-day all-cause mortality (nonlinear P < 0.0001, overall P < 0.0001). The results remained consistent after excluding the small subset of patients who received reperfusion therapy. Sensitivity analysis indicated that the favorable impact on survival tends to increase with the extended duration of elevated PaO2. CONCLUSIONS For IS patients who do not receive reperfusion therapy or whose recanalization status is unknown, a lower PaO2 early during ICU admission is considered an independent risk factor for short-term and recent mortality. Adjusting respiratory parameters to maintain supraphysiological levels of PaO2 appears to be beneficial for survival, although this finding requires further validation through additional studies. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Kangda Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Fa Liang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Youxuan Wu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Xinyan Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Xuan Hou
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Zihui Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Yun Yu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Yunzhen Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, Southwest 4th Ring Road, Fengtai District, Beijing, 100070, PR China.
| |
Collapse
|
6
|
Romero-Garcia N, Robba C, Monleon B, Ruiz-Zarco A, Ruiz-Pacheco A, Pascual-Gonzalez M, Perdomo F, Garcia-Perez ML, Taccone FS, Badenes R. Neurological outcomes and mortality of hyperoxaemia in patients with acute brain injury: protocol for a systematic review and meta-analysis. BMJ Open 2024; 14:e084849. [PMID: 39019641 PMCID: PMC11256059 DOI: 10.1136/bmjopen-2024-084849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION Oxygen is frequently prescribed in neurocritical care units. Avoiding hypoxaemia is a key objective in patients with acute brain injury (ABI). However, several studies suggest that hyperoxaemia may also be related to higher mortality and poor neurological outcomes in these patients. The evidence in this direction is still controversial due to the limited number of prospective studies, the lack of a common definition for hyperoxaemia, the heterogeneity in experimental designs and the different causes of ABI. To explore the correlation between hyperoxaemia and poor neurological outcomes and mortality in hospitalised adult patients with ABI, we will conduct a systematic review and meta-analysis of observational studies and RCTs. METHODS AND ANALYSIS The systematic review methods have been defined according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and follow the PRISMA-Protocols structure. Studies published until June 2024 will be identified in the electronic databases MEDLINE, Embase, Scopus, Web of Science, The Cochrane Library, Cumulative Index to Nursing and Allied Health Literature and ClinicalTrials.gov. Retrieved records will be independently screened by four authors working in pairs, and the selected variables will be extracted from studies reporting data on the effect of 'hyperoxaemia' versus 'no hyperoxaemia on neurological outcomes and mortality in hospitalised patients with ABI. We will use covariate-adjusted ORs as outcome measures when reported since they account for potential cofounders and provide a more accurate estimate of the association between hyperoxaemia and outcomes; when not available, we will use univariate ORs. If the study presents the results as relative risks, it will be considered equivalent to the OR as long as the prevalence of the condition is close to 10%. Pooled estimates of both outcomes will be calculated applying random-effects meta-analysis. Interstudy heterogeneity will be assessed using the I2 statistic; risk of bias will be assessed through Risk Of Bias In Non-Randomised Studies of Interventions, Newcastle-Ottawa or RoB2 tools. Depending on data availability, we plan to conduct subgroup analyses by ABI type (traumatic brain injury, postcardiac arrest, subarachnoid haemorrhage, intracerebral haemorrhage and ischaemic stroke), arterial partial pressure of oxygen values, study quality, study time, neurological scores and other selected clinical variables of interest. ETHICS AND DISSEMINATION Specific ethics approval consent is not required as this is a review of previously published anonymised data. Results of the study will be shared with the scientific community via publication in a peer-reviewed journal and presentation at relevant conferences and workshops. It will also be shared key stakeholders, such as national or international health authorities, healthcare professionals and the general population, via scientific outreach journals and research institutes' newsletters.
Collapse
Affiliation(s)
- Nekane Romero-Garcia
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
- Department of Surgery. School of Medicine, University of Valencia, Valencia, Spain
| | - Chiara Robba
- IRCCS Policlinico San Martino, Policlinico San Martino, Genova, Genova, Italy
- Dipartimento di Scienze Chirurgiche diagnostiche e integrate, University of Genoa, Genoa, Italy
| | - Berta Monleon
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
- Department of Surgery. School of Medicine, University of Valencia, Valencia, Spain
| | - Ana Ruiz-Zarco
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
| | - Alberto Ruiz-Pacheco
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
| | - Maria Pascual-Gonzalez
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
| | - Felipe Perdomo
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
| | - Maria Luisa Garcia-Perez
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
- Department of Surgery. School of Medicine, University of Valencia, Valencia, Spain
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Rafael Badenes
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
- Department of Surgery. School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Berli S, Barbagallo M, Keller E, Esposito G, Pagnamenta A, Brandi G. Sex-Related Differences in Mortality, Delayed Cerebral Ischemia, and Functional Outcomes in Patients with Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:2781. [PMID: 38792323 PMCID: PMC11122382 DOI: 10.3390/jcm13102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objective: Sex-related differences among patients with aneurysmal subarachnoid hemorrhage (aSAH) and their potential clinical implications have been insufficiently investigated. To address this knowledge gap, we conduct a comprehensive systematic review and meta-analysis. Methods: Sex-specific differences in patients with aSAH, including mortality, delayed cerebral ischemia (DCI), and functional outcomes were assessed. The functional outcome was dichotomized into favorable or unfavorable based on the modified Rankin Scale (mRS), Glasgow Outcome Scale (GOS), and Glasgow Outcome Scale Extended (GOSE). Results: Overall, 2823 studies were identified in EMBASE, MEDLINE, PubMed, and by manual search on 14 February 2024. After an initial assessment, 74 studies were included in the meta-analysis. In the analysis of mortality, including 18,534 aSAH patients, no statistically significant differences could be detected (risk ratio (RR) 0.99; 95% CI, 0.90-1.09; p = 0.91). In contrast, the risk analysis for DCI, including 23,864 aSAH patients, showed an 11% relative risk reduction in DCI in males versus females (RR, 0.89; 95% CI, 0.81-0.97; p = 0.01). The functional outcome analysis (favorable vs. unfavorable), including 7739 aSAH patients, showed a tendency towards better functional outcomes in men than women; however, this did not reach statistical significance (RR, 1.02; 95% CI, 0.98-1.07; p = 0.34). Conclusions: In conclusion, the available data suggest that sex/gender may play a significant role in the risk of DCI in patients with aSAH, emphasizing the need for sex-specific management strategies.
Collapse
Affiliation(s)
- Sarah Berli
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Neurocritical Care Unit, Department of Neurosurgery, Institute for Intensive Care Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Massimo Barbagallo
- Neurocritical Care Unit, Department of Neurosurgery, Institute for Intensive Care Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Emanuela Keller
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Neurocritical Care Unit, Department of Neurosurgery, Institute for Intensive Care Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Giuseppe Esposito
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alberto Pagnamenta
- Clinical Trial Unit, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Department of Intensive Care, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Division of Pneumology, University of Geneva, 1211 Geneva, Switzerland
| | - Giovanna Brandi
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Neurocritical Care Unit, Department of Neurosurgery, Institute for Intensive Care Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
8
|
Robba C, Battaglini D, Cinotti R, Asehnoune K, Stevens R, Taccone FS, Badenes R, Pelosi P. Individualized Thresholds of Hypoxemia and Hyperoxemia and their Effect on Outcome in Acute Brain Injured Patients: A Secondary Analysis of the ENIO Study. Neurocrit Care 2024; 40:515-528. [PMID: 37322325 DOI: 10.1007/s12028-023-01761-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In acute brain injury (ABI), the effects of hypoxemia as a potential cause of secondary brain damage and poor outcome are well documented, whereas the impact of hyperoxemia is unclear. The primary aim of this study was to assess the episodes of hypoxemia and hyperoxemia in patients with ABI during the intensive care unit (ICU) stay and to determine their association with in-hospital mortality. The secondary aim was to identify the optimal thresholds of arterial partial pressure of oxygen (PaO2) predicting in-hospital mortality. METHODS We conducted a secondary analysis of a prospective multicenter observational cohort study. Adult patients with ABI (traumatic brain injury, subarachnoid aneurysmal hemorrhage, intracranial hemorrhage, ischemic stroke) with available data on PaO2 during the ICU stay were included. Hypoxemia was defined as PaO2 < 80 mm Hg, normoxemia was defined as PaO2 between 80 and 120 mm Hg, mild/moderate hyperoxemia was defined as PaO2 between 121 and 299 mm Hg, and severe hyperoxemia was defined as PaO2 levels ≥ 300 mm Hg. RESULTS A total of 1,407 patients were included in this study. The mean age was 52 (±18) years, and 929 (66%) were male. Over the ICU stay, the fractions of patients in the study cohort who had at least one episode of hypoxemia, mild/moderate hyperoxemia, and severe hyperoxemia were 31.3%, 53.0%, and 1.7%, respectively. PaO2 values below 92 mm Hg and above 156 mm Hg were associated with an increased probability of in-hospital mortality. Differences were observed among subgroups of patients with ABI, with consistent effects only seen in patients without traumatic brain injury. CONCLUSIONS In patients with ABI, hypoxemia and mild/moderate hyperoxemia were relatively frequent. Hypoxemia and hyperoxemia during ICU stay may influence in-hospital mortality. However, the small number of oxygen values collected represents a major limitation of the study.
Collapse
Affiliation(s)
- Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genova, Italy
| | | | - Raphael Cinotti
- Department of Anesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel Dieu, Nantes, France
- UMR 1246 SPHERE Methods in Patients-Centered Outcomes and Health Research, University of Nantes, University of Tours, INSERM, Nantes, France
| | - Karim Asehnoune
- Department of Anesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel Dieu, Nantes, France
| | - Robert Stevens
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Rafael Badenes
- Anesthesiology and Surgical-Trauma Intensive Care, University Clinic Hospital, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
- INCLIVA Research Medical Institute, Valencia, Spain
| | - Paolo Pelosi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genova, Italy
| |
Collapse
|
9
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
10
|
Zhao YT, Yuan Y, Tang YG, Zhang SW, Zhou H, Xie ZY. The association between high-oxygen saturation and prognosis for intracerebral hemorrhage. Neurosurg Rev 2024; 47:45. [PMID: 38217753 DOI: 10.1007/s10143-024-02283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Concerns about the adverse effects of excessive oxygen have grown over the years. This study investigated the relationship between high oxygen saturation and short-term prognosis of patients with spontaneous intracerebral hemorrhage (sICH) after liberal use of oxygen. METHODS This retrospective cohort study collected data from the Medical Information Mart for Intensive Care III (MIMIC-III) database (ICU cohort) and a tertiary stroke center (general ward cohort). The data on pulse oximetry-derived oxygen saturation (SpO2) during the first 24 h in ICU and general wards were respectively extracted. RESULTS Overall, 1117 and 372 patients were included in the ICU and general ward cohort, respectively. Among the patients from the ICU cohort, a spoon-shaped association was observed between minimum SpO2 and the risk of in-hospital mortality (non-linear P<0.0001). In comparison with minimum SpO2 of 93-97%, the minimum SpO2>97% was associated with a significantly higher risk of in-hospital mortality after adjustment for confounders. Sensitivity analysis conducted using propensity score matching did not change this significance. The same spoon-shaped association between minimum SpO2 and the risk of in-hospital mortality was also detected for the general ward cohort. In comparison with the group with 95-97% SpO2, the group with SpO2>97% showed a stronger association with, but non-significant risk for, in-hospital mortality after adjustment for confounders. The time-weighted average SpO2>97% was associated significantly with in-hospital mortality in both cohorts. CONCLUSION Higher SpO2 (especially a minimum SpO2>97%) was unrewarding after liberal use of oxygen among patients with sICH and might even be potentially detrimental.
Collapse
Affiliation(s)
- Yu-Tong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Yu-Guang Tang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Shu-Wei Zhang
- Department of Intensive Care Unit, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hai Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China
| | - Zong-Yi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 76 Linjiang Road, Chongqing, 400010, China.
| |
Collapse
|
11
|
Grensemann J, Mader MMD, Westphal M, Kluge S, Czorlich P. Hyperoxia is Dose-Dependently Associated with an Increase of Unfavorable Outcomes in Ventilated Patients with Aneurysmal Subarachnoid Hemorrhage: A Retrospective Cohort Study. Neurocrit Care 2022; 37:523-530. [PMID: 35672497 PMCID: PMC9519732 DOI: 10.1007/s12028-022-01534-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022]
Abstract
Background Adequate oxygenation in patients with aneurysmal subarachnoid hemorrhage (SAH) is imperative. However, hyperoxia increases formation of reactive oxygen species and may be associated with a dose-dependent toxicity. We postulated a threshold for arterial partial pressure of oxygen (paO2) above which toxicity effects precipitate and sought to study the effects on 30-day mortality, favorable outcome at discharge and at 3 months, and delayed cerebral ischemia. Methods In this retrospective single-center cohort study, patients with SAH and mechanical ventilation > 72 h were included. Oxygen integrals were calculated above the following thresholds: 80, 100, 120, and 150 mm Hg and time-weighted mean paO2. All calculations were done from admission to end of day 1, day 3, and day 14. We conducted multivariable logistic regression analyses adjusted for age, sex, duration of ventilation, and Hunt and Hess grade. Time-weighted mean paO2 was categorized by quartiles. Favorable outcome was defined as Glasgow Outcome Scale scores of 4 and 5. Results From November 2010 to February 2021, 282 of 549 patients fulfilled the inclusion criteria. Odds ratios for 30-day mortality increased dose dependently and were as follows: 1.07 (95% confidence interval [CI] 1.03–1.11; p = 0.001) for each 1 mm Hg per day above 80 mm Hg; 1.16 (95% CI 1.07–1.27), above 100 mm Hg; 1.36 (95% CI 1.15–1.61), above 120 mm Hg; and 1.59 (95% CI 1.22–2.08), above 150 mm Hg (all p < 0.001) at day 14. For favorable outcome at 3 months, odds ratios were 0.96 (95% CI 0.92–0.99) for each 1 mm Hg per day above 80 mm Hg; 0.90 (95% CI 0.84–0.98), above 100 mm Hg; 0.83 (95% CI 0.72–0.97), above 120 mm Hg; and 0.77 (95% CI 0.61–0.97), above 150 mm Hg (all p < 0.05). For time-weighted mean paO2, lowest 30-day mortality and highest favorable outcome at 3 months were found in the second quartile (78–85 mm Hg). Thirty-day mortality increased above 93 mm Hg (fourth quartile), with an odds ratio of 3.4 (95% CI 1.4–8.4, p = 0.007). Odds ratios for favorable outcome at 3 months were 0.28 (95% CI 0.12–0.69), 0.27 (95% CI 0.11–0.67), and 0.24 (95% CI 0.10–0.59) for the first, third, and fourth quartiles, respectively (all p < 0.01). No significant association was found at day 1 and day 3, for favorable outcome at discharge, or for delayed cerebral ischemia. Conclusions Integrals above the defined paO2 thresholds were dose-dependently associated with an increase in mortality in ventilated patients with SAH. When we considered time-weighted mean paO2, unfavorable outcomes and 30-day mortality were more frequent both below and above a certain range. Unfavorable outcomes increased in paO2 ranges usually defined as normoxia. This emphasizes the necessity to further characterize oxygenation thresholds in ventilated patients with SAH in prospective clinical studies. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-022-01534-y.
Collapse
|
12
|
The Effect of Hyperoxemia on Neurological Outcomes of Adult Patients: A Systematic Review and Meta-Analysis. Neurocrit Care 2022; 36:1027-1043. [PMID: 35099713 PMCID: PMC9110471 DOI: 10.1007/s12028-021-01423-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022]
Abstract
Hyperoxemia commonly occurs in clinical practice and is often left untreated. Many studies have shown increased mortality in patients with hyperoxemia, but data on neurological outcome in these patients are conflicting, despite worsened neurological outcome found in preclinical studies. To investigate the association between hyperoxemia and neurological outcome in adult patients, we performed a systematic review and meta-analysis of observational studies. We searched MEDLINE, Embase, Scopus, Web of Science, Cumulative Index to Nursing and Allied Health Literature, and ClinicalTrials.gov from inception to May 2020 for observational studies correlating arterial oxygen partial pressure (PaO2) with neurological status in adults hospitalized with acute conditions. Studies of chronic pulmonary disease or hyperbaric oxygenation were excluded. Relative risks (RRs) were pooled at the study level by using a random-effects model to compare the risk of poor neurological outcome in patients with hyperoxemia and patients without hyperoxemia. Sensitivity and subgroup analyses and assessments of publication bias and risk of bias were performed. Maximum and mean PaO2 in patients with favorable and unfavorable outcomes were compared using standardized mean difference (SMD). Of 6255 records screened, 32 studies were analyzed. Overall, hyperoxemia was significantly associated with an increased risk of poor neurological outcome (RR 1.13, 95% confidence interval [CI] 1.05-1.23, statistical heterogeneity I2 58.8%, 22 studies). The results were robust across sensitivity analyses. Patients with unfavorable outcome also showed a significantly higher maximum PaO2 (SMD 0.17, 95% CI 0.04-0.30, I2 78.4%, 15 studies) and mean PaO2 (SMD 0.25, 95% CI 0.04-0.45, I2 91.0%, 13 studies). These associations were pronounced in patients with subarachnoid hemorrhage (RR 1.34, 95% CI 1.14-1.56) and ischemic stroke (RR 1.41, 95% CI 1.14-1.74), but not in patients with cardiac arrest, traumatic brain injury, or following cardiopulmonary bypass. Hyperoxemia is associated with poor neurological outcome, especially in patients with subarachnoid hemorrhage and ischemic stroke. Although our study cannot establish causality, PaO2 should be monitored closely because hyperoxemia may be associated with worsened patient outcome and consequently affect the patient's quality of life.
Collapse
|
13
|
Svedung Wettervik T, Engquist H, Hånell A, Howells T, Rostami E, Ronne-Engström E, Lewén A, Enblad P. Cerebral Blood Flow and Oxygen Delivery in Aneurysmal Subarachnoid Hemorrhage: Relation to Neurointensive Care Targets. Neurocrit Care 2022; 37:281-292. [PMID: 35449343 PMCID: PMC9283361 DOI: 10.1007/s12028-022-01496-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
Background The primary aim was to determine to what extent continuously monitored neurointensive care unit (neuro-ICU) targets predict cerebral blood flow (CBF) and delivery of oxygen (CDO2) after aneurysmal subarachnoid hemorrhage. The secondary aim was to determine whether CBF and CDO2 were associated with clinical outcome. Methods In this observational study, patients with aneurysmal subarachnoid hemorrhage treated at the neuro-ICU in Uppsala, Sweden, from 2012 to 2020 with at least one xenon-enhanced computed tomography (Xe-CT) obtained within the first 14 days post ictus were included. CBF was measured with the Xe-CT and CDO2 was calculated based on CBF and arterial oxygen content. Regional cerebral hypoperfusion was defined as CBF < 20 mL/100 g/min, and poor CDO2 was defined as CDO2 < 3.8 mL O2/100 g/min. Neuro-ICU variables including intracranial pressure (ICP), pressure reactivity index, cerebral perfusion pressure (CPP), optimal CPP, and body temperature were assessed in association with the Xe-CT. The acute phase was divided into early phase (day 1–3) and vasospasm phase (day 4–14). Results Of 148 patients, 27 had underwent a Xe-CT only in the early phase, 74 only in the vasospasm phase, and 47 patients in both phases. The patients exhibited cerebral hypoperfusion and poor CDO2 for medians of 15% and 30%, respectively, of the cortical brain areas in each patient. In multiple regressions, higher body temperature was associated with higher CBF and CDO2 in the early phase. In a similar regression for the vasospasm phase, younger age and longer pulse transit time (lower peripheral resistance) correlated with higher CBF and CDO2, whereas lower hematocrit only correlated with higher CBF but not with CDO2. ICP, CPP, and pressure reactivity index exhibited no independent association with CBF and CDO2. R2 of these regressions were below 0.3. Lower CBF and CDO2 in the early phase correlated with poor outcome, but this only held true for CDO2 in multiple regressions. Conclusions Systemic and cerebral physiological variables exhibited a modest association with CBF and CDO2. Still, cerebral hypoperfusion and low CDO2 were common and low CDO2 was associated with poor outcome. Xe-CT imaging could be useful to help detect secondary brain injury not evident by high ICP and low CPP. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-022-01496-1.
Collapse
Affiliation(s)
| | - Henrik Engquist
- Department of Surgical Sciences/Anesthesia and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Anders Hånell
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Timothy Howells
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Anders Lewén
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Ahn J, Mastorakos P, Sokolowski JD, Chen CJ, Kellogg R, Park MS. Effects of hyperoxemia on aneurysmal subarachnoid hemorrhage outcomes: a systematic review and meta-analysis. Neurosurg Focus 2022; 52:E7. [PMID: 35231897 DOI: 10.3171/2021.12.focus21660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In recent years, hyperoxemia in the intensive care unit has received attention as potentially contributing to negative outcomes in the setting of cardiac arrest, ischemic stroke, and traumatic brain injury. The authors sought to evaluate whether hyperoxemia contributes to worse outcomes in the setting of aneurysmal subarachnoid hemorrhage (aSAH) and to summarize suggested pathophysiological mechanisms. METHODS A systematic literature review was conducted without date restrictions on the PubMed and Web of Science databases on September 15, 2021. All studies that assessed the relationship between patients treated for aSAH and hyperoxemia were eligible independent of the criteria used to define hyperoxemia. All nonclinical studies and studies that did not report outcome data specific to patients with aSAH were excluded. A total of 102 records were found and screened, resulting in assessment of 10 full-text studies, of which 7 met eligibility criteria. Risk of bias was assessed using the Downs and Black checklist. A meta-analysis on the pooled 2602 patients was performed, and forest plots were constructed. Additionally, a review of the literature was performed to summarize available data regarding the pathophysiology of hyperoxemia. RESULTS The included studies demonstrated an association between hyperoxemia and increased morbidity and mortality following aSAH. The criteria used to determine hyperoxemia varied among studies. Pooling of univariate data showed hyperoxemia to be associated with poor neurological outcome (OR 2.26, 95% CI 1.66-3.07; p < 0.001), delayed cerebral ischemia (DCI) (OR 1.91, 95% CI 1.31-2.78; p < 0.001), and increased incidence of poor neurological outcome or mortality as a combined endpoint (OR 2.36, 95% CI 1.87-2.97; p < 0.001). Pooling of multivariable effect sizes showed the same relationship for poor neurological outcome (OR 1.28, 95% CI 1.07-1.55; p = 0.01) and poor neurological outcome and mortality as a combined endpoint (OR 1.17, 95% CI 1.11-1.23; p < 0.001). Additionally, review of preclinical studies underlined the contribution of oxidative stress due to hyperoxemia to acute secondary brain injury and DCI. CONCLUSIONS Reported outcomes from the available studies have indicated that hyperoxemia is associated with worse neurological outcome, mortality, and DCI. These findings provide a general guideline toward avoiding hyperoxemia in the acute setting of aSAH. Further studies are needed to determine the optimal ventilation and oxygenation parameters for acute management of this patient population.
Collapse
Affiliation(s)
- Jungeun Ahn
- 1School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Panagiotis Mastorakos
- 2Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Jennifer D Sokolowski
- 2Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Ching-Jen Chen
- 3Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Ryan Kellogg
- 2Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Min S Park
- 2Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia; and
| |
Collapse
|
15
|
Svedung Wettervik T, Hånell A, Howells T, Ronne-Engström E, Enblad P, Lewén A. Association of Arterial Metabolic Content with Cerebral Blood Flow Regulation and Cerebral Energy Metabolism-A Multimodality Analysis in Aneurysmal Subarachnoid Hemorrhage. J Intensive Care Med 2022; 37:1442-1450. [PMID: 35171061 PMCID: PMC9548938 DOI: 10.1177/08850666221080054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background In this study, the association of the arterial content of oxygen, carbon
dioxide, glucose, and lactate with cerebral pressure reactivity, energy
metabolism and clinical outcome after aneurysmal subarachnoid hemorrhage
(aSAH) was investigated. Methods In this retrospective study, 60 patients with aSAH, treated at the
neurointensive care (NIC), Uppsala University Hospital, Sweden, between 2016
and 2021 with arterial blood gas (ABG), intracranial pressure, and cerebral
microdialysis (MD) monitoring were included. The first 10 days were divided
into an early phase (day 1 to 3) and a vasospasm phase (day 4 to 10). Results Higher arterial lactate was independently associated with higher/worse
pressure reactivity index (PRx) in the early phase (β = 0.32,
P = .02), whereas higher pO2 had the
opposite association in the vasospasm phase (β = −0.30,
P = .04). Arterial glucose and pCO2 were not
associated with PRx. Higher arterial lactate (β = 0.29,
P = .05) was independently associated with higher
MD-glucose in the vasospasm phase, whereas higher pO2 had the
opposite association in the vasospasm phase (β = −0.33,
P = .03). Arterial glucose and pCO2 were not
associated with MD-glucose. Higher pCO2 in the early phase, lower
arterial glucose in both phases, and lower arterial lactate in the vasospasm
phase were associated (P < .05) with better clinical
outcome. Conclusions Arterial variables associated with more vasoconstriction (higher
pO2 and lower arterial lactate) were associated with better
cerebral pressure reactivity, but worse energy metabolism. In severe aSAH,
when cerebral large-vessel vasospasm with exhausted distal vasodilation is
common, more vasoconstriction could increase distal vasodilatory reserve and
pressure reactivity, but also reduce cerebral blood flow and metabolic
supply. The MD may be useful to monitor the net effects on cerebral
metabolism in PRx-targeted NIC.
Collapse
|
16
|
Singer M, Young PJ, Laffey JG, Asfar P, Taccone FS, Skrifvars MB, Meyhoff CS, Radermacher P. Dangers of hyperoxia. Crit Care 2021; 25:440. [PMID: 34924022 PMCID: PMC8686263 DOI: 10.1186/s13054-021-03815-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/04/2021] [Indexed: 01/27/2023] Open
Abstract
Oxygen (O2) toxicity remains a concern, particularly to the lung. This is mainly related to excessive production of reactive oxygen species (ROS). Supplemental O2, i.e. inspiratory O2 concentrations (FIO2) > 0.21 may cause hyperoxaemia (i.e. arterial (a) PO2 > 100 mmHg) and, subsequently, hyperoxia (increased tissue O2 concentration), thereby enhancing ROS formation. Here, we review the pathophysiology of O2 toxicity and the potential harms of supplemental O2 in various ICU conditions. The current evidence base suggests that PaO2 > 300 mmHg (40 kPa) should be avoided, but it remains uncertain whether there is an "optimal level" which may vary for given clinical conditions. Since even moderately supra-physiological PaO2 may be associated with deleterious side effects, it seems advisable at present to titrate O2 to maintain PaO2 within the normal range, avoiding both hypoxaemia and excess hyperoxaemia.
Collapse
Affiliation(s)
- Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Paul J Young
- Medical Research Institute of New Zealand, and Intensive Care Unit, Wellington Hospital, Wellington, Wellington, New Zealand
- Australian and New Zealand Intensive Care Research Centre, Department of Critical Care Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - John G Laffey
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, and School of Medicine, National University of Ireland, Galway, Ireland
| | - Pierre Asfar
- Département de Médecine Intensive - Réanimation Et Médecine Hyperbare, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Christian S Meyhoff
- Department of Anaesthesia and Intensive Care, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Helmholtzstrasse 8-1, 89081, Ulm, Germany.
| |
Collapse
|
17
|
Cai G, Ru W, Xu Q, Wu J, Gong S, Yan J, Shen Y. Association Between Oxygen Partial Pressure Trajectories and Short-Term Outcomes in Patients With Hemorrhagic Brain Injury. Front Med (Lausanne) 2021; 8:681200. [PMID: 34568355 PMCID: PMC8458649 DOI: 10.3389/fmed.2021.681200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives: Arterial hyperoxia is reportedly a risk factor for poor outcomes in patients with hemorrhagic brain injury (HBI). However, most previous studies have only evaluated the effects of hyperoxia using static oxygen partial pressure (PaO2) values. This study aimed to investigate the association between overall dynamic oxygenation status and HBI outcomes, using longitudinal PaO2 data. Methods: Data were extracted from the Medical Information Mart for Intensive Care III database. Longitudinal PaO2 data obtained within 72 h of admission to an intensive care unit were analyzed, using a group-based trajectory approach. In-hospital mortality was used as the primary outcomes. Multivariable logistic models were used to explore the association between PaO2 trajectory and outcomes. Results: Data of 2,028 patients with HBI were analyzed. Three PaO2 trajectory types were identified: Traj-1 (mild hyperoxia), Traj-2 (transient severe hyperoxia), and Traj-3 (persistent severe hyperoxia). The initial and maximum PaO2 of patients with Traj-2 and Traj-3 were similar and significantly higher than those of patients with Traj-1. However, PaO2 in patients with Traj-2 decreased more rapidly than in patients with Traj-3. The crude in-hospital mortality was the lowest for patients with Traj-1 and highest for patients with Traj-3 (365/1,303, 209/640, and 43/85 for Traj-1, Traj-2, and Traj-3, respectively; p < 0.001), and the mean Glasgow Coma Scale score at discharge (GCSdis) was highest for patients with Traj-1 and lowest in patients with Traj-3 (13 [7-15], 11 [6-15], and 7 [3-14] for Traj-1, Traj-2, and Traj-3, respectively; p < 0.001). The multivariable model revealed that the risk of death was higher in patients with Traj-3 than in patients with Traj-1 (odds ratio [OR]: 3.3, 95% confidence interval [CI]: 1.9-5.8) but similar for patients with Traj-1 and Traj-2. Similarly, the logistic analysis indicated the worst neurological outcomes in patients with Traj-3 (OR: 3.6, 95% CI: 2.0-6.4, relative to Traj-1), but similar neurological outcomes for patients in Traj-1 and Traj-2. Conclusion: Persistent, but not transient severe arterial hyperoxia, was associated with poor outcome in patients with HBI.
Collapse
Affiliation(s)
- Guolong Cai
- Department of Intensive Care, Zhejiang Hospital, Hangzhou, China
| | - Weizhe Ru
- Department of Oncology, Cixi People's Hospital, Cixi, China
| | - Qianghong Xu
- Department of Intensive Care, Zhejiang Hospital, Hangzhou, China
| | - Jiong Wu
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Shijin Gong
- Department of Intensive Care, Zhejiang Hospital, Hangzhou, China
| | - Jing Yan
- Department of Intensive Care, Zhejiang Hospital, Hangzhou, China
| | - Yanfei Shen
- Department of Intensive Care, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
18
|
Demiselle J, Calzia E, Hartmann C, Messerer DAC, Asfar P, Radermacher P, Datzmann T. Target arterial PO 2 according to the underlying pathology: a mini-review of the available data in mechanically ventilated patients. Ann Intensive Care 2021; 11:88. [PMID: 34076802 PMCID: PMC8170650 DOI: 10.1186/s13613-021-00872-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
There is an ongoing discussion whether hyperoxia, i.e. ventilation with high inspiratory O2 concentrations (FIO2), and the consecutive hyperoxaemia, i.e. supraphysiological arterial O2 tensions (PaO2), have a place during the acute management of circulatory shock. This concept is based on experimental evidence that hyperoxaemia may contribute to the compensation of the imbalance between O2 supply and requirements. However, despite still being common practice, its use is limited due to possible oxygen toxicity resulting from the increased formation of reactive oxygen species (ROS) limits, especially under conditions of ischaemia/reperfusion. Several studies have reported that there is a U-shaped relation between PaO2 and mortality/morbidity in ICU patients. Interestingly, these mostly retrospective studies found that the lowest mortality coincided with PaO2 ~ 150 mmHg during the first 24 h of ICU stay, i.e. supraphysiological PaO2 levels. Most of the recent large-scale retrospective analyses studied general ICU populations, but there are major differences according to the underlying pathology studied as well as whether medical or surgical patients are concerned. Therefore, as far as possible from the data reported, we focus on the need of mechanical ventilation as well as the distinction between the absence or presence of circulatory shock. There seems to be no ideal target PaO2 except for avoiding prolonged exposure (> 24 h) to either hypoxaemia (PaO2 < 55-60 mmHg) or supraphysiological (PaO2 > 100 mmHg). Moreover, the need for mechanical ventilation, absence or presence of circulatory shock and/or the aetiology of tissue dysoxia, i.e. whether it is mainly due to impaired macro- and/or microcirculatory O2 transport and/or disturbed cellular O2 utilization, may determine whether any degree of hyperoxaemia causes deleterious side effects.
Collapse
Affiliation(s)
- Julien Demiselle
- Service de Médecine Intensive - Réanimation, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1, place de l′Hôpital, F–67091, Strasbourg, Cedex, France
| | - Enrico Calzia
- Institut Für Anästhesiologische Pathophysiologie Und Verfahrensentwicklung, Universitätsklinikum, Helmholtzstrasse 8-1, 89081 Ulm, Germany
| | - Clair Hartmann
- Klinik Für Anästhesiologie Und Intensivmedizin, Universitätsklinikum, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - David Alexander Christian Messerer
- Institut Für Anästhesiologische Pathophysiologie Und Verfahrensentwicklung, Universitätsklinikum, Helmholtzstrasse 8-1, 89081 Ulm, Germany
- Klinik Für Anästhesiologie Und Intensivmedizin, Universitätsklinikum, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Pierre Asfar
- Service de Médecine Intensive - Réanimation Et Médecine Hyperbare, Centre Hospitalier Universitaire D’Angers, 4 rue Larrey - 49 933, Angers Cedex 9, France
| | - Peter Radermacher
- Institut Für Anästhesiologische Pathophysiologie Und Verfahrensentwicklung, Universitätsklinikum, Helmholtzstrasse 8-1, 89081 Ulm, Germany
| | - Thomas Datzmann
- Institut Für Anästhesiologische Pathophysiologie Und Verfahrensentwicklung, Universitätsklinikum, Helmholtzstrasse 8-1, 89081 Ulm, Germany
| |
Collapse
|
19
|
Humaloja J, Skrifvars MB, Raj R, Wilkman E, Pekkarinen PT, Bendel S, Reinikainen M, Litonius E. The Association Between Arterial Oxygen Level and Outcome in Neurocritically Ill Patients is not Affected by Blood Pressure. Neurocrit Care 2021; 34:413-422. [PMID: 33403587 PMCID: PMC8128839 DOI: 10.1007/s12028-020-01178-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/04/2020] [Indexed: 11/27/2022]
Abstract
Background In neurocritically ill patients, one early mechanism behind secondary brain injury is low systemic blood pressure resulting in inadequate cerebral perfusion and consequent hypoxia. Intuitively, higher partial pressures of arterial oxygen (PaO2) could be protective in case of inadequate cerebral circulation related to hemodynamic instability. Study purpose We examined whether the association between PaO2 and mortality is different in patients with low compared to normal and high mean arterial pressure (MAP) in patients after various types of brain injury. Methods We screened the Finnish Intensive Care Consortium database for mechanically ventilated adult (≥ 18) brain injury patients treated in several tertiary intensive care units (ICUs) between 2003 and 2013. Admission diagnoses included traumatic brain injury, cardiac arrest, subarachnoid and intracranial hemorrhage, and acute ischemic stroke. The primary exposures of interest were PaO2 (recorded in connection with the lowest measured PaO2/fraction of inspired oxygen ratio) and the lowest MAP, recorded during the first 24 h in the ICU. PaO2 was grouped as follows: hypoxemia (< 8.2 kPa, the lowest 10th percentile), normoxemia (8.2–18.3 kPa), and hyperoxemia (> 18.3 kPa, the highest 10th percentile), and MAP was divided into equally sized tertiles (< 60, 60–68, and > 68 mmHg). The primary outcome was 1-year mortality. We tested the association between hyperoxemia, MAP, and mortality with a multivariable logistic regression model, including the PaO2, MAP, and interaction of PaO2*MAP, adjusting for age, admission diagnosis, premorbid physical performance, vasoactive use, intracranial pressure monitoring use, and disease severity. The relationship between predicted 1-year mortality and PaO2 was visualized with locally weighted scatterplot smoothing curves (Loess) for different MAP levels. Results From a total of 8290 patients, 3912 (47%) were dead at 1 year. PaO2 was not an independent predictor of mortality: the odds ratio (OR) for hyperoxemia was 1.16 (95% CI 0.85–1.59) and for hypoxemia 1.24 (95% CI 0.96–1.61) compared to normoxemia. Higher MAP predicted lower mortality: OR for MAP 60–68 mmHg was 0.73 (95% CI 0.64–0.84) and for MAP > 68 mmHg 0.80 (95% CI 0.69–0.92) compared to MAP < 60 mmHg. The interaction term PaO2*MAP was nonsignificant. In Loess visualization, the relationship between PaO2 and predicted mortality appeared similar in all MAP tertiles. Conclusions During the first 24 h of ICU treatment in mechanically ventilated brain injured patients, the association between PaO2 and mortality was not different in patients with low compared to normal MAP. Supplementary Information The online version of this article (10.1007/s12028-020-01178-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaana Humaloja
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Erika Wilkman
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirkka T Pekkarinen
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Stepani Bendel
- Department of Anesthesiology and Intensive Care, Kuopio University Hospital & University of Eastern Finland, Kuopio, Finland
| | - Matti Reinikainen
- Department of Anesthesiology and Intensive Care, Kuopio University Hospital & University of Eastern Finland, Kuopio, Finland
| | - Erik Litonius
- Division of Anesthesiology, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|