1
|
Mojica CV, Gutierrez KME, Mason WP. Advances in IDH-mutant glioma management: IDH inhibitors, clinical implications of INDIGO trial, and future perspectives. Future Oncol 2025:1-11. [PMID: 40424199 DOI: 10.1080/14796694.2025.2511587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 05/23/2025] [Indexed: 05/29/2025] Open
Abstract
The discovery of isocitrate dehydrogenase (IDH) mutation in gliomas marked the new era of molecular classification of CNS tumors. Understanding the complex role of IDH mutation in oncogenesis led to the evaluation of novel small molecules targeting this enzyme as a potential therapeutic intervention. Vorasidenib, a brain-penetrant inhibitor of both IDH1 and IDH2-mutant enzymes, was one such agent. The phase 3 INDIGO trial evaluated vorasidenib and demonstrated its efficacy in IDH-mutant low-grade gliomas (LGG). This study established vorasidenib as an effective inhibitor of both IDH1 and IDH2-mutant enzymes, highlighting its great potential in advancing the therapeutic armamentarium for patients with LGG. While vorasidenib has been recently included in several treatment guidelines for CNS tumors, further research on the use of this novel agent, as monotherapy or in combination with other drugs, becomes imperative to exploit fully its potential in the management of IDH-mutant gliomas.
Collapse
Affiliation(s)
- Christianne V Mojica
- Divisions of Neurology and Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Katrina Mari E Gutierrez
- Divisions of Neurology and Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Warren P Mason
- Divisions of Neurology and Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Choate KA, Konickson WWL, Moreno ZL, Brill OS, Cromell BC, Detienne BM, Jennings MJ, Mann PB, Winn RJ, Kamson DO, Pratt EPS. A genetically encoded fluorescent sensor enables sensitive and specific detection of IDH mutant associated oncometabolite D-2-hydroxyglutarate. BMC Cancer 2025; 25:473. [PMID: 40087637 PMCID: PMC11909988 DOI: 10.1186/s12885-025-13877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
D-2-hydroxyglutarate (D-2-HG) is an oncometabolite that accumulates due to mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2). D-2-HG may be used as a surrogate marker for IDH1/2 mutant cancers, yet simple and specific methods for D-2-HG detection are limited. Here, we present the development and characterization of a genetically encoded fluorescent sensor of D-2-HG (D2HGlo). D2HGlo responds to clinically relevant concentrations of D-2-HG, demonstrates exceptional selectivity and can quantify D-2-HG in various body fluids and glioma tumor supernatants. Additionally, analysis of tumor lysates using D2HGlo accurately predicted the IDH mutational status of gliomas. The successful quantification of D-2-HG within contrived samples suggests that D2HGlo may facilitate the detection and monitoring of IDH mutant cancers through liquid biopsies following further validation. In addition to D2HGlo's potential clinical utility, we also present findings for its adaptation to the cellular environment. To assess D-2-HG production in living immortalized glioma cells, we engineered D2HGlo sensors that localize to subcellular compartments, which yielded findings of elevated D-2-HG in the cytosol, mitochondria, and nucleus of IDH1 mutant cells. D2HGlo was used to perform a side-by-side comparison of cytosolic and secreted D-2-HG to reveal that glycolysis, but not glutamine catabolism, drives D-2-HG production in IDH1 mutant cells.
Collapse
Affiliation(s)
- Kristian A Choate
- Department of Biology, Northern Michigan University, Marquette, MI, USA
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
| | - Wren W L Konickson
- Department of Chemistry, Northern Michigan University, Marquette, MI, USA
| | - Zoe L Moreno
- Department of Biology, Northern Michigan University, Marquette, MI, USA
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
| | - Olivia S Brill
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
- Department of Chemistry, Northern Michigan University, Marquette, MI, USA
| | - Brett C Cromell
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
- Department of Chemistry, Northern Michigan University, Marquette, MI, USA
| | - Bella M Detienne
- Department of Biology, Northern Michigan University, Marquette, MI, USA
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
| | - Matthew J Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
- School of Clinical Sciences, Northern Michigan University, Marquette, MI, USA
| | - Paul B Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
- School of Clinical Sciences, Northern Michigan University, Marquette, MI, USA
| | - Robert J Winn
- Department of Biology, Northern Michigan University, Marquette, MI, USA
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
| | - David O Kamson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan P S Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA.
- Department of Chemistry, Northern Michigan University, Marquette, MI, USA.
| |
Collapse
|
3
|
Weller J, de Dios E, Katzendobler S, Corell A, Dénes A, Schmutzer-Sondergeld M, Javanmardi N, Thon N, Tonn JC, Jakola AS. The T1/T2 Ratio is Associated With Resectability in Patients With Isocitrate Dehydrogenase-Mutant Astrocytomas Central Nervous System World Health Organization Grades 2 and 3. Neurosurgery 2025; 96:365-372. [PMID: 38920377 DOI: 10.1227/neu.0000000000003069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Isocitrate dehydrogenase (IDH)-mutant astrocytomas central nervous system World Health Organization grade 2 and 3 show heterogeneous appearance on MRI. In the premolecular era, the discrepancy between T1 hypointense and T2 hyperintense tumor volume in absolute values has been proposed as a marker for diffuse tumor growth. We set out to investigate if a ratio of T1 to T2 tumor volume (T1/T2 ratio) is associated with resectability and overall survival (OS) in patients with IDH-mutant astrocytomas. METHODS Patient data from 2 centers (Sahlgrenska University Hospital, Center A; LMU University Hospital, Center B) were collected retrospectively. Inclusion criteria were as follows: pre and postoperative MRI scans available for volumetric analysis (I), diagnosis of an IDH-mutant astrocytoma between 2003 and 2021 (II), and tumor resection at initial diagnosis (III). Tumor volumes were manually segmented. The T1/T2 ratio was calculated and correlated with extent of resection, residual T2 tumor volume, and OS. RESULTS The study comprised 134 patients with 65 patients included from Center A and 69 patients from Center B. The median OS was 134 months and did not differ between the cohorts ( P = .29). Overall, the median T1/T2 ratio was 0.79 (range 0.15-1.0). Tumors displaying a T1/T2 ratio of 0.33 or lower showed significantly larger residual tumor volumes postoperatively (median 17.9 cm 3 vs 4.6 cm 3 , P = .03). The median extent of resection in these patients was 65% vs 90% ( P = .03). The ratio itself did not correlate with OS. In multivariable analyses, larger postoperative tumor volumes were associated with shorter survival times (hazard ratio 1.02, 95% CI 1.01-1.03, P < .01). CONCLUSION The T1/T2 ratio might be a good indicator for diffuse tumor growth on MRI and is associated with resectability in patients with IDH-mutant astrocytoma. This ratio might aid to identify patients in which an oncologically relevant tumor volume reduction cannot be safely achieved.
Collapse
Affiliation(s)
- Jonathan Weller
- Department of Neurosurgery, LMU University Hospital, LMU Munich, München , Germany
| | - Eddie de Dios
- Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg , Sweden
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg , Sweden
| | - Sophie Katzendobler
- Department of Neurosurgery, LMU University Hospital, LMU Munich, München , Germany
| | - Alba Corell
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg , Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg , Sweden
| | - Anna Dénes
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg , Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg , Sweden
| | | | - Niloufar Javanmardi
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg , Sweden
| | - Niklas Thon
- Department of Neurosurgery, LMU University Hospital, LMU Munich, München , Germany
- German Consortium for Translational Cancer Research (DKTK), Partner site Munich, Heidelberg , Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, München , Germany
- German Consortium for Translational Cancer Research (DKTK), Partner site Munich, Heidelberg , Germany
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg , Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg , Sweden
| |
Collapse
|
4
|
Tajima Y, Yuzawa S, Kanemura Y, Tanino M, Kinoshita M. Diagnosis of Isocitrate Dehydrogenase-Mutant Astrocytoma in the Subcallosal Gyrus Using T2-Fluid-Attenuated Inversion Recovery Mismatch Sign and Quantitative Magnetic Resonance Relaxometry. Cureus 2025; 17:e76963. [PMID: 39906460 PMCID: PMC11793926 DOI: 10.7759/cureus.76963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 02/06/2025] Open
Abstract
Astrocytoma, isocitrate dehydrogenase (IDH)-mutant, is one of the intraparenchymal brain tumors, strictly defined by its molecular characteristics. This tumor type is typically found in the frontal, insular, and temporal lobes. Patients harboring this type of tumor benefit the most from aggressive tumor removal compared to other low-grade appearing gliomas. Thus, accurate preoperative diagnosis is crucial in providing these patients with the most efficient and effective treatment strategy. This case study presents a 40-year-old male with an IDH-mutant astrocytoma in the subcallosal gyrus, an unusual location. The diagnosis was aided by the presence of the "T2-FLAIR (fluid-attenuated inversion recovery) mismatch sign," a key radiological feature of IDH-mutant astrocytomas, accompanied by magnetic resonance (MR) relaxometry that allows quantitative tissue characterization. This case highlights the importance of combining qualitative imaging features, such as the T2-FLAIR mismatch sign, with quantitative data, such as MR relaxometry, for accurate diagnosis, especially in cases with unusual tumor locations.
Collapse
Affiliation(s)
- Yu Tajima
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa, JPN
| | - Sayaka Yuzawa
- Department of Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Yonehiro Kanemura
- Department of Neurosurgery, Biomedical Research, and Innovation, National Hospital Organization (NHO) Osaka National Hospital, Institute for Clinical Research, Osaka, JPN
| | - Mishie Tanino
- Department of Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, JPN
| | - Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa, JPN
| |
Collapse
|
5
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
6
|
Sagberg LM, Salvesen Ø, Jakola AS, Thurin E, De Dios E, Nawabi NLA, Kilgallon JL, Bernstock JD, Kavouridis VK, Smith TR, Solheim O. Progression-free survival versus post-progression survival and overall survival in WHO grade 2 gliomas. Acta Oncol 2024; 63:798-804. [PMID: 39428639 PMCID: PMC11500610 DOI: 10.2340/1651-226x.2024.40845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND PURPOSE Progression-free survival (PFS) remains to be validated as an outcome measure for diffuse WHO grade 2 gliomas, and knowledge about the relationships between PFS, post-progression survival (PPS), and overall survival (OS) in this subset of tumors is limited. We sought to assess correlations between PFS and OS, and identify factors associated with PFS, PPS, and OS in patients treated for diffuse supratentorial WHO grade 2 gliomas. MATERIAL AND METHODS We included 319 patients from three independent observational cohorts. The correlation between PFS and OS was analyzed using independent exponential distributions for PFS and time from progression to death. Cox proportional hazards models were used to determine the effects of covariates on PFS, PPS, and OS. RESULTS The overall correlation between PFS and OS was rs0.31. The correlation was rs 0.37 for astrocytomas and rs 0.19 for oligodendrogliomas. Longer PFS did not predict longer PPS. Patients with astrocytomas had shorter PFS, PPS, and OS. Larger preoperative tumor volume was a risk factor for shorter PFS, while older age was a risk factor for shorter PPS and OS. Patients who received early radio- and chemotherapy had longer PFS, but shorter PPS and OS. INTERPRETATION We found a weak correlation between PFS and OS in WHO grade 2 gliomas, with the weakest correlation observed in oligodendrogliomas. Our analyses did not demonstrate any association between PFS and PPS. Critically, predictors of PFS are not necessarily predictors of OS. There is a need for validation of PFS as an endpoint in diffuse WHO grade 2 gliomas.
Collapse
Affiliation(s)
- Lisa Millgård Sagberg
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Øyvind Salvesen
- Clinical Research Unit, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden
| | - Erik Thurin
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden; Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eddie De Dios
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden; Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Noah L A Nawabi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John L Kilgallon
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vasileios K Kavouridis
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy R Smith
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ole Solheim
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Karschnia P, Gerritsen JKW, Teske N, Cahill DP, Jakola AS, van den Bent M, Weller M, Schnell O, Vik-Mo EO, Thon N, Vincent AJPE, Kim MM, Reifenberger G, Chang SM, Hervey-Jumper SL, Berger MS, Tonn JC. The oncological role of resection in newly diagnosed diffuse adult-type glioma defined by the WHO 2021 classification: a Review by the RANO resect group. Lancet Oncol 2024; 25:e404-e419. [PMID: 39214112 DOI: 10.1016/s1470-2045(24)00130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 09/04/2024]
Abstract
Glioma resection is associated with prolonged survival, but neuro-oncological trials have frequently refrained from quantifying the extent of resection. The Response Assessment in Neuro-Oncology (RANO) resect group is an international, multidisciplinary group that aims to standardise research practice by delineating the oncological role of surgery in diffuse adult-type gliomas as defined per WHO 2021 classification. Favourable survival effects of more extensive resection unfold over months to decades depending on the molecular tumour profile. In tumours with a more aggressive natural history, supramaximal resection might correlate with additional survival benefit. Weighing the expected survival benefits of resection as dictated by molecular tumour profiles against clinical factors, including the introduction of neurological deficits, we propose an algorithm to estimate the oncological effects of surgery for newly diagnosed gliomas. The algorithm serves to select patients who might benefit most from extensive resection and to emphasise the relevance of quantifying the extent of resection in clinical trials.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Jasper K W Gerritsen
- Department of Neurosurgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands; Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Nico Teske
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Asgeir S Jakola
- Department of Neurosurgery, University of Gothenburg, Gothenburg, Sweden; Section of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Oliver Schnell
- Department of Neurosurgery, Universitaetsklinikum Erlangen, Friedrich-Alexander-Universitaet, Erlangen-Nuernberg, Germany
| | - Einar O Vik-Mo
- Department of Neurosurgery, Oslo University Hospital and Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Niklas Thon
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | | | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany
| | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| |
Collapse
|
8
|
Kotecha R, Schiff D, Chakravarti A, Fleming JL, Brown PD, Puduvalli VK, Vogelbaum MA, Gondi V, Gallus M, Okada H, Mehta MP. Multidisciplinary Management of Isocitrate Dehydrogenase-Mutated Gliomas in a Contemporary Molecularly Defined Era. J Clin Oncol 2024; 42:2588-2598. [PMID: 38833641 PMCID: PMC11283772 DOI: 10.1200/jco.23.02195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) genes, an early step in the ontogeny of lower-grade gliomas, induce global epigenetic changes characterized by a hypermethylation phenotype and are critical to tumor classification, treatment decision making, and estimation of patient prognosis. The introduction of IDH inhibitors to block the oncogenic neomorphic function of the mutated protein has resulted in new therapeutic options for these patients. To appreciate the implications of these recent IDH inhibitor results, it is important to juxtapose historical outcomes with chemoradiotherapy. Herein, we rationally evaluate recent IDH inhibitor data within historical precedents to guide contemporary decisions regarding the role of observation, maximal safe resection, adjuvant therapies, and the import of patient and tumor variables. The biological underpinnings of the IDH pathway and the mechanisms, impact, and limitations of IDH inhibitors, the actual magnitude of tumor regression and patient benefit, and emergence of resistance pathways are presented to guide future trial development. Management in the current, molecularly defined era will require careful patient selection and risk factor assessment, followed by an open dialog about the results of studies such as INDIGO, as well as mature data from legacy trials, and a discussion about risk-versus-benefit for the choice of treatment, with multidisciplinary decision making as an absolute prerequisite.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - David Schiff
- Division of Neuro-Oncology, Departments of Neurology, Neurological Surgery, and Medicine, University of Virginia Health System, Charlottesville, VA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH
| | - Jessica L. Fleming
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Vinay K. Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Vinai Gondi
- Department of Radiation Oncology, Northwestern Medicine West Region, Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Warrenville, IL
| | - Marco Gallus
- Department of Neurosurgery, UCSF, San Francisco, CA
| | - Hideho Okada
- Department of Neurosurgery, UCSF, San Francisco, CA
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| |
Collapse
|
9
|
Lin MD, Tsai ACY, Abdullah KG, McBrayer SK, Shi DD. Treatment of IDH-mutant glioma in the INDIGO era. NPJ Precis Oncol 2024; 8:149. [PMID: 39025958 PMCID: PMC11258219 DOI: 10.1038/s41698-024-00646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Gliomas are the most common primary brain tumor and are uniformly lethal. Despite significant advancements in understanding the genetic landscape of gliomas, standard-of-care has remained largely unchanged. Subsets of gliomas are defined by gain-of-function mutations in the metabolic genes encoding isocitrate dehydrogenase (IDH). Efforts to exploit mutant IDH activity and/or directly inhibit it with mutant IDH inhibitors have been the focus of over a decade of research. The recently published INDIGO trial, demonstrating the benefit of the mutant IDH inhibitor vorasidenib in patients with low-grade IDH-mutant gliomas, introduces a new era of precision medicine in brain tumors that is poised to change standard-of-care. In this review, we highlight and contextualize the results of the INDIGO trial and introduce key questions whose answers will guide how mutant IDH inhibitors may be used in the clinic. We discuss possible combination therapies with mutant IDH inhibition and future directions for clinical and translational research.
Collapse
Affiliation(s)
- Mathew D Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alexander C-Y Tsai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Diana D Shi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Pöhlmann J, Weller M, Marcellusi A, Grabe-Heyne K, Krott-Coi L, Rabar S, Pollock RF. High costs, low quality of life, reduced survival, and room for improving treatment: an analysis of burden and unmet needs in glioma. Front Oncol 2024; 14:1368606. [PMID: 38571509 PMCID: PMC10987841 DOI: 10.3389/fonc.2024.1368606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Gliomas are a group of heterogeneous tumors that account for substantial morbidity, mortality, and costs to patients and healthcare systems globally. Survival varies considerably by grade, histology, biomarkers, and genetic alterations such as IDH mutations and MGMT promoter methylation, and treatment, but is poor for some grades and histologies, with many patients with glioblastoma surviving less than a year from diagnosis. The present review provides an introduction to glioma, including its classification, epidemiology, economic and humanistic burden, as well as treatment options. Another focus is on treatment recommendations for IDH-mutant astrocytoma, IDH-mutant oligodendroglioma, and glioblastoma, which were synthesized from recent guidelines. While recommendations are nuanced and reflect the complexity of the disease, maximum safe resection is typically the first step in treatment, followed by radiotherapy and/or chemotherapy using temozolomide or procarbazine, lomustine, and vincristine. Immunotherapies and targeted therapies currently have only a limited role due to disappointing clinical trial results, including in recurrent glioblastoma, for which the nitrosourea lomustine remains the de facto standard of care. The lack of treatment options is compounded by frequently suboptimal clinical practice, in which patients do not receive adequate therapy after resection, including delayed, shortened, or discontinued radiotherapy and chemotherapy courses due to treatment side effects. These unmet needs will require significant efforts to address, including a continued search for novel treatment options, increased awareness of clinical guidelines, improved toxicity management for chemotherapy, and the generation of additional and more robust clinical and health economic evidence.
Collapse
Affiliation(s)
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Andrea Marcellusi
- Economic Evaluation and HTA (EEHTA)-Centre for Economic and International Studies (CEIS), Faculty of Economics, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Silvia Rabar
- Covalence Research Ltd, Harpenden, United Kingdom
| | | |
Collapse
|
11
|
Schwake M, Krahwinkel S, Gallus M, Schipmann S, Maragno E, Neuschmelting V, Perrech M, Müther M, Lenschow M. Does Early Mobilization Following Resection of Spinal Intra-Dural Pathology Increase the Risk of Cerebrospinal Fluid Leaks?-A Dual-Center Comparative Effectiveness Research. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:171. [PMID: 38256431 PMCID: PMC10821288 DOI: 10.3390/medicina60010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Prolonged bed rest after the resection of spinal intradural tumors is postulated to mitigate the development of cerebrospinal fluid leaks (CSFLs), which is one of the feared postoperative complications. Nonetheless, the empirical evidence supporting this conjecture remains limited and requires further investigation. The goal of the study was to investigate whether prolonged bed rest lowers the risk of CSFL after the resection of spinal intradural tumors. The primary outcome was the rate of CSFL in each cohort. Materials and Methods: To validate this hypothesis, we conducted a comparative effectiveness research (CER) study at two distinct academic neurosurgical centers, wherein diverse postoperative treatment protocols were employed. Specifically, one center adopted a prolonged bed rest regimen lasting for three days, while the other implemented early postoperative mobilization. For statistical analysis, case-control matching was performed. Results: Out of an overall 451 cases, we matched 101 patients from each center. We analyzed clinical records and images from each case. In the bed rest center, two patients developed a CSFL (n = 2, 1.98%) compared to four patients (n = 4, 3.96%) in the early mobilization center (p = 0.683). Accordingly, CSFL development was not associated with early mobilization (OR 2.041, 95% CI 0.365-11.403; p = 0.416). Univariate and multivariate analysis identified expansion duraplasty as an independent risk factor for CSFL (OR 60.33, 95% CI: 0.015-0.447; p < 0.001). Conclusions: In this CER, we demonstrate that early mobilization following the resection of spinal intradural tumors does not confer an increased risk of the development of CSFL.
Collapse
Affiliation(s)
- Michael Schwake
- Department of Neurosurgery, University Hospital Münster, 48149 Münster, Germany; (S.K.); (M.G.); (S.S.); (E.M.); (M.M.)
| | - Sophia Krahwinkel
- Department of Neurosurgery, University Hospital Münster, 48149 Münster, Germany; (S.K.); (M.G.); (S.S.); (E.M.); (M.M.)
| | - Marco Gallus
- Department of Neurosurgery, University Hospital Münster, 48149 Münster, Germany; (S.K.); (M.G.); (S.S.); (E.M.); (M.M.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stephanie Schipmann
- Department of Neurosurgery, University Hospital Münster, 48149 Münster, Germany; (S.K.); (M.G.); (S.S.); (E.M.); (M.M.)
- Department of Neurosurgery, University Hospital Bergen, 5009 Bergen, Norway
| | - Emanuele Maragno
- Department of Neurosurgery, University Hospital Münster, 48149 Münster, Germany; (S.K.); (M.G.); (S.S.); (E.M.); (M.M.)
| | - Volker Neuschmelting
- Department of Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany; (V.N.); (M.P.); (M.L.)
| | - Moritz Perrech
- Department of Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany; (V.N.); (M.P.); (M.L.)
| | - Michael Müther
- Department of Neurosurgery, University Hospital Münster, 48149 Münster, Germany; (S.K.); (M.G.); (S.S.); (E.M.); (M.M.)
| | - Moritz Lenschow
- Department of Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany; (V.N.); (M.P.); (M.L.)
| |
Collapse
|
12
|
Karlberg A, Pedersen LK, Vindstad BE, Skjulsvik AJ, Johansen H, Solheim O, Skogen K, Kvistad KA, Bogsrud TV, Myrmel KS, Giskeødegård GF, Ingebrigtsen T, Berntsen EM, Eikenes L. Diagnostic accuracy of anti-3-[ 18F]-FACBC PET/MRI in gliomas. Eur J Nucl Med Mol Imaging 2024; 51:496-509. [PMID: 37776502 PMCID: PMC10774221 DOI: 10.1007/s00259-023-06437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE The primary aim was to evaluate whether anti-3-[18F]FACBC PET combined with conventional MRI correlated better with histomolecular diagnosis (reference standard) than MRI alone in glioma diagnostics. The ability of anti-3-[18F]FACBC to differentiate between molecular and histopathological entities in gliomas was also evaluated. METHODS In this prospective study, patients with suspected primary or recurrent gliomas were recruited from two sites in Norway and examined with PET/MRI prior to surgery. Anti-3-[18F]FACBC uptake (TBRpeak) was compared to histomolecular features in 36 patients. PET results were then added to clinical MRI readings (performed by two neuroradiologists, blinded for histomolecular results and PET data) to assess the predicted tumor characteristics with and without PET. RESULTS Histomolecular analyses revealed two CNS WHO grade 1, nine grade 2, eight grade 3, and 17 grade 4 gliomas. All tumors were visible on MRI FLAIR. The sensitivity of contrast-enhanced MRI and anti-3-[18F]FACBC PET was 61% (95%CI [45, 77]) and 72% (95%CI [58, 87]), respectively, in the detection of gliomas. Median TBRpeak was 7.1 (range: 1.4-19.2) for PET positive tumors. All CNS WHO grade 1 pilocytic astrocytomas/gangliogliomas, grade 3 oligodendrogliomas, and grade 4 glioblastomas/astrocytomas were PET positive, while 25% of grade 2-3 astrocytomas and 56% of grade 2-3 oligodendrogliomas were PET positive. Generally, TBRpeak increased with malignancy grade for diffuse gliomas. A significant difference in PET uptake between CNS WHO grade 2 and 4 gliomas (p < 0.001) and between grade 3 and 4 gliomas (p = 0.002) was observed. Diffuse IDH wildtype gliomas had significantly higher TBRpeak compared to IDH1/2 mutated gliomas (p < 0.001). Adding anti-3-[18F]FACBC PET to MRI improved the accuracy of predicted glioma grades, types, and IDH status, and yielded 13.9 and 16.7 percentage point improvement in the overall diagnoses for both readers, respectively. CONCLUSION Anti-3-[18F]FACBC PET demonstrated high uptake in the majority of gliomas, especially in IDH wildtype gliomas, and improved the accuracy of preoperatively predicted glioma diagnoses. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov ID: NCT04111588, URL: https://clinicaltrials.gov/study/NCT04111588.
Collapse
Affiliation(s)
- Anna Karlberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway.
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | - Benedikte Emilie Vindstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Jarstein Skjulsvik
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medical and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karoline Skogen
- Department of Radiology and Nuclear Medicine, Oslo University Hospitals, Oslo, Norway
| | - Kjell Arne Kvistad
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
| | - Trond Velde Bogsrud
- PET-Centre, University Hospital of North Norway, Tromsø, Norway
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | - Guro F Giskeødegård
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tor Ingebrigtsen
- Department of Neurosurgery, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Erik Magnus Berntsen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
13
|
Kinslow CJ, Garton ALA, Rae AI, Kocakavuk E, McKhann GM, Cheng SK, Sisti MB, Bruce JN, Wang TJC. Extent of resection for low-grade gliomas - Prognostic or therapeutic? Clin Neurol Neurosurg 2024; 236:108117. [PMID: 38219356 DOI: 10.1016/j.clineuro.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Affiliation(s)
- Connor J Kinslow
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 622 West 168th Street, BNH B011, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA
| | - Andrew L A Garton
- Department of Neurosurgery, Weill Cornell Medical Center and NewYork-Presbyterian Hospital, New York City, NY, USA
| | - Ali I Rae
- Department of Neurological Surgery, Oregon Health & Sciences University, 3181 SW Sam Jackson Pkwy, Portland, OR 97239, USA
| | - Emre Kocakavuk
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA; Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), National Center for Tumor Diseases (NCT) West, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Guy M McKhann
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA; Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032, USA
| | - Simon K Cheng
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 622 West 168th Street, BNH B011, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA
| | - Michael B Sisti
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA; Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032, USA
| | - Jeffrey N Bruce
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA; Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 622 West 168th Street, BNH B011, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA.
| |
Collapse
|
14
|
Karabacak M, Jagtiani P, Carrasquilla A, Germano IM, Margetis K. Prognosis Individualized: Survival predictions for WHO grade II and III gliomas with a machine learning-based web application. NPJ Digit Med 2023; 6:200. [PMID: 37884599 PMCID: PMC10603035 DOI: 10.1038/s41746-023-00948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
WHO grade II and III gliomas demonstrate diverse biological behaviors resulting in variable survival outcomes. In the context of glioma prognosis, machine learning (ML) approaches could facilitate the navigation through the maze of factors influencing survival, aiding clinicians in generating more precise and personalized survival predictions. Here we report the utilization of ML models in predicting survival at 12, 24, 36, and 60 months following grade II and III glioma diagnosis. From the National Cancer Database, we analyze 10,001 WHO grade II and 11,456 grade III cranial gliomas. Using the area under the receiver operating characteristic (AUROC) values, we deploy the top-performing models in a web application for individualized predictions. SHapley Additive exPlanations (SHAP) enhance the interpretability of the models. Top-performing predictive models are the ones built with LightGBM and Random Forest algorithms. For grade II gliomas, the models yield AUROC values ranging from 0.813 to 0.896 for predicting mortality across different timeframes, and for grade III gliomas, the models yield AUROCs ranging from 0.855 to 0.878. ML models provide individualized survival forecasts for grade II and III glioma patients across multiple clinically relevant time points. The user-friendly web application represents a pioneering digital tool to potentially integrate predictive analytics into neuro-oncology clinical practice, to empower prognostication and personalize clinical decision-making.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, 10029, NY, USA
| | - Pemla Jagtiani
- School of Medicine, SUNY Downstate Health Sciences University, New York, 11203, NY, USA
| | | | - Isabelle M Germano
- Department of Neurosurgery, Mount Sinai Health System, New York, 10029, NY, USA
| | | |
Collapse
|
15
|
Choate KA, Raack EJ, Line VF, Jennings MJ, Belton RJ, Winn RJ, Mann PB. Rapid extraction-free detection of the R132H isocitrate dehydrogenase mutation in glioma using colorimetric peptide nucleic acid-loop mediated isothermal amplification (CPNA-LAMP). PLoS One 2023; 18:e0291666. [PMID: 37733671 PMCID: PMC10513201 DOI: 10.1371/journal.pone.0291666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/03/2023] [Indexed: 09/23/2023] Open
Abstract
The R132H isocitrate dehydrogenase one (IDH1) mutation is a prognostic biomarker present in a subset of gliomas and is associated with heightened survival when paired with aggressive surgical resection. In this study, we establish proof-of-principle for rapid colorimetric detection of the IDH1-R132H mutation in tumor samples in under 1 hour without the need for a nucleic acid extraction. Colorimetric peptide nucleic acid loop-mediated isothermal amplification (CPNA-LAMP) utilizes 4 conventional LAMP primers, a blocking PNA probe complementary to the wild-type sequence, and a self-annealing loop primer complementary to the single nucleotide variant to only amplify the DNA sequence containing the mutation. This assay was evaluated using IDH1-WT or IDH1-R132H mutant synthetic DNA, wild-type or IDH1-R132H mutant U87MG cell lysates, and tumor lysates from archived patient samples in which the IDH1 status was previously determined using immunohistochemistry (IHC). Reactions were performed using a hot water bath and visually interpreted as positive by a pink-to-yellow color change. Results were subsequently verified using agarose gel electrophoresis. CPNA-LAMP successfully detected the R132H single nucleotide variant, and results from tumor lysates yielded 100% concordance with IHC results, including instances when the single nucleotide variant was limited to a portion of the tumor. Importantly, when testing the tumor lysates, there were no false positive or false negative results.
Collapse
Affiliation(s)
- Kristian A. Choate
- Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America
- Upper Michigan Brain Tumor Center, Marquette, Michigan, United States of America
- Northern Michigan University, Marquette, Michigan, United States of America
| | - Edward J. Raack
- Upper Michigan Brain Tumor Center, Marquette, Michigan, United States of America
- Northern Michigan University, Marquette, Michigan, United States of America
- School of Clinical Sciences, Northern Michigan University, Marquette, Michigan, United States of America
| | - Veronica F. Line
- Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America
- Upper Michigan Brain Tumor Center, Marquette, Michigan, United States of America
- Northern Michigan University, Marquette, Michigan, United States of America
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Marquette, Michigan, United States of America
- Northern Michigan University, Marquette, Michigan, United States of America
- School of Clinical Sciences, Northern Michigan University, Marquette, Michigan, United States of America
| | - Robert J. Belton
- Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America
- Northern Michigan University, Marquette, Michigan, United States of America
| | - Robert J. Winn
- Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America
- Upper Michigan Brain Tumor Center, Marquette, Michigan, United States of America
- Northern Michigan University, Marquette, Michigan, United States of America
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Marquette, Michigan, United States of America
- Northern Michigan University, Marquette, Michigan, United States of America
- School of Clinical Sciences, Northern Michigan University, Marquette, Michigan, United States of America
| |
Collapse
|
16
|
Carstam L, Latini F, Solheim O, Bartek J, Pedersen LK, Zetterling M, Beniaminov S, Sjåvik K, Ryttlefors M, Jensdottir M, Rydenhag B, Smits A, Jakola AS. Long-term follow up of patients with WHO grade 2 oligodendroglioma. J Neurooncol 2023; 164:65-74. [PMID: 37603235 PMCID: PMC10462563 DOI: 10.1007/s11060-023-04368-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 08/22/2023]
Abstract
PURPOSE Since the introduction of the molecular definition of oligodendrogliomas based on isocitrate dehydrogenase (IDH)-status and the 1p19q-codeletion, it has become increasingly evident how this glioma entity differs much from other diffuse lower grade gliomas and stands out with longer survival and often better responsiveness to adjuvant therapy. Therefore, apart from using a molecular oligodendroglioma definition, an extended follow-up time is necessary to understand the nature of this slow growing, yet malignant condition. The aim of this study was to describe the long-term course of the oligodendroglioma disease in a population-based setting and to determine which factors affect outcome in terms of survival. METHODS All adults with WHO-grade 2 oligodendrogliomas with known 1p19q-codeletion from five Scandinavian neurosurgical centers and with a follow-up time exceeding 5 years, were analyzed regarding survival and factors potentially affecting survival. RESULTS 126 patients diagnosed between 1998 and 2016 were identified. The median follow-up was 12.0 years, and the median survival was 17.8 years (95% CI 16.0-19.6). Factors associated with shorter survival in multivariable analysis were age (HR 1.05 per year; CI 1.02-1.08, p < 0.001), tumor diameter (HR 1.05 per millimeter; CI 1.02-1.08, p < 0.001) and poor preoperative functional status (KPS < 80) (HR 4.47; CI 1.70-11.78, p = 0.002). In our material, surgical strategy was not associated with survival. CONCLUSION Individuals with molecularly defined oligodendrogliomas demonstrate long survival, also in a population-based setting. This is important to consider for optimal timing of therapies that may cause long-term side effects. Advanced age, large tumors and poor function before surgery are predictors of shorter survival.
Collapse
Affiliation(s)
- Louise Carstam
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 41345, Göteborg, Sweden.
- Institution of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden.
| | - Francesco Latini
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jiri Bartek
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet and Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Lars K Pedersen
- Department of Neurosurgery, University Hospital of North Norway, Tromsø, Norway
| | - Maria Zetterling
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | | | - Kristin Sjåvik
- Department of Neurosurgery, University Hospital of North Norway, Tromsø, Norway
| | - Mats Ryttlefors
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Margret Jensdottir
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet and Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bertil Rydenhag
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 41345, Göteborg, Sweden
- Institution of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden
| | - Anja Smits
- Institution of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 41345, Göteborg, Sweden
- Institution of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden
| |
Collapse
|
17
|
Picca A, Bruno F, Nichelli L, Sanson M, Rudà R. Advances in molecular and imaging biomarkers in lower-grade gliomas. Expert Rev Neurother 2023; 23:1217-1231. [PMID: 37982735 DOI: 10.1080/14737175.2023.2285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Lower-grade (grade 2-3) gliomas (LGGs) constitutes a group of primary brain tumors with variable clinical behaviors and treatment responses. Recent advancements in molecular biology have redefined their classification, and novel imaging modalities emerged for the noninvasive diagnosis and follow-up. AREAS COVERED This review comprehensively analyses the current knowledge on molecular and imaging biomarkers in LGGs. Key molecular alterations, such as IDH mutations and 1p/19q codeletion, are discussed for their prognostic and predictive implications in guiding treatment decisions. Moreover, the authors explore theranostic biomarkers for the potential of tailored therapies. Additionally, they also describe the utility of advanced imaging modalities, including widely available techniques, as dynamic susceptibility contrast perfusion-weighted imaging and less validated, emerging approaches, for the noninvasive LGGs characterization and follow-up. EXPERT OPINION The integration of molecular markers enhanced the stratification of LGGs, leading to the new concept of integrated histomolecular classification. While the IDH mutation is an established key prognostic and predictive marker, recent results from IDH inhibitors trials showed its potential value as a theranostic marker. In this setting, advanced MRI techniques such as 2-D-hydroxyglutarate spectroscopy are very promising for the noninvasive diagnosis and monitoring of LGGs. This progress offers exciting prospects for personalized medicine and improved treatment outcomes in LGGs.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| | - Lucia Nichelli
- Service de Neuroradiologie, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Sanson
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
18
|
Miller JJ, Gonzalez Castro LN, McBrayer S, Weller M, Cloughesy T, Portnow J, Andronesi O, Barnholtz-Sloan JS, Baumert BG, Berger MS, Bi WL, Bindra R, Cahill DP, Chang SM, Costello JF, Horbinski C, Huang RY, Jenkins RB, Ligon KL, Mellinghoff IK, Nabors LB, Platten M, Reardon DA, Shi DD, Schiff D, Wick W, Yan H, von Deimling A, van den Bent M, Kaelin WG, Wen PY. Isocitrate dehydrogenase (IDH) mutant gliomas: A Society for Neuro-Oncology (SNO) consensus review on diagnosis, management, and future directions. Neuro Oncol 2023; 25:4-25. [PMID: 36239925 PMCID: PMC9825337 DOI: 10.1093/neuonc/noac207] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant gliomas are the most common adult, malignant primary brain tumors diagnosed in patients younger than 50, constituting an important cause of morbidity and mortality. In recent years, there has been significant progress in understanding the molecular pathogenesis and biology of these tumors, sparking multiple efforts to improve their diagnosis and treatment. In this consensus review from the Society for Neuro-Oncology (SNO), the current diagnosis and management of IDH-mutant gliomas will be discussed. In addition, novel therapies, such as targeted molecular therapies and immunotherapies, will be reviewed. Current challenges and future directions for research will be discussed.
Collapse
Affiliation(s)
- Julie J Miller
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Nicolas Gonzalez Castro
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Samuel McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, Texas, 75235, USA
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | | | - Jana Portnow
- Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ovidiu Andronesi
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill S Barnholtz-Sloan
- Informatics and Data Science (IDS), Center for Biomedical Informatics and Information Technology (CBIIT), Trans-Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Brigitta G Baumert
- Cantonal Hospital Graubunden, Institute of Radiation-Oncology, Chur, Switzerland
| | - Mitchell S Berger
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Wenya Linda Bi
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ranjit Bindra
- Department of Therapeutic Radiology, Brain Tumor Center, Yale School of Medicine, New Haven, CT, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raymond Y Huang
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert B Jenkins
- Individualized Medicine Research, Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55901, USA
| | - Keith L Ligon
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ingo K Mellinghoff
- Department of Neurology, Evnin Family Chair in Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - L Burt Nabors
- Department of Neurology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David A Reardon
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Diana D Shi
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David Schiff
- Division of Neuro-Oncology, Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Wolfgang Wick
- Neuro-Oncology at the German Cancer Research Center (DKFZ), Program Chair of Neuro-Oncology at the National Center for Tumor Diseases (NCT), and Neurology and Chairman at the Neurology Clinic in Heidelberg, Heidelberg, Germany
| | - Hai Yan
- Genetron Health Inc, Gaithersburg, Maryland 20879, USA
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, and, Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and, DKTK, INF 224, 69120 Heidelberg, Germany
| | - Martin van den Bent
- Brain Tumour Centre, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - William G Kaelin
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Svenjeby C, Carstam L, Werlenius K, Bontell TO, Rydén I, Jacobsson J, Dénes A, Jakola AS, Corell A. Changes in clinical management of diffuse IDH-mutated lower-grade gliomas: patterns of care in a 15-year period. J Neurooncol 2022; 160:535-543. [PMID: 36434487 PMCID: PMC9758083 DOI: 10.1007/s11060-022-04136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH) mutated diffuse lower-grade gliomas (dLGG) are infiltrating brain tumors and increasing evidence is in favor of early multimodal treatment. In a Scandinavian population-based setting, we wanted to study treatment patterns over the last 15 years, focusing on the short-term postoperative course to better understand the potential negative consequences of treatment. METHODS Patients ≥ 18 years with primary IDH-mutated dLGG grade 2 and 3, operated between January 2007-June 2021 were identified. Patients were divided into subgroups (2007-2011, 2012-2016, and 2017-2021) and comparisons regarding tumor- and disease characteristics, treatment, and postoperative outcome were performed. RESULTS We identified 202 patients (n = 61, 2007-2011; n = 72, 2012-2016; n = 69, 2017-2021), where of 193 underwent resection without change in proportion of resections over time. More patients underwent complete resections in recent times (6.1%; 15.7%; 26.1%, respectively; p = 0.016). Forty-two patients had any neurological deficit postoperatively (14.8%; 23.6%; 23.2%; p = 0.379), mostly minor and transient. Differences in oncological therapy were seen between the investigated subgroups. Early radiotherapy alone (32.8%; 7%; 2.9%; p < 0.001), concomitant chemoradiotherapy (23%; 37.5%; 17.4%; p = 0.022), sequential chemoradiotherapy (0%; 18%; 49.3%; p < 0.001), and no adjuvant treatment (42.6%; 23.6%; 18.8%; p = 0.009) shifted during the studied period. Increasingly more patients received proton radiotherapy compared to photon radiotherapy during the later time periods (p < 0.001). CONCLUSION Complete resections were performed more often in later time periods without an apparent increase in surgical morbidity. Early adjuvant oncological treatment shifted towards providing chemotherapy and combined chemoradiotherapy more often in later time periods. Protons replaced photons as the radiation modality of choice.
Collapse
Affiliation(s)
- Caroline Svenjeby
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Carstam
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Katja Werlenius
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Isabelle Rydén
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julia Jacobsson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Dénes
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Asgeir S. Jakola
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alba Corell
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
20
|
Zhang K, Liu X, Li G, Chang X, Li S, Chen J, Zhao Z, Wang J, Jiang T, Chai R. Clinical management and survival outcomes of patients with different molecular subtypes of diffuse gliomas in China (2011-2017): a multicenter retrospective study from CGGA. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0469. [PMID: 36350010 PMCID: PMC9630520 DOI: 10.20892/j.issn.2095-3941.2022.0469] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE We aimed to summarize the clinicopathological characteristics and prognostic features of various molecular subtypes of diffuse gliomas (DGs) in the Chinese population. METHODS In total, 1,418 patients diagnosed with DG between 2011 and 2017 were classified into 5 molecular subtypes according to the 2016 WHO classification of central nervous system tumors. The IDH mutation status was determined by immunohistochemistry and/or DNA sequencing, and 1p/19q codeletion was detected with fluorescence in situ hybridization. The median clinical follow-up time was 1,076 days. T-tests and chi-square tests were used to compare clinicopathological characteristics. Kaplan-Meier and Cox regression methods were used to evaluate prognostic factors. RESULTS Our cohort included 15.5% lower-grade gliomas, IDH-mutant and 1p/19q-codeleted (LGG-IDHm-1p/19q); 18.1% lower-grade gliomas, IDH-mutant (LGG-IDHm); 13.1% lower-grade gliomas, IDH-wildtype (LGG-IDHwt); 36.1% glioblastoma, IDH-wildtype (GBM-IDHwt); and 17.2% glioblastoma, IDH-mutant (GBM-IDHm). Approximately 63.3% of the enrolled primary gliomas, and the median overall survival times for LGG-IDHm, LGG-IDHwt, GBM-IDHwt, and GBM-IDHm subtypes were 75.97, 34.47, 11.57, and 15.17 months, respectively. The 5-year survival rate of LGG-IDHm-1p/19q was 76.54%. We observed a significant association between high resection rate and favorable survival outcomes across all subtypes of primary tumors. We also observed a significant role of chemotherapy in prolonging overall survival for GBM-IDHwt and GBM-IDHm, and in prolonging post-relapse survival for the 2 recurrent GBM subtypes. CONCLUSIONS By controlling for molecular subtypes, we found that resection rate and chemotherapy were 2 prognostic factors associated with survival outcomes in a Chinese cohort with DG.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Guanzhang Li
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xin Chang
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shouwei Li
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jing Chen
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zheng Zhao
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jiguang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518057, China
| | - Tao Jiang
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ruichao Chai
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|