1
|
Kannan S, Gillespie CS, Hanemaaijer J, Eraifej J, Alalade AF, Green A. Deep brain stimulation and motor cortex stimulation for central post-stroke pain: a systematic review and meta-analysis. PAIN MEDICINE (MALDEN, MASS.) 2025; 26:269-278. [PMID: 39798142 PMCID: PMC12046226 DOI: 10.1093/pm/pnaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/22/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Deep brain stimulation (DBS) and motor cortex stimulation (MCS) are invasive interventions in order to treat various neuropathic pain syndromes such as central post-stroke pain (CPSP). While each treatment has varying degree of success, comparative analysis has not yet been performed, and the success rates of these techniques using validated, objective pain scores have not been synthesized. METHODS A systematic review and meta-analysis was conducted in accordance with PRISMA guidelines. Three databases were searched, and articles published from January 2000 to October 2024 were included (last search date October 25, 2024). Meta-Analysis was performed using random effects models. We evaluated the performance of DBS or MCS by assessing studies that reported pain relief using visual analogue scale (VAS) or numerical rating scale (NRS) scores. RESULTS Of the 478 articles identified, 32 were included in the analysis (330 patients-139 DBS and 191 MCS). The improvement in mean VAS score for patients that underwent DBS post-surgery was 48.6% compared to a score of 53.1% for patients that had MCS. The pooled number of patients who improved after DBS was 0.62 (95% CI, 0.51-0.71, I2 = 16%). The pooled number of patients who improved after MCS was 0.64 (95% CI, 0.53-0.74, I2 = 40%). CONCLUSION The use of neurosurgical interventions such as DBS and MCS are last-resort treatments for CPSP, with limited studies exploring and comparing these two techniques. While our study shows that MCS might be a slightly better treatment option, further research would need to be done to determine the appropriate surgical intervention in the treatment of CPSP.
Collapse
Affiliation(s)
- Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR1 7BH, United Kingdom
| | - Conor S Gillespie
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1PG, United Kingdom
| | - Jeremy Hanemaaijer
- Department of Neurosurgery, RadboudUMC, Nijmegen 6525GA, The Netherlands
- Oxford Functional Neurosurgery Group, John Radcliffe Hospital, Oxford OX39DU, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - John Eraifej
- Oxford Functional Neurosurgery Group, John Radcliffe Hospital, Oxford OX39DU, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Andrew F Alalade
- School of Medicine, University of Central Lancashire, Preston PR1 7BH, United Kingdom
- Department of Neurosurgery, Royal Preston Hospital, Preston PR2 9HT, United Kingdom
| | - Alex Green
- Oxford Functional Neurosurgery Group, John Radcliffe Hospital, Oxford OX39DU, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| |
Collapse
|
2
|
Fagundes W, Lobo K, Rajab N, Reyns N, Laureau E, Blond S. Motor cortex stimulation for phantom limb pain treatment. Surg Neurol Int 2025; 16:48. [PMID: 40041061 PMCID: PMC11878713 DOI: 10.25259/sni_1022_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/19/2025] [Indexed: 03/06/2025] Open
Abstract
Background Phantom limb pain (PLP) is a chronic neuropathic pain syndrome experienced by individuals following limb amputation. Despite the use of various pharmacological treatments, including opioids, antidepressants, and anticonvulsants, effective pain relief remains challenging for many patients. Motor cortex stimulation (MCS) has emerged as a promising alternative for managing PLP. Methods We present the management of three patients with chronic, refractory PLP who underwent epidural MCS at Lille University Hospital Center. The quadripolar electrode lead was implanted into the epidural space under local anesthesia. Stereotactic angiography was used to determine the target coordinates, and the optimal location was confirmed with the guidance of a three-dimensional brain magnetic resonance imaging reconstruction and neurophysiological testing. Pain intensity was assessed using the Visual Analog Scale (VAS) at baseline and at the end of the follow-up period, which had a mean duration of 7 ± 2.16 months. Results Two of the three patients experienced a decrease in pain by 50%, and one had a 44.4% reduction. The average preoperative VAS score significantly decreased from 7.0 ± 1.73 to 3.67 ± 1.15 at the final follow-up (P = 0.00985). All patients reported a reduction in analgesic medication intake, and no major complications occurred. Conclusion PLP is one of the most challenging conditions to treat. MCS is an adjustable and reversible technique that appears to be effective in treating patients with this chronic pain syndrome refractory to other treatment modalities.
Collapse
Affiliation(s)
- Walter Fagundes
- Department of Neurosurgery, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Kaike Lobo
- Department of Geneuro International Research Group in Neuroscience, Vitoria, Brazil
| | - Numa Rajab
- Department of Geneuro International Research Group in Neuroscience, Vitoria, Brazil
| | - Nicolas Reyns
- Department of Neurosurgery Roger Salengro Hospital of Lille University and Regional Hospital Center, Lille, France
| | - Emmanuelle Laureau
- Neurophysiology, Roger Salengro Hospital of Lille University and Regional Hospital Center, Lille, France
| | - Serge Blond
- Department of Neurosurgery Roger Salengro Hospital of Lille University and Regional Hospital Center, Lille, France
| |
Collapse
|
3
|
Statsenko Y, Kuznetsov NV, Ljubisaljevich M. Hallmarks of Brain Plasticity. Biomedicines 2025; 13:460. [PMID: 40002873 PMCID: PMC11852462 DOI: 10.3390/biomedicines13020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Cerebral plasticity is the ability of the brain to change and adapt in response to experience or learning. Its hallmarks are developmental flexibility, complex interactions between genetic and environmental influences, and structural-functional changes comprising neurogenesis, axonal sprouting, and synaptic remodeling. Studies on brain plasticity have important practical implications. The molecular characteristics of changes in brain plasticity may reveal disease course and the rehabilitative potential of the patient. Neurological disorders are linked with numerous cerebral non-coding RNAs (ncRNAs), in particular, microRNAs; the discovery of their essential role in gene regulation was recently recognized and awarded a Nobel Prize in Physiology or Medicine in 2024. Herein, we review the association of brain plasticity and its homeostasis with ncRNAs, which make them putative targets for RNA-based diagnostics and therapeutics. New insight into the concept of brain plasticity may provide additional perspectives on functional recovery following brain damage. Knowledge of this phenomenon will enable physicians to exploit the potential of cerebral plasticity and regulate eloquent networks with timely interventions. Future studies may reveal pathophysiological mechanisms of brain plasticity at macro- and microscopic levels to advance rehabilitation strategies and improve quality of life in patients with neurological diseases.
Collapse
Affiliation(s)
- Yauhen Statsenko
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Milos Ljubisaljevich
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Seznec Y, Thomas J, Jean Baptiste P, Buhot B, Convers P, Peyron R, Vassal F. A Double-Blind Comparative Study of burstDR Versus Tonic Epidural Motor Cortex Stimulation for the Treatment of Intractable Neuropathic Pain. Eur J Pain 2025; 29:e4778. [PMID: 39783779 DOI: 10.1002/ejp.4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/07/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Preliminary studies on epidural motor cortex stimulation (eMCS) for the treatment of drug-resistant neuropathic pain have supported the extension to novel stimulation waveforms, in particular burstDR. However, only a low level of evidence is available. The aim of this retrospective observational study was to compare the analgesic efficacy of burstDR versus tonic eMCS. METHODS Patients suffering from unilateral, drug-resistant neuropathic pain were selected for eMCS. During the trial phase, burstDR and tonic waveforms were successively applied for three consecutive months in a double-blinded fashion and in a random order. The primary outcome criterion was the percentage of pain relief (%PR) at 3 and 6 months. The secondary outcome criterion was the proportion of patients reporting a superior %PR with the burstDR waveform. RESULTS Thirteen patients were included. The averaged %PR was 75.4% ± 18.6% after burstDR eMCS and 61.1% ± 28.6% after tonic eMCS (p = 0.21). Nine patients preferred the burstDR waveform for chronic eMCS (p = 0.16), and six of them were able to decrease or withdraw their analgesic drug intake. No adverse side effect was encountered in relation to burstDR eMCS. CONCLUSIONS BurstDR eMCS seems at least as effective as tonic eMCS for the treatment of drug-resistant neuropathic pain and shows a similar safety profile. Although the precise mechanisms of action remain to be fully elucidated, adequate matching between the oscillatory rhythm in the motor cortex and that of the burstDR waveform may increase synaptic efficacy, thus enhancing the functional connectivity of the motor cortex with remote brain networks involved in pain modulation. SIGNIFICANCE STATEMENT In the present paper, we provide for the first time a double-blinded study comparing burstDR versus tonic eMCS for the treatment of intractable, drug-resistant neuropathic pain. Our results show that burstDR eMCS is a promising option in a population of patients especially difficult to treat, and support the ongoing move toward new stimulation waveforms able to more efficiently activate the brain networks involved in pain modulation.
Collapse
Affiliation(s)
- Yann Seznec
- Department of Neurosurgery, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Joy Thomas
- NEUROPAIN Lab, INSERM U1028, University Jean Monnet, Saint-Priest-en-Jarez, France
| | - Pelletier Jean Baptiste
- Department of Neurosurgery, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Benjamin Buhot
- Department of Neurosurgery, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Philippe Convers
- Department of Clinical Neurophysiology, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Roland Peyron
- NEUROPAIN Lab, INSERM U1028, University Jean Monnet, Saint-Priest-en-Jarez, France
- Pain Management Department, University of Saint-Etienne, Saint-Priest-en-Jarez, France
| | - François Vassal
- Department of Neurosurgery, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
- NEUROPAIN Lab, INSERM U1028, University Jean Monnet, Saint-Priest-en-Jarez, France
| |
Collapse
|
5
|
Tamasauskas A, Silva-Passadouro B, Fallon N, Frank B, Laurinaviciute S, Keller S, Marshall A. Management of Central Poststroke Pain: Systematic Review and Meta-analysis. THE JOURNAL OF PAIN 2025; 26:104666. [PMID: 39260808 DOI: 10.1016/j.jpain.2024.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Central poststroke pain (CPSP) is a neuropathic pain condition prevalent in 8 to 35% of stroke patients. This systematic review and meta-analysis aimed to provide insight into the effectiveness of available pharmacological, physical, psychological, and neuromodulation interventions in reducing pain in CPSP patients (PROSPERO Registration: CRD42022371835). Secondary outcomes included mood, sleep, global impression of change, and physical responses. Data extraction included participant demographics, stroke etiology, pain characteristics, pain reduction scores, and secondary outcome metrics. Forty-two original studies were included, with a total of 1,451 participants. No studies providing psychological therapy to CPSP patients were identified. Twelve studies met requirements for a random-effects meta-analyses that found pharmacological therapy to have a small effect on mean pain score (SMD = -.36, 96.0% confidence interval [-.68, -.03]), physical interventions did not show a significant effect (SMD = -.55 [-1.28, .18]), and neuromodulation treatments had a moderate effect (SMD = -.64 [-1.08, -.19]). Fourteen studies were included in proportional meta-analysis with pharmacological studies having a moderate effect (58.3% mean pain reduction [-36.51, -80.15]) and neuromodulation studies a small effect (31.1% mean pain reduction [-43.45, -18.76]). Sixteen studies were included in the narrative review, the findings from which largely supported meta-analysis results. Duloxetine, amitriptyline, and repetitive transcranial magnetic stimulation had the most robust evidence for their effectiveness in alleviating CPSP-induced pain. Further multicenter placebo-controlled research is needed to ascertain the effectiveness of physical therapies, such as acupuncture and virtual reality, and invasive and noninvasive neuromodulation treatments. PERSPECTIVE: This article presents a top-down and bottom-up overview of evidence for the effectiveness of different pharmacological, physical, and neuromodulation treatments of CPSP. This review could provide clinicians with a comprehensive understanding of the effectiveness and tolerability of different treatment types.
Collapse
Affiliation(s)
- Arnas Tamasauskas
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Barbara Silva-Passadouro
- Leeds Institute of Rheumatology and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Nicholas Fallon
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bernhard Frank
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Simon Keller
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Marshall
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Peyron R, Raffin E. Dimming chronic pain with ultrasound: hope for the future? Pain 2024; 165:2660-2661. [PMID: 39660895 DOI: 10.1097/j.pain.0000000000003323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Roland Peyron
- UJM; UCBL; CNRS UMR5292; INSERM U1028, Centre de Recherche en Neurosciences de Lyon, NEUROPAIN, Saint-Etienne, France
- Department of Neurology & Pain Center, University Hospital, CHU de Saint-Etienne, France
| | - Estelle Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
7
|
da Cunha PHM, Lapa JDDS, Hosomi K, de Andrade DC. Neuromodulation for neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:471-502. [PMID: 39580221 DOI: 10.1016/bs.irn.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The treatment of neuropathic pain (NeP) often leads to partial or incomplete pain relief, with up to 40 % of patients being pharmaco-resistant. In this chapter the efficacy of neuromodulation techniques in treating NeP is reviewed. It presents a detailed evaluation of the mechanisms of action and evidence supporting the clinical use of the most common approaches like transcutaneous electrical nerve stimulation (TENS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation (DBS), invasive motor cortex stimulation (iMCS), spinal cord stimulation (SCS), dorsal root ganglion stimulation (DRG-S), and peripheral nerve stimulation (PNS). Current literature suggests that motor cortex rTMS is effective for peripheral and central NeP, and TENS for peripheral NeP. Evidence for tDCS is inconclusive. DBS is reserved for research settings due to heterogeneous results, while iMSC has shown efficacy in a small randomized trial in neuropathic pain due to stroke and brachial plexus avulsion. SCS has moderate evidence for painful diabetic neuropathy and failed back surgery syndrome, but trials were not controlled with sham. DRG-S and PNS have shown positive results for complex regional pain syndrome and post-surgical neuropathic pain, respectively. Adverse effects vary, with non-invasive techniques showing local discomfort, dizziness and headache, and DBS and SCS hardware-related issues. To date, non-invasive techniques have been more extensively studied and some are included in international guidelines, while the evidence level for invasive techniques are less robust, potentially suggesting their use in a case-by-case indication considering patient´s preferences, costs and expected benefits.
Collapse
Affiliation(s)
| | | | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
8
|
Joshi S, Garg S, Mishra P, Dhyani M, Tikka SK. Efficacy of sequential primary motor and prefrontal cortices intermittent Theta burst stimulation in persistent somatoform PAIN disorder (TAP-PAIN): A randomized sham-controlled pilot trial. Indian J Psychiatry 2024; 66:744-750. [PMID: 39398515 PMCID: PMC11469561 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_56_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 10/15/2024] Open
Abstract
Aim There is a need to elucidate intermittent Theta burst stimulation (iTBS) as a novel treatment in persistent somatoform pain disorder (PSPD). Methods Twenty patients were randomly allocated to active iTBS (n = 11) and sham iTBS (n = 9) and received 10 iTBS sessions, 2 sessions per day, sequentially to primary motor and dorsolateral prefrontal cortices for 5 days in a week. Each iTBS session comprised of 2 sec. per train of 10 bursts (3 pulses per burst at 50 Hz; total 30 pulses) and were given with a gap of 5 Hz, total of 20 trains, and 600 pulses. Visual Analogue Scale, Brief Pain Inventory and Global Pain Scale (GPS), Montgomery and Asberg Depression Rating Scale, Hamilton Anxiety Rating Scale - Anxiety, World Health Organization Quality-of-Life Scale-brief, and Pittsburgh Sleep Quality Index were applied at baseline, after last session, and at 2 weeks after last TBS session. Intention to treat analysis was conducted. Results Both groups were comparable for baseline psychopathology scores including clinical variables like age (t = 0.865; P = 0.398), duration of illness (t = 1.600; P = 0.127), and motor threshold (t = 0.304; P = 0.765). On repeated measures ANOVA, a significant within-group time effect for VAS, BPI-Severity, BPI-Interference, BDI - II, MADRS, HAM-A, and WHOQOL- BREF was found for active and sham TBS groups, respectively. GPS scores had significant within-group (active) * time interaction (F = 11.651; P = .001; ηp2 = 0.538) and between-group * time interaction (F = 3.407; P = 0.044; ηp2 = 0.159). However, between-group * time effect interaction was lost after covariance (F = 1.726; P = 0.196; ηp2 = 0.110). Conclusion No major adverse effects were reported. Our pilot trial concludes that safe therapeutic efficacy of iTBS in PSPD is inconclusive. Lower total number of sessions along with small sample size may limit the study findings.
Collapse
Affiliation(s)
- Shailja Joshi
- Department of Psychiatry, Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Shobit Garg
- Department of Psychiatry, Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Preeti Mishra
- Department of Psychiatry, Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mohan Dhyani
- Department of Psychiatry, Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Sai Krishna Tikka
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bibanagar, Telangana, India
| |
Collapse
|
9
|
Guzzi G, Della Torre A, Bruni A, Lavano A, Bosco V, Garofalo E, La Torre D, Longhini F. Anatomo-physiological basis and applied techniques of electrical neuromodulation in chronic pain. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:29. [PMID: 38698460 PMCID: PMC11064427 DOI: 10.1186/s44158-024-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Chronic pain, a complex and debilitating condition, poses a significant challenge to both patients and healthcare providers worldwide. Conventional pharmacological interventions often prove inadequate in delivering satisfactory relief while carrying the risks of addiction and adverse reactions. In recent years, electric neuromodulation emerged as a promising alternative in chronic pain management. This method entails the precise administration of electrical stimulation to specific nerves or regions within the central nervous system to regulate pain signals. Through mechanisms that include the alteration of neural activity and the release of endogenous pain-relieving substances, electric neuromodulation can effectively alleviate pain and improve patients' quality of life. Several modalities of electric neuromodulation, with a different grade of invasiveness, provide tailored strategies to tackle various forms and origins of chronic pain. Through an exploration of the anatomical and physiological pathways of chronic pain, encompassing neurotransmitter involvement, this narrative review offers insights into electrical therapies' mechanisms of action, clinical utility, and future perspectives in chronic pain management.
Collapse
Affiliation(s)
- Giusy Guzzi
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Attilio Della Torre
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Angelo Lavano
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Vincenzo Bosco
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy
| | - Domenico La Torre
- Neurosurgery Department, "R. Dulbecco" Hospital, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care Unit, "R. Dulbecco" Univesity Hospital, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, Catanzaro, 88100, Italy.
| |
Collapse
|
10
|
Li YC, Zhang FC, Xu TW, Weng RX, Zhang HH, Chen QQ, Hu S, Gao R, Li R, Xu GY. Advances in the pathological mechanisms and clinical treatments of chronic visceral pain. Mol Pain 2024; 20:17448069241305942. [PMID: 39673493 PMCID: PMC11645724 DOI: 10.1177/17448069241305942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024] Open
Abstract
Chronic visceral pain stems from internal organs and is frequently associated with functional gastrointestinal disorders, like irritable bowel syndrome (IBS). Since the underlying mechanisms of visceral pain remain largely unclear, clinical management is often limited and ineffective. Comprehensive research into the pathogenesis of visceral pain, along with the development of personalized therapeutic strategies, is crucial for advancing treatment options. Studies suggest that imbalances in purinergic receptors and neural circuit function are closely linked to the onset of visceral pain. In this review, we will explore the etiology and pathological mechanisms underlying visceral pain, with a focus on ion channels, epigenetic factors, and neural circuits, using functional gastrointestinal disorders as case studies. Finally, we will summarize and evaluate emerging treatments and potential initiatives aimed at managing visceral pain.
Collapse
Affiliation(s)
- Yong-Chang Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Chao Zhang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Timothy W Xu
- Department of Earth Sciences, University College London, London, UK
| | - Rui-Xia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian-Qian Chen
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Shufen Hu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Rong Gao
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Grimm K, Prilop L, Schön G, Gelderblom M, Misselhorn J, Gerloff C, Zittel S. Cerebellar Modulation of Sensorimotor Associative Plasticity Is Impaired in Cervical Dystonia. Mov Disord 2023; 38:2084-2093. [PMID: 37641392 DOI: 10.1002/mds.29586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND In recent years, cervical dystonia (CD) has been recognized as a network disorder that involves not only the basal ganglia but other brain regions, such as the primary motor and somatosensory cortex, brainstem, and cerebellum. So far, the role of the cerebellum in the pathophysiology of dystonia is only poorly understood. OBJECTIVE The objective of this study was to investigate the role of the cerebellum on sensorimotor associative plasticity in patients with CD. METHODS Sixteen patients with CD and 13 healthy subjects received cerebellar transcranial direct current stimulation (ctDCS) followed by a paired associative stimulation (PAS) protocol based on transcranial magnetic stimulation that induces sensorimotor associative plasticity. Across three sessions the participants received excitatory anodal, inhibitory cathodal, and sham ctDCS in a double-blind crossover design. Before and after the intervention, motor cortical excitability and motor symptom severity were assessed. RESULTS PAS induced an increase in motor cortical excitability in both healthy control subjects and patients with CD. In healthy subjects this effect was attenuated by both anodal and cathodal ctDCS with a stronger effect of cathodal stimulation. In patients with CD, anodal stimulation suppressed the PAS effect, whereas cathodal stimulation had no influence on PAS. Motor symptom severity was unchanged after the intervention. CONCLUSIONS Cerebellar modulation with cathodal ctDCS had no effect on sensorimotor associative plasticity in patients with CD, in contrast with the net inhibitory effect in healthy subjects. This is further evidence that the cerebello-thalamo-cortical network plays a role in the pathophysiology of dystonia. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kai Grimm
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Prilop
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Wei Z, Huang Y, Li X, Shao M, Qian H, He B, Meng J. The influence of aggressive exercise on responses to self-perceived and others' pain. Cereb Cortex 2023; 33:10802-10812. [PMID: 37715469 PMCID: PMC10629897 DOI: 10.1093/cercor/bhad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023] Open
Abstract
Previous studies have reported relationships between exercise and pain. However, little is known about how aggressive exercise modulates individuals' responses to their own and others' pain. This present study addresses this question by conducting 2 studies employing event-related potential (ERP). Study 1 included 38 participants whose self-perceived pain was assessed after intervention with aggressive or nonaggressive exercises. Study 2 recruited 36 participants whose responses to others' pain were assessed after intervention with aggressive or nonaggressive exercise. Study 1's results showed that P2 amplitudes were smaller, reaction times were longer, and participants' judgments were less accurate in response to self-perceived pain stimuli, especially to high-pain stimuli, after intervention with aggressive exercise compared to nonaggressive exercise. Results of study 2 showed that both P3 and LPP amplitudes to others' pain were larger after intervention with aggressive exercise than with nonaggressive exercise. These results suggest that aggressive exercise decreases individuals' self-perceived pain and increases their empathic responses to others' pain.
Collapse
Affiliation(s)
- Zilong Wei
- Research Center for Brain and Cognitive Science, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
- Key Laboratory of Applied Psychology, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
| | - Yujuan Huang
- Guizhou Light Industry Technical College, No. 3, Dongqing Road, Guiyang 550025, China
| | - Xiong Li
- Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Chongqing 400715, China
| | - Min Shao
- Research Center for Brain and Cognitive Science, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
- Key Laboratory of Applied Psychology, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
| | - Huiling Qian
- Research Center for Brain and Cognitive Science, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
- Key Laboratory of Applied Psychology, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
| | - Bojun He
- Research Center for Brain and Cognitive Science, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
- Key Laboratory of Applied Psychology, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
| | - Jing Meng
- Research Center for Brain and Cognitive Science, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
- Key Laboratory of Applied Psychology, Chongqing Normal University, No. 37, Middle Road, University Town, Chongqing 401331, China
| |
Collapse
|
13
|
de Andrade DC, García-Larrea L. Beyond trial-and-error: Individualizing therapeutic transcranial neuromodulation for chronic pain. Eur J Pain 2023; 27:1065-1083. [PMID: 37596980 PMCID: PMC7616049 DOI: 10.1002/ejp.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) applied to the motor cortex provides supplementary relief for some individuals with chronic pain who are refractory to pharmacological treatment. As rTMS slowly enters treatment guidelines for pain relief, its starts to be confronted with challenges long known to pharmacological approaches: efficacy at the group-level does not grant pain relief for a particular patient. In this review, we present and discuss a series of ongoing attempts to overcome this therapeutic challenge in a personalized medicine framework. DATABASES AND DATA TREATMENT Relevant scientific publications published in main databases such as PubMed and EMBASE from inception until March 2023 were systematically assessed, as well as a wide number of studies dedicated to the exploration of the mechanistic grounds of rTMS analgesic effects in humans, primates and rodents. RESULTS The main strategies reported to personalize cortical neuromodulation are: (i) the use of rTMS to predict individual response to implanted motor cortex stimulation; (ii) modifications of motor cortex stimulation patterns; (iii) stimulation of extra-motor targets; (iv) assessment of individual cortical networks and rhythms to personalize treatment; (v) deep sensory phenotyping; (vi) personalization of location, precision and intensity of motor rTMS. All approaches except (i) have so far low or moderate levels of evidence. CONCLUSIONS Although current evidence for most strategies under study remains at best moderate, the multiple mechanisms set up by cortical stimulation are an advantage over single-target 'clean' drugs, as they can influence multiple pathophysiologic paths and offer multiple possibilities of individualization. SIGNIFICANCE Non-invasive neuromodulation is on the verge of personalised medicine. Strategies ranging from integration of detailed clinical phenotyping into treatment design to advanced patient neurophysiological characterisation are being actively explored and creating a framework for actual individualisation of care.
Collapse
Affiliation(s)
- Daniel Ciampi de Andrade
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Luís García-Larrea
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
14
|
Motzkin JC, Kanungo I, D’Esposito M, Shirvalkar P. Network targets for therapeutic brain stimulation: towards personalized therapy for pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1156108. [PMID: 37363755 PMCID: PMC10286871 DOI: 10.3389/fpain.2023.1156108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Precision neuromodulation of central brain circuits is a promising emerging therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying in whom, where, and in what context to provide brain stimulation for optimal pain relief are fundamental challenges limiting the widespread implementation of central neuromodulation treatments for chronic pain. Current approaches to brain stimulation target empirically derived regions of interest to the disorder or targets with strong connections to these regions. However, complex, multidimensional experiences like chronic pain are more closely linked to patterns of coordinated activity across distributed large-scale functional networks. Recent advances in precision network neuroscience indicate that these networks are highly variable in their neuroanatomical organization across individuals. Here we review accumulating evidence that variable central representations of pain will likely pose a major barrier to implementation of population-derived analgesic brain stimulation targets. We propose network-level estimates as a more valid, robust, and reliable way to stratify personalized candidate regions. Finally, we review key background, methods, and implications for developing network topology-informed brain stimulation targets for chronic pain.
Collapse
Affiliation(s)
- Julian C. Motzkin
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Kanungo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Prasad Shirvalkar
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Barbosa LM, Valerio F, da Silva VA, Rodrigues ALDL, Galhardoni R, Yeng LT, Junior JR, Conforto AB, Lucato LT, Teixeira MJ, de Andrade DC. Corticomotor excitability is altered in central neuropathic pain compared with non-neuropathic pain or pain-free patients. Neurophysiol Clin 2023; 53:102845. [PMID: 36822032 DOI: 10.1016/j.neucli.2023.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
OBJECTIVES Central neuropathic pain (CNP) is associated with altered corticomotor excitability (CE), which can potentially provide insights into its mechanisms. The objective of this study is to describe the CE changes that are specifically related to CNP. METHODS We evaluated CNP associated with brain injury after stroke or spinal cord injury (SCI) due to neuromyelitis optica through a battery of CE measurements and comprehensive pain, neurological, functional, and quality of life assessments. CNP was compared to two groups of patients with the same disease: i. with non-neuropathic pain and ii. without chronic pain, matched by sex and lesion location. RESULTS We included 163 patients (stroke=93; SCI=70: 74 had CNP, 43 had non-neuropathic pain, and 46 were pain-free). Stroke patients with CNP had lower motor evoked potential (MEP) in both affected and unaffected hemispheres compared to non- neuropathic pain and no-pain patients. Patients with CNP had lower amplitudes of MEPs (366 μV ±464 μV) than non-neuropathic (478 ±489) and no-pain (765 μV ± 880 μV) patients, p < 0.001. Short-interval intracortical inhibition (SICI) was defective (less inhibited) in patients with CNP (2.6±11.6) compared to no-pain (0.8±0.7), p = 0.021. MEPs negatively correlated with mechanical and cold-induced allodynia. Furthermore, classifying patients' results according to normative data revealed that at least 75% of patients had abnormalities in some CE parameters and confirmed MEP findings based on group analyses. DISCUSSION CNP is associated with decreased MEPs and SICI compared to non-neuropathic pain and no-pain patients. Corticomotor excitability changes may be helpful as neurophysiological markers of the development and persistence of pain after CNS injury, as they are likely to provide insights into global CE plasticity changes occurring after CNS lesions associated with CNP.
Collapse
Affiliation(s)
- Luciana Mendonça Barbosa
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil; Department of Neurology, University of São Paulo, 05403-900, São Paulo, Brazil
| | - Fernanda Valerio
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil
| | | | | | - Ricardo Galhardoni
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil
| | - Lin Tchia Yeng
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil
| | - Jefferson Rosi Junior
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil
| | | | | | - Manoel Jacobsen Teixeira
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil; Department of Neurology, University of São Paulo, 05403-900, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Department of Neurology, University of São Paulo, 05403-900, São Paulo, Brazil; Center for Neuroplasticity and Pain, Department of Health Sciences and Technology, Faculty of Medicine, Aalborg University, DK-9220, Aalborg, Denmark.
| |
Collapse
|
16
|
Carron R. Commentary on "Libérons-nous de la douleur", book by Dr Marc Leveque, M.D. (2022, Ed. Buchet Chastel). Neurochirurgie 2023; 69:101441. [PMID: 37062266 DOI: 10.1016/j.neuchi.2023.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023]
Affiliation(s)
- Romain Carron
- Department of stereotactic and functional neurosurgery, La Timone university hospital, Aix-Marseille university, Marseille, France; Inserm, Institut de neurosciences des systèmes (INS), Aix Marseille university, AP-HM, Marseille, France.
| |
Collapse
|
17
|
Branco MP, Geukes SH, Aarnoutse EJ, Ramsey NF, Vansteensel MJ. Nine decades of electrocorticography: A comparison between epidural and subdural recordings. Eur J Neurosci 2023; 57:1260-1288. [PMID: 36843389 DOI: 10.1111/ejn.15941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.
Collapse
Affiliation(s)
- Mariana P Branco
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Simon H Geukes
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Neurochirurgia del dolore. Neurologia 2023. [DOI: 10.1016/s1634-7072(22)47347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
19
|
Schutz REC, Creutzfeldt CJ. Palliative care after stroke survival. HANDBOOK OF CLINICAL NEUROLOGY 2023; 191:3-11. [PMID: 36599514 DOI: 10.1016/b978-0-12-824535-4.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stroke is a leading cause of both death and disability worldwide. While most research has focused on the first hours to days after acute stroke, much less is known about the experience of patients and their families living after a stroke. Stroke survivors have a high burden of physical and psychological symptoms such as pain, fatigue, and depression that are often not addressed in the postacute setting. Similarly, goals-of-care conversations that may have started during the acute hospitalization are often not followed up later. This chapter outlines the prevalence and management of common poststroke symptoms, approaches to postacute goals-of-care conversations, family needs after stroke, and provides an overview of stroke-specific hospice and end-of-life care aspects. We emphasize the need for research in each of these areas.
Collapse
Affiliation(s)
- Rachael E C Schutz
- Department of Neurology, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
20
|
Tomeh A, Yusof Khan AHK, Inche Mat LN, Basri H, Wan Sulaiman WA. Repetitive Transcranial Magnetic Stimulation of the Primary Motor Cortex beyond Motor Rehabilitation: A Review of the Current Evidence. Brain Sci 2022; 12:brainsci12060761. [PMID: 35741646 PMCID: PMC9221422 DOI: 10.3390/brainsci12060761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a novel technique to stimulate the human brain through the scalp. Over the years, identifying the optimal brain region and stimulation parameters has been a subject of debate in the literature on therapeutic uses of repetitive TMS (rTMS). Nevertheless, the primary motor cortex (M1) has been a conventional target for rTMS to treat motor symptoms, such as hemiplegia and spasticity, as it controls the voluntary movement of the body. However, with an expanding knowledge base of the M1 cortical and subcortical connections, M1-rTMS has shown a therapeutic efficacy that goes beyond the conventional motor rehabilitation to involve pain, headache, fatigue, dysphagia, speech and voice impairments, sleep disorders, cognitive dysfunction, disorders of consciousness, anxiety, depression, and bladder dysfunction. In this review, we summarize the latest evidence on using M1-rTMS to treat non-motor symptoms of diverse etiologies and discuss the potential mechanistic rationale behind the management of each of these symptoms.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +60-3-9769-5560
| |
Collapse
|
21
|
Guo S, Zhang X, Tao W, Zhu H, Hu Y. Long-term follow-up of motor cortex stimulation on central poststroke pain in thalamic and extrathalamic stroke. Pain Pract 2022; 22:610-620. [PMID: 35686377 DOI: 10.1111/papr.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the long-term effects of motor cortex stimulation (MCS) on central poststroke pain (CPSP) in patients with thalamic and extrathalamic stroke. MATERIALS AND METHODS We retrospectively analyzed 21 cases of CPSP patients who were treated with MCS. Pain intensity was evaluated using the visual analog scale (VAS) and Neuropathic Pain Symptom Inventory (NPSI) before the operation and at follow-up assessments. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index (PSQI). RESULTS The average follow-up time was 65.43 ± 26.12 months. In the thalamus stroke group (n = 11), the mean preoperative VAS score was 8.18 ± 0.75 and the final mean follow-up VAS score was 4.0 ± 2.14. The mean total NPSI score at the last follow-up (20.45 ± 12.7) was significantly reduced relative to the pre-MCS score (30.27 ± 8.97, p < 0.001). Similarly, the mean PSQI value at the last follow-up (12.63 ± 1.91) was significantly reduced compared with the pre-MCS value (16.55 ± 1.97, p < 0.001). In the extrathalamic stroke group (n = 11), the mean preoperative VAS score was 8.2 ± 0.79 and the final mean follow-up VAS score was 6.6 ± 2.12. The mean total NPSI score before MCS was not statistically different from that at the last follow-up. There were no statistical differences in sleep quality before versus after surgery. CONCLUSION Motor cortex stimulation has higher long-term efficacy in CPSP patients with stroke confined to the thalamus than in CPSP patients with stroke involving extrathalamic structures.
Collapse
Affiliation(s)
- Song Guo
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolei Zhang
- Department of Neurosurgery, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Wei Tao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Hongwei Zhu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Garcia-Larrea L, Quesada C. Cortical stimulation for chronic pain: from anecdote to evidence. Eur J Phys Rehabil Med 2022; 58:290-305. [PMID: 35343176 PMCID: PMC9980528 DOI: 10.23736/s1973-9087.22.07411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidural stimulation of the motor cortex (eMCS) was devised in the 1990's, and has now largely supplanted thalamic stimulation for neuropathic pain relief. Its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evidence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain (NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious for pain, so far. The posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. Transcranial direct current stimulation (tDCS) is applied upon similar targets as rTMS and eMCS; it does not elicit action potentials but modulates the neuronal resting membrane state. tDCS presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic pain. Their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of long-term benefits remains a challenge, for which different strategies are discussed in this review.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France - .,University Hospital Pain Center (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France -
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France.,Department of Physiotherapy, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
23
|
Gong AD, Gilbert OE, Mugge LA, Dang DD, Dang JV, Awan O, Leiphart JW, Shenai MB. Effective treatment of refractory complex facial pain with motor cortex stimulation by spinal paddle electrodes using multimodal imaging. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Complex facial pain is a debilitating condition with varying etiologies that overall responds poorly to both medical and traditional surgical management. Cortical stimulation is a unique therapeutic intervention which can be effective for some types of complex facial pain syndromes (CFPS). However, the novel use of preoperative functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) coupled with intraoperative stimulation mapping and phase reversal to improve the accuracy for placement of spinal paddle electrodes in motor cortex stimulation, to our knowledge, has not been reported in the literature.
Case presentation
Here, we present a unique case of a 56-year-old male who developed left-sided complex facial pain syndrome after a stroke refractory to medical management and peripheral nerve stimulation. He previously underwent microvascular decompression (MVD) with limited control of his left-sided facial pain. In order to treat this, the patient underwent motor cortex stimulation. The motor strip of the face and tongue was identified preoperatively with functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). Intraoperatively, phase reversal was used to identify corticospinal tracts and stimulus mapping confirmed the location before the epidural placement of two spinal paddle electrodes. Postoperatively, the patient reported significant reduction in pain levels, burning dysesthesias, and intensity and frequency of symptoms. This trend continued, and the patient experienced equivalent levels of relief at 6 months.
Conclusions
This is a rare case report of successful motor cortex stimulation with the novel preoperative use of fMRI and DTI, coupled with intraoperative functional mapping, to successfully guide the placement of spinal paddle electrodes for the treatment of CFPS.
Collapse
|
24
|
Bai Y, Han S, Guan JY, Lin J, Zhao MG, Liang GB. Contralateral C7 nerve transfer in the treatment of upper-extremity paralysis: a review of anatomical basis, surgical approaches, and neurobiological mechanisms. Rev Neurosci 2022; 33:491-514. [PMID: 34979068 DOI: 10.1515/revneuro-2021-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/27/2021] [Indexed: 11/15/2022]
Abstract
The previous three decades have witnessed a prosperity of contralateral C7 nerve (CC7) transfer in the treatment of upper-extremity paralysis induced by both brachial plexus avulsion injury and central hemiplegia. From the initial subcutaneous route to the pre-spinal route and the newly-established post-spinal route, this surgical operation underwent a series of innovations and refinements, with the aim of shortening the regeneration distance and even achieving direct neurorrhaphy. Apart from surgical efforts for better peripheral nerve regeneration, brain involvement in functional improvements after CC7 transfer also stimulated scientific interest. This review summarizes recent advances of CC7 transfer in the treatment of upper-extremity paralysis of both peripheral and central causes, which covers the neuroanatomical basis, the evolution of surgical approach, and central mechanisms. In addition, motor cortex stimulation is discussed as a viable rehabilitation treatment in boosting functional recovery after CC7 transfer. This knowledge will be beneficial towards improving clinical effects of CC7 transfer.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| | - Song Han
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| | - Jing-Yu Guan
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| | - Jun Lin
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| | - Ming-Guang Zhao
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| | - Guo-Biao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110015, China
| |
Collapse
|
25
|
Negrini-Ferrari SE, Medeiros P, Malvestio RB, de Oliveira Silva M, Medeiros AC, Coimbra NC, Machado HR, de Freitas RL. The primary motor cortex electrical and chemical stimulation attenuates the chronic neuropathic pain by activation of the periaqueductal grey matter: The role of NMDA receptors. Behav Brain Res 2021; 415:113522. [PMID: 34391797 DOI: 10.1016/j.bbr.2021.113522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Motor cortex stimulation (MCS) is proper as a non-pharmacological therapy for patients with chronic and neuropathic pain (NP). AIMS This work aims to investigate if the MCS in the primary motor cortex (M1) produces analgesia and how the MCS could interfere in the MCS-induced analgesia. Also, to elucidate if the persistent activation of N-methyl-d-aspartic acid receptor (NMDAr) in the periaqueductal grey matter (PAG) can contribute to central sensitisation of the NP. METHODS Male Wistar rats were submitted to the von Frey test to evaluate the mechanical allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve. The MCS was performed with low-frequency (20 μA, 100 Hz) currents during 15 s by a deep brain stimulation (DBS) device. Moreover, the effect of M1-treatment with an NMDAr agonist (at 2, 4, and 8 nmol) was investigated in CCI rats. The PAG dorsomedial column (dmPAG) was pretreated with the NMDAr antagonist LY 235959 (at 8 nmol), followed by MCS. RESULTS The MCS decreased the mechanical allodynia in rats with chronic NP. The M1-treatment with an NMDA agonist at 2 and 8 nmol reduced the mechanical allodynia in CCI rats. In addition, dmPAG-pretreatment with LY 235959 at 8 nmol attenuated the mechanical allodynia evoked by MCS. CONCLUSION The M1 cortex glutamatergic system is involved in the modulation of chronic NP. The analgesic effect of MCS may depend on glutamate signaling recruitting NMDAr located on PAG neurons in rodents with chronic NP.
Collapse
Affiliation(s)
- Sylmara Esther Negrini-Ferrari
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Priscila Medeiros
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Braghetto Malvestio
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Mariana de Oliveira Silva
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ana Carolina Medeiros
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil
| | - Helio Rubens Machado
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Brain Protection Laboratory in Childhood, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Renato Leonardo de Freitas
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil; Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil.
| |
Collapse
|
26
|
Senatus P, Zurek S, Deogaonkar M. Deep Brain Stimulation and Motor Cortex Stimulation for Chronic Pain. Neurol India 2021; 68:S235-S240. [PMID: 33318357 DOI: 10.4103/0028-3886.302471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Deep brain stimulation (DBS) and Motor Cortex stimulation (MCS) have been used for control of chronic pain. Chronic pain of any origin is complex and difficult to treat. Stimulation of various areas in brain-like sensory thalamus, medial nuclei of thalamus including centro-lateral nucleus of thalamus (CL), periaqueductal gray, periventricular gray, nucleus accumbence and motor cortex provides partial relief in properly selected patients. This article reviews the pain pathways, theories of pain, targets for DBS and rationale of DBS and MCS. It also discusses the patient selection, technical details of each target.
Collapse
Affiliation(s)
- Patrick Senatus
- Department of Neurosurgery, Ayer Neuroscience Institute, Hartford HealthCare, Hartford, CT, USA
| | - Sarah Zurek
- Department of Neurosurgery, Ayer Neuroscience Institute, Hartford HealthCare, Hartford, CT, USA
| | - Milind Deogaonkar
- Department of Neurosurgery, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
27
|
Theta-burst versus 20 Hz repetitive transcranial magnetic stimulation in neuropathic pain: A head-to-head comparison. Clin Neurophysiol 2021; 132:2702-2710. [PMID: 34217600 DOI: 10.1016/j.clinph.2021.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE High-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce neuropathic pain, but intermittent "theta-burst" stimulation (iTBS) could be a better alternative because of shorter duration and greater ability to induce cortical plasticity. Here we compared head-to-head the pain-relieving efficacy of the two modalities when applied daily for 5 days to patients with neuropathic pain. METHODS Forty-six patients received 20 Hz-rTMS and/or iTBS protocols and 39 of them underwent the full two procedures in a random cross-over design. They rated pain intensity, sleep quality, fatigue and general health status daily during 5 consecutive weeks. RESULTS Pain relief during the month following stimulation was superior after 20 Hz-rTMS relative to iTBS (F(1,38) = 4.645; p = 0.037). Correlation between respective levels of maximal relief showed a significant deviation toward the 20 Hz-rTMS effect. A greater proportion of individuals responded to 20 Hz-rTMS (52% vs 32%, 95 %CI[0.095-3.27]; p = 0.06), and reports of fatigue significantly improved after 20 Hz-rTMS relative to iTBS (p = 0.01). General health and sleep quality scores did not differentiate both techniques. CONCLUSIONS High-frequency rTMS appeared superior to iTBS for neuropathic pain relief. SIGNIFICANCE Adequate matching between the oscillatory activity of motor cortex and that of rTMS may increase synaptic efficacy, thus enhancing functional connectivity of motor cortex with distant structures involved in pain regulation.
Collapse
|
28
|
Rapisarda A, Ioannoni E, Izzo A, Montano N. What Are the Results and the Prognostic Factors of Motor Cortex Stimulation in Patients with Facial Pain? A Systematic Review of the Literature. Eur Neurol 2021; 84:151-156. [PMID: 33853065 DOI: 10.1159/000514827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/27/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Facial pain (FP) is a type of neuropathic pain which recognizes both central and peripheral causes. It can be difficult to treat because it can often become resistant to pharmacological treatments. Motor Cortex Stimulation (MCS) has been used in selected cases, but the correct indications of MCS in FP have not been fully established. Here we systematically reviewed the literature regarding MCS in FP analysing the results of this technique and studying the possible role of different factors in the prognosis of these patients. METHODS A literature search was performed through different databases (PubMed, Scopus, and Embase) according to PRISMA guidelines using the following terms in any possible combination: "facial pain" or "trigeminal" or "anaesthesia dolorosa" and "motor cortex stimulation." RESULTS 111 articles were reviewed, and 12 studies were included in the present analysis for a total of 108 patients. Overall, at latest follow-up (FU), 70.83% of patients responded to MCS. The preoperative VAS significantly decreased at the latest FU (8.83 ± 1.17 and 4.31 ± 2.05, respectively; p < 0.0001). Younger age (p = 0.0478) and a peripheral FP syndrome (p = 0.0006) positively affected the definitive implantation rate on univariate analysis. Younger age emerged as a factor strongly associated to a higher probability to go to a definitive MCS implant on multivariate analysis (p = 0.0415). CONCLUSION Our results evidenced the effectiveness of MCS in treating FP. Moreover, the younger age emerged as a positive prognostic factor for definitive implantation. Further studies with longer FU are needed to better evaluate the long-term results of MCS.
Collapse
Affiliation(s)
- Alessandro Rapisarda
- Department of Neuroscience, Neurosurgery Section, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Ioannoni
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandro Izzo
- Department of Neuroscience, Neurosurgery Section, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola Montano
- Department of Neuroscience, Neurosurgery Section, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
29
|
Seo H, Jun SC. Computational exploration of epidural cortical stimulation using a realistic head model. Comput Biol Med 2021; 135:104290. [PMID: 33775416 DOI: 10.1016/j.compbiomed.2021.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
Motor cortex stimulation, either non-invasively or with implanted electrodes, has been applied worldwide as a treatment for intractable neuropathic pain syndromes. Although computer simulations of non-invasive brain stimulation have been investigated largely to optimize protocols and improve our understanding of underlying mechanisms using a realistic head model, computational studies of invasive cortical stimulation are rare and limited to very simplified cortical models. In this paper, we present an anatomically realistic head model for epidural cortical stimulation that includes the most sophisticated epidural electrodes with an insulating paddle. The head model predicted the stimulus-induced field strengths according to two different stimulation techniques, bipolar and monopolar stimulations. We found that the stimulus-induced field focused on the precentral and postcentral gyri because of the epidural lead's invasiveness. Different stimulation configurations influenced the shape of the field markedly, and complex patterns of inward and outward directions of the radial field were observed in bipolar stimulation compared to those in monopolar stimulation. The spatial distributions of field strength showed that the optimal stimulation varied according to the target areas. In conclusion, we proposed an anatomically realistic head model and a sophisticated epidural lead to simulate epidural cortical stimulation-induced field strengths and identified the importance of such detailed modeling for epidural cortical stimulation because of the current's shunting through the cerebrospinal fluid.
Collapse
Affiliation(s)
- Hyeon Seo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science & Technology, South Korea; Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science & Technology, South Korea.
| |
Collapse
|
30
|
Hagerdon KE, Villeneueve LM, O'Neal CM, Conner AK. Resolution of symptoms in idiopathic thalamic pain syndrome after implantation of a cervical and thoracic percutaneous spinal cord stimulator. Surg Neurol Int 2021; 12:50. [PMID: 33654553 PMCID: PMC7911043 DOI: 10.25259/sni_847_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Thalamic pain syndrome is classically described as chronic pain after an infarct of the thalamus. It leads to a decrease in the quality of life, especially for patients with inadequate treatment. Supportive imaging, such as a thalamic lesion or infarct, is widely accepted as necessary to diagnose this condition. Case Description: In this case report, we describe the case of a patient who developed allodynia and hyperesthesia with a hemibody distribution characteristic of thalamic pain syndrome, despite having no clear inciting event or identifiable thalamic lesion. This patient was successfully treated with cervical and thoracic spinal cord stimulation (SCS). Conclusion: We suggest that this patient may have presented with a non-lesional thalamic pain syndrome, supported by the classic hemibody allodynia and hyperesthesia and the response to SCS. Further, we demonstrate that SCS was an effective method to control this central pain disorder.
Collapse
Affiliation(s)
- Kylie E Hagerdon
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma, United States
| | - Lance M Villeneueve
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma, United States
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma, United States
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma, United States
| |
Collapse
|
31
|
Nüssel M, Hamperl M, Maslarova A, Chaudhry SR, Köhn J, Stadlbauer A, Buchfelder M, Kinfe T. Burst Motor Cortex Stimulation Evokes Sustained Suppression of Thalamic Stroke Pain: A Narrative Review and Single-Case Overview. Pain Ther 2020; 10:101-114. [PMID: 33325005 PMCID: PMC8119548 DOI: 10.1007/s40122-020-00221-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic refractory central post-stroke pain (CPSP), one of the most disabling consequences of cerebral stroke, occurs in up to 10% of patients with CPSP. Because a considerable proportion of these patients with chronic pain remain resistant to pharmacological and behavioral therapies, adjunctive invasive and non-invasive brain stimulation therapies are needed. We performed a review of human studies applying burst and conventional motor cortex stimulation (burstMCS and cMCS, respectively) for chronic pain states, on the basis of data sources identified through searches of PubMed, MEDLINE/OVID, and SCOPUS, as well as manual searches of the bibliographies of known primary and review articles. Our aim was to review and discuss clinical data on the indications of burstMCS for various chronic pain states originating from central stroke (excluding trigeminal facial pain). In addition, we assessed the efficacy and safety of burst versus cMCS for central post-stroke pain with an extended follow-up of 5 years in a 60-year-old man. According to our review, uncontrolled observational human cohort studies and one RCT using cMCS waveforms have revealed a meaningful clinical response; however, these studies lacked placebo groups and extended observation periods. In our case report, we found that 3 months of adjunctive cMCS reduced pain levels [visual analog scale (VAS) pre: 9/10 versus VAS post 7/10], whereas the pain decreased further under burstMCS (VAS pre: 7/10 versus VAS post: 2/10); the study involved a follow-up of 5 years and the following parameters: burst rate 40 Hz (500 Hz), 1–1.75 mA, 1 ms, bipolar configuration. To date, only limited evidence exists for the efficacy and safety of burst motor cortex stimulation for the treatment of refractory chronic pain. BurstMCS resulted in significantly decreased post-stroke pain observed after 5 years of cMCS. The available literature suggests similar efficacy as that of conventional (tonic) motor cortex stimulation, although the results are preliminary. Mechanistically, the precise mechanism of action is not fully understood. However, burstMCS may interact with the nociceptive thalamic-cingulate and descending spinal pain networks. To determine the potential utility of this treatment, large-scale sham-controlled trials comparing cMCS and burstMCS are highly recommended.
Collapse
Affiliation(s)
- Martin Nüssel
- Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Hamperl
- Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Maslarova
- Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Shafqat R Chaudhry
- College of Pharmaceutical Sciences, Shifa Tameer-E-Millat University, Islamabad, Pakistan
| | - Julia Köhn
- Department of Neurology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Stadlbauer
- Institute of Medical Radiology, University Clinic St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
32
|
De Icco R, Putortì A, De Paoli I, Ferrara E, Cremascoli R, Terzaghi M, Toscano G, Allena M, Martinelli D, Cosentino G, Grillo V, Colagiorgio P, Versino M, Manni R, Sances G, Sandrini G, Tassorelli C. Anodal transcranial direct current stimulation in chronic migraine and medication overuse headache: A pilot double-blind randomized sham-controlled trial. Clin Neurophysiol 2020; 132:126-136. [PMID: 33271482 DOI: 10.1016/j.clinph.2020.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/14/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Little evidence is available on the role of transcranial direct current stimulation (tDCS) in patients affected by chronic migraine (CM) and medication overuse headache (MOH). We aim to investigate the effects of tDCS in patients with CM and MOH as well as its role on brain activity. METHODS Twenty patients with CM and MOH were hospitalized for a 7-day detoxification treatment. Upon admission, patients were randomly assigned to anodal tDCS or sham stimulation delivered over the primary motor cortex contralateral to the prevalent migraine pain side every day for 5 days. Clinical data were recorded at baseline (T0), after 1 month (T2) and 6 months (T3). EEG recording was performed at T0, at the end of the tDCS/Sham treatment, and at T2. RESULTS At T2 and T3, we found a significant reduction in monthly migraine days (p = 0.001), which were more pronounced in the tDCS group when compared to the sham group (p = 0.016). At T2, we found a significant increase of alpha rhythm in occipital leads, which was significantly higher in tDCS group when compared to sham group. CONCLUSIONS tDCS showed adjuvant effects to detoxification in the management of patients with CM and MOH. The EEG recording showed a significant potentiation of alpha rhythm, which may represent a correlate of the underlying changes in cortico-thalamic connections. SIGNIFICANCE This study suggests a possible role for tDCS in the treatment of CM and MOH. The observed clinical improvement is coupled with a potentiation of EEG alpha rhythm.
Collapse
Affiliation(s)
- R De Icco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - A Putortì
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - I De Paoli
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - E Ferrara
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - R Cremascoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| | - M Terzaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| | - G Toscano
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Stroke Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - M Allena
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - D Martinelli
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - G Cosentino
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - V Grillo
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - P Colagiorgio
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - M Versino
- Neurology and Stroke Unit, Circolo Hospital and Macchi Foundation, Varese, Italy; DMC Department, Insubria University, Varese, Italy
| | - R Manni
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| | - G Sances
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - G Sandrini
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - C Tassorelli
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
33
|
Zhang Y, Huang Y, Li H, Yan Z, Zhang Y, Liu X, Hou X, Chen W, Tu Y, Hodges S, Chen H, Liu B, Kong J. Transcutaneous auricular vagus nerve stimulation (taVNS) for migraine: an fMRI study. Reg Anesth Pain Med 2020; 46:145-150. [PMID: 33262253 DOI: 10.1136/rapm-2020-102088] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dysfunction of the thalamocortical connectivity network is thought to underlie the pathophysiology of the migraine. This current study aimed to explore the thalamocortical connectivity changes during 4 weeks of continuous transcutaneous vagus nerve stimulation (taVNS) treatment on migraine patients. METHODS 70 migraine patients were recruited and randomized in an equal ratio to receive real taVNS or sham taVNS treatments for 4 weeks. Resting-state functional MRI was collected before and after treatment. The thalamus was parceled into functional regions of interest (ROIs) on the basis of six priori-defined cortical ROIs covering the entire cortex. Seed-based functional connectivity analysis between each thalamic subregion and the whole brain was further compared across groups after treatment. RESULTS Of the 59 patients that finished the study, those in the taVNS group had significantly reduced number of migraine days, pain intensity and migraine attack times after 4 weeks of treatment compared with the sham taVNS. Functional connectivity analysis revealed that taVNS can increase the connectivity between the motor-related thalamus subregion and anterior cingulate cortex/medial prefrontal cortex, and decrease the connectivity between occipital cortex-related thalamus subregion and postcentral gyrus/precuneus. CONCLUSION Our findings suggest that taVNS can relieve the symptoms of headache as well as modulate the thalamocortical circuits in migraine patients. The results provide insights into the neural mechanism of taVNS and reveal potential therapeutic targets for migraine patients.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yiheng Tu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Helen Chen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Xu XM, Luo H, Rong BB, Zheng XM, Wang FT, Zhang SJ, Li ZX. Nonpharmacological therapies for central poststroke pain: A systematic review. Medicine (Baltimore) 2020; 99:e22611. [PMID: 33080696 PMCID: PMC7572005 DOI: 10.1097/md.0000000000022611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Central poststroke pain (CPSP) is a neuropathic pain syndrome that can occur after a cerebrovascular accident. It has negative effects on mood, sleep, rehabilitation, and quality of life in stroke patients. This systematic review assessed the efficacy and safety of nonpharmacological therapies for treating CPSP. METHODS The Cochrane, PubMed, Embase, and Web of Science databases were systematically searched for studies from inception to August 2020. Two authors worked independently and in duplicate to identify suitable studies. RESULTS Eleven studies were identified. Pain related to CPSP was ameliorated by precentral gyrus stimulation (P = .01), caloric vestibular stimulation (P = 0.004), transcranial direct current stimulation (P < .05), and bee venom acupuncture point injection (P = .009). Acupuncture (P = .72) and electroacupuncture therapies (P > .05) were as effective for thalamic pain as oral carbamazepine treatment. Motor cortex stimulation, but not deep brain stimulation (DBS), was effective for treating refractory CPSP, and appeared to be more effective than thalamic stimulation for controlling bulbar pain secondary to Wallenberg syndrome. However, DBS in the ventral striatum or anterior limb of the internal capsule improved depression (P = .020) and anxiety in patients with refractory CPSP. Some serious adverse events were reported in response to invasive electrical brain stimulation, but most of these effects recovered with treatment. CONCLUSIONS Nonpharmacological therapies appear to be effective in CPSP, but the evidence is relatively weak. Invasive electrical brain stimulation can be accompanied by serious adverse events, but most patients recover from these effects.
Collapse
|
35
|
Sekine N, Okada-Ogawa A, Asano S, Takanezawa D, Nishihara C, Tanabe N, Imamura Y. Analgesic effect of gum chewing in patients with burning mouth syndrome. J Oral Sci 2020; 62:387-392. [PMID: 32893197 DOI: 10.2334/josnusd.19-0501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The cause of burning mouth syndrome (BMS) is unknown. Although no effective treatment has been established, BMS patients frequently chew gum to alleviate pain. To identify the cause and new treatments for BMS, this study investigated the psychophysical and pharmacological properties of gum chewing to better understand its pain-relieving effects. In this prospective, blinded study, plasma catecholamine and serotonin levels and Profile of Mood States (POMS) scores were assessed after gum chewing or simulated chewing in 40 women (20 BMS patients and 20 age-matched controls). Visual analogue scale (VAS) scores for pain decreased significantly in BMS patients after gum chewing and simulated chewing. Moreover, resting VAS scores of BMS patients were significantly positively correlated with plasma adrenaline level. Furthermore, gum chewing was significantly correlated with lower plasma adrenaline level, VAS score, and tension-anxiety score. These results suggest that adrenaline is important in the pathogenesis of BMS pain and that the analgesic effect of gum chewing is induced through the potential effects of anxiety reduction, although this effect might not be specific to BMS. In addition, the analgesic effect of gum chewing was not induced solely by chewing motion.
Collapse
Affiliation(s)
- Naohiko Sekine
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Akiko Okada-Ogawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry.,Division of Orofacial Pain Clinic, Nihon University Dental Hospital.,Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| | - Sayaka Asano
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Daiki Takanezawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Chisa Nishihara
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Natsuko Tanabe
- Department of Biochemistry, Nihon University School of Dentistry
| | - Yoshiki Imamura
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry.,Division of Orofacial Pain Clinic, Nihon University Dental Hospital.,Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
36
|
Brasil-Neto JP, Iannone A, Caixeta FV, Cavendish BA, de Mello Cruz AP, Buratto LG. Acute offline transcranial direct current stimulation does not change pain or anxiety produced by the cold pressor test. Neurosci Lett 2020; 736:135300. [PMID: 32781010 DOI: 10.1016/j.neulet.2020.135300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
Transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has an antalgic effect on acute experimental pain in healthy volunteers. Many published studies have used online stimulation (i.e., tDCS performed during painful stimulation). On the other hand, daily tDCS sessions have been proposed as a therapy for chronic pain (offline tDCS). In such cases, the therapeutic potential depends on the possible aftereffects of each tDCS session. We set out to investigate whether a single tDCS session before application of a classical experimental pain paradigm (the Cold Pressor Test, CPT) would be capable of modulating physiological measures of anxiety as well as pain perception. tDCS was applied to 30 healthy volunteers, 18-28 years old (mean 18.5), with the anode positioned over either the left M1 or the left dorsolateral prefrontal cortex (l-DLPFC), which has been linked to the affective aspects of experienced pain, including anxiety. All volunteers underwent the CPT procedure before and after a tDCS session. Real 2 mA tDCS sessions for 20 min were compared to sham stimulations. No significant difference was found for any variable after real tDCS sessions when compared to the sham stimulations. This result suggests that effective offline tDCS for chronic pain might have different mechanisms of action. Cumulative effects, functional targeting and the unintended simultaneous stimulation of both M1 and the l-DLPFC are likely responsible for the therapeutic effects of tDCS sessions in the clinical setting.
Collapse
Affiliation(s)
- Joaquim P Brasil-Neto
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brazil.
| | - Aline Iannone
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brazil
| | - Fabio Viegas Caixeta
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brazil
| | - Beatriz Araújo Cavendish
- Institute of Psychology, Department of Basic Psychological Processes, University of Brasilia, Brazil
| | | | - Luciano Grüdtner Buratto
- Institute of Psychology, Department of Basic Psychological Processes, University of Brasilia, Brazil
| |
Collapse
|
37
|
Yu K, Niu X, He B. Neuromodulation Management of Chronic Neuropathic Pain in The Central Nervous system. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908999. [PMID: 34335132 PMCID: PMC8323399 DOI: 10.1002/adfm.201908999] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Neuromodulation is becoming one of the clinical tools for treating chronic neuropathic pain by transmitting controlled physical energy to the pre-identified neural targets in the central nervous system. Its nature of drug-free, non-addictive and improved targeting have attracted increasing attention among neuroscience research and clinical practices. This article provides a brief overview of the neuropathic pain and pharmacological routines for treatment, summarizes both the invasive and non-invasive neuromodulation modalities for pain management, and highlights an emerging brain stimulation technology, transcranial focused ultrasound (tFUS) with a focus on ultrasound transducer devices and the achieved neuromodulation effects and applications on pain management. Practical considerations of spatial guidance for tFUS are discussed for clinical applications. The safety of transcranial ultrasound neuromodulation and its future prospectives on pain management are also discussed.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University
| |
Collapse
|
38
|
|
39
|
Hirato M, Miyagishima T, Gouda T, Takahashi A, Yoshimoto Y. Electrical Thalamic Stimulation in the Anterior Part of the Ventral Posterolateral Nucleus for the Treatment of Patients With Central Poststroke Pain. Neuromodulation 2020; 24:361-372. [PMID: 32620052 DOI: 10.1111/ner.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The effects of thalamic stimulation of the anterior part of the ventral posterolateral nucleus (VPLa) for central poststroke pain (CPSP) and the pain-related electrophysiological characteristics of this structure were investigated. MATERIALS AND METHODS Nine patients with CPSP manifesting as hemibody pain were enrolled. Stereotactic thalamic VPLa stimulation was implemented, and intraoperative electrophysiological studies on hyperactive and unstable discharges (HUDs) and responses to sensory and electrical stimulation were performed in the sensory thalamus. A preoperative somatosensory-evoked potential (SEP) study was carried out in all nine patients and in eight other patients with localized pain. RESULTS The patients were classified into two groups: a HUD-dominant group (group H, n = 5) and a sensory response-dominant group (group R, n = 4). HUDs were frequently encountered in the thalamic VPLa in the former group. The total number of HUDs and the number along the trajectory to the VPLa in group H were significantly larger than those in group R. The improvements on the pain numeric rating scale in group H were significantly higher than those in group R two years after surgery. The amplitude ratio of the SEP N20s in the ipsilateral to the contralateral side of CVD lesion in the study group was significantly lower than in the localized pain group. CONCLUSIONS Adequate and stable pain relief with thalamic VPLa stimulation is obtainable in patients with CPSP who exhibit hyperactivity and electrical instability along the trajectory to this nucleus. Both responders and nonresponders were found to have severe dysfunction of the lemniscal system.
Collapse
Affiliation(s)
- Masafumi Hirato
- Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
| | - Takaaki Miyagishima
- Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tsukasa Gouda
- National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
| | - Akio Takahashi
- National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
| | - Yuhei Yoshimoto
- Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
40
|
Mano T, Kuru S. Repetitive Transcranial Magnetic Stimulation for Dysesthesia Caused by Subacute Myelo-Optico-Neuropathy: A Case Report. Case Rep Neurol 2020; 12:169-174. [PMID: 32595479 PMCID: PMC7315208 DOI: 10.1159/000507650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Subacute myelo-optico-neuropathy (SMON) is caused by the ingestion of clioquinol (5-chloro-7-iodo-8-hydroxyquinoline), which is an intestinal antibacterial drug. Patients with SMON typically suffer from abnormal dysesthesia in the lower limbs, which cannot explain the mechanism only in pathology and electrophysiology. Neuromodulation therapies are increasingly being investigated as a means of alleviating abnormal sensory disturbances. We report here the response to repetitive transcranial magnetic stimulation (rTMS) for dysesthesia in a patient with SMON. The patient underwent rTMS treatment once per week for 12 weeks. rTMS was administered at 10 Hz, 90% of the resting motor threshold over the bilateral primary motor cortex foot area, for a total of 1,500 stimuli per day. After the treatment had finished at 12 weeks, the abnormal dysesthesia gradually declined. At first, there were improvements only in the area with a feeling of adherence. Later, this sensation was eliminated. Three months following the application, most of the feeling of adherence had disappeared and the feeling of tightness was slightly reduced. In contrast, the throbbing feeling had not changed during this period. Dysesthesia may indicate a process of central sensitization, which would contribute to chronic neuromuscular dysfunction. This case suggests that rTMS is a promising therapeutic application for dysesthesia.
Collapse
Affiliation(s)
- Tomoo Mano
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Satoshi Kuru
- Department of Neurology, National Hospital Organization Suzuka National Hospital, Suzuka, Japan
| |
Collapse
|
41
|
Meeker TJ, Jupudi R, Lenz FA, Greenspan JD. New Developments in Non-invasive Brain Stimulation in Chronic Pain. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:280-292. [PMID: 33473332 DOI: 10.1007/s40141-020-00260-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose of Review The goal of this review is to present a summary of the recent literature of a non-invasive brain stimulation (NIBS) to alleviate pain in people with chronic pain syndromes. This article reviews the current evidence for the use of transcranial direct current (tDCS) and repetitive transcranial magnetic stimulation (rTMS) to improve outcomes in chronic pain. Finally, we introduce the reader to novel stimulation methods that may improve therapeutic outcomes in chronic pain. Recent Findings While tDCS is approved for treatment of fibromyalgia in Canada and the European Union, no NIBS method is currently approved for chronic pain in the United States. Increasing sample sizes in randomized clinical trials (RCTs) seems the most efficient way to increase confidence in initial promising results. Trends at funding agencies reveal increased interest and support for NIBS such as recent Requests for Application from the National Institutes of Health. NIBS in conjunction with cognitive behavioral therapy and physical therapy may enhance outcomes in chronic pain. Novel stimulation methods, such as transcranial ultrasound stimulation, await rigorous study in chronic pain.
Collapse
Affiliation(s)
- Timothy J Meeker
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.,Dept. of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, Univ. of Maryland Baltimore, Baltimore, MD, USA
| | - Rithvic Jupudi
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Frederik A Lenz
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Joel D Greenspan
- Dept. of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, Univ. of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
42
|
Motor cortex stimulation in chronic neuropathic orofacial pain syndromes: a systematic review and meta-analysis. Sci Rep 2020; 10:7195. [PMID: 32346080 PMCID: PMC7189245 DOI: 10.1038/s41598-020-64177-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/10/2020] [Indexed: 01/21/2023] Open
Abstract
Invasive motor Cortex Stimulation (iMCS) was introduced in the 1990's for the treatment of chronic neuropathic orofacial pain (CNOP), although its effectiveness remains doubtful. However, CNOP is known to be a heterogeneous group of orofacial pain disorders, which can lead to different responses to iMCS. Therefore, this paper investigated (1) whether the effectiveness of iMCS is significantly different among different CNOP disorders and (2) whether other confounding factors can be impacting iMCS results in CNOP. A systematic review and meta-analysis using a linear mixed-model was performed. Twenty-three papers were included, totaling 140 CNOP patients. Heterogeneity of the studies showed to be 55.8%. A visual analogue scale (VAS) measured median pain relief of 66.5% (ranging from 0-100%) was found. Linear mixed-model analysis showed that patients suffering from trigeminal neuralgia responded significantly more favorable to iMCS than patients suffering from dysfunctional pain syndromes (p = 0.030). Also, patients suffering from CNOP caused by (supra)nuclear lesions responded marginally significantly better to iMCS than patients suffering from CNOP due to trigeminal nerve lesions (p = 0.049). No other confounding factors were elucidated. This meta-analysis showed that patients suffering from trigeminal neuralgia and patients suffering from (supra)nuclear lesions causing CNOP responded significantly more favorable than others on iMCS. No other confounding factors were found relevant.
Collapse
|
43
|
Khatoun A, Asamoah B, Mc Laughlin M. Investigating the Feasibility of Epicranial Cortical Stimulation Using Concentric-Ring Electrodes: A Novel Minimally Invasive Neuromodulation Method. Front Neurosci 2019; 13:773. [PMID: 31396045 PMCID: PMC6667561 DOI: 10.3389/fnins.2019.00773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/10/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Invasive cortical stimulation (ICS) is a neuromodulation method in which electrodes are implanted on the cortex to deliver chronic stimulation. ICS has been used to treat neurological disorders such as neuropathic pain, epilepsy, movement disorders and tinnitus. Noninvasive neuromodulation methods such as transcranial magnetic stimulation and transcranial electrical stimulation (TES) show great promise in treating some neurological disorders and require no surgery. However, only acute stimulation can be delivered. Epicranial current stimulation (ECS) is a novel concept for delivering chronic neuromodulation through subcutaneous electrodes implanted on the skull. The use of concentric-ring ECS electrodes may allow spatially focused stimulation and offer a less invasive alternative to ICS. OBJECTIVES Demonstrate ECS proof-of-concept using concentric-ring electrodes in rats and then use a computational model to explore the feasibility and limitations of ECS in humans. METHODS ECS concentric-ring electrodes were implanted in 6 rats and pulsatile stimulation delivered to the motor cortex. An MRI based electro-anatomical human head model was used to explore different ECS concentric-ring electrode designs and these were compared with ICS and TES. RESULTS Concentric-ring ECS electrodes can selectively stimulate the rat motor cortex. The computational model showed that the concentric-ring ECS electrode design can be optimized to achieve focused cortical stimulation. In general, focality was less than ICS but greater than noninvasive transcranial current stimulation. CONCLUSION ECS could be a promising minimally invasive alternative to ICS. Further work in large animal models and patients is needed to demonstrate feasibility and long-term stability.
Collapse
Affiliation(s)
- Ahmad Khatoun
- Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Department of Neurosciences, KU Leuven, Leuven, Belgium
- The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boateng Asamoah
- Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Department of Neurosciences, KU Leuven, Leuven, Belgium
- The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Research Group Experimental Oto-Rhino-Laryngology (ExpORL), Department of Neurosciences, KU Leuven, Leuven, Belgium
- The Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Sokal P, Harat M, Malukiewicz A, Kiec M, Świtońska M, Jabłońska R. Effectiveness of tonic and burst motor cortex stimulation in chronic neuropathic pain. J Pain Res 2019; 12:1863-1869. [PMID: 31354335 PMCID: PMC6580141 DOI: 10.2147/jpr.s195867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Motor cortex stimulation (MCS) is an intracranial, invasive method for treatment of chronic pain. Main indications for MCS are central post stroke pain, neuropathic facial pain, phantom limb pain and brachial plexus or spinal cord injury pain. Spinal cord stimulation (SCS) with burst waveform has been proved to be more effective than tonic mode in chronic pain. Necessity to replace depleted batteries of motor cortex tonic stimulators gave us an opportunity of applying burst stimulation. The objective of the pilot study was to evaluate the effects of burst stimulation applied on motor cortex in patients with chronic pain syndromes as well as comparison to tonic mode. Materials and methods: We have evaluated 6 patients (females N=3, males N=3) belonging to the group of 14 cases (females N=5, males N=9) who had undergone surgical procedure of MCS in years 2005-2017. Selected for the study were 6 patients with thalamic pain N=3, with facial pain N=3 (anaesthesia dolorosa and neuropathic trigeminal neuralgia). The patients were subjected to both modes of stimulation then they chose which one was better in relieving pain: tonic or burst. Pain intensity was assessed with the visual analogue scale (VAS) before the replacement of implanted pulse generator (IPG) and after the stimulation with tonic and burst modes. Results: In the study, 5 out of 6 patients with MCS found burst mode more effective than tonic mode. Baseline VAS score in patients that had at least 3 months depleted battery of tonic IPG was 95 mm. After implantation of a new IPG mean VAS score on tonic stimulation was 72 mm, on burst 53 mm. Conclusions: The most preferred option of MCS in selected group of patients was burst stimulation. This study has shown, that the burst stimulation of cerebral cortex is a promising modality when tonic stimulation is not sufficient in refractory, neuropathic pain.
Collapse
Affiliation(s)
- Paweł Sokal
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital nr 2, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marek Harat
- Division of Preventive Medicine and Healthy Policy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Agnieszka Malukiewicz
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital nr 2, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Michał Kiec
- Department of Neurosurgery, The 10th Military Clinical Hospital, Bydgoszcz, Poland
| | - Milena Świtońska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital nr 2, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Renata Jabłońska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital nr 2, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
45
|
Meeker TJ, Keaser ML, Khan SA, Gullapalli RP, Seminowicz DA, Greenspan JD. Non-invasive Motor Cortex Neuromodulation Reduces Secondary Hyperalgesia and Enhances Activation of the Descending Pain Modulatory Network. Front Neurosci 2019; 13:467. [PMID: 31139047 PMCID: PMC6519323 DOI: 10.3389/fnins.2019.00467] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 11/29/2022] Open
Abstract
Central sensitization is a driving mechanism in many chronic pain patients, and manifests as hyperalgesia and allodynia beyond any apparent injury. Recent studies have demonstrated analgesic effects of motor cortex (M1) stimulation in several chronic pain disorders, yet its neural mechanisms remain uncertain. We evaluated whether anodal M1 transcranial direct current stimulation (tDCS) would mitigate central sensitization as measured by indices of secondary hyperalgesia. We used a capsaicin-heat pain model to elicit secondary mechanical hyperalgesia in 27 healthy subjects. In an assessor and subject-blind randomized, sham-controlled, crossover trial, anodal M1 tDCS decreased the intensity of pinprick hyperalgesia more than cathodal or sham tDCS. To elucidate the mechanism driving analgesia, subjects underwent fMRI of painful mechanical stimuli prior to and following induction of the pain model, after receiving M1 tDCS. We hypothesized that anodal M1 tDCS would enhance engagement of a descending pain modulatory (DPM) network in response to mechanical stimuli. Anodal tDCS normalized the effects of central sensitization on neurophysiological responses to mechanical pain in the medial prefrontal cortex, pregenual anterior cingulate cortex, and periaqueductal gray, important regions in the DPM network. Taken together, these results provide support for the hypothesis that anodal M1-tDCS reduces central sensitization-induced hyperalgesia through the DPM network in humans.
Collapse
Affiliation(s)
- Timothy J. Meeker
- Department of Neurosurgery, Johns Hopkins Medicine, Baltimore, MD, United States
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Michael L. Keaser
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Shariq A. Khan
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Rao P. Gullapalli
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Joel D. Greenspan
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
46
|
Chronic subdural cortical stimulation for phantom limb pain: report of a series of two cases. Acta Neurochir (Wien) 2019; 161:925-934. [PMID: 30790089 DOI: 10.1007/s00701-019-03828-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
Phantom limb pain is a complex, incompletely understood pain syndrome that is characterized by chronic painful paresthesias in a previous amputated body part. Limited treatment modalities exist that provide meaningful relief, including pharmacological treatments and spinal cord stimulation that are rarely successful for refractory cases. Here, we describe our two-patient cohort with recalcitrant upper extremity phantom limb pain treated with chronic subdural cortical stimulation. The patient with evidence of cortical reorganization and almost 60 years of debilitating phantom limb pain experienced sustained analgesic relief at a follow-up period of 6 months. The second patient became tolerant to the stimulation and his pain returned to baseline at a 1-month follow-up. Our unique case series report adds to the growing body of literature suggesting critical appraisal before widespread implementation of cortical stimulation for phantom limb pain can be considered.
Collapse
|
47
|
Cardinal TM, Antunes LC, Brietzke AP, Parizotti CS, Carvalho F, De Souza A, da Silva Torres IL, Fregni F, Caumo W. Differential Neuroplastic Changes in Fibromyalgia and Depression Indexed by Up-Regulation of Motor Cortex Inhibition and Disinhibition of the Descending Pain System: An Exploratory Study. Front Hum Neurosci 2019; 13:138. [PMID: 31105542 PMCID: PMC6494946 DOI: 10.3389/fnhum.2019.00138] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/08/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Major depressive disorder (MDD) and fibromyalgia (FM) present overlapped symptoms. Although the connection between these two disorders has not been elucidated yet, the disruption of neuroplastic processes that mediate the equilibrium in the inhibitory systems stands out as a possible mechanism. Thus, the purpose of this cross-sectional exploratory study was: (i) to compare the motor cortex inhibition indexed by transcranial magnetic stimulation (TMS) measures [short intracortical inhibition (SICI) and intracortical facilitation (ICF)], as well as the function of descending pain modulatory systems (DPMS) among FM, MDD, and healthy subjects (HS); (ii) to compare SICI, ICF, and the role of DPMS evaluated by the change on Numerical Pain Scale (NPS) during the conditioned pain modulation test (CPM-test) between FM and MDD considering the BDNF-adjusted index; (iii) to assess the relationship between the role of DPMS and the BDNF-adjusted index, despite clinical diagnosis. Patients and Methods: A cohort of 63 women, aged 18 to 75 years [FM (n = 18), MDD (n = 19), and HC (n = 29)]. Results: The MANCOVA analysis revealed that the mean of SICI was 53.40% larger in FM compared to MDD [1.03 (0.50) vs. 0.55 (0.43)] and 66.99% larger compared to HC [1.03 (0.50) vs. 0.34 (0.19)], respectively. The inhibitory potency of the DPMS assessed by the change on the NPS during CPM-test was 112.29 % lower in the FM compared to MDD [0.22 (1.37) vs. -0.87 (1.49)]. The mean of BDNF from FM compared to MDD was 35.70% higher [49.82 (16.31) vs. 14.12 (8.86)]. In FM, the Spearman's coefficient between the change in the NPS during CPM-test with the SICI was Rho = -0.49, [confidence interval (CI) 95%; -0.78 to -0.03]. The BDNF-adjusted index was positively correlated with the disinhibition of the DPMS. Conclusion: These findings support the hypothesis that in FM a deteriorated function of cortical inhibition, indexed by a higher SICI parameter, a lower function of the DPMS, together with a higher level of BDNF indicate that FM has different pathological substrates from depression. They suggest that an up-regulation phenomenon of intracortical inhibitory networks associated with a disruption of the DPMS function occurs in FM.
Collapse
Affiliation(s)
- Tiago Madeira Cardinal
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciana Conceição Antunes
- Department of Nutrition, Health Science Center, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline Patricia Brietzke
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiane Schulz Parizotti
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiana Carvalho
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andressa De Souza
- Post-graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Iraci Lucena da Silva Torres
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pharmacology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Wolnei Caumo
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Surgery, Pain, and Anesthesia, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Anesthesiologist, Pain and Palliative Care Service, Hospital de Clínicas de Porto Alegre, Laboratory of Pain and Neuromodulation, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
48
|
Burchiel KJ, Raslan AM. Contemporary concepts of pain surgery. J Neurosurg 2019; 130:1039-1049. [PMID: 30933905 DOI: 10.3171/2019.1.jns181620] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 11/06/2022]
Abstract
Pain surgery is one of the historic foundations of neurological surgery. The authors present a review of contemporary concepts in surgical pain management, with reference to past successes and failures, what has been learned as a subspecialty over the past 50 years, as well as a vision for current and future practice. This subspecialty confronts problems of cancer pain, nociceptive pain, and neuropathic pain. For noncancer pain, ablative procedures such as dorsal root entry zone lesions and rhizolysis for trigeminal neuralgia (TN) should continue to be practiced. Other procedures, such as medial thalamotomy, have not been proven effective and require continued study. Dorsal rhizotomy, dorsal root ganglionectomy, and neurotomy should probably be abandoned. For cancer pain, cordotomy is an important and underutilized method for pain control. Intrathecal opiate administration via an implantable system remains an important option for cancer pain management. While there are encouraging results in small case series, cingulotomy, hypophysectomy, and mesencephalotomy deserve further detailed analysis. Electrical neuromodulation is a rapidly changing discipline, and new methods such as high-frequency spinal cord stimulation (SCS), burst SCS, and dorsal root ganglion stimulation may or may not prove to be more effective than conventional SCS. Despite a history of failure, deep brain stimulation for pain may yet prove to be an effective therapy for specific pain conditions. Peripheral nerve stimulation for conditions such as occipital neuralgia and trigeminal neuropathic pain remains an option, although the quality of outcomes data is a challenge to these applications. Based on the evidence, motor cortex stimulation should be abandoned. TN is a mainstay of the surgical treatment of pain, particularly as new evidence and insights into TN emerge. Pain surgery will continue to build on this heritage, and restorative procedures will likely find a role in the armamentarium. The challenge for the future will be to acquire higher-level evidence to support the practice of surgical pain management.
Collapse
|
49
|
Mo JJ, Hu WH, Zhang C, Wang X, Liu C, Zhao BT, Zhou JJ, Zhang K. Motor cortex stimulation: a systematic literature-based analysis of effectiveness and case series experience. BMC Neurol 2019; 19:48. [PMID: 30925914 PMCID: PMC6440080 DOI: 10.1186/s12883-019-1273-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background Aim to quantitatively analyze the clinical effectiveness for motor cortex stimulation (MCS) to refractory pain. Methods The literatures were systematically searched in database of Cocharane library, Embase and PubMed, using relevant strategies. Data were extracted from eligible articles and pooled as mean with standard deviation (SD). Comparative analysis was measured by non-parametric t test and linear regression model. Results The pooled effect estimate from 12 trials (n = 198) elucidated that MCS shown the positive effect on refractory pain, and the total percentage improvement was 35.2% in post-stroke pain and 46.5% in trigeminal neuropathic pain. There is no statistical differences between stroke involved thalamus or non-thalamus. The improvement of plexus avulsion (29.8%) and phantom pain (34.1%) was similar. The highest improvement rate was seen in post-radicular plexopathy (65.1%) and MCS may aggravate the pain induced by spinal cord injury, confirmed by small sample size. Concurrently, Both the duration of disease (r = 0.233, p = 0.019*) and the time of follow-up (r = 0.196, p = 0.016*) had small predicative value, while age (p = 0.125) had no correlation to post-operative pain relief. Conclusions MCS is conducive to the patients with refractory pain. The duration of disease and the time of follow-up can be regarded as predictive factor. Meanwhile, further studies are needed to reveal the mechanism of MCS and to reevaluate the cost-benefit aspect with better-designed clinical trials. Electronic supplementary material The online version of this article (10.1186/s12883-019-1273-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Jie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Wen-Han Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bao-Tian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Jun-Jian Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
50
|
Henssen DJHA, Witkam RL, Dao JCML, Comes DJ, Van Cappellen van Walsum AM, Kozicz T, van Dongen R, Vissers K, Bartels RHMA, de Jong G, Kurt E. Systematic Review and Neural Network Analysis to Define Predictive Variables in Implantable Motor Cortex Stimulation to Treat Chronic Intractable Pain. THE JOURNAL OF PAIN 2019; 20:1015-1026. [PMID: 30771593 DOI: 10.1016/j.jpain.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 12/23/2022]
Abstract
Implantable motor cortex stimulation (iMCS) has been performed for >25 years to treat various intractable pain syndromes. Its effectiveness is highly variable and, although various studies revealed predictive variables, none of these were found repeatedly. This study uses neural network analysis (NNA) to identify predictive factors of iMCS treatment for intractable pain. A systematic review provided a database of patient data on an individual level of patients who underwent iMCS to treat refractory pain between 1991 and 2017. Responders were defined as patients with a pain relief of >40% as measured by a numerical rating scale (NRS) score. NNA was carried out to predict the outcome of iMCS and to identify predictive factors that impacted the outcome of iMCS. The outcome prediction value of the NNA was expressed as the mean accuracy, sensitivity, and specificity. The NNA furthermore provided the mean weight of predictive variables, which shows the impact of the predictive variable on the prediction. The mean weight was converted into the mean relative influence (M), a value that varies between 0 and 100%. A total of 358 patients were included (202 males [56.4%]; mean age, 54.2 ±13.3 years), 201 of whom were responders to iMCS. NNA had a mean accuracy of 66.3% and a sensitivity and specificity of 69.8% and 69.4%, respectively. NNA further identified 6 predictive variables that had a relatively high M: 1) the sex of the patient (M = 19.7%); 2) the origin of the lesion (M = 15.1%); 3) the preoperative numerical rating scale score (M = 9.2%); 4) preoperative use of repetitive transcranial magnetic stimulation (M = 7.3%); 5) preoperative intake of opioids (M = 7.1%); and 6) the follow-up period (M = 13.1%). The results from the present study show that these 6 predictive variables influence the outcome of iMCS and that, based on these variables, a fair prediction model can be built to predict outcome after iMCS surgery. PERSPECTIVE: The presented NNA analyzed the functioning of computational models and modeled nonlinear statistical data. Based on this NNA, 6 predictive variables were identified that are suggested to be of importance in the improvement of future iMCS to treat chronic pain.
Collapse
Affiliation(s)
- Dylan J H A Henssen
- Department of Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands; Unit of Functional Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Richard L Witkam
- Department of Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan C M L Dao
- Department of Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daan J Comes
- Department of Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anne-Marie Van Cappellen van Walsum
- Department of Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands; Unit of Functional Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genomics and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Robert van Dongen
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kris Vissers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ronald H M A Bartels
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Guido de Jong
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erkan Kurt
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands; Unit of Functional Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|