1
|
Mamun AA, Uddin MS, Perveen A, Jha NK, Alghamdi BS, Jeandet P, Zhang HJ, Ashraf GM. Inflammation-targeted nanomedicine against brain cancer: From design strategies to future developments. Semin Cancer Biol 2022; 86:101-116. [PMID: 36084815 DOI: 10.1016/j.semcancer.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023]
Abstract
Brain cancer is an aggressive type of cancer with poor prognosis. While the immune system protects against cancer in the early stages, the tumor exploits the healing arm of inflammatory reactions to accelerate its growth and spread. Various immune cells penetrate the developing tumor region, establishing a pro-inflammatory tumor milieu. Additionally, tumor cells may release chemokines and cytokines to attract immune cells and promote cancer growth. Inflammation and its associated mechanisms in the progression of cancer have been extensively studied in the majority of solid tumors, especially brain tumors. However, treatment of the malignant brain cancer is hindered by several obstacles, such as the blood-brain barrier, transportation inside the brain interstitium, inflammatory mediators that promote tumor growth and invasiveness, complications in administering therapies to tumor cells specifically, the highly invasive nature of gliomas, and the resistance to drugs. To resolve these obstacles, nanomedicine could be a potential strategy that has facilitated advancements in diagnosing and treating brain cancer. Due to the numerous benefits provided by their small size and other features, nanoparticles have been a prominent focus of research in the drug-delivery field. The purpose of this article is to discuss the role of inflammatory mediators and signaling pathways in brain cancer as well as the recent advances in understanding the nano-carrier approaches for enhancing drug delivery to the brain in the treatment of brain cancer.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687 Reims Cedex 2, France
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
2
|
Hong H, Lu X, Wu C, Chen J, Chen C, Zhang J, Huang C, Cui Z. A review for the pharmacological effects of paeoniflorin in the nervous system. Front Pharmacol 2022; 13:898955. [PMID: 36046834 PMCID: PMC9420976 DOI: 10.3389/fphar.2022.898955] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Paeoniflorin, a terpenoid glycoside compound extracted from Paeonia lactiflora Pall, shows preventive and therapeutic effects in various types of nervous system disorders. However, to date, no comprehensive knowledge on the pharmacological effects of paeoniflorin on the nervous system is available online. Clarification of this issue may be useful for the development of paeoniflorin as a new drug for the treatment of nervous system disorders. To this end, the authors summarize the pharmacological aspects of paeoniflorin and its possible mechanisms, such as restoration of mitochondrial function; inhibition of neuroinflammation, oxidative stress, and cellular apoptosis; activation of adenosine A1 receptor, cAMP response element-binding protein (CREB) and extracellular signal-regulated kinase 1/2 (ERK1/2); or enhancement of brain-derived neurotrophic factor and serotonin function, in the prevention of disorders such as cerebral ischemia, subarachnoid hemorrhage, vascular dementia, Alzheimer's disease, Parkinson's disease, depression, post-traumatic syndrome disorder, and epilepsy, by reviewing the previously published literature.
Collapse
Affiliation(s)
- Hongxiang Hong
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chunshuai Wu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chu Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Hua T, Zeng Z, Chen J, Xue Y, Li Y, Sang Q. Human Malignant Rhabdoid Tumor Antigens as Biomarkers and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:3685. [PMID: 35954348 PMCID: PMC9367328 DOI: 10.3390/cancers14153685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Atypical teratoid rhabdoid tumor (ATRT) is a lethal type of malignant rhabdoid tumor in the brain, seen mostly in children under two years old. ATRT is mainly linked to the biallelic inactivation of the SMARCB1 gene. To understand the deadly characteristics of ATRT and develop novel diagnostic and immunotherapy strategies for the treatment of ATRT, this study investigated tumor antigens, such as alpha-fetoprotein (AFP), mucin-16 (MUC16/CA125), and osteopontin (OPN), and extracellular matrix modulators, such as matrix metalloproteinases (MMPs), in different human malignant rhabdoid tumor cell lines. In addition, the roles of MMPs were also examined. MATERIALS AND METHODS Five human cell lines were chosen for this study, including two ATRT cell lines, CHLA-02-ATRT and CHLA-05-ATRT; a kidney malignant rhabdoid tumor cell line, G401; and two control cell lines, human embryonic kidney HEK293 and HEK293T. Both ATRT cell lines were treated with a broad-spectrum MMP inhibitor, GM6001, to investigate the effect of MMPs on cell proliferation, viability, and expression of tumor antigens and biomarkers. Gene expression was examined using a reverse transcription polymerase chain reaction (RT-PCR), and protein expression was characterized by immunocytochemistry and flow cytometry. RESULTS All the rhabdoid tumor cell lines tested had high gene expression levels of MUC16, OPN, AFP, and MSLN. Low expression levels of neuron-specific enolase (ENO2) by the two ATRT cell lines demonstrated their lack of neuronal genotype. Membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14) and tissue inhibitor of metalloproteinases-2 (TIMP-2) were highly expressed in these malignant rhabdoid tumor cells, indicating their invasive phenotypes. GM6001 significantly decreased ATRT cell proliferation and the gene expression of MSLN, OPN, and several mesenchymal markers, suggesting that inhibition of MMPs may reduce the aggressiveness of rhabdoid cancer cells. CONCLUSION The results obtained from this study may advance our knowledge of the molecular landscapes of human malignant rhabdoid tumors and their biomarkers for effective diagnosis and treatment. This work analyzed the expression of human malignant rhabdoid tumor antigens that may serve as biomarkers for the development of novel therapeutic strategies, such as cancer vaccines and targeted and immunotherapies targeting osteopontin and mesothelin, for the treatment of patients with ATRT and other malignant rhabdoid tumors.
Collapse
Affiliation(s)
- Timothy Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Ziwei Zeng
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Junji Chen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310-6046, USA;
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Qingxiang Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|
4
|
Birch JL, Coull BJ, Spender LC, Watt C, Willison A, Syed N, Chalmers AJ, Hossain-Ibrahim MK, Inman GJ. Multifaceted transforming growth factor-beta (TGFβ) signalling in glioblastoma. Cell Signal 2020; 72:109638. [PMID: 32320860 DOI: 10.1016/j.cellsig.2020.109638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is an aggressive and devastating primary brain cancer which responds very poorly to treatment. The average survival time of patients is only 14-15 months from diagnosis so there is a clear and unmet need for the development of novel targeted therapies to improve patient outcomes. The multifunctional cytokine TGFβ plays fundamental roles in development, adult tissue homeostasis, tissue wound repair and immune responses. Dysfunction of TGFβ signalling has been implicated in both the development and progression of many tumour types including GBM, thereby potentially providing an actionable target for its treatment. This review will examine TGFβ signalling mechanisms and their role in the development and progression of GBM. The targeting of TGFβ signalling using a variety of approaches including the TGFβ binding protein Decorin will be highlighted as attractive therapeutic strategies.
Collapse
Affiliation(s)
| | - Barry J Coull
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Lindsay C Spender
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Courtney Watt
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Alice Willison
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Nelofer Syed
- The John Fulcher Molecular Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | | | - M Kismet Hossain-Ibrahim
- Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Neurosurgery, Ninewells Hospital and Medical School, NHS Tayside, Dundee, UK
| | - Gareth J Inman
- CRUK Beatson Institute, Glasgow, UK; Division of Cellular and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Matrix protease production, epithelial-to-mesenchymal transition marker expression and invasion of glioblastoma cells in response to osmotic or hydrostatic pressure. Sci Rep 2020; 10:2634. [PMID: 32060379 PMCID: PMC7021835 DOI: 10.1038/s41598-020-59462-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
Both hydrostatic and osmotic pressures are altered in the tumour microenvironment. Glioblastoma (GBM) is a brain tumour with high invasiveness and poor prognosis. We hypothesized that physical and osmotic forces regulate glioblastoma (GBM) invasiveness. The osmotic pressure of GBM cell culture medium was adjusted using sodium chloride or water. Alternatively, cells were subjected to increased hydrostatic force. The proteolytic profile and epithelial–mesenchymal transition (EMT) were investigated using zymography and real-time qPCR. The EMT markers assessed were Snail-1, Snail-2, N-cadherin, Twist and vimentin. Invasion was investigated in vitro using extracellular matrix-coated Transwell inserts. In response to osmotic and mechanical pressure, GBM cell lines U87 and U251 and patient-derived neural oncospheres upregulated the expression of urokinase-type plasminogen activator (uPA) and/or matrix metalloproteinases (MMPs) as well as some of the EMT markers tested. The adherent cell lines invaded more when placed in media of increased osmolality. Therefore, GBM respond to osmotic or mechanical pressure by increasing matrix degrading enzyme production, and adopting a phenotype reminiscent of EMT. Better understanding the molecular and cellular mechanisms by which increased pressure promotes GBM invasiveness may help to develop innovative therapeutic approaches.
Collapse
|
6
|
Civita P, Franceschi S, Aretini P, Ortenzi V, Menicagli M, Lessi F, Pasqualetti F, Naccarato AG, Mazzanti CM. Laser Capture Microdissection and RNA-Seq Analysis: High Sensitivity Approaches to Explain Histopathological Heterogeneity in Human Glioblastoma FFPE Archived Tissues. Front Oncol 2019; 9:482. [PMID: 31231613 PMCID: PMC6568189 DOI: 10.3389/fonc.2019.00482] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
Laser capture microdissection (LCM) coupled with RNA-seq is a powerful tool to identify genes that are differentially expressed in specific histological tumor subtypes. To better understand the role of single tumor cell populations in the complex heterogeneity of glioblastoma, we paired microdissection and NGS technology to study intra-tumoral differences into specific histological regions and cells of human GBM FFPE tumors. We here isolated astrocytes, neurons and endothelial cells in 6 different histological contexts: tumor core astrocytes, pseudopalisading astrocytes, perineuronal astrocytes in satellitosis, neurons with satellitosis, tumor blood vessels, and normal blood vessels. A customized protocol was developed for RNA amplification, library construction, and whole transcriptome analysis of each single portion. We first validated our protocol comparing the obtained RNA expression pattern with the gene expression levels of RNA-seq raw data experiments from the BioProject NCBI database, using Spearman's correlation coefficients calculation. We found a good concordance for pseudopalisading and tumor core astrocytes compartments (0.5 Spearman correlation) and a high concordance for perineuronal astrocytes, neurons, normal, and tumor endothelial cells compartments (0.7 Spearman correlation). Then, Principal Component Analysis and differential expression analysis were employed to find differences between tumor compartments and control tissue and between same cell types into distinct tumor contexts. Data consistent with the literature emerged, in which multiple therapeutic targets significant for glioblastoma (such as Integrins, Extracellular Matrix, transmembrane transport, and metabolic processes) play a fundamental role in the disease progression. Moreover, specific cellular processes have been associated with certain cellular subtypes within the tumor. Our results are promising and suggest a compelling method for studying glioblastoma heterogeneity in FFPE samples and its application in both prospective and retrospective studies.
Collapse
Affiliation(s)
| | | | | | - Valerio Ortenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University Hospital, Pisa, Italy
| | | | | | | | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University Hospital, Pisa, Italy
| | | |
Collapse
|
7
|
Sadeghi Y, Tabatabaei Irani P, Rafiee L, Tajadini M, Amouheidari A, Javanmard SH. Evaluation of rs1982073 polymorphism of transforming growth factor-β1 in glioblastoma. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:40. [PMID: 31160907 PMCID: PMC6540769 DOI: 10.4103/jrms.jrms_850_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/07/2019] [Accepted: 02/20/2019] [Indexed: 11/04/2022]
Abstract
Background Glioblastoma (GBM) is the most common and invasive form of primary malignant brain tumors, with a survival rate of about 1 year. Transforming growth factor-β1 (TGF-β1) plays a very important role in tissue homeostasis and cancers. It seems that polymorphism of T29C (L10P, rs1982073, or rs1800470), which has been studied in various cancers such as breast and colon, creates the significant differences plays an important role in GBM prognosis and treatment. In this study, we evaluated the effect of T29C (rs1982073) polymorphism of TGF-β1 gene in GBM. Materials and Methods This study was conducted on 100 cases of GBM including 47 paraffin-embedded brain tissue samples and 53 blood samples from another 53 GBM patients, who was under therapy, and 150 were controls. The TGF-β rs1982073 single-nucleotide polymorphism (SNP) was identified by the NCBI and genotyping was performed by high-resolution melt (HRM) assay. Melt curves from HRM which suspected to SNP were selected and subjected to direct sequencing. Finally, the collected data were entered into the SPSS software (Version. 20) and mean ± standard deviation or n (%) was used to show the data. Results The mean age in GBM group was 51.63 ± 13.27 years. Accordingly, the two groups were matched in terms of age and gender (P > 0.05). The frequency of GG genotype was significantly higher in GBM patients. In contrast, although the frequency of AG genotype was higher in GBM group, it was not statistically significant. Furthermore, the presence of G allele was significantly more frequent than A allele in GBM patients. Conclusion Findings of the present study supports that the Pro10Leu, rs1982073, or rs1800470 SNP in TGF-β1 is found to be expressed significantly more in GBM patients as it was found in breast cancer.
Collapse
Affiliation(s)
- Yasaman Sadeghi
- General Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouya Tabatabaei Irani
- General Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan, Iran.,Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamadhasan Tajadini
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Amouheidari
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan, Iran.,Department of Radiation Oncology, Isfahan Milad Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan, Iran.,Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Chen C, Li Y, Yu X, Jiang Q, Xu X, Yang Q, Qian Z. Bone-targeting melphalan prodrug with tumor-microenvironment sensitivity: Synthesis, in vitro and in vivo evaluation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Ordoni Aval F, Askarian Amiri S, Azadmehr A, Oladnabi M, Saadat P, Ebrahimi H, Baradaran B, Mansoori B, Pourabdolhossein F, Torabian P, Hajiahmadi M. Gene Silencing of TGFβRII Can Inhibit Glioblastoma Cell Growth. Asian Pac J Cancer Prev 2018; 19:2681-2686. [PMID: 30256570 PMCID: PMC6249455 DOI: 10.22034/apjcp.2018.19.9.2681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Glioblastoma (GBM) is the most malignant and aggressive type of glioma, associated with a high rate
of mortality. The transforming growth factor-β receptor II (TGFβ RII) is involved in glioma initiation and progression.
On the other hand, TGFβ RII silencing is critical to the inhibition of GBM. Therefore, we aimed to determine the
effects of specific TGFβ RII siRNA on the survival of U-373MG cells. Methods: TGFβ RII siRNA was transfected,
and qRT-PCR was performed to examine TGFβ RII mRNA expression. Cell survival was determined using colorimetric
MTT assay, and platelet-derived growth factor-BB (PDGF-BB) level was measured in the culture supernatant using
ELISA assay. Result: Our findings indicated that specific siRNAs could dose-dependently suppress TGFβ RII mRNA
expression after 48 hours. In addition, treatment with TGFβ RII siRNA significantly reduced tumor cell survival and
decreased the amount of PDGF-BB protein in the cell culture supernatant. Conclusion: Our results suggest that TGFβ
RII silencing can be a promising complementary treatment for glioma.
Collapse
Affiliation(s)
- Farzane Ordoni Aval
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Piromkraipak P, Sangpairoj K, Tirakotai W, Chaithirayanon K, Unchern S, Supavilai P, Power C, Vivithanaporn P. Cysteinyl Leukotriene Receptor Antagonists Inhibit Migration, Invasion, and Expression of MMP-2/9 in Human Glioblastoma. Cell Mol Neurobiol 2018; 38:559-573. [PMID: 28600709 PMCID: PMC11481984 DOI: 10.1007/s10571-017-0507-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022]
Abstract
Glioblastoma is one of the most malignant and aggressive types of brain tumors. 5-lipoxygenase and cysteinyl leukotriene receptor 1 (CysLT1) play a role in human carcinogenesis. Leukotriene receptor antagonists (LTRAs), anti-asthmatic drugs with mild side effects, have anti-metastatic activity in epidermoid carcinoma, lung carcinoma, and colon cancers as well as neuroprotective effects. Herein, anti-migratory effects of two LTRAs, montelukast and zafirlukast, were investigated in glioblastoma cells. The level of CysLT1 in A172 cells was increased by 3.13 folds after IL-1β treatment. The median toxic concentration of LTRAs in A172, U373, and primary astrocytes ranged from 7.17 to 26.28 μM at 24-h post-exposure. Both LTRAs inhibited migration and invasion of glioma. Additionally, both drugs significantly inhibited the expression and activities of MMP-2 and MMP-9 in A172 and U373 glioblastoma cells and primary human astrocytes, suggesting that CysLT1 plays a role in migration and invasion of glioma, and LTRAs are potential drugs to reduce migration and invasion.
Collapse
Affiliation(s)
- Pannaree Piromkraipak
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kant Sangpairoj
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | | | | | - Supeenun Unchern
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Porntip Supavilai
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Christopher Power
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Pornpun Vivithanaporn
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
11
|
Qu M, Yu J, Liu H, Ren Y, Ma C, Bu X, Lan Q. The Candidate Tumor Suppressor Gene SLC8A2 Inhibits Invasion, Angiogenesis and Growth of Glioblastoma. Mol Cells 2017; 40:761-772. [PMID: 29047259 PMCID: PMC5682253 DOI: 10.14348/molcells.2017.0104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/14/2017] [Accepted: 08/20/2017] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is the most frequent and most aggressive brain tumor in adults. Solute carrier family 8 member 2 (SLC8A2) is only expressed in normal brain, but not present in other human normal tissues or in gliomas. Therefore, we hypothesized that SLC8A2 might be a glioma tumor suppressor gene and detected the role of SLC8A2 in glioblastoma and explored the underlying molecular mechanism. The glioblastoma U87MG cells stably transfected with the lentivirus plasmid containg SLC8A2 (U87MG-SLC8A2) and negative control (U87MG-NC) were constructed. In the present study, we found that the tumorigenicity of U87MG in nude mice was totally inhibited by SLC8A2. Overexpression of SLC8A2 had no effect on cell proliferation or cell cycle, but impaired the invasion and migration of U87MG cells, most likely through inactivating the extracellular signal-related kinases (ERK)1/2 signaling pathway, inhibiting the nuclear translocation and DNA binding activity of nuclear factor kappa B (NF-κB), reducing the level of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (uPA)-its receptor (uPAR) system (ERK1/2-NF-κB-MMPs/uPA-uPAR), and altering the protein levels of epithelial to mesenchymal transitions (EMT)-associated proteins E-cardherin, vimentin and Snail. In addition, SLC8A2 inhibited the angiogenesis of U87MG cells, probably through combined inhibition of endothelium-dependent and endothelium-nondependent angiogenesis (vascular mimicry pattern). Totally, SLC8A2 serves as a tumor suppressor gene and inhibits invasion, angiogenesis and growth of glioblastoma.
Collapse
Affiliation(s)
- Mingqi Qu
- Department of Neurosurgery, Henan Provincial People’s Hospital,
P.R. China
- Department of Neurosurgery, People’s Hospital of Zhengzhou University,
P.R. China
| | - Ju Yu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University,
P.R. China
| | - Hongyuan Liu
- Department of Neurosurgery, Mianyang Central Hospital,
P.R. China
| | - Ying Ren
- Department of Pathology, People’s Hospital of Zhengzhou University,
P.R. China
| | - Chunxiao Ma
- Department of Neurosurgery, Henan Provincial People’s Hospital,
P.R. China
- Department of Neurosurgery, People’s Hospital of Zhengzhou University,
P.R. China
| | - Xingyao Bu
- Department of Neurosurgery, Henan Provincial People’s Hospital,
P.R. China
- Department of Neurosurgery, People’s Hospital of Zhengzhou University,
P.R. China
| | - Qing Lan
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University,
P.R. China
| |
Collapse
|
12
|
Overexpression of TIMP-1 and Sensitivity to Topoisomerase Inhibitors in Glioblastoma Cell Lines. Pathol Oncol Res 2017; 25:59-69. [PMID: 28963609 DOI: 10.1007/s12253-017-0312-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/15/2017] [Indexed: 01/03/2023]
Abstract
The multifunctional protein - tissue inhibitor of metalloproteinases-1 (TIMP-1) - has been associated with a poor prognosis in several types of cancers including glioblastomas. In addition, TIMP-1 has been associated with decreased response to chemotherapy, and especially the efficacy of the family of topoisomerase (TOP) inhibitors has been related to TIMP-1. As a second line treatment of glioblastomas, the vascular endothelial growth factor (VEGF) antibody bevacizumab is administered in combination with the TOP1 inhibitor irinotecan and glioblastoma cell levels of TIMP-1 could therefore potentially influence the efficacy of such treatment. In the present study, we aimed to investigate whether a high TIMP-1 expression in glioblastoma cell lines would affect the sensitivity to TOP inhibitors, and whether TIMP-1 overexpressing cells would have alterered growth and invasion. We established TIMP-1 overexpressing subclones from two human glioblastoma cell lines. TIMP-1 overexpressing U87MG cells were significantly more resistant than low TIMP-1 expressing clones and parental cells when exposed to SN-38 (TOP1 inhibitor) or epirubicin (TOP2 inhibitor). No significant differences were observed for the TIMP-1 transfected A172 cells. Implantation of both U87MG and A172 spheroids into organotypic brain slice cultures revealed a reduced growth of TIMP-1 overexpressing U87MG spheroids, however, no significant differences in invasion were observed. The present study suggests that TIMP-1 overexpression reduces the effect of TOP inhibitors in glioblastoma. TIMP-1 also appeared to reduce spheroid growth, but did not influence invasion. Whether TIMP-1 plays a role in irinotecan resistance and has a predictive potential in glioblastoma patients remains to be elucidated.
Collapse
|
13
|
Ohnishi YI, Iwatsuki K, Ishihara M, Ohkawa T, Kinoshita M, Shinzawa K, Fujimoto Y, Yoshimine T. Promotion of astrocytoma cell invasion by micro RNA–22 targeting of tissue inhibitor of matrix metalloproteinase–2. J Neurosurg Spine 2017; 26:396-403. [DOI: 10.3171/2016.8.spine16248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Diffuse astrocytomas (DAs) have a high recurrence rate due to diffuse infiltration into the brain and spinal cord. Micro RNAs (miRNAs) are small noncoding RNAs that regulate gene expression by binding to complementary sequences of target messenger RNA (mRNA). It has been reported that miRNA-22 (miR-22) is involved in the invasion of some cancer cell lines. The aim of this study was to identify the biological effects of miR-22 in regard to the invasion of human DAs.
METHODS
The authors evaluated whether the level of miR-22 is elevated in human spinal DAs by using miRNA chips. Next, the role of miR-22 in 1321N1 human astrocytoma cells was investigated. Finally, to elucidate whether miR-22 promotes invasion by astrocytoma cells in vivo, the authors transplanted miR-22 overexpressed astrocytoma cells into mouse thoracic spinal cord.
RESULTS
The miR-22 significantly upregulated the invasion capacity of 1321N1 cells. Computational in silico analysis predicted that tissue inhibitor of matrix metalloproteinase–2 (TIMP2) is a target gene of miR-22. This was confirmed by quantitative reverse transcription polymerase chain reaction and Western blotting, which showed that miR-22 inhibited TIMP2 mRNA and protein expression, respectively. Luciferase reporter assays demonstrated that miR-22 directly bound the 3′-untranslated regions of TIMP2. The authors further showed that miR-22 promoted invasiveness in 1321N1 astrocytoma cells when transplanted into mouse spinal cord.
CONCLUSIONS
These data suggest that miR-22 acts to regulate invasion of 1321N1 astrocytoma cells by targeting TIMP2 expression. Additional studies with more cases and cell lines are required to elucidate the findings of this study for a novel treatment target for spinal DAs.
Collapse
Affiliation(s)
| | | | | | - Toshika Ohkawa
- 2Department of Neurosurgery, Yao Municipal Hospital; and
| | - Manabu Kinoshita
- 3Department of Neurosurgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Koei Shinzawa
- 4Molecular Genetics, Osaka University Medical School
| | | | | |
Collapse
|
14
|
Schötterl S, Hübner M, Armento A, Veninga V, Wirsik NM, Bernatz S, Lentzen H, Mittelbronn M, Naumann U. Viscumins functionally modulate cell motility-associated gene expression. Int J Oncol 2017; 50:684-696. [DOI: 10.3892/ijo.2017.3838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
|
15
|
Liu M, Wang J, Huang B, Chen A, Li X. Oleuropein inhibits the proliferation and invasion of glioma cells via suppression of the AKT signaling pathway. Oncol Rep 2016; 36:2009-16. [DOI: 10.3892/or.2016.4978] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/12/2016] [Indexed: 11/06/2022] Open
|
16
|
Liu Y, Zheng J, Zhang Y, Wang Z, Yang Y, Bai M, Dai Y. Fucoxanthin Activates Apoptosis via Inhibition of PI3K/Akt/mTOR Pathway and Suppresses Invasion and Migration by Restriction of p38-MMP-2/9 Pathway in Human Glioblastoma Cells. Neurochem Res 2016; 41:2728-2751. [DOI: 10.1007/s11064-016-1989-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/15/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
|
17
|
Wehmas LC, Tanguay RL, Punnoose A, Greenwood JA. Developing a Novel Embryo-Larval Zebrafish Xenograft Assay to Prioritize Human Glioblastoma Therapeutics. Zebrafish 2016; 13:317-29. [PMID: 27158859 DOI: 10.1089/zeb.2015.1170] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma is an aggressive brain cancer requiring improved treatments. Existing methods of drug discovery and development require years before new therapeutics become available to patients. Zebrafish xenograft models hold promise for prioritizing drug development. We have developed an embryo-larval zebrafish xenograft assay in which cancer cells are implanted in a brain microenvironment to discover and prioritize compounds that impact glioblastoma proliferation, migration, and invasion. We illustrate the utility of our assay by evaluating the well-studied, phosphatidylinositide 3-kinase inhibitor LY294002 and zinc oxide nanoparticles (ZnO NPs), which demonstrate selective cancer cytotoxicity in cell culture, but the in vivo effectiveness has not been established. Exposures of 3.125-6.25 μM LY294002 significantly decreased proliferation up to 34% with concentration-dependent trends. Exposure to 6.25 μM LY294002 significantly inhibited migration/invasion by ∼27% within the glioblastoma cell mass (0-80 μm) and by ∼32% in the next distance region (81-160 μm). Unexpectedly, ZnO enhanced glioblastoma proliferation by ∼19% and migration/invasion by ∼35% at the periphery of the cell mass (161+ μm); however, dissolution of these NPs make it difficult to discern whether this was a nano or ionic effect. These results demonstrate that we have a short, relevant, and sensitive zebrafish-based assay to aid glioblastoma therapeutic development.
Collapse
Affiliation(s)
- Leah Christine Wehmas
- 1 Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon
| | - Robert L Tanguay
- 1 Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon
| | - Alex Punnoose
- 2 Department of Physics, Boise State University , Boise, Idaho
| | - Juliet A Greenwood
- 3 Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon
| |
Collapse
|
18
|
Kawal P, Chandra A, Rajkumar, Dhole TN, Ojha B. Correlations of polymorphisms in matrix metalloproteinase-1, -2, and -7 promoters to susceptibility to malignant gliomas. Asian J Neurosurg 2016; 11:160-6. [PMID: 27057223 PMCID: PMC4802938 DOI: 10.4103/1793-5482.145338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Oligodendrogliomas are infiltrative astrocytic tumors. They constitute about 1-5% of intracranial tumors. These have been graded into benign and malignant grades. The single nucleotide polymorphisms (SNPs) in the promoter regions of MMP genes may influence tumor development and progression. This study was done to explore the correlations of the promoter SNPs in MMP-1, MMP-2 and MMP-7 genes susceptibility in development and progression of oligodendrogliomas. Objectives: We aimed to investigate the association of MMP1 (−1607A > G), MMP-2 (−1306 C/T) and MMP-7(−181A > G) gene polymorphism in oligodendrogliomas (grade I, II, III). Materials and Methods: In the present case control study, we enrolled a total of 30 cases of oligodendrogliomas (grade I to III) confirmed by histopathology and 30 healthy cases as control. Polymorphism for MMP-1 gene (−1607A > G), MMP-2 (−1306 C/T), MMP-7(−181A > G) were genotyped by restriction fragment length polymorphism. Results: Frequencies of MMP-1 (−1607A > G) genotypes and 2G alleles were significantly associated with the cases of oligodendrogliomas (30%) in relation to healthy controls (13%). [OR = 6.89; P = 0.02; 95%CI= (1.33-35.62)] and [OR = 2.66; P =0.01; 95% CI= (1.26-5.64)]. A significant association of MMP-2 (−1306C/T) polymorphism with oligodendroglioma (P = 0.54) was not found, suggesting that MMP-2 (−1306C/T) polymorphism is not associated with increased oligodendroglioma susceptibility. Frequencies of MMP-7(−181A > G) genotypes and 2G alleles were significantly associated with the cases of oligodendrogliomas (33.33%) in relation to healthy controls (13.33%). [OR = 5.65; P = 0.02; 95%CI= (1.26-25.36)] and [OR = 2.49; P =0.01; 95% CI= (1.17-5.27)]. Conclusions: MMP-1 (−1607 A > G), MMP-7(−181A > G) genotypes and 2G alleles were significantly associated with oligodendroglioma (grade I, II, III), but MMP-2 (−1306C/T) polymorphism is not associated with increased oligodendroglioma susceptibility.
Collapse
Affiliation(s)
- Priyanka Kawal
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anil Chandra
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India; Department of Neurosurgery, Chatrapati Shri Shahuji Mharaj Medical University, Lucknow, Uttar Pradesh, India
| | - Rajkumar
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Tapan N Dhole
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Balkrishna Ojha
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Paeoniflorin inhibits proliferation and induces apoptosis of human glioma cells via microRNA-16 upregulation and matrix metalloproteinase-9 downregulation. Mol Med Rep 2015; 12:2735-40. [PMID: 25954855 DOI: 10.3892/mmr.2015.3718] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/23/2015] [Indexed: 11/05/2022] Open
Abstract
Paeoniflorin is one of the active ingredients of the commonly used herbal medicine derived from Paeonia, which exhibits anticancer properties. MicroRNA-16 (miR-16) is upregulated in CD133(-) cells, but downregulated in CD133(+) cells from glioma tissue. Matrix metalloproteinase-9 (MMP-9) expression in glioma tissue samples is significantly higher than that in healthy brain tissue samples. Therefore, miR-16 and MMP-9 expression may be associated with glioma pathogenesis. In the present study, the effects of paeoniflorin on glioma were analyzed. U87 cells were treated with paeoniflorin at 0, 5, 10 and 20 μΜ concentrations. The results suggested that paeoniflorin inhibited U87 cell proliferation and accelerated cell apoptosis. In the present study paeoniflorin treatment increased miR-16 expression and reduced MMP-9 protein expression in U87 cells. Additionally, the results of the present study suggested that miR-16 may regulate MMP-9 expression in miR-16-transfected U87 cells. Furthermore, anti-miR-16 antibodies were used in order to investigate the apoptotic effects of paeoniflorin on U87 cells. The results demonstrated that paeoniflorin inhibits proliferation and induces apoptosis of human glial cells, via miR-16 upregulation and MMP-9 downregulation.
Collapse
|
20
|
Gwak HS, Park MJ, Park IC, Woo SH, Jin HO, Rhee CH, Jung HW. Tetraarsenic oxide-induced inhibition of malignant glioma cell invasion in vitro via a decrease in matrix metalloproteinase secretion and protein kinase B phosphorylation. J Neurosurg 2014; 121:1483-91. [PMID: 25303017 DOI: 10.3171/2014.8.jns131991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Local invasiveness of malignant glioma is a major reason for the failure of current treatments including surgery and radiation therapy. Tetraarsenic oxide (As4O6 [TAO]) is a trivalent arsenic compound that has potential anticancer and antiangiogenic effects in selected cancer cell lines at a lower concentration than arsenic trioxide (As2O3 [ATO]), which has been more widely tested in vitro and in vivo. The authors tried to determine the cytotoxic concentration of TAO in malignant glioma cell lines and whether TAO would show anti-invasive effects under conditions independent of cell death or apoptosis. METHODS The human phosphatase and tensin homolog (PTEN)-deficient malignant glioma cell lines U87MG, U251MG, and U373MG together with PTEN-functional LN428 were cultured with a range of micromolar concentrations of TAO. The invasiveness of the glioma cell lines was analyzed. The effect of TAO on matrix metalloproteinase (MMP) secretion and membrane type 1 (MT1)-MMP expression was measured using gelatin zymography and Western blot, respectively. Akt, or protein kinase B, activity, which is a downstream effector of PTEN, was assessed with a kinase assay using glycogen synthesis kinase-3β (GSK-3β) as a substrate and Western blotting of phosphorylated Akt. RESULTS Tetraarsenic oxide inhibited 50% of glioma cell proliferation at 6.3-12.2 μM. Subsequent experiments were performed under the same TAO concentrations and exposure times, avoiding the direct tumoricidal effect of TAO, which was confirmed with apoptosis markers. An invasion assay revealed a dose-dependent decrease in invasiveness under the influence of TAO. Both the gelatinolytic activity of MMP-2 and MT1-MMP expression decreased in a dose-dependent manner in all cell lines, which was in accordance with the invasion assay results. The TAO decreased kinase activity of Akt on GSK-3β assay and inhibited Akt phosphorylation in a dose-dependent manner in all cell lines regardless of their PTEN status. CONCLUSIONS These results showed that TAO effectively inhibits proliferation of glioblastoma cell lines and also exerts an anti-invasive effect via decreased MMP-2 secretion, decreased MT1-MMP expression, and the inhibition of Akt phosphorylation under conditions devoid of cytotoxicity. Further investigations using an in vivo model are needed to evaluate the potential role of TAO as an anti-invasive agent.
Collapse
Affiliation(s)
- Ho-Shin Gwak
- Neuro-Oncology Clinic, National Cancer Center, Goyang
| | | | | | | | | | | | | |
Collapse
|
21
|
Tumoral RANKL activates astrocytes that promote glioma cell invasion through cytokine signaling. Cancer Lett 2014; 353:194-200. [PMID: 25079688 DOI: 10.1016/j.canlet.2014.07.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/14/2014] [Indexed: 11/21/2022]
Abstract
The invasiveness of glioblastoma is a major cause of poor prognosis and relapse. However, the molecular mechanism controlling glioma cell invasion is poorly understood. Here, we report that receptor activator of nuclear factor kappa-B (NFκB) ligand (RANKL) promotes glioma cell invasion in vivo, but not in vitro. Unlike the invasiveness under in vitro culture conditions, in vivo xenograft studies revealed that LN229 cells expressing high endogenous RANKL generated more invasive tumors than U87MG cells expressing relatively low endogenous RANKL. Consistently, RANKL-overexpressing U87MG resulted in invasive tumors, whereas RANKL-depleted LN229 generated rarely invasive tumors. We found that the number of activated astrocytes was markedly increased in the periphery of RANKL-high invasive tumors. RANKL activated astrocytes through NFκB signaling and these astrocytes in turn secreted various factors which regulate glioma cell invasion. Among them, transforming growth factor β (TGF-β) signaling was markedly increased in glioblastoma specimens and xenograft tumors expressing high levels of RANKL. These results indicate that RANKL contributes to glioma invasion by modulating the peripheral microenvironment of the tumor, and that targeting RANKL signaling has important implications for the prevention of highly invasive glioblastoma.
Collapse
|
22
|
Samukange V, Yasukawa K, Inouye K. Effects of heparin and cholesterol sulfate on the activity and stability of human matrix metalloproteinase 7. Biosci Biotechnol Biochem 2014; 78:41-8. [PMID: 25036482 DOI: 10.1080/09168451.2014.878213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sulfated glycosaminoglycans and sulfated lipids are involved in the biological functions of human matrix metalloproteinase 7 (MMP-7). In this study, the effects of heparin and cholesterol sulfate (CS) on the activity and stability of MMP-7 in the hydrolysis of a synthetic substrate, (7-methoxycoumarin-4-yl)acetyl-l-Pro-l-Leu-Gly-l-Leu-[N(3)-(2,4-dinitrophenyl)-l-2,3-diaminopropionyl]-l-Ala-l-Arg-NH2, were examined. Heparin increased activity by decreasing Km, and the Km values for 0 and 50 μM heparin were 57 ± 8 and 19 ± 5 μM, respectively. CS decreased activity in a non-competitive inhibitory manner with a Ki value of 11 ± 3 μM. In thermal incubation at 50-70 °C, heparin increased relative activity (the ratio of kcat/Km of MMP-7 with incubation to that without it), while CS decreased relative activity. These results indicate that heparin increases the activity and stability of MMP-7, while CS decreases them.
Collapse
Affiliation(s)
- Vimbai Samukange
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | | | | |
Collapse
|
23
|
Analysis of the Mechanism of Inhibition of Human Matrix Metalloproteinase 7 (MMP-7) Activity by Green Tea Catechins. Biosci Biotechnol Biochem 2014; 75:1564-9. [DOI: 10.1271/bbb.110257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Munson J, Bonner M, Fried L, Hofmekler J, Arbiser J, Bellamkonda R. Identifying new small molecule anti-invasive compounds for glioma treatment. Cell Cycle 2014; 12:2200-9. [PMID: 24067366 DOI: 10.4161/cc.25334] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is a disease with poor survival rates after diagnosis. Treatment of the disease involves debulking of the tumor, which is limited by the degree of invasiveness of the disease. Therefore, a treatment to halt the invasion of glioma is desirable for clinical implementation. There have been several candidate compounds targeting specific aspects of invasion, including cell adhesions, matrix degradation, and cytoskeletal rearrangement, but they have failed clinically for a variety of reasons. New targets against glioma invasion include upstream mediators of these classical targets in an effort to better inhibit invasion with more specificity for cancer. Included in these treatments is a new class of compounds inhibiting the generation of reactive oxygen species by targeting the NADPH oxidases. These compounds stand to inhibit multiple pathways, including nuclear factor kappa B and Akt. By conducting a screen of compounds thought to inhibit these pathways, a new compound to halt invasion was found that may have a beneficial effect against glioma, based on recent publications. Further, there are still limitations to the treatment of glioblastoma regardless of the discovery of new targets and compounds that should be addressed to better the therapies against this deadly cancer.
Collapse
Affiliation(s)
- Jennifer Munson
- Wallace H. Coulter Department of Biomedical Engineering; Georgia Institute of Technology; Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Romeike BFM, Mawrin C. Gliomatosis cerebri: growing evidence for diffuse gliomas with wide invasion. Expert Rev Neurother 2014; 8:587-97. [DOI: 10.1586/14737175.8.4.587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Lukaszewicz-Zając M, Mroczko B, Kornhuber J, Lewczuk P. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in the tumors of central nervous system (CNS). J Neural Transm (Vienna) 2013; 121:469-77. [PMID: 24366530 DOI: 10.1007/s00702-013-1143-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/13/2013] [Indexed: 12/20/2022]
Abstract
Malignant neoplasms of the central nervous system (CNS) account for about 1.3 % of all tumors and 2.2 % of all cancer-related deaths. CNS tumors consist of heterogeneous group of neoplasms, including different variants of primary brain tumors and metastatic neoplasms. Advanced imaging techniques improved the neuroradiological diagnostic accuracy, although these methods are not specific enough for differentiation of CNS tumors, thus new approaches of patients' diagnosis are critically needed. The best solution for the diagnosis of patients with CNS tumors could be easily available biomarkers, which could be useful for the management of CNS neoplasms. Biomarkers should facilitate the diagnosis, monitor of treatment response and assess the prognosis of patients' survival. Currently, except for rare germ cell tumors, there is a lack of knowledge on biochemical markers for CNS neoplasms. Therefore, in this paper we summarized and referred a number of comprehensive reviews concerning the role of matrix metalloproteinases (MMPs) and their tissue inhibitors in tumor progression, including CNS neoplasms as well as described the general biochemistry of MMPs and their tissue inhibitors. Moreover, we presented the wide variety of previous findings, where authors suggested the significance of selected MMPs and their tissue inhibitors as potential biomarkers of human tumors, including CNS tumors. However, future investigations are needed to be performed before some of these enzymes could finally be used as biomarkers of specific types of CNS neoplasms.
Collapse
|
27
|
Coniglio SJ, Segall JE. Review: molecular mechanism of microglia stimulated glioblastoma invasion. Matrix Biol 2013; 32:372-80. [PMID: 23933178 DOI: 10.1016/j.matbio.2013.07.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/28/2013] [Accepted: 07/28/2013] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme is one of the deadliest human cancers and is characterized by a high degree of microglia and macrophage infiltration. The role of these glioma infiltrating macrophages (GIMs) in disease progression has been the subject of recent investigation. While initially thought to reflect an immune response to the tumor, the balance of evidence clearly suggests GIMs can have potent tumor-tropic functions and assist in glioma cell growth and infiltration into normal brain. In this review, we focus on the evidence for GIMs aiding mediating glioblastoma motility and invasion. We survey the literature for molecular pathways that are involved in paracrine interaction between glioma cells and GIMs and assess which of these might serve as attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Salvatore J Coniglio
- Albert Einstein College of Medicine, Department of Anatomy and Structural Biology, Bronx, NY 10461, United States.
| | | |
Collapse
|
28
|
Lei C, Cui Y, Zheng L, Kah-Hoe Chow P, Wang CH. Development of a gene/drug dual delivery system for brain tumor therapy: Potent inhibition via RNA interference and synergistic effects. Biomaterials 2013; 34:7483-94. [DOI: 10.1016/j.biomaterials.2013.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/07/2013] [Indexed: 11/24/2022]
|
29
|
Vehlow A, Cordes N. Invasion as target for therapy of glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2013; 1836:236-44. [PMID: 23891970 DOI: 10.1016/j.bbcan.2013.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 12/27/2022]
Abstract
The survival of cancer patients suffering from glioblastoma multiforme is limited to just a few months even after treatment with the most advanced techniques. The indefinable borders of glioblastoma cell infiltration into the surrounding healthy tissue prevent complete surgical removal. In addition, genetic mutations, epigenetic modifications and microenvironmental heterogeneity cause resistance to radio- and chemotherapy altogether resulting in a hardly to overcome therapeutic scenario. Therefore, the development of efficient therapeutic strategies to combat these tumors requires a better knowledge of genetic and proteomic alterations as well as the infiltrative behavior of glioblastoma cells and how this can be targeted. Among many cell surface receptors, members of the integrin family are known to regulate glioblastoma cell invasion in concert with extracellular matrix degrading proteases. While preclinical and early clinical trials suggested specific integrin targeting as a promising therapeutic approach, clinical trials failed to deliver improved cure rates up to now. Little is known about glioblastoma cell motility, but switches in invasion modes and adaption to specific microenvironmental cues as a consequence of treatment may maintain tumor cell resistance to therapy. Thus, understanding the molecular basis of integrin and protease function for glioblastoma cell invasion in the context of radiochemotherapy is a pressing issue and may be beneficial for the design of efficient therapeutic approaches. This review article summarizes the latest findings on integrins and extracellular matrix in glioblastoma and adds some perspective thoughts on how this knowledge might be exploited for optimized multimodal therapy approaches.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
| | | |
Collapse
|
30
|
Ajeawung NF, Joshi HC, Kamnasaran D. The microtubule binding drug EM011 inhibits the growth of paediatric low grade gliomas. Cancer Lett 2013; 335:109-18. [PMID: 23402815 DOI: 10.1016/j.canlet.2013.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 11/28/2022]
Abstract
Low grade gliomas are a heterogeneous group of tumours representing the most common form of neoplasms in the central nervous system among children. Although gross total resection remains the principal treatment, it is often impractical especially for the resection of tumours within eloquent regions of the brain. Instead Radiotherapy is utilised in such cases, but because of its associated toxicities, it is refrained from use among younger children. These limitations coupled with hypersensitivity and toxicities associated with some commonly used chemotherapeutic agents, have ignited the need to search for safer and more effective treatments for paediatric low grade gliomas. In this study, we investigated the EM011 drug on the growth of two pilocytic and one diffuse paediatric astrocytoma cell lines, using an assortment of cancer assays. We discovered that treatments of low grade gliomas with EM011 abrogated cell viability by inducing a decrease in cell proliferation and an arrest in the S and G2M cell cycle phases, followed by a converse increase in apoptosis in a dose and time dependent manner. The cell migratory and invasion indices, as well as anchorage independent growth in soft agarose, were significantly attenuated. These findings were mechanistically associated with a transient release of AIF, a disruption of microtubule architecture, and a decline in the expression of key genes which drive cancer progression including EGFR, mTORC1, JUN and multiple MMPs. In fact, the activity of MMP2 was also perturbed by EM011. These findings, in conjunction with the insignificant adverse side effects established from other studies, make EM011 an appealing chemotherapeutic agent for the treatment of paediatric low grade gliomas.
Collapse
Affiliation(s)
- Norbert F Ajeawung
- Pediatric Research Unit, Centre de Recherche du CHUL, Québec, QC, Canada G1V 4G2
| | | | | |
Collapse
|
31
|
Abstract
AbstractDiffuse human gliomas constitute a group of most treatment-refractory tumors even if maximum treatment strategies including neurosurgical resection followed by combined radio-/chemotherapy are applied. In contrast to most other neoplasms, diffusely infiltrating gliomas invade the brain along pre-existing structures such as axonal tracts and perivascular spaces. Even in cases of early diagnosis single or small clusters of glioma cells are already encountered far away from the main tumor bulk. Complex interactions between glioma cells and the surrounding extracellular matrix and considerable changes in the cytoskeletal apparatus are prerequisites for the cellular movement of glioma cells through the brain thereby escaping from most current treatments. This review provides an overview about classical and current concepts of glioma cell migration/invasion and promising preclinical treatment approaches.
Collapse
|
32
|
TGF-β as a therapeutic target in high grade gliomas - promises and challenges. Biochem Pharmacol 2012; 85:478-85. [PMID: 23159669 DOI: 10.1016/j.bcp.2012.11.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β (TGF-β) is a cytokine with a key role in tissue homeostasis and cancer. TGF-β elicits both tumor suppressive and tumor promoting functions during cancer progression, in a wide range of cancers. Here, we review the tumor promoting function of TGF-β and its possible promise as a therapeutic target in high grade gliomas, including glioblastoma multiforme (GBM), a disease with very poor prognosis. TGF-β signaling is highly active in high grade gliomas and elevated TGF-β activity has been associated with poor clinical outcome in this deadly disease. Common features of GBMs include fast cell proliferation, invasion into normal brain parenchyma, hypoxia, high angiogenic - and immunosuppressive activity, characteristics that all have been linked to activation of the TGF-β pathway. TGF-β signaling has also been connected with the cancer stem cell (CSC) phenotype in GBM. CSCs represent a subset of GBM cells thought to be responsible for tumor initiation, progression and relapse of disease. Following the description of these different properties of TGF-β signaling and the underlying mechanisms identified thus far, the promise of TGF-β targeted therapy in malignant gliomas is discussed. Several drugs targeting TGF-β signaling have been developed that showed potent antitumor activity in preclinical models. A number of agents are currently evaluated in early clinical studies in glioma patients. Available results of these studies are highlighted and a perspective on the promise of TGF-β-targeted therapy is given.
Collapse
|
33
|
Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS. Downregulation of uPA, uPAR and MMP-9 using small, interfering, hairpin RNA (siRNA) inhibits glioma cell invasion, angiogenesis and tumor growth. ACTA ACUST UNITED AC 2012; 1:165-76. [PMID: 16804563 PMCID: PMC1483066 DOI: 10.1017/s1740925x04000237] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The diffuse, extensive infiltration of malignant gliomas into the surrounding normal brain is believed to rely on modification of the proteolysis of extracellular matrix components. Our previous results clearly demonstrate that uPA, uPAR and MMP-9 concentrations increase significantly during tumor progression and that tumor growth can be inhibited with antisense stable clones of these molecules. Because antisense-mediated gene silencing does not completely inhibit the translation of target mRNA and high concentrations of antisense molecules are required to achieve gene silencing, we used the RNAi approach to silence uPA, uPAR and MMP-9 in this study. We examined a cytomegalovirus (CMV) promoter-driven DNA-template approach to induce hairpin RNA (hpRNA)-triggered RNAi to inhibit uPA, uPAR and MMP-9 gene expression with a single construct. uPAR protein levels and enzymatic activity of uPA and MMP-9 were found to significantly decrease in cells transfected with a plasmid expressing hairpin siRNA for uPAR, uPA and MMP-9. pU(2)M-transfected SNB19 cells significantly decreased uPA, uPAR and MMP-9 expression compared to mock and EV/SV-transfected cells, determined by immunohistochemical analysis. Furthermore, the effect of the single constructs for these molecules was a specific inhibition of their respective protein levels, as demonstrated by immunohistochemical analysis. After transfection with a plasmid vector expressing dsRNA for uPA, uPAR and MMP-9, glioma-cell invasion was retarded compared with mock and EV/SV-treated groups, demonstrated by Matrigel-invasion assay and spheroid-invasion assay. Downregulation of uPA, uPAR and MMP-9 using RNAi inhibited angiogenesis in an in vitro (co-culture) model. Direct intratumoral injections of plasmid DNA expressing hpRNA for uPA, uPAR and MMP-9 significantly regressed pre-established intracranial tumors in nude mice. In addition, cells treated with RNAi for uPAR, uPA and MMP-9 showed reduced pERK levels compared with parental and EV/SV-treated SNB19 cells. Our results support the therapeutic potential of RNAi as a method for gene therapy in treating gliomas.
Collapse
Affiliation(s)
| | - Sajani S. Lakka
- Program of Cancer Biology, Department of Biomedical and Therapeutic Sciences
| | | | | | - Meena Gujrati
- Department of PathologyThe University of Illinois College of Medicine Peoria, IL
| | - Jasti S. Rao
- Program of Cancer Biology, Department of Biomedical and Therapeutic Sciences
- Department of Neurosurgery
- Correspondence should be addressed to: Jasti S. Rao, PhD, Program of Cancer Biology, University of Illinois, College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA, phone: +1 309 671 3445, fax: 309-671-3442,
| |
Collapse
|
34
|
Kihira Y, Mori K, Miyazaki K, Matuo Y. Production of recombinant human matrix metalloproteinase 7 (Matrilysin) with potential role in tumor invasion by refolding from Escherichia coli inclusion bodies and development of sandwich ELISA of MMP-7. Urol Oncol 2012; 2:20-6. [PMID: 21224131 DOI: 10.1016/1078-1439(96)00030-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metastatic potential of prostate cancer is thought to correlate with the degradation of basement membrane components by matrix metalloproteinases (MMPs). The MMP-7 (matrilysin) gene is overexpressed in prostate cancer as well as colorectum and brain cancer. In order to clarify the relation of MMP-7 to clinical stages of prostate cancer, recombinant human MMP-7 was produced to prepare antibodies for immunohistochemistry and immunoassay. Preproform of human MMP-7 was produced in Escherichia coli as inclusion bodies that could be solubilized and refolded to yield an activatable proenzyme. PreproMMP-7 (Mr 31,000) solubilized from inclusion bodies was converted to proMMP-7 (Mr 30,000) during the refolding steps. The refolded proMMP-7 was purified to about 80% homogeneity as MMP-7 by sequential ion-exchange and molecular-sieve chromatography. The active, mature form of MMP-7 (Mr 20,000) could be produced from proforms of MMP-7 by treatment with p-aminophenylmercuric acetate. Activated MMP-7 was shown to have proteolytic activity to fibronectin, casein, and diazotized, denatured collagen (Azocoll). Specific activity, as assayed with the denatured collagen as substrate, was measured to be about 3,100 units/mg protein of mature enzyme. Using recombinant proMMP-7 as antigen, monoclonal and polyclonal antibodies were prepared. A sandwich ELISA was developed using monoclonal antibody as the capture antibody and rabbit anti-proMMP-7 polyclonal IgG conjugated with biotin as the detection antibody; MMP-7 at 10 ng/ml was significantly detectable. The assay system is applicable on the measurement of MMP-7 levels in the clinical and pathologic specimens including serum from patients with different stages in malignancy of prostate cancer. These antibodies are useful for the retrospective analyses of prostate cancer on the basis of immunohistochemical evaluation.
Collapse
Affiliation(s)
- Y Kihira
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Shiga 526, Japan; Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244, Japan
| | | | | | | |
Collapse
|
35
|
Hagemann C, Anacker J, Ernestus RI, Vince GH. A complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J Clin Oncol 2012; 3:67-79. [PMID: 22582165 PMCID: PMC3349915 DOI: 10.5306/wjco.v3.i5.67] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/12/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
Glioblastomas are characterized by an aggressive local growth pattern, a marked degree of invasiveness and poor prognosis. Tumor invasiveness is facilitated by the increased activity of proteolytic enzymes which are involved in destruction of the extracellular matrix of the surrounding healthy brain tissue. Elevated levels of matrix metalloproteinases (MMPs) were found in glioblastoma (GBM) cell-lines, as well as in GBM biopsies as compared with low-grade astrocytoma (LGA) and normal brain samples, indicating a role in malignant progression. A careful review of the available literature revealed that both the expression and role of several of the 23 human MMP proteins is controversely discussed and for some there are no data available at all. We therefore screened a panel of 15 LGA and 15 GBM biopsy samples for those MMPs for which there is either no, very limited or even contradictory data available. Hence, this is the first complete compilation of the expression pattern of all 23 human MMPs in astrocytic tumors. This study will support a better understanding of the specific expression patterns and interaction of proteolytic enzymes in malignant human glioma and may provide additional starting points for targeted patient therapy.
Collapse
Affiliation(s)
- Carsten Hagemann
- Carsten Hagemann, Ralf-Ingo Ernestus, Giles H Vince, Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany
| | | | | | | |
Collapse
|
36
|
Mentlein R, Hattermann K, Held-Feindt J. Lost in disruption: Role of proteases in glioma invasion and progression. Biochim Biophys Acta Rev Cancer 2012; 1825:178-85. [DOI: 10.1016/j.bbcan.2011.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 12/12/2022]
|
37
|
Yoshida D, Noha M, Watanabe K, Sugisaki Y, Teramoto A. Novel approach to analysis of in vitro tumor angiogenesis with a variable-pressure scanning electron microscope: suppression by matrix metalloproteinase inhibitor SI-27. Brain Tumor Pathol 2012; 18:89-100. [PMID: 11908879 DOI: 10.1007/bf02479421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Degradation of basement membrane by metalloproteinases (MMP) is a critical step in tumor angiogenesis. To evaluate in vitro angiogenesis, several models have been employed, including bovine cornea, fenestrated rat brain, Matrigel, and others. These models did not provide quantitative analysis of capillary formation. The current study aimed for a novel approach to in vitro assay of angiogenesis with a "wet scanning electron microscope (SEM)" to investigate suppression of tumor angiogenesis by the MMP inhibitor, SI-27. The effects of noncytotoxic concentrations of SI-27 (1-100 microM) were determined on nonmitogenic vascular endothelial growth factor (VEGF) (10 ng/ml)-mediated cell motility and in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs). Activities of MMP and tissue inhibitor of metalloproteinase (TIMP) were determined by enzyme-linked immunosorbent assay (ELISA). Subsequently, the inhibitory effect of SI-27 was examined on in vitro angiogenesis stimulated by supernatants of human glioma cell lines (U87MG, U251MG, or U373MG). In vitro angiogenesis was quantitatively analyzed with a variable-pressure SEM. Cell motility and in vitro angiogenesis by HUVECs were significantly increased by VEGF along with elevated MMP-1 and -2 activity, whereas SI-27 significantly suppressed VEGF-mediated in vitro angiogenesis and inactivated both MMP-1 and MMP-2, but not inhibited cell motility. The angiogenesis promoted by glioma supernatants showed a significant reduction in the presence of SI-27. SI-27, a novel MMP inhibitor, inhibited tumor angiogenesis in vitro. It can be anticipated to prevent tumor growth through its angiosuppressive effect. Quantitative analysis with a variable-pressure SEM is a novel approach to in vitro angiogenesis assay.
Collapse
Affiliation(s)
- D Yoshida
- Department of Neurosurgery, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
38
|
Samukange V, Yasukawa K, Inouye K. Interaction of 8-anilinonaphthalene 1-sulphonate (ANS) and human matrix metalloproteinase 7 (MMP-7) as examined by MMP-7 activity and ANS fluorescence. J Biochem 2012; 151:533-40. [DOI: 10.1093/jb/mvs025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Mao XW, Mekonnen T, Kennedy AR, Gridley DS. Differential expression of oxidative stress and extracellular matrix remodeling genes in low- or high-dose-rate photon-irradiated skin. Radiat Res 2011; 176:187-97. [PMID: 21574862 DOI: 10.1667/rr2493.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Changes in the expression of genes implicated in oxidative stress and in extracellular matrix (ECM) remodeling and selected protein expression profiles in mouse skin were examined after exposure to low-dose-rate or high-dose-rate photon irradiation. ICR mice received whole-body γ rays to total doses of 0, 0.25, 0.5 and 1 Gy at dose rates of 50 cGy/h or 50 cGy/min. Skin tissues were harvested for characterization at 4 h after irradiation. For oxidative stress after low-dose-rate exposure, 0.25, 0.5 and 1 Gy significantly altered 27, 23 and 25 genes, respectively, among 84 genes assessed (P < 0.05). At doses as low as 0.25 Gy, many genes responsible for regulating the production of reactive oxygen species (ROS) were significantly altered, with changes >2-fold compared to 0 Gy. For an ECM profile, 18-20 out of 84 genes were significantly up- or downregulated after low-dose-rate exposure. After high-dose-rate irradiation, of 84 genes associated with oxidative stress, 16, 22 and 22 genes were significantly affected after 0.25, 0.5 and 1 Gy, respectively. Compared to low-dose-rate radiation, high-dose-rate exposure resulted in different ECM gene expression profiles. The most striking changes after low-dose-rate or high-dose-rate exposure on ECM profiles were on genes encoding matrix metalloproteinases (MMPs), e.g., Mmp2 and Mmp15 for low dose rate and Mmp9 and Mmp11 for high dose rate. Immunostaining for MMP-2 and MMP-9 proteins showed radiation dose rate-dependent differences. These data revealed that exposure to low total doses with low-dose-rate or high-dose-rate photon radiation induced oxidative stress and ECM-associated alterations in gene expression profiles. The expression of many genes was differentially regulated by different total dose and/or dose-rate regimens.
Collapse
Affiliation(s)
- Xiao Wen Mao
- Department of Radiation Medicine, Radiation Research Laboratories, Loma Linda University Medical Center, Loma Linda, California 92354, USA.
| | | | | | | |
Collapse
|
40
|
Tremblay P, Beaudet MJ, Tremblay E, Rueda N, Thomas T, Vallières L. Matrix metalloproteinase 2 attenuates brain tumour growth, while promoting macrophage recruitment and vascular repair. J Pathol 2011; 224:222-33. [PMID: 21462187 DOI: 10.1002/path.2854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/25/2010] [Accepted: 12/24/2010] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinase 2 (MMP2) is an extracellular protein-degrading enzyme widely believed to be involved in the invasion of brain tumour cells. However, this assumption is mainly based on in vitro studies. By characterizing the transcriptome and in vivo properties of 20 astrocytoma cell lines, we found that the levels of MMP2 were higher in GFAP(-) astrocytoma cells and correlated with their ability to induce vascular changes, a common complication of malignant tumours. To study the relationship between MMP2 expression and vascular alteration, we intracerebrally implanted immunodeficient mice with human astrocytoma cells stably transduced with lentiviral vectors expressing either MMP2 or a short hairpin RNA against MMP2. We found that the tumours depleted of MMP2 were larger, contained more proliferating cells and fewer macrophages, and had a vasculature that was more destabilized and regressed with fewer capillary sprouts. In contrast, the tumours overexpressing MMP2 were smaller and showed no histological difference compared to the controls. We therefore suggest that MMP2 is not the cause of vascular atypia in malignant brain tumours, but is involved in a tissue repair response that tends to limit the growth of these tumours. This study argues against MMP2 inhibition as a therapeutic approach for brain cancer and provides a comprehensive characterization of popular astrocytoma cell lines that should help to identify alternative targets.
Collapse
Affiliation(s)
- Pierrot Tremblay
- Department of Endocrinology and Genomics, Laval University Hospital Research Center, Quebec, QC, Canada G1V 4G2
| | | | | | | | | | | |
Collapse
|
41
|
Lu Y, Jiang F, Zheng X, Katakowski M, Buller B, To SST, Chopp M. TGF-β1 promotes motility and invasiveness of glioma cells through activation of ADAM17. Oncol Rep 2011; 25:1329-35. [PMID: 21359495 DOI: 10.3892/or.2011.1195] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/27/2010] [Indexed: 01/29/2023] Open
Abstract
The transforming growth factor β1 (TGF-β1) belongs to a family of structurally related polypeptide factors. TGF-beta plays an important role in the pathobiology of invasion of malignant gliomas. The objective of the present study was to investigate the impact of TNF-α converting enzyme (TACE/ADAM17) signaling on the process of TGF-β1-stimulated migration and invasion of T98G glioma cells. We found that TGF-β1 increased migration and invasiveness in glioma cells. Addition of the TGF-β1 receptor inhibitor, SB431542, reduced the TGF-β1-stimulated migration and invasiveness of glioma cells. In addition, TGF-β1-induced migration and invasiveness were also blocked by exposure to an ADAM17 inhibitor, TAPI-2. Furthermore, ADAM17 mRNA and protein expression were up-regulated by TGF-β1. Treatment with SB431542 and TAPI-2 blocked TGF-β1-induced ADAM17 protein expression. In summary, these results indicate that TGF-β1 promotes cell migration and invasiveness of glioma cells through stimulation of ADAM17.
Collapse
Affiliation(s)
- Yong Lu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | | | | | | | | | | | | |
Collapse
|
42
|
Corona R, Verguts J, Schonman R, Binda MM, Mailova K, Koninckx PR. Postoperative inflammation in the abdominal cavity increases adhesion formation in a laparoscopic mouse model. Fertil Steril 2011; 95:1224-8. [PMID: 21295297 DOI: 10.1016/j.fertnstert.2011.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/25/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate acute inflammation in the peritoneal cavity in adhesion formation. DESIGN Prospective randomized, controlled trial. SETTING University laboratory research center. ANIMAL(S) 9- to 10-week-old BALB/c female mice. INTERVENTION(S) In a laparoscopic mouse model, acute inflammation in the peritoneal cavity evaluated in CO(2) pneumoperitoneum enhanced adhesions, by CO(2) pneumoperitoneum plus manipulation, and in the latter group plus dexamethasone. MAIN OUTCOME MEASURE(S) Qualitative and quantitative adhesion scores and an acute inflammation score (neoangiogenesis, diapedesis, and leukocyte accumulation). RESULT(S) Adhesions at the lesion site were enhanced by the CO(2) pneumoperitoneum, further enhanced by manipulation, and decreased by the administration of dexamethasone. The acute inflammation scores (total, neoangiogenesis, diapedesis, and leukocyte accumulation) strongly correlated with the total adhesion score. Inflammation scores were similar at both the surgical lesion and the parietal peritoneum. CONCLUSION(S) Acute inflammation of the entire peritoneum cavity is an important mechanism involved in adhesion formation and enhances adhesion formation at the lesion site.
Collapse
Affiliation(s)
- Roberta Corona
- Department of Obstetrics and Gynaecology, University Hospital Gasthuisberg, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
43
|
Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J Neurosci 2010; 30:15337-57. [PMID: 21084591 DOI: 10.1523/jneurosci.3467-10.2010] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the metzincin family of metalloproteinases have long been considered merely degradative enzymes for extracellular matrix molecules. Recently, however, there has been growing appreciation for these proteinases and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs), as fine modulators of nervous system physiology and pathology. Present all along the phylogenetic tree, in all neural cell types, from the nucleus to the synapse and in the extracellular space, metalloproteinases exhibit a complex spatiotemporal profile of expression in the nervous parenchyma and at the neurovascular interface. The irreversibility of their proteolytic activity on numerous biofactors (e.g., growth factors, cytokines, receptors, DNA repair enzymes, matrix proteins) is ideally suited to sustain structural changes that are involved in physiological or postlesion remodeling of neural networks, learning consolidation or impairment, neurodegenerative and neuroinflammatory processes, or progression of malignant gliomas. The present review provides a state of the art overview of the involvement of the metzincin/TIMP system in these processes and the prospects of new therapeutic strategies based on the control of metalloproteinase activity.
Collapse
|
44
|
Hagemann C, Anacker J, Haas S, Riesner D, Schömig B, Ernestus RI, Vince GH. Comparative expression pattern of Matrix-Metalloproteinases in human glioblastoma cell-lines and primary cultures. BMC Res Notes 2010; 3:293. [PMID: 21067565 PMCID: PMC2996401 DOI: 10.1186/1756-0500-3-293] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/10/2010] [Indexed: 02/07/2023] Open
Abstract
Background Glioblastomas (GBM), the most frequent malignant brain tumors in adults, are characterized by an aggressive local growth pattern and highly invasive tumor cells. This invasion is facilitated by expression of matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases. They mediate the degradation of protein components of the extracellular matrix. Twenty-three family members are known. Elevated levels of several of them have been reported in GBM. GBM cell-lines are used for in vitro studies of cell migration and invasion. Therefore, it is essential to know their MMP expression patterns. Only limited data for some of the cell-lines are published, yet. To fill the gaps in our knowledge would help to choose suitable model systems for analysis of regulation and function of MMPs during GBM tumorigenesis, cell migration and invasion. Findings We analysed MMP-1, -8, -9, -10, -11, -13, -17, -19, -20, -21, -23, -24, -26, -27, and MMP-28 expression in seven GBM cell-lines (SNB-19, GaMG, U251, U87, U373, U343, U138) and in four primary cell cultures by semiquantitative RT-PCR, followed changes in the MMP expression pattern with increasing passages of cell culture and examined the influence of TNF-α and TGF-β1 stimulation on the expression of selected MMPs in U251 and U373 cells. MMP-13, -17, -19 and -24 were expressed by all analyzed cell-lines, whereas MMP-20 and MMP-21 were not expressed by any of them. The other MMPs showed variable expression, which was dependent on passage number. Primary cells displayed a similar MMP-expression pattern as the cell-lines. In U251 and U373 cells expression of MMP-9 and MMP-19 was stimulated by TNF-α. MMP-1 mRNA expression was significantly increased in U373 cells, but not in U251 cells by this cytokine. Whereas TGF-β1 had no impact on MMP expression in U251 cells, it significantly induced MMP-11 and MMP-24 expression in U373 cells. Conclusions Literature-data and our own results suggest that the expression pattern of MMPs is highly variable, dependent on the cell-line and the cell-culture conditions used and that also regulation of MMP expression by cytokines is cell-line dependent. This is of high impact for the transfer of cell-culture experiments to clinical implementation.
Collapse
Affiliation(s)
- Carsten Hagemann
- University of Würzburg, Department of Neurosurgery, Tumorbiology Laboratory, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Pitchakarn P, Ogawa K, Suzuki S, Takahashi S, Asamoto M, Chewonarin T, Limtrakul P, Shirai T. Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo. Cancer Sci 2010; 101:2234-40. [PMID: 20731662 PMCID: PMC11158121 DOI: 10.1111/j.1349-7006.2010.01669.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer metastasis is a major cause of death in cancer patients, with invasion as a first step greatly contributing to the failure of clinical treatments. Any compounds with an inhibitory influence on this process are therefore of prime interest. Momordica charantia (bitter melon) is widely consumed as a vegetable and especially as a folk medicine in Asia. Here, we investigated the anti-invasive effects of bitter melon leaf extract (BMLE) on a rat prostate cancer cell line (PLS10) in vitro and in vivo. The results indicated that non-toxic concentrations of BMLE significantly inhibited the migration and invasion of cells in vitro. The results of zymography showed that BMLE inhibited the secretion of MMP-2, MMP-9 and urokinase plasminogen activator (uPA) from PLS10. Real-time RT-PCR revealed that BMLE not only significantly decreased gene expression of MMP-2 and MMP-9, but also markedly increased the mRNA level of TIMP-2, known to have inhibitory effects on the activity of MMP-2. An EnzChek gelatinase/collagenase assay showed that collagenase type IV activity was partially inhibited by BMLE. In the in vivo study, intravenous inoculation of PLS10 to nude mice resulted in a 100% survival rate in the mice given a BMLE-diet as compared with 80% in the controls. The incidence of lung metastasis did not show any difference, but the percentage lung area occupied by metastatic lesions was slightly decreased in the 0.1% BMLE treatment group and significantly decreased with 1% BMLE treatment as compared with the control. Thus, the results indicate for the first time an anti-metastatic effect of BMLE both in vitro and in vivo.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Malik N, Kumar R, Prasad KN, Kawal P, Srivastava A, Mahapatra AK. Association of matrix metalloproteinase-1 gene polymorphism with glioblastoma multiforme in a northern Indian population. J Neurooncol 2010; 102:347-52. [PMID: 20706772 DOI: 10.1007/s11060-010-0337-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 07/27/2010] [Indexed: 11/25/2022]
Abstract
Matrix metalloproteinase-1 (MMP-1) is known to be involved in the pathogenesis of glioma. It damages the extra-cellular matrix to produce invasiveness in cancer tissue, and hence has a direct effect in cancer invasion. The study aims to explore the association of single nucleotide polymorphism of -1607 MMP-1 gene with susceptibility to glioblastoma multiforme (GBM) in northern Indian subjects. One hundred and ten GBM patients and 150 healthy controls were included in this study. 1607 MMP-1 gene was studied by PCR-RFLP; different genotypes being combinations of 1G and 2G allele (1G/1G, 1G/2G and 2G/2G). 2G/2G genotype was significantly associated with GBM patients (OR, 2.24; P = 0.016; 95% CI, 1.16-4.30) as compared to controls. Prevalence of the 2G allele of -1607 MMP-1 polymorphism was significantly greater in GBM patients as compared to controls (62.3 vs 48.3%, OR, 1.76; P = 0.002; 95% CI, 1.23-2.52). This study suggests that the 2G/2G genotype and 2G allele of -1607 MMP-1 polymorphism are associated with an increased susceptibility for developing GBM.
Collapse
Affiliation(s)
- Nitin Malik
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | | | | | | | | | | |
Collapse
|
47
|
Anticancer activity of PEGylated matrix metalloproteinase cleavable peptide-conjugated adriamycin against malignant glioma cells. Int J Pharm 2010; 387:209-14. [DOI: 10.1016/j.ijpharm.2009.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/04/2009] [Accepted: 11/24/2009] [Indexed: 11/15/2022]
|
48
|
Colin C, Voutsinos-Porche B, Nanni I, Fina F, Metellus P, Intagliata D, Baeza N, Bouvier C, Delfino C, Loundou A, Chinot O, Lah T, Kos J, Martin PM, Ouafik L, Figarella-Branger D. High expression of cathepsin B and plasminogen activator inhibitor type-1 are strong predictors of survival in glioblastomas. Acta Neuropathol 2009; 118:745-54. [PMID: 19774387 DOI: 10.1007/s00401-009-0592-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/21/2009] [Accepted: 09/12/2009] [Indexed: 12/23/2022]
Abstract
In contrast to pilocytic astrocytomas (WHO grade I gliomas) that are circumscribed and cured by surgical resection, invasion is a hallmark of grades II-IV gliomas. Proteases play a major role in the invasion process and correlations between glioma grading, survival and protease expression have been demonstrated. In this study, we have chosen to study using different technical approaches (Q-RT-PCR, in situ hybridization and immunohistochemistry) the expression of five molecules involved in extracellular matrix degradation (cathepsin B, MMP2, MMP9, uPA and PAI-1) in glioblastomas in order to determine their prognostic impact among grade IV gliomas. Pilocytic astrocytomas were used as controls. Q-RT-PCR showed that transcripts of uPA, PAI-1, cathepsin B and MMP9 were significantly more expressed in glioblastomas (n = 52), in comparison to pilocytic astrocytomas (n = 17) (P = 0.049, P < 0.0001, P = 0.03 and P < 0.0001, respectively). On both univariate and multivariate analyses, cathepsin B and PAI-1 were strong predictors of overall survival among the group of glioblastomas (P < 0.0001 and P = 0.01, respectively). Immunohistochemical expression of cathepsin B further confirmed its prognostic value in an independent cohort of patients with glioblastoma. In situ hybridization showed that uPA is detected at the invasive edge of glioblastomas, whereas PAI-1 is more abundant in microvascular proliferation and pseudo-palisading cells than at the infiltrative edges. These results suggest that cathepsin B and PAI-1 are important biomarkers for the stratification of glioblastoma patients with respect to survival.
Collapse
Affiliation(s)
- Carole Colin
- INSERM U911, Centre de Recherche en Oncologie et Oncopharmacologie (CRO2), Angiogenèse, Invasivité et Microenvironnement Tumoral, Faculté de Médecine Timone, 27, Bd Jean Moulin, 13005, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Teodorczyk M, Martin-Villalba A. Sensing invasion: cell surface receptors driving spreading of glioblastoma. J Cell Physiol 2009; 222:1-10. [PMID: 19688773 DOI: 10.1002/jcp.21901] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumour in adults. One main source of its high malignancy is the invasion of isolated tumour cells into the surrounding parenchyma, which makes surgical resection an insufficient therapy in nearly all cases. The invasion is triggered by several cell surface receptors including receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), TGF-beta receptor, integrins, immunoglobulins, tumour necrosis factor (TNF) family, cytokine receptors, and protein tyrosine phosphatase receptors. The cross-talk between cell-surface receptors and the redundancy of downstream effectors make analysis of invasive signals even more complex. Therapies involving inhibition of single receptors do not give promising outcomes and a thorough knowledge of invasive signals of common and exclusive signalling components is required for design of best combinatory treatment schemes to fight the disease.
Collapse
Affiliation(s)
- Marcin Teodorczyk
- Molecular Neurobiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
50
|
Pullen NA, Fillmore HL. Induction of matrix metalloproteinase-1 and glioma cell motility by nitric oxide. J Neurooncol 2009; 96:201-9. [PMID: 19629394 DOI: 10.1007/s11060-009-9965-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 07/06/2009] [Indexed: 01/09/2023]
Abstract
High grade gliomas invariably recur due in a large part to tumor cells permeating normal brain in an inaccessible, diffuse manner. Previous work demonstrates that the expression of matrix metalloproteinases (MMP) contributes to this characteristic. Not only can MMPs assist a cell in traversing its environment by clearing extracellular matrix molecules, but they can also impact non-traditional downstream signals that affect a cell's ability to interact and respond to its surroundings. Contributions to the induction of MMP expression and functional significance in glioma are still under investigation. Evidence in other cancer settings indicates that nitric oxide (NO) may play a role in tumor/cell progression that can influence MMP production. Matrix metalloproteinase-1 (MMP-1), also known as interstitial collagenase, and the constitutive nitric oxide synthases (NOS) have been shown to be over-expressed in high grade gliomas. In the current study we investigated the potential involvements of NO with regard to MMP-1 and functional glioma cell movement. With the treatment of the NO donor sodium nitroprusside (SNP), there was significant induction of MMP-1 mRNA, secreted MMP-1 protein and motility of glioma cell lines within 48 h. RNA inhibition of MMP-1 through transient transfection of three MMP-1 specific siRNAs revealed a marked abrogation of the NO-mediated induction of motility. In addition, application of the NOS inhibitor N(omega)-Nitro-L-arginine methyl ester (L-NAME) impaired movement of glioma cells. These data provide evidence for a regulatory axis of high grade glioma cell movement from NO through MMP-1, with NOS inhibitor results showing promise for future pharmacologic investigation.
Collapse
Affiliation(s)
- Nicholas A Pullen
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, 1101 E. Marshall St, P.O. Box 980709, Richmond, VA 23298-0709, USA
| | | |
Collapse
|