1
|
Lu H, Shi JX, Zhang DM, Wang HD, Hang CH, Chen HL, Yin HX. Inhibition of hemolysate-induced iNOS and COX-2 expression by genistein through suppression of NF-кB activation in primary astrocytes. J Neurol Sci 2009; 278:91-5. [DOI: 10.1016/j.jns.2008.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/30/2008] [Accepted: 12/09/2008] [Indexed: 11/26/2022]
|
2
|
Lu H, Shi JX, Zhang DM, Shen J, Lin YX, Hang CH, Yin HX. Hemolysate-induced expression of intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 expression in cultured brain microvascular endothelial cells via through ROS-dependent NF-kappaB pathways. Cell Mol Neurobiol 2009; 29:87-95. [PMID: 18726687 PMCID: PMC11506154 DOI: 10.1007/s10571-008-9300-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/31/2008] [Indexed: 01/04/2023]
Abstract
In order to determine the possible effects of hemolysate on brain microvascular endothelial cells (BMECs), we examined the effects of hemolysate on the expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1), generation of reactive oxygen species (ROS), and NF-kappaB activation in rat BMECs. Hemolysate induced the expression of ICAM-1 and MCP-1 in endothelial cells. In addition, hemolysate stimulated nuclear translocation of the p65 subunit of NF-kappaB, and NF-kappaB DNA-binding activity in BMECs. Furthermore, hemolysate increased ROS generation, and hemolysate-induced ICAM-1and MCP-1 expression and NF-kappaB activation were abrogated in the presence of the direct scavenger of ROS. Taken together, our results indicate that hemolysate can induce inflammatory responses that increase expression of ICAM-1 and MCP-1, through ROS-dependent NF-kappaB activation in BMECs.
Collapse
Affiliation(s)
- Hua Lu
- Department of Neurosurgery, Jinling Hospital, Clinical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 China
| | - Ji-Xin Shi
- Department of Neurosurgery, Jinling Hospital, Clinical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 China
| | - Dong-Mei Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Jie Shen
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University, Nanjing, 210093 China
| | - Yi-Xing Lin
- Department of Neurosurgery, Jinling Hospital, Clinical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 China
| | - Chun-Hua Hang
- Department of Neurosurgery, Jinling Hospital, Clinical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 China
| | - Hong-Xia Yin
- Department of Neurosurgery, Jinling Hospital, Clinical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002 China
| |
Collapse
|
3
|
Acute and chronic effects of oxyhemoglobin on voltage-dependent ion channels in cerebral arteries. ACTA NEUROCHIRURGICA SUPPLEMENT 2008; 104:99-102. [DOI: 10.1007/978-3-211-75718-5_19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Wellman GC. Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage. Neurol Res 2007; 28:690-702. [PMID: 17164032 DOI: 10.1179/016164106x151972] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Entry of Ca(2+) through voltage-dependent calcium channels (VDCCs) is critical to the regulation of intracellular free calcium concentration ([Ca(2+)](i)) in vascular smooth muscle and thus the control of cerebral artery diameter. Increased VDCC activity in cerebral artery myocytes may contribute to decreased cerebral blood flow and the accompanying neurological deficits associated with subarachnoid hemorrhage (SAH). This review will focus on the impact of SAH on VDCCs and K(+)-selective ion channels, two important classes of ion channels located in the plasma membrane of cerebral artery myocytes. SAH may act through a variety of direct and indirect mechanisms to increase the activity of VDCCs promoting cerebral artery constriction and reduced cerebral blood flow. Further, SAH may lead to suppression of K(+) channel activity to cause membrane potential depolarization to enhance VDCC activity. The ability of VDCC blockers or K(+) channel activators to alleviate SAH-induced vasospasm will also be examined.
Collapse
Affiliation(s)
- George C Wellman
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA.
| |
Collapse
|
5
|
Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 2006; 28:399-414. [PMID: 16759443 DOI: 10.1179/016164106x115008] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Increasing body of experimental and clinical data indicates that early brain injury after initial bleeding largely contributes to unfavorable outcome after subarachnoid hemorrhage (SAH). This review presents molecular mechanisms underlying brain injury at its early stages after SAH. METHODS PubMed was searched using term 'subarachnoid hemorrhage' and key words referring to molecular and cellular pathomechanisms of SAH-induced early brain injury. RESULTS The authors reviewed intracranial phenomena and molecular agents that contribute to the early development of pathological sequelae of SAH in cerebral and vascular tissues, including cerebral ischemia and its interactions with injurious blood components, blood-brain barrier disruption, brain edema and apoptosis. DISCUSSION It is believed that detailed knowledge of molecular signaling pathways after SAH will serve to improve therapeutic interventions. The most promising approach is the protection of neurovascular unit including anti-apoptosis therapy.
Collapse
|
6
|
Abstract
Cerebral vasospasm is a deadly complication following the rupture of intracranial aneurysms. The time course of cerebral vasospasm is unique in that it is slow developing, usually takes 4-7 days to peak, but lasts up to 2-3 weeks, and is resistant to most known vasodilators. These special features make cerebral vasospasm the most important determinant in the outcome of patients suffering subarachnoid hemorrhage. The available treatment strategies include mechanical dilation of spastic cerebral arteries (angioplasty) and non-selective vasodilatation such as by Ca(2+) channel blockers. One new development in the experimental treatment of cerebral vasospasm is the looming target of signaling pathways. Understanding vasospastic signals in cerebral arteries might offer a new avenue for selective treatment of cerebral vasospasm in the future.
Collapse
Affiliation(s)
- Alexander Y. Zubkov
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | |
Collapse
|
7
|
Kimura H, Meguro T, Badr A, Zhang JH. Suramin-induced reversal of chronic cerebral vasospasm in experimental subarachnoid hemorrhage. J Neurosurg 2002; 97:129-35. [PMID: 12134903 DOI: 10.3171/jns.2002.97.1.0129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The naphthylsulfonate derivative suramin is an inhibitor of growth factor receptors (receptor tyrosine kinases) and G protein-coupled P2Y receptors. Both types of these receptors are suspected of being involved in cerebral vasospasm after subarachnoid hemorrhage (SAH). In the current study, the authors examined the therapeutic effects of suramin and a selective P2X-receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), in the reversal of vasospasm in an established canine double-hemorrhage model. METHODS Twenty-four dogs underwent double blood injection into the cisterna magna, with injections given on Days 0 and 2. The dogs were divided randomly into three groups (six animals in each group) to be treated from Days 2 through 6 with the vehicle dimethyl sulfoxide, suramin, or PPADS. An additional group of six dogs received double blood injection without any treatment and served as an SAH control group. The animals were killed on Day 7. Angiography was performed on Day 0 before blood injection and again on Day 7 before the animals were killed. After the death of the animals, the basilar arteries (BAs) were collected for morphological studies and determination of tyrosine kinase expression, and the bloody cerebrospinal fluid (CSF) produced by the hemorrhages was collected for measurement of oxyhemoglobin and adenosine triphosphate (ATP). In the SAH control group, the mean diameter of the BAs on Day 7 was 46.23 +/- 6.32% of the value on Day 0 (which served as a reference of 100%). In the DMSO-treated group, the mean residual diameter of the BA was 47.77 +/- 0.8% on Day 7 compared with the value on Day 0. Suramin, but not PPADS, increased the residual diameter to 74.02 +/- 4.24% on Day 7. On Day 7 the level of ATP in the CSF was decreased and the level of oxyhemoglobin was increased, compared with values measured on Day 0. Suramin, but not PPADS, reduced tyrosine phosphorylation in the spastic BAs. CONCLUSIONS By reducing tyrosine kinase activity, suramin may be useful in the treatment of cerebral vasospasm.
Collapse
Affiliation(s)
- Hitoshi Kimura
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, USA
| | | | | | | |
Collapse
|
8
|
Patlolla A, Ogihara K, Zubkov A, Aoki K, Parent AD, Zhang JH. Role of tyrosine kinase in fibroblast compaction and cerebral vasospasm. ACTA NEUROCHIRURGICA. SUPPLEMENT 2001; 76:227-30. [PMID: 11450013 DOI: 10.1007/978-3-7091-6346-7_46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Hemolysate, a proposed causative agent for cerebral vasospasm following subarachnoid hemorrhage, produces contraction of cerebral arteries by activation of tyrosine kinases. In addition, hemolysate accelerates fibroblast collagen compaction that could play a role in cerebral vasospasm. We studied the effect of hemolysate on tyrosine phosphorylation and fibroblast collagen compaction in cultured dog cerebral and human dermal fibroblasts using tyrosine kinase inhibitors and tyrosine antibodies (Western blot). 1) Hemolysate was found to enhance tyrosine phosphorylation of two proteins approximately 64 and 120 kDa. The effect of hemolysate was time- and concentration-dependent. 2) Two main components in hemolysate, oxyhemoglobin and adenosine triphosphate (ATP), produced similar results to that of hemolysate. 3) Tyrosine kinase inhibitor genistein and tyrphostin A51 (30 microM) markedly reduced the effect of hemolysate on tyrosine phosphorylation. 4) In another study, hemolysate increased fibroblast collagen compaction and the effect of hemolysate was reduced by genistein and tyrphostin A51. We conclude that hemolysate activates tyrosine kinase that may lead to acceleration of fibroblast compaction. This effect of hemolysate may contribute to cerebral vasospasm.
Collapse
Affiliation(s)
- A Patlolla
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Twenty-five years after the discovery of protein kinase C (PKC), the physiologic function of PKC, and especially its role in pathologic conditions, remains a subject of great interest with 30,000 studies published on these aspects. In the cerebral circulation, PKC plays a role in the regulation of myogenic tone by sensitization of myofilaments to calcium. Protein kinase C phosphorylates various ion channels including augmenting voltage-dependent Ca2+ channels and inhibiting K+ channels, which both lead to vessel contraction. These actions of PKC amplify vascular reactivity to different agonists and may be critical in the regulation of cerebral artery tone during vasospasm. Evidence accumulated during at least the last decade suggest that activation of PKC in cerebral vasospasm results in a delayed but prolonged contraction of major arteries after subarachnoid hemorrhage. Most of the experimental results in vitro or in animal models support the view that PKC is involved in cerebral vasospasm. Implication of PKC in cerebral vasospasm helps explain increased arterial narrowing at the signal transduction level and alters current perceptions that the pathophysiology is caused by a combination of multiple receptor activation, hemoglobin toxicity, and damaged neurogenic control. Activation of protein kinase C also interacts with other signaling pathways such as myosin light chain kinase, nitric oxide, intracellular Ca2+, protein tyrosine kinase, and its substrates such as mitogen-activated protein kinase. Even though identifying PKC revolutionized the understanding of cerebral vasospasm, clinical advances are hampered by the lack of clinical trials using selective PKC inhibitors.
Collapse
Affiliation(s)
- I Laher
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
10
|
Aoki K, Williams R, Zhang JH. Mechanism of hemolysate-induced [Ca2+]i elevation in cultured fibroblasts. Neurol Res 2001; 23:367-73. [PMID: 11428517 DOI: 10.1179/016164101101198578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Erythrocyte lysate (hemolysate) released from blood clot after subarachnoid hemorrhage is the causative agent for chronic cerebral vasospasm, a prolonged contraction of cerebral arteries. Fibroblasts, the outer layer cells of vessel wall that in contact with blood clot directly, may contribute to cerebral vasospasm. However, the effect of hemolysate on intracellular Ca2+ ([Ca2+]i) mobilization in fibroblasts has not been studied. We investigated hemolysate-induced [Ca2+]i mobilization in cultured neonatal human dermal and canine middle cerebral arterial fibroblasts by using fura-2 microfluorimetry. Hemolysate increased [Ca2+]i by releasing internal Ca2+ stores and promoting Ca2+ entry. Tyrosine kinase inhibitors partially but significantly reduced the effect of hemolysate. The major components of hemolysate, oxyhemoglobin (OxyHb) and adenosine triphosphate (ATP) failed to mimic the effect of hemolysate. In cultured canine middle cerebral arterial fibroblasts, hemolysate produced similar Ca2+ mobilization to that of dermal cells. OxyHb and ATP failed again to reproduce the effect of hemolysate. We conclude that hemolysate increases [Ca2+]i in fibroblasts and this effect of hemolysate is not mediated by OxyHb or ATP but by some unknown factors.
Collapse
Affiliation(s)
- K Aoki
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
11
|
Zubkov AY, Rollins KS, McGehee B, Parent AD, Zhang JH. Relaxant effect of U0126 in hemolysate-, oxyhemoglobin-, and bloody cerebrospinal fluid-induced contraction in rabbit basilar artery. Stroke 2001; 32:154-61. [PMID: 11136931 DOI: 10.1161/01.str.32.1.154] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE It has been suggested that mitogen-activated protein kinase (MAPK) is involved in cerebral vasospasm after subarachnoid hemorrhage. The present study was undertaken to explore the inhibitory effect of U0126, a novel MAPK inhibitor, in the contraction of the rabbit basilar artery by 3 spasmogens: hemolysate, oxyhemoglobin, and bloody cerebrospinal fluid (CSF) from patients with vasospasm. METHODS The contraction and relaxation of rabbit basilar arteries were measured by isometric tension. MAPK immunoprecipitation was assessed by Western blot analysis. RESULTS (1) Pretreatment of the rabbit basilar arteries with U0126 reduced contractions to hemolysate, oxyhemoglobin, or bloody CSF applied subsequently. (2) In the absence of endothelial cells, U0126 produced an inhibitory effect similar to the contractions induced by hemolysate, oxyhemoglobin, or bloody CSF. (3) U0126 relaxed the sustained contraction induced by hemolysate, oxyhemoglobin, or bloody CSF. (4) Hemolysate, oxyhemoglobin, and bloody CSF enhanced MAPK immunoprecipitation. (5) U0126 reduced MAPK immunoprecipitation induced by hemolysate, oxyhemoglobin, and bloody CSF. (6) Hemolysate, oxyhemoglobin, and bloody CSF significantly increased MAPK activity in the rabbit basilar artery. (7) U0126 abolished the effect of hemolysate, oxyhemoglobin, or bloody CSF on MAPK activation. CONCLUSIONS This study demonstrated a role of MAPK in the contraction of rabbit basilar arteries by hemolysate, oxyhemoglobin, and bloody CSF. MAPK inhibitor U0126 may be useful in the treatment of cerebral vasospasm.
Collapse
Affiliation(s)
- A Y Zubkov
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
12
|
Aoki K, Zubkov AY, Parent AD, Zhang JH. Mechanism of ATP-induced [Ca(2+)](i) mobilization in rat basilar smooth muscle cells. Stroke 2000; 31:1377-84; discussion 1384-5. [PMID: 10835460 DOI: 10.1161/01.str.31.6.1377] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We have previously reported that extracellular ATP activates P(2u) receptors and increases intracellular free Ca(2+) ([Ca(2+)](i)) by G protein/phospholipase C/inositol 1,4,5-triphosphate pathways in cerebral artery smooth muscle cells. However, the possible contribution of other signaling pathways remains unclear. This study was undertaken to investigate the role of protein tyrosine kinase (PTK) and mitogen-activated protein kinase (MAPK) in mediating ATP-induced Ca(2+) mobilization in rat basilar artery smooth muscle cells (RBASMCs). METHODS RBASMCs were freshly isolated, and [Ca(2+)](i) was monitored by fura 2 microfluorimetry. MAPK phosphorylation was studied by the Western blot technique. RESULTS ATP produced a biphasic [Ca(2+)](i) response, which consists of releasing Ca(2+) from internal stores and influx from extracellular space. PTK inhibitors tyrphostin 51 and genistein inhibited [Ca(2+)](i) response to ATP. Tyrphostin A1, an inactive analogue of tyrphostins, failed to reduce the ATP-induced response. MAPK kinase inhibitor PD98059, but not U0126, reduced the ATP-induced [Ca(2+)](i) response. Phosphatidylinositol 3-kinase (PI3-K) tyrosine kinase inhibitor wortmannin, but not janus tyrosine kinase (JAK2) inhibitor AG490, partially inhibited the [Ca(2+)](i) response induced by ATP. In addition, ATP enhanced MAPK phosphorylation in a concentration- and time-dependent manner, and genistein, tyrphostin 51, PD98059, and U0126 inhibited MAPK phosphorylation. CONCLUSIONS Extracellular ATP produced [Ca(2+)](i) elevation and MAPK phosphorylation in RBASMCs, and the effect was regulated by PTK. The role of MAPK in ATP-induced [Ca(2+)](i) elevation is not clear. PI3-K tyrosine kinase and JAK2 tyrosine kinase may not play an important role in the ATP-induced [Ca(2+)](i) response in RBASMCs.
Collapse
MESH Headings
- Adenosine Triphosphate/physiology
- Animals
- Basilar Artery/cytology
- Blotting, Western
- Calcium Signaling/physiology
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Extracellular Space/chemistry
- Female
- Fluorometry
- Intracellular Fluid/chemistry
- Janus Kinase 2
- MAP Kinase Signaling System/drug effects
- Microchemistry
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- K Aoki
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | | | | | |
Collapse
|
13
|
Masumoto N, Tanabe Y, Saito M, Nakayama K. Attenuation of pressure-induced myogenic contraction and tyrosine phosphorylation by fasudil, a cerebral vasodilator, in rat cerebral artery. Br J Pharmacol 2000; 130:219-30. [PMID: 10807658 PMCID: PMC1572061 DOI: 10.1038/sj.bjp.0703292] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The mechanism by which fasudil inhibits pressure-induced myogenic contraction was studied with regard to tyrosine phosphorylation in rat cerebral artery. Intracellular Ca(2+) concentration ([Ca(2+)](i)) and vessel diameter were simultaneously measured. Total tyrosine phosphorylation level and phosphorylation of tyrosine 419 on pp60(src) required for its full catalytic activity were immunocytochemically detected in situ. Fasudil (1 - 100 microM) partially suppressed the increase in [Ca(2+)](i), and totally attenuated contraction elicited by pressurization from 10 to 60 mmHg. Furthermore, fasudil (100 microM) significantly attenuated tyrosine phosphorylation and the activity of pp60(src) augmented in situ by pressure. Herbimycin A (1 - 100 nM) and genistein (3 - 30 microM), tyrosine kinase inhibitors, effectively attenuated the pressure-induced increase in [Ca(2+)](i), contraction, tyrosine phosphorylation, and activation of pp60(src). Both fasudil and herbimycin A directly inhibited the pp60(src) activity in a cell free system. Orthovanadate (100 microM), a tyrosine phosphatase inhibitor, significantly potentiated the pressure-induced increase in [Ca(2+)](i) and contraction. Nicardipine (100 nM), a Ca(2+) antagonist, completely inhibited pressure-induced increase in [Ca(2+)](i) and contraction, but affected neither tyrosine phosphorylation nor activity of pp60(src) in the pressurized arteries. Arginine-glycine-aspartic acid-serine peptide (1 - 100 microM) concentration-dependently reduced the pressure-induced contraction. In addition to the hitherto reported vasodilatory actions of fasudil, the present results suggest the inhibition by fasudil of pressure-induced tyrosine phosphorylation and pp60(src) activation. The wide spectrum of inhibitory actions of fasudil may contribute to the effective attenuation of the pressure-induced contraction in the cerebral artery.
Collapse
Affiliation(s)
- Naohiro Masumoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yoshiyuki Tanabe
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka City, Shizuoka 422-8526, Japan
| | - Maki Saito
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka City, Shizuoka 422-8526, Japan
| | - Koichi Nakayama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka City, Shizuoka 422-8526, Japan
- Author for correspondence:
| |
Collapse
|
14
|
Zubkov AY, Rollins KS, Parent AD, Zhang J, Bryan RM. Mechanism of endothelin-1-induced contraction in rabbit basilar artery. Stroke 2000; 31:526-33. [PMID: 10657432 DOI: 10.1161/01.str.31.2.526] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Endothelin-1 (ET-1) is suggested to be a major cause of cerebral vasospasm after subarachnoid hemorrhage. However, the mechanism of ET-1-induced contraction in cerebral arteries remains unclear. This study was undertaken to demonstrate the possible role of protein tyrosine kinase (PTK), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC) in ET-1-induced contraction. METHODS PD-98059, damnacanthal, wortmannin, AG-490, genistein, calphostin C, and staurosporine were used to inhibit, or relax, the ET-1-induced contraction of basilar artery, studied with an isometric tension system. Immunoprecipitation of MAPK in ET-1-stimultated rings of basilar artery without or with the above inhibitors was studied with Western blot. RESULTS (1) ET-1 produced concentration-dependent contraction and MAPK immunoprecipitation in rabbit basilar artery by activation of ET(A) but not ET(B) receptors. (2) MAPK inhibitors PD-98059 and U-0126 produced dose-dependent inhibition of ET-1-induced contraction. (3) The Src tyrosine kinase inhibitor damnacanthal, the phosphatidylinositol-3 kinase inhibitor wortmannin, and the Janus tyrosine kinase(2) inhibitor AG-490 abolished ET-1-induced contraction. (4) The PKC inhibitor staurosporine but not calphostin C abolished ET-1-induced contraction, and the PTK inhibitor genistein partially reduced ET-1-induced contraction. (5) In arteries precontracted by ET-1, PD-98059, U-0126, wortmannin, AG-490, genistein, and staurosporine produced concentration-dependent relaxation. (6) ET-1 induced a biphasic and time-dependent MAPK immunoprecipitation. (7) PD-98059, U-0126, genistein, AG-490, and damnacanthal, but not staurosporine or wortmannin, abolished the effect of ET-1 on MAPK immunoreactivity. CONCLUSIONS This study demonstrated that MAPK may be involved in ET-1-induced contraction in rabbit basilar artery. MAPK is downstream of PTK, Src, and Janus tyrosine kinase pathways but may not be downstream of phosphatidylinositol-3 kinase pathways. The possible involvement of PKC in ET-1-induced contraction requires further investigation. Inhibition of these pathways may offer alternative treatment for ET-1-induced contraction and cerebral vasospasm.
Collapse
Affiliation(s)
- A Y Zubkov
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
15
|
Patlolla A, Ogihara K, Aoki K, Zubkov A, Bengten E, Parent AD, Zhang JH. Hemolysate induces tyrosine phosphorylation and collagen-lattice compaction in cultured fibroblasts. Biochem Biophys Res Commun 1999; 264:100-7. [PMID: 10527848 DOI: 10.1006/bbrc.1999.1383] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemolysate, a proposed causative agent for cerebral vasospasm after subarachnoid hemorrhage, produces contraction of cerebral arteries by activation of tyrosine kinases. In addition, hemolysate increases fibroblast-collagen compaction that could play a role in cerebral vasospasm. We studied the effect of hemolysate on tyrosine phosphorylation and fibroblast-collagen compaction in cultured canine basilar and human dermal fibroblasts using tyrosine kinase inhibitors and tyrosine antibodies. Hemolysate enhanced tyrosine phosphorylation of two proteins, 64 and 120 kDa, in cultured canine basilar artery and human dermal fibroblast cells. The effect of hemolysate was time-dependent and concentration-dependent. Oxyhemoglobin and ATP, the two major components of hemolysate, produced similar tyrosine phosphorylation, however, with a different time course. Tyrosine kinase inhibitors genistein and tyrphostin A51 abolished the effect of hemolysate in both cerebral and dermal fibroblasts. Hemolysate increased fibroblast-populated collagen-lattice compaction and tyrosine kinase inhibitors genistein and tyrphostin A51 attenuated the effect of hemolysate. We conclude that hemolysate activates tyrosine kinase that leads to the increase of fibroblast compaction. This effect of hemolysate may contribute to cerebral vasospasm.
Collapse
Affiliation(s)
- A Patlolla
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi, 39216, USA
| | | | | | | | | | | | | |
Collapse
|