1
|
Tur-Planells V, García-Sastre A, Cuadrado-Castano S, Nistal-Villan E. Engineering Non-Human RNA Viruses for Cancer Therapy. Vaccines (Basel) 2023; 11:1617. [PMID: 37897020 PMCID: PMC10611381 DOI: 10.3390/vaccines11101617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Alongside the development and progress in cancer immunotherapy, research in oncolytic viruses (OVs) continues advancing novel treatment strategies to the clinic. With almost 50 clinical trials carried out over the last decade, the opportunities for intervention using OVs are expanding beyond the old-fashioned concept of "lytic killers", with promising breakthrough therapeutic strategies focused on leveraging the immunostimulatory potential of different viral platforms. This review presents an overview of non-human-adapted RNA viruses engineered for cancer therapy. Moreover, we describe the diverse strategies employed to manipulate the genomes of these viruses to optimize their therapeutic capabilities. By focusing on different aspects of this particular group of viruses, we describe the insights into the promising advancements in the field of virotherapy and its potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Vicent Tur-Planells
- Microbiology Section, Department of Pharmaceutical Science and Health, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute (IGI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Estanislao Nistal-Villan
- Microbiology Section, Department of Pharmaceutical Science and Health, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain
| |
Collapse
|
2
|
Zhang Y, Nagalo BM. Immunovirotherapy Based on Recombinant Vesicular Stomatitis Virus: Where Are We? Front Immunol 2022; 13:898631. [PMID: 35837384 PMCID: PMC9273848 DOI: 10.3389/fimmu.2022.898631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Vesicular stomatitis virus (VSV), a negative-strand RNA virus of the Vesiculovirus genus, has demonstrated encouraging anti-neoplastic activity across multiple human cancer types. VSV is particularly attractive as an oncolytic agent because of its broad tropism, fast replication kinetics, and amenability to genetic manipulations. Furthermore, VSV-induced oncolysis can elicit a potent antitumor cytotoxic T-cell response to viral proteins and tumor-associated antigens, resulting in a long-lasting antitumor effect. Because of this multifaceted immunomodulatory property, VSV was investigated extensively as an immunovirotherapy alone or combined with other anticancer modalities, such as immune checkpoint blockade. Despite these recent opportunities to delineate synergistic and additive antitumor effects with existing anticancer therapies, FDA approval for the use of oncolytic VSV in humans has not yet been granted. This mini-review discusses factors that have prompted the use of VSV as an immunovirotherapy in human cancers and provides insights into future perspectives and research areas to improve VSV-based oncotherapy.
Collapse
Affiliation(s)
- Yuguo Zhang
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Bolni Marius Nagalo,
| |
Collapse
|
3
|
Rius-Rocabert S, García-Romero N, García A, Ayuso-Sacido A, Nistal-Villan E. Oncolytic Virotherapy in Glioma Tumors. Int J Mol Sci 2020; 21:ijms21207604. [PMID: 33066689 PMCID: PMC7589679 DOI: 10.3390/ijms21207604] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Glioma tumors are one of the most devastating cancer types. Glioblastoma is the most advanced stage with the worst prognosis. Current therapies are still unable to provide an effective cure. Recent advances in oncolytic immunotherapy have generated great expectations in the cancer therapy field. The use of oncolytic viruses (OVs) in cancer treatment is one such immune-related therapeutic alternative. OVs have a double oncolytic action by both directly destroying the cancer cells and stimulating a tumor specific immune response to return the ability of tumors to escape the control of the immune system. OVs are one promising alternative to conventional therapies in glioma tumor treatment. Several clinical trials have proven the feasibility of using some viruses to specifically infect tumors, eluding undesired toxic effects in the patient. Here, we revisited the literature to describe the main OVs proposed up to the present moment as therapeutic alternatives in order to destroy glioma cells in vitro and trigger tumor destruction in vivo. Oncolytic viruses were divided with respect to the genome in DNA and RNA viruses. Here, we highlight the results obtained in various clinical trials, which are exploring the use of these agents as an alternative where other approaches provide limited hope.
Collapse
Affiliation(s)
- Sergio Rius-Rocabert
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668 Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Correspondence: (A.A.-S.); (E.N.-V.); Tel.: +34-913-724-714 (E.N.-V.)
| | - Estanislao Nistal-Villan
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668 Madrid, Spain
- Correspondence: (A.A.-S.); (E.N.-V.); Tel.: +34-913-724-714 (E.N.-V.)
| |
Collapse
|
4
|
Béguin J, Foloppe J, Maurey C, Laloy E, Hortelano J, Nourtier V, Pichon C, Cochin S, Cordier P, Huet H, Quemeneur E, Klonjkowski B, Erbs P. Preclinical Evaluation of the Oncolytic Vaccinia Virus TG6002 by Translational Research on Canine Breast Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:57-66. [PMID: 33072863 PMCID: PMC7533293 DOI: 10.1016/j.omto.2020.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022]
Abstract
Oncolytic virotherapy is a promising therapeutic approach for the treatment of cancer. TG6002 is a recombinant oncolytic vaccinia virus deleted in the thymidine kinase and ribonucleotide reductase genes and armed with the suicide gene FCU1, which encodes a bifunctional chimeric protein that efficiently catalyzes the direct conversion of the nontoxic 5-fluorocytosine into the toxic metabolite 5-fluorouracil. In translational research, canine tumors and especially mammary cancers are relevant surrogates for human cancers and can be used as preclinical models. Here, we report that TG6002 is able to replicate in canine tumor cell lines and is oncolytic in such cells cultured in 2D or 3D as well as canine mammary tumor explants. Furthermore, intratumoral injections of TG6002 lead to inhibition of the proliferation of canine tumor cells grafted into mice. 5-fluorocytosine treatment of mice significantly improves the anti-tumoral activity of TG6002 infection, a finding that can be correlated with its conversion into 5-fluorouracil within infected fresh canine tumor biopsies. In conclusion, our study suggests that TG6002 associated with 5-fluorocytosine is a promising therapy for human and canine cancers.
Collapse
Affiliation(s)
- Jérémy Béguin
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
- Service de Médecine Interne, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
- Corresponding author: Jérémy Béguin, UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 7 Avenue du Général de Gaulle, Maisons-Alfort 94700, France.
| | - Johann Foloppe
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Christelle Maurey
- Service de Médecine Interne, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Eve Laloy
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Laboratoire d’Anatomo-cytopathologie, Biopôle Alfort, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France
| | - Julie Hortelano
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Virginie Nourtier
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Christelle Pichon
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Sandrine Cochin
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Pascale Cordier
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Hélène Huet
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
- Laboratoire d’Anatomo-cytopathologie, Biopôle Alfort, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France
| | - Eric Quemeneur
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
| | - Bernard Klonjkowski
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort 94700, France
| | - Philippe Erbs
- Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France
- Corresponding author: Philippe Erbs, Transgene S.A., 400 Boulevard Gonthier d’Andernach, Parc d’innovation, CS80166, Illkirch-Graffenstaden Cedex 67405, France.
| |
Collapse
|
5
|
Rex EA, Seo D, Gammon DB. Arbovirus Infections As Screening Tools for the Identification of Viral Immunomodulators and Host Antiviral Factors. J Vis Exp 2018. [PMID: 30272671 DOI: 10.3791/58244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RNA interference- and genome editing-based screening platforms have been widely used to identify host cell factors that restrict virus replication. However, these screens are typically conducted in cells that are naturally permissive to the viral pathogen under study. Therefore, the robust replication of viruses in control conditions may limit the dynamic range of these screens. Furthermore, these screens may be unable to easily identify cellular defense pathways that restrict virus replication if the virus is well-adapted to the host and capable of countering antiviral defenses. In this article, we describe a new paradigm for exploring virus-host interactions through the use of screens that center on naturally abortive infections by arboviruses such as vesicular stomatitis virus (VSV). Despite the ability of VSV to replicate in a wide range of dipteran insect and mammalian hosts, VSV undergoes a post-entry, abortive infection in a variety of cell lines derived from lepidopteran insects, such as the gypsy moth (Lymantria dispar). However, these abortive VSV infections can be "rescued" when host cell antiviral defenses are compromised. We describe how VSV strains encoding convenient reporter genes and restrictive L. dispar cell lines can be paired to set-up screens to identify host factors involved in arbovirus restriction. Furthermore, we also show the utility of these screening tools in the identification of virally encoded factors that rescue VSV replication during coinfection or through ectopic expression, including those encoded by mammalian viruses. The natural restriction of VSV replication in L. dispar cells provides a high signal-to-noise ratio when screening for the conditions that promote VSV rescue, thus enabling the use of simplistic luminescence- and fluorescence-based assays to monitor the changes in VSV replication. These methodologies are valuable for understanding the interplay between host antiviral responses and viral immune evasion factors.
Collapse
Affiliation(s)
- Emily A Rex
- Department of Microbiology, University of Texas Southwestern Medical Center
| | - Dahee Seo
- Department of Microbiology, University of Texas Southwestern Medical Center
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center;
| |
Collapse
|
6
|
Kloker LD, Yurttas C, Lauer UM. Three-dimensional tumor cell cultures employed in virotherapy research. Oncolytic Virother 2018; 7:79-93. [PMID: 30234074 PMCID: PMC6130269 DOI: 10.2147/ov.s165479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncolytic virotherapy constitutes an upcoming alternative treatment option for a broad spectrum of cancer entities. However, despite great research efforts, there is still only a single US Food and Drug Administration/European Medicines Agency-approved oncolytic virus available for clinical use. One reason for that is the gap between promising preclinical data and limited clinical success. Since oncolytic viruses are biological agents, they might require more realistic in vitro tumor models than common monolayer tumor cell cultures to provide meaningful predictive preclinical evaluation results. For more realistic invitro tumor models, three-dimensional tumor cell-culture systems can be employed in preclinical virotherapy research. This review provides an overview of spheroid and hydrogel tumor cell cultures, organotypic tumor-tissue slices, organotypic raft cultures, and tumor organoids utilized in the context of oncolytic virotherapy. Furthermore, we also discuss advantages, disadvantages, techniques, and difficulties of these three-dimensional tumor cell-culture systems when applied specifically in virotherapy research.
Collapse
Affiliation(s)
- Linus D Kloker
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany,
| | - Can Yurttas
- Department of General, Visceral and Transplant Surgery, University Hospital, University of Tübingen, Tübingen, Germany
| | - Ulrich M Lauer
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany, .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Tübingen, Germany,
| |
Collapse
|
7
|
Oncotargeting by Vesicular Stomatitis Virus (VSV): Advances in Cancer Therapy. Viruses 2018; 10:v10020090. [PMID: 29473868 PMCID: PMC5850397 DOI: 10.3390/v10020090] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/28/2022] Open
Abstract
Modern oncotherapy approaches are based on inducing controlled apoptosis in tumor cells. Although a number of apoptosis-induction approaches are available, site-specific delivery of therapeutic agents still remain the biggest hurdle in achieving the desired cancer treatment benefit. Additionally, systemic treatment-induced toxicity remains a major limiting factor in chemotherapy. To specifically address drug-accessibility and chemotherapy side effects, oncolytic virotherapy (OV) has emerged as a novel cancer treatment alternative. In OV, recombinant viruses with higher replication capacity and stronger lytic properties are being considered for tumor cell-targeting and subsequent cell lysing. Successful application of OVs lies in achieving strict tumor-specific tropism called oncotropism, which is contingent upon the biophysical interactions of tumor cell surface receptors with viral receptors and subsequent replication of oncolytic viruses in cancer cells. In this direction, few viral vector platforms have been developed and some of these have entered pre-clinical/clinical trials. Among these, the Vesicular stomatitis virus (VSV)-based platform shows high promise, as it is not pathogenic to humans. Further, modern molecular biology techniques such as reverse genetics tools have favorably advanced this field by creating efficient recombinant VSVs for OV; some have entered into clinical trials. In this review, we discuss the current status of VSV based oncotherapy, challenges, and future perspectives regarding its therapeutic applications in the cancer treatment.
Collapse
|
8
|
Martin A, Rex EA, Ishidate T, Lin R, Gammon DB. Infection of Caenorhabditis elegans with Vesicular Stomatitis Virus via Microinjection. Bio Protoc 2017; 7:e2617. [PMID: 29276724 PMCID: PMC5739071 DOI: 10.21769/bioprotoc.2617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022] Open
Abstract
Over the past 15 years, the free-living nematode, Caenorhabditis elegans has become an important model system for exploring eukaryotic innate immunity to bacterial and fungal pathogens. More recently, infection models using either natural or non-natural nematode viruses have also been established in C. elegans. These models offer new opportunities to use the nematode to understand eukaryotic antiviral defense mechanisms. Here we report protocols for the infection of C. elegans with a non-natural viral pathogen, vesicular stomatitis virus (VSV) through microinjection. We also describe how recombinant VSV strains encoding fluorescent or luciferase reporter genes can be used in conjunction with simple fluorescence-, survival-, and luminescence-based assays to identify host genetic backgrounds with differential susceptibilities to virus infection.
Collapse
Affiliation(s)
- Adam Martin
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Emily A. Rex
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Takao Ishidate
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, USA
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Don B. Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
9
|
Gammon DB, Ishidate T, Li L, Gu W, Silverman N, Mello CC. The Antiviral RNA Interference Response Provides Resistance to Lethal Arbovirus Infection and Vertical Transmission in Caenorhabditis elegans. Curr Biol 2017; 27:795-806. [PMID: 28262484 DOI: 10.1016/j.cub.2017.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 11/18/2022]
Abstract
The recent discovery of the positive-sense single-stranded RNA (ssRNA) Orsay virus (OV) as a natural pathogen of the nematode Caenorhabditis elegans has stimulated interest in exploring virus-nematode interactions. However, OV infection is restricted to a small number of intestinal cells, even in nematodes defective in their antiviral RNA interference (RNAi) response, and is neither lethal nor vertically transmitted. Using a fluorescent reporter strain of the negative-sense ssRNA vesicular stomatitis virus (VSV), we show that microinjection of VSV particles leads to a dose-dependent, muscle tissue-tropic, lethal infection in C. elegans. Furthermore, we find nematodes deficient for components of the antiviral RNAi pathway, such as Dicer-related helicase 1 (DRH-1), to display hypersusceptibility to VSV infection as evidenced by elevated infection rates, virus replication in multiple tissue types, and earlier mortality. Strikingly, infection of oocytes and embryos could also be observed in drh-1 mutants. Our results suggest that the antiviral RNAi response not only inhibits vertical VSV transmission but also promotes transgenerational inheritance of antiviral immunity. Our study introduces a new, in vivo virus-host model system for exploring arbovirus pathogenesis and provides the first evidence for vertical pathogen transmission in C. elegans.
Collapse
Affiliation(s)
- Don B Gammon
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Takao Ishidate
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lichao Li
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | - Weifeng Gu
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | - Neal Silverman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
10
|
Tsun A, Miao XN, Wang CM, Yu DC. Oncolytic Immunotherapy for Treatment of Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:241-83. [PMID: 27240460 DOI: 10.1007/978-94-017-7555-7_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunotherapy entails the treatment of disease by modulation of the immune system. As detailed in the previous chapters, the different modes of achieving immune modulation are many, including the use of small/large molecules, cellular therapy, and radiation. Oncolytic viruses that can specifically attack, replicate within, and destroy tumors represent one of the most promising classes of agents for cancer immunotherapy (recently termed as oncolytic immunotherapy). The notion of oncolytic immunotherapy is considered as the way in which virus-induced tumor cell death (known as immunogenic cancer cell death (ICD)) allows the immune system to recognize tumor cells and provide long-lasting antitumor immunity. Both immune responses toward the virus and ICD together contribute toward successful antitumor efficacy. What is now becoming increasingly clear is that monotherapies, through any of the modalities detailed in this book, are neither sufficient in eradicating tumors nor in providing long-lasting antitumor immune responses and that combination therapies may deliver enhanced efficacy. After the rise of the genetic engineering era, it has been possible to engineer viruses to harbor combination-like characteristics to enhance their potency in cancer immunotherapy. This chapter provides a historical background on oncolytic virotherapy and its future application in cancer immunotherapy, especially as a combination therapy with other treatment modalities.
Collapse
Affiliation(s)
- A Tsun
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - X N Miao
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - C M Wang
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - D C Yu
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China.
| |
Collapse
|
11
|
Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Oncolytic viruses for cancer therapy. Oncoimmunology 2013; 2:e24612. [PMID: 23894720 PMCID: PMC3716755 DOI: 10.4161/onci.24612] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy is emerging as a promising approach for the treatment of several neoplasms. The term "oncolytic viruses" is generally employed to indicate naturally occurring or genetically engineered attenuated viral particles that cause the demise of malignant cells while sparing their non-transformed counterparts. From a conceptual standpoint, oncolytic viruses differ from so-called "oncotropic viruses" in that only the former are able to kill cancer cells, even though both display a preferential tropism for malignant tissues. Of note, such a specificity can originate at several different steps of the viral cycle, including the entry of virions (transductional specificity) as well as their intracellular survival and replication (post-transcriptional and transcriptional specificity). During the past two decades, a large array of replication-competent and replication-incompetent oncolytic viruses has been developed and engineered to express gene products that would specifically promote the death of infected (cancer) cells. However, contrarily to long-standing beliefs, the antineoplastic activity of oncolytic viruses is not a mere consequence of the cytopathic effect, i.e., the lethal outcome of an intense, productive viral infection, but rather involves the elicitation of an antitumor immune response. In line with this notion, oncolytic viruses genetically modified to drive the local production of immunostimulatory cytokines exert more robust therapeutic effects than their non-engineered counterparts. Moreover, the efficacy of oncolytic virotherapy is significantly improved by some extent of initial immunosuppression (facilitating viral replication and spread) followed by the administration of immunostimulatory molecules (boosting antitumor immune responses). In this Trial Watch, we will discuss the results of recent clinical trials that have evaluated/are evaluating the safety and antineoplastic potential of oncolytic virotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Neuroattenuation of vesicular stomatitis virus through picornaviral internal ribosome entry sites. J Virol 2013; 87:3217-28. [PMID: 23283963 DOI: 10.1128/jvi.02984-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is potent and a highly promising agent for the treatment of cancer. However, translation of VSV oncolytic virotherapy into the clinic is being hindered by its inherent neurotoxicity. It has been demonstrated that selected picornaviral internal ribosome entry site (IRES) elements possess restricted activity in neuronal tissues. We therefore sought to determine whether the picornavirus IRES could be engineered into VSV to attenuate its neuropathogenicity. We have used IRES elements from human rhinovirus type 2 (HRV2) and foot-and-mouth disease virus (FMDV) to control the translation of the matrix gene (M), which plays a major role in VSV virulence. In vitro studies revealed slowed growth kinetics of IRES-controlled VSVs in most of the cell lines tested. However, in vivo studies explicitly demonstrated that IRES elements of HRV2 and FMDV severely attenuated the neurovirulence of VSV without perturbing its oncolytic potency.
Collapse
|
13
|
Muik A, Dold C, Geiß Y, Volk A, Werbizki M, Dietrich U, von Laer D. Semireplication-competent vesicular stomatitis virus as a novel platform for oncolytic virotherapy. J Mol Med (Berl) 2012; 90:959-70. [PMID: 22286341 PMCID: PMC3396339 DOI: 10.1007/s00109-012-0863-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/03/2012] [Accepted: 01/16/2012] [Indexed: 12/18/2022]
Abstract
Among oncolytic viruses, the vesicular stomatitis virus (VSV) is especially potent and a highly promising agent for the treatment of cancer. But, even though effective against multiple tumor entities in preclinical animal models, replication-competent VSV exhibits inherent neurovirulence, which has so far hindered clinical development. To overcome this limitation, replication-defective VSV vectors for cancer gene therapy have been tested and proven to be safe. However, gene delivery was inefficient and only minor antitumor efficacy was observed. Here, we present semireplication-competent vector systems for VSV (srVSV), composed of two trans-complementing, propagation-deficient VSV vectors. The de novo generated deletion mutants of the two VSV polymerase proteins P (phosphoprotein) and L (large catalytic subunit), VSVΔP and VSVΔL respectively, were used mutually or in combination with VSVΔG vectors. These srVSV systems copropagated in vitro and in vivo without recombinatory reversion to replication-competent virus. The srVSV systems were highly lytic for human glioblastoma cell lines, spheroids, and subcutaneous xenografts. Especially the combination of VSVΔG/VSVΔL vectors was as potent as wild-type VSV (VSV-WT) in vitro and induced long-term tumor regression in vivo without any associated adverse effects. In contrast, 90% of VSV-WT-treated animals succumbed to neurological disease shortly after tumor clearance. Most importantly, even when injected into the brain, VSVΔG/VSVΔL did not show any neurotoxicity. In conclusion, srVSV is a promising platform for virotherapeutic approaches and also for VSV-based vector vaccines, combining improved safety with an increased coding capacity for therapeutic transgenes, potentially allowing for multipronged approaches.
Collapse
Affiliation(s)
| | - Catherine Dold
- Institute for Virology, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria
| | - Yvonne Geiß
- Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Andreas Volk
- Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | | | | | - Dorothee von Laer
- Institute for Virology, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria
| |
Collapse
|
14
|
Bauer R, Ratzinger S, Wales L, Bosserhoff A, Senner V, Grifka J, Grässel S. Inhibition of collagen XVI expression reduces glioma cell invasiveness. Cell Physiol Biochem 2011; 27:217-26. [PMID: 21471710 DOI: 10.1159/000327947] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2011] [Indexed: 12/23/2022] Open
Abstract
Glioblastomas are characterized by an intense local invasiveness that limits surgical resection. One mechanism by which glioma cells enforce their migration into brain tissue is reorganization of tumour associated extracellular matrix (ECM). Collagen XVI is a minor component of connective tissues. However, in glioblastoma tissue it is dramatically upregulated compared to the ECM of normal cortex. The aim of this study is to delineate tumour cell invasion and underlying mechanisms involving collagen XVI by using a siRNA mediated collagen XVI knockdown model in U87MG human glioblastoma cells. Knockdown of collagen XVI resulted in decreased invasiveness in Boyden chamber assays, and in a reduction of focal adhesion contact numbers per cell. Gene expression was upregulated for protocadherin 18 and downregulated for kindlin-1 and -2. Proliferation was not affected while flow cytometric analysis demonstrated reduced β1-integrin activation in collagen XVI knockdown cells. We suggest that in glioblastoma tissue collagen XVI may impair the cell-cell interaction in favour of enhancement of invasion. The modification of the β1-integrin activation pattern through collagen XVI might be a molecular mechanism to further augment the invasive phenotype of glioma cells. Elucidating the underlying mechanisms of glioma cell invasion promoted by collagen XVI may provide novel cancer therapeutic approaches in neurooncology.
Collapse
Affiliation(s)
- Richard Bauer
- Dept of Orthopaedics, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Enhanced oncolytic activity of vesicular stomatitis virus encoding SV5-F protein against prostate cancer. J Urol 2010; 183:1611-8. [PMID: 20172545 DOI: 10.1016/j.juro.2009.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Indexed: 11/21/2022]
Abstract
PURPOSE Vesicular stomatitis virus has been investigated as an oncolytic agent for cancer therapy because it preferentially replicates in tumor but not in normal cells due to the lack of a robust interferon antiviral system in transformed cells. However, wild-type vesicular stomatitis virus can induce a strong systemic immunological response and replicate in the central nervous system, potentially limiting its clinical usefulness. We report the construction of the recombinant, replication restricted vesicular stomatitis virus encoding SV5-F, which can induce syncytial formation with enhanced oncolytic properties against TRAMP-C2 tumors in an immunocompetent mouse model of prostate cancer. MATERIALS AND METHODS We constructed the SV5-F recombinant restricted virus vector by replacing the vesicular stomatitis virus G gene with that of the SV5-F transgene to generate rVSV-DeltaG-SV5-F. Morphological changes and DNA fragmentation induced by rVSV-DeltaG-GFP or rVSV-DeltaG-SV5-F were determined by phase contrast microscopy and gel electrophoresis. In vitro cytotoxicity by recombinant vesicular stomatitis virus was done by MTT assay. In vivo study of rVSV treatment was done in immunocompetent mice by subcutaneous administration of TRAMP-C2 cells. RESULTS In vitro characterization of the recombinant fusogenic VSV-DeltaG vector on TRAMP-C2 cells showed significantly enhanced apoptotic and cytotoxic effects relative to a similar virus encoding green fluorescent protein, that is rVSV-DeltaG-GFP. Regardless of initial tumor size intratumor rVSV-DeltaG-SV5-F administration in mice bearing subcutaneous TRAMP-C2 tumors resulted in a significantly reduced tumor load over that of the nonfusogenic green fluorescent control virus and of heat inactivated recombinant vesicular stomatitis virus in treated animals (p <0.01). CONCLUSIONS Results show that G complemented recombinant VSV-DeltaG vectors, especially rVSV-DeltaG-SV5-F, are an effective oncolytic agent against mouse prostate cancer cells in vitro and in an in vivo immunocompetent mouse model system.
Collapse
|
16
|
Miller J, Bidula SM, Jensen TM, Reiss CS. Cytokine-modified VSV is attenuated for neural pathology, but is both highly immunogenic and oncolytic. INTERNATIONAL JOURNAL OF INTERFERON, CYTOKINE AND MEDIATOR RESEARCH 2009; 1:15-32. [PMID: 20607123 PMCID: PMC2895263 DOI: 10.2147/ijicmr.s6776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vesicular stomatitis virus (VSV), an enveloped, nonsegmented, negative-stranded RNA virus, is being tested by several laboratories as an antitumor agent. Unfortunately, viral infection of the central nervous system (CNS) has been observed by many groups following administration to tumor-bearing animals. In rodents, VSV encephalitis is characterized by weight-loss, paralysis, and high mortality. In order to provide protection from VSV infection of the CNS after therapeutic administration, we have attenuated VSV by the introduction of the gene encoding the proinflammatory cytokine interleukin (IL)-23, and designated the new virus VSV23. We hypothesize that while VSV23 is replicating within tumors, resulting in tumor destruction, the expression of IL-23 will enhance host antitumor and antiviral immune responses. In the event that the virus escapes from the tumor, the host's immune system will be activated and the virus will be rapidly cleared from healthy tissue. Experimental VSV23 infection of the CNS is characterized by decreased viral replication, morbidity, and mortality. VSV23 is capable of stimulating the enhanced production of nitric oxide in the CNS, which is critical for elimination of VSV from infected neurons. Intraperitoneal administration of VSV23 stimulates both nonspecific natural killer cell, virus-specific cytolytic T lymphocyte and memory virus-specific proliferative T cell responses against wild-type VSV in splenocytes. Furthermore, VSV23 is able to replicate in, and induce apoptosis of tumor cells in vitro. These data indicate that VSV23 is immunogenic, attenuated and suitable for testing as an efficacious and safe oncolytic agent.
Collapse
Affiliation(s)
- James Miller
- Department of Biology, New York University, New York, NY, USA
| | - Sarah M Bidula
- Department of Biology, New York University, New York, NY, USA
| | - Troels M Jensen
- Department of Biology, New York University, New York, NY, USA
| | - Carol Shoshkes Reiss
- Department of Biology, New York University, New York, NY, USA
- Center for Neural Science, NYU Cancer Institute and Microbiology Department, School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
17
|
Some attenuated variants of vesicular stomatitis virus show enhanced oncolytic activity against human glioblastoma cells relative to normal brain cells. J Virol 2009; 84:1563-73. [PMID: 19906910 DOI: 10.1128/jvi.02040-09] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vesicular stomatitis virus (VSV) has been shown in laboratory studies to be effective against a variety of tumors, including malignant brain tumors. However, attenuation of VSV may be necessary to balance the potential toxicity toward normal cells, particularly when targeting brain tumors. Here we compared 10 recombinant VSV variants resulting from different attenuation strategies. Attenuations included gene shifting (VSV-p1-GFP/RFP), M protein mutation (VSV-M51), G protein cytoplasmic tail truncations (VSV-CT1/CT9), G protein deletions (VSV-dG-GFP/RFP), and combinations thereof (VSV-CT9-M51). Using in vitro viability and replication assays, the VSV variants were grouped into three categories, based on their antitumor activity and non-tumor-cell attenuation. In the first group, wild-type-based VSV-G/GFP, tumor-adapted VSV-rp30, and VSV-CT9 showed a strong antitumor profile but also retained some toxicity toward noncancer control cells. The second group, VSV-CT1, VSV-dG-GFP, and VSV-dG-RFP, had significantly diminished toxicity toward normal cells but showed little oncolytic action. The third group displayed a desired combination of diminished general toxicity and effective antitumor action; this group included VSV-M51, VSV-CT9-M51, VSV-p1-GFP, and VSV-p1-RFP. A member of the last group, VSV-p1-GFP, was then compared in vivo against wild-type-based VSV-G/GFP. Intranasal inoculation of young, postnatal day 16 mice with VSV-p1-GFP showed no adverse neurological effects, whereas VSV-G/GFP was associated with high lethality (80%). Using an intracranial tumor xenograft model, we further demonstrated that attenuated VSV-p1-GFP targets and kills human U87 glioblastoma cells after systemic application. We concluded that some, but not all, attenuated VSV mutants display a favorable oncolytic profile and merit further investigation.
Collapse
|
18
|
van den Pol AN, Ozduman K, Wollmann G, Ho WSC, Simon I, Yao Y, Rose JK, Ghosh P. Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression. J Comp Neurol 2009; 516:456-81. [PMID: 19672982 PMCID: PMC2919849 DOI: 10.1002/cne.22131] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viruses have substantial value as vehicles for transporting transgenes into neurons. Each virus has its own set of attributes for addressing neuroscience-related questions. Here we review some of the advantages and limitations of herpes, pseudorabies, rabies, adeno-associated, lentivirus, and others to study the brain. We then explore a novel recombinant vesicular stomatitis virus (dG-VSV) with the G-gene deleted and transgenes engineered into the first position of the RNA genome, which replicates only in the first brain cell infected, as corroborated with ultrastructural analysis, eliminating spread of virus. Because of its ability to replicate rapidly and to express multiple mRNA copies and additional templates for more copies, reporter gene expression is amplified substantially, over 500-fold in 6 hours, allowing detailed imaging of dendrites, dendritic spines, axons, and axon terminal fields within a few hours to a few days after inoculation. Green fluorescent protein (GFP) expression is first detected within 1 hour of inoculation. The virus generates a Golgi-like appearance in all neurons or glia of regions of the brain tested. Whole-cell patch-clamp electrophysiology, calcium digital imaging with fura-2, and time-lapse digital imaging showed that neurons appeared physiologically normal after expressing viral transgenes. The virus has a wide range of species applicability, including mouse, rat, hamster, human, and Drosophila cells. By using dG-VSV, we show efferent projections from the suprachiasmatic nucleus terminating in the periventricular region immediately dorsal to the nucleus. DG-VSVs with genes coding for different color reporters allow multicolor visualization of neurons wherever applied.
Collapse
Affiliation(s)
- Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Peripheral immunization blocks lethal actions of vesicular stomatitis virus within the brain. J Virol 2009; 83:11540-9. [PMID: 19726512 DOI: 10.1128/jvi.02558-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is the prototype virus for 75 or more negative-strand RNA viruses in the rhabdovirus family. Some of these viruses, including VSV, can cause neurological impairment or death upon brain infection. VSV has shown promise in the prevention and treatment of disease as a vaccine vector and an oncolytic virus, but infection of the brain remains a concern. Three VSV variants, the wild-type-related VSV-G/GFP and two attenuated viruses, VSV-CT1 and VSV-CT9-M51, were compared for neuroinvasiveness and neuromorbidity. In nonimmunized mice, direct VSV-G/GFP injection into the brain invariably resulted in lethal encephalitis; in contrast, partial survival was seen after direct injection of the attenuated VSV strains. In addition, both attenuated VSV strains showed significantly reduced neuroinvasiveness after intranasal inoculation of young postnatal day 16 mice. Of the three tested variants, VSV-CT9-M51 generated the lowest degree of neuropathology. Despite its attenuated state, peripheral inoculations of VSV-CT9-M51 targeted and killed human glioblastoma implanted into the mouse brain. Importantly, we show here that intranasal or intramuscular immunization prevents the lethal effects of subsequent VSV-G/GFP, VSV-CT1, and VSV-CT9-M51 injections into the brain. These results indicate that attenuated recombinant viruses show reduced neurovirulence and that peripheral immunization blocks the lethal actions of all VSVs tested.
Collapse
|
20
|
Dorer DE, Nettelbeck DM. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv Drug Deliv Rev 2009; 61:554-71. [PMID: 19394376 DOI: 10.1016/j.addr.2009.03.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/05/2009] [Indexed: 01/02/2023]
Abstract
Cancer-specificity is the key requirement for a drug or treatment regimen to be effective against malignant disease--and has rarely been achieved adequately to date. Therefore, targeting strategies need to be implemented for future therapies to ensure efficient activity at the site of patients' tumors or metastases without causing intolerable side-effects. Gene therapy and viral oncolysis represent treatment modalities that offer unique opportunities for tumor targeting. This is because both the transfer of genes with anti-cancer activity and viral replication-induced cell killing, respectively, facilitate the incorporation of multiple mechanisms restricting their activity to cancer. To this end, cellular mechanisms of gene regulation have been successfully exploited to direct therapeutic gene expression and viral cell lysis to cancer cells. Here, transcriptional targeting has been the role model and most widely investigated. This approach exploits cellular gene regulatory elements that mediate cell type-specific transcription to restrict the expression of therapeutic genes or essential viral genes, ideally to cancer cells. In this review, we first discuss the rationale for such promoter targeting and its limitations. We then give an overview how tissue-/tumor-specific promoters are being identified and characterized. Strategies to apply and optimize such promoters for the engineering of targeted viral gene transfer vectors and oncolytic viruses-with respect to promoter size, selectivity and activity in the context of viral genomes-are described. Finally, we discuss in more detail individual examples for transcriptionally targeted virus drugs. First highlighting oncolytic viruses targeted by prostate-specific promoters and by the telomerase promoter as representatives of tissue-targeted and pan-cancer-specific virus drugs respectively, and secondly recent developments of the last two years.
Collapse
Affiliation(s)
- Dominik E Dorer
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ) and Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
21
|
Sun X, Belouzard S, Whittaker GR. Molecular architecture of the bipartite fusion loops of vesicular stomatitis virus glycoprotein G, a class III viral fusion protein. J Biol Chem 2007; 283:6418-27. [PMID: 18165228 DOI: 10.1074/jbc.m708955200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glycoprotein of vesicular stomatitis virus (VSV G) mediates fusion of the viral envelope with the host cell, with the conformational changes that mediate VSV G fusion activation occurring in a reversible, low pH-dependent manner. Based on its novel structure, VSV G has been classified as class III viral fusion protein, having a predicted bipartite fusion domain comprising residues Trp-72, Tyr-73, Tyr-116, and Ala-117 that interacts with the host cell membrane to initiate the fusion reaction. Here, we carried out a systematic mutagenesis study of the predicted VSV G fusion loops, to investigate the functional role of the fusion domain. Using assays of low pH-induced cell-cell fusion and infection studies of mutant VSV G incorporated into viral particles, we show a fundamental role for the bipartite fusion domain. We show that Trp-72 is a critical residue for VSV G-mediated membrane fusion. Trp-72 could only tolerate mutation to a phenylalanine residue, which allowed only limited fusion. Tyr-73 and Tyr-116 could be mutated to other aromatic residues without major effect but could not tolerate any other substitution. Ala-117 was a less critical residue, with only charged residues unable to allow fusion activation. These data represent a functional analysis of predicted bipartite fusion loops of VSV G, a founder member of the class III family of viral fusion proteins.
Collapse
Affiliation(s)
- Xiangjie Sun
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
22
|
Wollmann G, Robek MD, van den Pol AN. Variable deficiencies in the interferon response enhance susceptibility to vesicular stomatitis virus oncolytic actions in glioblastoma cells but not in normal human glial cells. J Virol 2006; 81:1479-91. [PMID: 17108037 PMCID: PMC1797501 DOI: 10.1128/jvi.01861-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
With little improvement in the poor prognosis for humans with high-grade glioma brain tumors, alternative therapeutic strategies are needed. As such, selective replication-competent oncolytic viruses may be useful as a potential treatment modality. Here we test the hypothesis that defects in the interferon (IFN) pathway could be exploited to enhance the selective oncolytic profile of vesicular stomatitis virus (VSV) in glioblastoma cells. Two green fluorescent protein-expressing VSV strains, recombinant VSV and the glioma-adapted recombinant VSV-rp30a, were used to study infection of a variety of human glioblastoma cell lines compared to a panel of control cells, including normal human astrocytes, oligodendrocyte precursor cells, and primary explant cultures from human brain tissue. Infection rate, cell viability, viral replication, and IFN-alpha/beta-related gene expression were compared in the absence and presence of IFN-alpha or polyriboinosinic polyribocytidylic acid [poly(I:C)], a synthetic inducer of the IFN-alpha/beta pathway. Both VSV strains caused rapid and total infection and death of all tumor cell lines tested. To a lesser degree, normal cells were also subject to VSV infection. In contrast, IFN-alpha or poly(I:C) completely attenuated the infection of all primary control brain cells, whereas most glioblastoma cell lines treated with IFN-alpha or poly(I:C) showed little or no sign of protection and were killed by VSV. Together, our results demonstrate that activation of the interferon pathway protects normal human brain cells from VSV infection while maintaining the vulnerability of human glioblastoma cells to viral destruction.
Collapse
Affiliation(s)
- Guido Wollmann
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | |
Collapse
|
23
|
Duntsch C, Divi MK, Jones T, Zhou Q, Krishnamurthy M, Boehm P, Wood G, Sills A, Moore BM. Safety and efficacy of a novel cannabinoid chemotherapeutic, KM-233, for the treatment of high-grade glioma. J Neurooncol 2005; 77:143-52. [PMID: 16314952 DOI: 10.1007/s11060-005-9031-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 08/16/2005] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To test in vitro and in vivo the safety and efficacy of a novel chemotherapeutic agent, KM-233, for the treatment of glioma. METHODS In vitro cell cytotoxicity assays were used to measure and compare the cytotoxic effects of KM-233, Delta(8)-tetrahydrocannabinol (THC), and bis-chloroethyl-nitrosurea (BCNU) against human U87 glioma cells. An organotypic brain slice culture model was used for safety and toxicity studies. A human glioma-SCID mouse side-pocket tumor model was used to test in vivo the safety and efficacy of KM-233 with intratumoral and intra-peritoneal administration. RESULTS KM-233 is a classical cannabinoid with good blood brain barrier penetration that possesses a selective affinity for the CB2 receptors relative to THC. KM-233 was as efficacious in its cytotoxicity against human U87 glioma as Delta(8)-tetrahydrocannabinol, and superior to the commonly used anti-glioma chemotherapeutic agent, BCNU. The cytotoxic effects of KM-233 against human glioma cells in vitro occur as early as two hours after administration, and dosing of KM-233 can be cycled without compromising cytotoxic efficacy and while improving safety. Cyclical dosing of KM-233 to treat U87 glioma in a SCID mouse xenograft side pocket model was effective at reducing the tumor burden with both systemic and intratumoral administration. CONCLUSION These studies provide both in vitro and in vivo evidence that KM-233 shows promising efficacy against human glioma cell lines in both in vitro and in vivo studies, minimal toxicity to healthy cultured brain tissue, and should be considered for definitive preclinical development in animal models of glioma.
Collapse
Affiliation(s)
- Christopher Duntsch
- Department of Neurosurgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Recent data has shown that viruses such as vesicular stomatitis virus (VSV), a relatively non-pathogenic, negative-stranded RNA virus, can preferentially replicate in malignant cells and less so in normal cells. VSV appears able to carry out this function in transformed cells since these hosts exhibit the hallmarks of flawed host defense, probably involving the interferon system, which is essential for preventing virus replication. The simple genetic constitution of VSV, lack of any known transforming, integrating or reassortment properties, extensive knowledge relating to its interaction with the immune system and the ability to genetically manipulate this agent affords an ideal opportunity to exploit the oncolytic and gene targeting potential of this innocuous virus. Thus, aside from preferentially targeting malignant cells VSV recombinants could be generated that could increase a tumor's susceptibility to chemotherapeutic agents and/ or importantly, the host immune response. Collectively, our data and others demonstrate that VSV as well as other RNA viruses could provide a promising and exciting approach to cancer therapy.
Collapse
Affiliation(s)
- Glen N Barber
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida 33136, USA.
| |
Collapse
|