1
|
Momin EN, Schwab KE, Chaichana KL, Miller-Lotan R, Levy AP, Tamargo RJ. Controlled delivery of nitric oxide inhibits leukocyte migration and prevents vasospasm in haptoglobin 2-2 mice after subarachnoid hemorrhage. Neurosurgery 2009; 65:937-45; discussion 945. [PMID: 19834407 DOI: 10.1227/01.neu.0000356974.14230.b8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Cerebral vasospasm is the leading cause of morbidity and mortality after aneurysmal subarachnoid hemorrhage (SAH) occurs. The haptoglobin 2-2 genotype likely increases the risk for developing posthemorrhagic vasospasm, but potential treatments for vasospasm have never been tested in an animal model of this genotype. We used the nitric oxide (NO) donor diethylenetriamine (DETA)/NO incorporated into ethylene/vinyl acetate (EVAc) polymers to evaluate the efficacy of controlled NO repletion in a haptoglobin 2-2 mouse basilar artery SAH model. METHODS Mice were randomized to 3 groups: autologous blood injection and empty polymer implantation into the subarachnoid space (n = 16); blood injection and 30% DETA/NO-EVAc implantation (n = 20); and sham operation (n = 19). At 24 hours after surgery, activity level was assessed on a 3-point scale, and basilar arteries were processed for morphometric measurements. Leukocyte extravasation was assessed by immunohistochemistry (n = 12). RESULTS Treatment with controlled release of NO from DETA/NO-EVAc polymers after SAH resulted in a significant increase in basilar artery lumen patency (73.3% +/- 4.3% versus 96.5% +/- 4.3%, mean +/- standard error of the mean; P = 0.01), a significant improvement in activity after experimental SAH (2.14 +/- 0.14 versus 2.56 +/- 0.10 points; P = 0.025), and a significant decrease in extravasated leukocytes (21 +/- 4.55 versus 6.75 +/- 3.77 leukocytes per high-power field, untreated versus treated mice; P = 0.001). CONCLUSION Treatment with controlled release of NO prevented posthemorrhagic vasospasm in haptoglobin 2-2 mice, and mitigated neurological deficits, suggesting that DETA/NO-EVAc would be an effective therapy in patients with a genotype that confers higher risk for vasospasm after SAH. In addition to smooth muscle relaxation, inhibition of leukocyte migration may contribute to the therapeutic mechanism of NO.
Collapse
Affiliation(s)
- Eric N Momin
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
2
|
Pluta RM, Butman JA, Schatlo B, Johnson DL, Oldfield EH. Subarachnoid hemorrhage and the distribution of drugs delivered into the cerebrospinal fluid. Laboratory investigation. J Neurosurg 2009; 111:1001-7, 1-4. [PMID: 19374502 DOI: 10.3171/2009.2.jns081256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Investigators in experimental and clinical studies have used the intrathecal route to deliver drugs to prevent or treat vasospasm. However, a clot near an artery or arteries after subarachnoid hemorrhage (SAH) may hamper distribution and limit the effects of intrathecally delivered compounds. In a primate model of right middle cerebral artery (MCA) SAH, the authors examined the distribution of Isovue-M 300 and 3% Evans blue after infusion into the cisterna magna CSF. METHODS Ten cynomolgus monkeys were assigned to SAH and sham SAH surgery groups (5 in each group). Monkeys received CSF injections as long as 28 days after SAH and were killed 3 hours after the contrast/Evans blue injection. The authors assessed the distribution of contrast material on serial CT within 2 hours after contrast injection and during autopsy within 3 hours after Evans blue staining. RESULTS Computed tomography cisternographies showed no contrast in the vicinity of the right MCA (p < 0.05 compared with left); the distribution of contrast surrounding the entire right cerebral hemisphere was substantially reduced. Postmortem analysis demonstrated much less Evans blue staining of the right hemisphere surface compared with the left. Furthermore, the Evans blue dye did not penetrate into the right sylvian fissure, which occurred surrounding the left MCA. The authors observed the same pattern of changes and differences in contrast distribution between SAH and sham SAH animals and between the right and the left hemispheres on Days 1, 3, 7, 14, 21, and 28 after SAH. CONCLUSIONS Intrathecal drug distribution is substantially limited by SAH. Thus, when using intrathecal drug delivery after SAH, vasoactive drugs are unlikely to reach the arteries that are at the highest risk of delayed cerebral vasospasm.
Collapse
Affiliation(s)
- Ryszard M Pluta
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1414, USA.
| | | | | | | | | |
Collapse
|
3
|
Omeis I, Neil JA, Jayson NA, Murali R, Abrahams JM. Treatment of cerebral vasospasm with biocompatible controlled-release systems for intracranial drug delivery. Neurosurgery 2009; 63:1011-9; discussion 1019-21. [PMID: 19057314 DOI: 10.1227/01.neu.0000327574.32000.9a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The pharmacological treatment of cerebral vasospasm (CVS) now includes the experimental use of controlled-release biocompatible compounds that deliver a desired drug locally into the subarachnoid space. A controlled-release system consists of an active material that is incorporated into a carrier, usually in the form of a pellet or a gel. With such systems, the desired agent is delivered slowly and continuously, for long periods of time, directly to the desired site. This technology makes it possible to achieve high local concentrations of therapeutic agents while minimizing systemic toxicity and circumventing the need to cross the blood-brain barrier. This review describes controlled-release systems developed to date for local drug delivery in the treatment of CVS in both animal models and humans. METHODS A MEDLINE PubMed database search was performed for articles published from 1975 to 2007 with the following search topics: "controlled-release system/polymer," "controlled-release implants," "cerebral vasospasm," "subarachnoid hemorrhage," "subarachnoid space," and "intracranial drug delivery." RESULTS Over the past several decades, several controlled-release systems (lactic/ glycolic acid pellets, ethylene vinyl acetate copolymer, liposomes, silicone elastomers) have been developed to deliver various pharmacological agents (papaverine, nicardipine, ibuprofen, nitric oxide donor, calcitonin gene-related peptide, fasudil, recombinant tissue plasminogen activator) intracranially to treat subarachnoid hemorrhage in animal models (rats, rabbits, dogs, and primates). Animal studies have shown promising results, and the few human studies that have been published using controlled-release systems with papaverine or nicardipine report similarly encouraging outcomes. CONCLUSION Controlled-release systems have evolved over the past few years and have been shown experimentally to be an effective strategy for the local delivery of drugs to treat CVS.
Collapse
Affiliation(s)
- Ibrahim Omeis
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
4
|
Hänggi D, Turowski B, Perrin J, Rapp M, Liersch J, Sabel M, Steiger HJ. The effect of an intracisternal nimodipine slow-release system on cerebral vasospasm after experimental subarachnoid haemorrhage in the rat. ACTA NEUROCHIRURGICA SUPPLEMENT 2008. [DOI: 10.1007/978-3-211-75718-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
5
|
Fandino J, Fathi A, Graupner T, Jacob S, Landolt H. Perspectivas en el tratamiento del vasospasmo cerebral inducido por hemorragia subaracnoidea. Neurocirugia (Astur) 2007. [DOI: 10.1016/s1130-1473(07)70304-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Recinos PF, Pradilla G, Thai QA, Perez M, Hdeib AM, Tamargo RJ. Controlled release of lipopolysaccharide in the subarachnoid space of rabbits induces chronic vasospasm in the absence of blood. ACTA ACUST UNITED AC 2006; 66:463-9; discussion 469. [PMID: 17084186 DOI: 10.1016/j.surneu.2006.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 04/11/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Leukocyte-endothelial cell interactions appear to play a role in the development of vasospasm after SAH. Using a purely inflammatory protein, LPS, we evaluated the effect of inflammation on the development of chronic vasospasm in the absence of blood and compared it to SAH-induced vasospasm in rabbits. METHODS Lipopolysaccharide was incorporated into EVAc polymers to produce 20% LPS/EVAc polymers (wt/wt). Rabbits (n = 23) were randomized to 4 experimental groups: (1) empty polymer (n = 6), (2) SAH (n = 5), (3) 0.7 mg/kg polymeric LPS dose (n = 6), and (4) 1.4 mg/kg polymeric LPS dose (n = 6). Blood and polymers were inserted into the cisterna magna. The rabbits were killed 3 days postoperatively, and the basilar arteries were harvested for morphometric analysis. Clinical response and lumen patencies were analyzed using ANOVA and a post hoc Newman-Keuls Multiple Comparisons test. RESULTS Significant narrowing of the basilar artery was observed by insertion of 20% LPS/EVAc polymers into the subarachnoid space at a polymeric dose of 1.4 mg/kg (actual dose, 66 microg kg(-1) d(-1)) (75.4% +/- 4.2%; P < .01) and by SAH (80.3% +/- 8.1%; P < .01) as compared with the empty polymer group. A trend toward narrowing was observed in the 0.7 mg/kg polymeric LPS dose group (actual dose, 33 microg kg(-1) d(-1)) (85.2% +/- 2.6%; P > .05). Symptoms associated with SAH were noted in 50% of the rabbits in the 0.7 mg/kg LPS group and in 100% of rabbits in the 1.4 mg/kg LPS group. CONCLUSION Controlled release of LPS into the subarachnoid space of rabbits produced chronic vasospasm in a dose-dependent manner. At a polymeric dose of 1.4 mg/kg, LPS-induced vasospasm was equivalent to that induced by SAH. This suggests that LPS and SAH may induce vasospasm through similar mechanisms and provides further evidence that inflammation plays a central role in the etiology of chronic vasospasm.
Collapse
Affiliation(s)
- Pablo F Recinos
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
7
|
Thai QA, Pradilla G, Legnani FG, Kretzer RM, Hsu W, Tamargo RJ. Lysis of intracerebral hematoma with stereotactically implanted tissue plasminogen activator polymers in a rabbit model. J Neurosurg 2006; 105:424-9. [PMID: 16961138 DOI: 10.3171/jns.2006.105.3.424] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Currently no adequate surgical treatment exists for spontaneous intracerebral hemorrhage (ICH). Implantable polymers can be used effectively to deliver therapeutic agents to the local site of the pathological process, thus reducing adverse systemic effects. The authors report the use of stereotactically implanted polymers loaded with tissue plasminogen activator (tPA) to induce lysis of ICH in a rabbit model. METHODS Ethylene vinyl acetate (EVAc) polymers were loaded with bovine serum albumin (BSA) only or with BSA plus tPA. In vitro pharmacokinetic (three polymers) and thrombolysis (12 polymers) studies were performed. For the in vivo study, 12 rabbits were fixed in a stereotactic frame, and 0.2 ml of clotted autologous blood was injected into the right frontal lobe parenchyma. After 20 minutes, control BSA polymers were stereotactically implanted at the hemorrhage site in six rabbits, and experimental BSA plus tPA polymers were implanted in six rabbits. Animals were killed at 3 days, and blood clot volume was assessed. The pharmacokinetic study showed release of 146 ng of tPA over 3 days. The tPA activity correlated with in vitro thrombolysis. In the in vivo study, the six animals treated with tPA polymers had a mean (+/- standard error of the mean [SEM]) thrombus volume of 1.43 +/- 0.29 mm3 at 3 days, whereas the six animals treated with blank (BSA-only) polymers had a mean (+/- SEM) thrombus volume of 19.99 +/- 3.74 mm3 (p < 0.001). CONCLUSIONS Ethylene vinyl acetate polymers release tPA over the course of 3 days. Stereotactic implantation of tPA-loaded EVAc polymers significantly reduced ICH volume. Polymers loaded with tPA may be useful clinically for lysis of ICH without the side effects of systemic administration of tPA.
Collapse
Affiliation(s)
- Quoc-Anh Thai
- Division of Cerebrovascular Neurosurgery, Department of Neurosurgery, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hänggi D, Steiger HJ. Application of Nicardipine Prolonged-release Implants: Analysis of 97 Consecutive Patients with Acute Subarachnoid Hemorrhage. Neurosurgery 2006. [DOI: 10.1227/01.neu.0000310240.89022.d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Hänggi D, Steiger HJ. Application of Nicardipine Prolonged-release Implants: Analysis of 97 Consecutive Patients with Acute Subarachnoid Hemorrhage. Neurosurgery 2006; 58:E799; author reply E799. [PMID: 16575319 DOI: 10.1097/00006123-200604000-00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Clatterbuck RE, Gailloud P, Tierney T, Clatterbuck VM, Murphy KJ, Tamargo RJ. Controlled release of a nitric oxide donor for the prevention of delayed cerebral vasospasm following experimental subarachnoid hemorrhage in nonhuman primates. J Neurosurg 2005; 103:745-51. [PMID: 16266059 DOI: 10.3171/jns.2005.103.4.0745] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Results of prior studies in rats and rabbits show that the alteration of vasomotor tone in vasospasm following periadventitial blood exposure may be reversed, at least in part, by the administration of compounds releasing nitric oxide (NO). The authors have now generalized this finding to nonhuman primates. METHODS Ten cynomolgus monkeys underwent cerebral angiography before and 7 days following the induction of subarachnoid hemorrhage (SAH) by the placement of 2 to 3 ml clotted autologous blood around the supraclinoid carotid, proximal anterior cerebral, and proximal middle cerebral arteries. An ethylene vinyl acetate copolymer, either blank (five animals) or containing 20% w/w (Z)-1-[2-(2-aminoethyl)-N-(2-aminoethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO, 4.3 mg/kg; five animals) was placed adjacent to the vessels at the time of surgery. Animals were killed on Day 7 post-SAH following repeated cerebral angiography. The mean percentage of control vascular areal fraction was calculated from angiograms. Cerebral vessels were sectioned and the mean percentage of lumen patency was calculated. One animal that had received the DETA/NO polymer died prior to repeated angiography. In the remaining animals, DETA/NO caused a significant decrease in vasospasm compared with controls, according to both angiographic (84.8 +/- 8.6 compared with 56.6 +/- 5.2%, respectively, p < 0.05) and histological studies (internal carotid artery 99.3 +/- 1.8 compared with 60.1 +/- 4.4%, respectively, p < 0.001; middle cerebral artery 98.4 +/- 3 compared with 56.1 +/- 3.7%, respectively, p < 0.001; and anterior cerebral artery 89.2 +/- 8.5 compared with 55.8 +/- 6.3%, respectively, p < 0.05). CONCLUSIONS The controlled release of DETA/NO is effective in preventing delayed cerebral vasospasm in an SAH model in nonhuman primates. The death of one animal in the treatment group indicates that the present dosage is at the threshold between therapeutic efficacy and toxicity.
Collapse
Affiliation(s)
- Richard E Clatterbuck
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
11
|
Pradilla G, Thai QA, Legnani FG, Clatterbuck RE, Gailloud P, Murphy KP, Tamargo RJ. Local Delivery of Ibuprofen via Controlled-release Polymers Prevents Angiographic Vasospasm in a Monkey Model of Subarachnoid Hemorrhage. Oper Neurosurg (Hagerstown) 2005; 57:184-90; discussion 184-90. [PMID: 15987587 DOI: 10.1227/01.neu.0000163604.52273.28] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 02/07/2005] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE:
Adhesion and migration of leukocytes into the periadventitial space play a role in the pathophysiology of vasospasm after subarachnoid hemorrhage (SAH). Intercellular adhesion molecule-1 is a determinant cell adhesion molecule involved in this process. Ibuprofen has been shown to inhibit intercellular adhesion molecule-1 upregulation and prevent vasospasm in animal models of SAH. In this study, we report the toxicity and efficacy of locally delivered ibuprofen incorporated into controlled-release polymers to prevent vasospasm in a monkey model of SAH.
METHODS:
Ibuprofen was incorporated into ethylene-vinyl acetate (EVAc) polymers at 45% loading (wt:wt). For the toxicity study, cynomolgus monkeys (n = 5) underwent surgical implantation of either blank/EVAc polymers (n = 3) or 45% ibuprofen/EVAc polymers (n = 2) in the subarachnoid space, were followed up for 13 weeks, and were killed for histopathological analysis. For the efficacy study, cynomolgus monkeys (n = 14) underwent cerebral angiography 7 days before and 7 days after surgery and SAH and were randomized to receive either a 45% ibuprofen/EVAc polymer (n = 7; mean dose of ibuprofen, 6 mg/kg) or blank EVAc polymers (n = 7) in the subarachnoid space. Angiographic vasospasm was determined by digital image analysis. Student's t test was used for analysis.
RESULTS:
Animals implanted with ibuprofen polymers showed no signs of local or systemic toxicity. Animals treated with ibuprofen polymers had 91 ± 9% lumen patency of the middle cerebral artery, compared with 53 ± 11% of animals treated with blank/EVAc polymers (P < 0.001).
CONCLUSION:
Ibuprofen polymers are safe and prevent angiographic vasospasm after SAH in the monkey model. These findings support the role of cell adhesion molecules and inflammation in the pathophysiology of vasospasm.
Collapse
Affiliation(s)
- Gustavo Pradilla
- Department of Neurosurgery, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Pradilla G, Thai QA, Legnani FG, Hsu W, Kretzer RM, Wang PP, Tamargo RJ. Delayed Intracranial Delivery of a Nitric Oxide Donor from a Controlled-release Polymer Prevents Experimental Cerebral Vasospasm in Rabbits. Neurosurgery 2004; 55:1393-9; discussion 1399-1400. [PMID: 15574221 DOI: 10.1227/01.neu.0000143615.26102.1a] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 08/19/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Decreased local availability of nitric oxide (NO) may mediate chronic vasospasm after aneurysmal subarachnoid hemorrhage (SAH). Previous reports have shown that early treatment with NO prevents vasospasm in animals. We evaluated the efficacy of controlled-release polymers that contain the NO donor diethylenetriamine (DETA-NO) for the delayed treatment of vasospasm in a rabbit model of SAH. METHODS DETA-NO 20% (wt/wt) was incorporated into ethylene-vinyl acetate (EVAc) polymers. Animals (n = 52) were randomized to two experimental groups. In the first group (n = 32), animals received SAH and implantation of either 20% DETA-NO/EVAc polymer at a dose of 0.5 mg/kg of DETA-NO (n = 16) or empty EVAc polymer (n = 16). Polymers were implanted 24 (n = 16) or 48 hours (n = 16) after SAH. In the second group (n = 20), animals received SAH and implantation of either 20% DETA-NO/EVAc polymer at a dose of 1.3 mg/kg (n = 10) or empty EVAc (n = 10). Polymers were implanted 24 (n = 10) or 48 hours (n = 10) after SAH. An additional group (n = 16) underwent either sham operation (n = 6) or SAH only (n = 10). Animals were killed 3 days after hemorrhage, and the basilar arteries were processed for morphometric measurements. Results were analyzed using Student's t test. RESULTS Treatment with 20% DETA-NO/EVAc polymers at a dose of 1.3 mg/kg significantly increased basilar artery lumen patency when administered at 24 (97 +/- 6% versus 73 +/- 10%; P = 0.0396) or 48 hours (94 +/- 6% versus 71 +/- 9%; P = 0.03) after SAH. Treatment with 20% DETA-NO/EVAc polymers at a dose of 0.5 mg/kg administered 48 hours after SAH significantly increased lumen patency (82 +/- 8% versus 68 +/- 12%; P = 0.03); a dose of 0.5 mg/kg, 24 hours after SAH, did not reach statistical significance (74 +/- 7% versus 65 +/- 9%; P = 0.16). The SAH-only group had a lumen patency of 67 +/- 12%. CONCLUSION Delayed treatment of SAH with controlled-release DETA-NO polymers prevented experimental posthemorrhagic vasospasm in the rabbit. This inhibition was dose-dependent. This further confirms the role of NO in the pathogenesis of vasospasm.
Collapse
Affiliation(s)
- Gustavo Pradilla
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | |
Collapse
|