1
|
Karimi D, Warfield SK. Diffusion MRI with Machine Learning. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00353. [PMID: 40206511 PMCID: PMC11981007 DOI: 10.1162/imag_a_00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) of the brain offers unique capabilities including noninvasive probing of tissue microstructure and structural connectivity. It is widely used for clinical assessment of disease and injury, and for neuroscience research. Analyzing the dMRI data to extract useful information for medical and scientific purposes can be challenging. The dMRI measurements may suffer from strong noise and artifacts, and may exhibit high inter-session and inter-scanner variability in the data, as well as inter-subject heterogeneity in brain structure. Moreover, the relationship between measurements and the phenomena of interest can be highly complex. Recent years have witnessed increasing use of machine learning methods for dMRI analysis. This manuscript aims to assess these efforts, with a focus on methods that have addressed data preprocessing and harmonization, microstructure mapping, tractography, and white matter tract analysis. We study the main findings, strengths, and weaknesses of the existing methods and suggest topics for future research. We find that machine learning may be exceptionally suited to tackle some of the difficult tasks in dMRI analysis. However, for this to happen, several shortcomings of existing methods and critical unresolved issues need to be addressed. There is a pressing need to improve evaluation practices, to increase the availability of rich training datasets and validation benchmarks, as well as model generalizability, reliability, and explainability concerns.
Collapse
Affiliation(s)
- Davood Karimi
- Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Simon K. Warfield
- Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Aldawsari AM, Al-Qaisieh B, Broadbent DA, Bird D, Murray L, Speight R. The role and potential of using quantitative MRI biomarkers for imaging guidance in brain cancer radiotherapy treatment planning: A systematic review. Phys Imaging Radiat Oncol 2023; 27:100476. [PMID: 37565088 PMCID: PMC10410581 DOI: 10.1016/j.phro.2023.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Background and purpose Improving the accuracy of brain tumour radiotherapy (RT) treatment planning is important to optimise patient outcomes. This systematic review investigates primary studies providing clinical evidence for the integration of quantitative magnetic resonance imaging (qMRI) biomarkers and MRI radiomics to optimise brain tumour RT planning. Materials and methods PubMed, Scopus, Embase and Web of Science databases were searched for all years until June 21, 2022. The search identified original articles demonstrating clinical evidence for the use of qMRI biomarkers and MRI radiomics for the optimization of brain cancer RT planning. Relevant information was extracted and tabulated, including qMRI metrics and techniques, impact on RT plan optimization and changes in target and normal tissue contouring and dose distribution. Results Nineteen articles met the inclusion criteria. Studies were grouped according to the qMRI biomarkers into: 1) diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI; five studies); 2) diffusion tensor imaging (DTI; seven studies); and 3) MR spectroscopic imaging (MRSI; seven studies). No relevant MRI-based radiomics studies were identified. Integration of DTI maps offers the potential for improved organs at risk (OAR) sparing. MRSI metabolic maps are a promising technique for improving delineation accuracy in terms of heterogeneity and infiltration, with OAR sparing. No firm conclusions could be drawn regarding the integration of DWI metrics and PWI maps. Conclusions Integration of qMRI metrics into RT planning offers the potential to improve delineation and OAR sparing. Clinical trials and consensus guidelines are required to demonstrate the clinical benefits of such approaches.
Collapse
Affiliation(s)
- Abeer M. Aldawsari
- Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), University of Leeds, Woodhouse, Leeds LS2 9JT, United Kingdom
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 12371, Saudi Arabia
| | - Bashar Al-Qaisieh
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, United Kingdom
| | - David A. Broadbent
- Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), University of Leeds, Woodhouse, Leeds LS2 9JT, United Kingdom
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, United Kingdom
| | - David Bird
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, United Kingdom
| | - Louise Murray
- Department of Clinical Oncology, Leeds Teaching Hospitals NHS Trust, St James’s University Hospital, Leeds LS9 7LP, United Kingdom
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Richard Speight
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
3
|
Watanabe G, Conching A, Nishioka S, Steed T, Matsunaga M, Lozanoff S, Noh T. Themes in neuronavigation research: A machine learning topic analysis. World Neurosurg X 2023; 18:100182. [PMID: 37013107 PMCID: PMC10066551 DOI: 10.1016/j.wnsx.2023.100182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/22/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Objective To understand trends in neuronavigation we employed machine learning methods to perform a broad literature review which would be impractical by manual inspection. Methods PubMed was queried for articles with "Neuronavigation" in any field from inception-2020. Articles were designated neuronavigation-focused (NF) if "Neuronavigation" was a major MeSH. The latent dirichlet allocation topic modeling technique was used to identify themes of NF research. Results There were 3896 articles of which 1727 (44%) were designated as NF. Between 1999-2009 and 2010-2020, the number of NF publications experienced 80% growth. Between 2009-2014 and 2015-2020, there was a 0.3% decline. Eleven themes covered 1367 (86%) NF articles. "Resection of Eloquent Lesions" comprised the highest number of articles (243), followed by "Accuracy and Registration" (242), "Patient Outcomes" (156), "Stimulation and Mapping" (126), "Planning and Visualization" (123), "Intraoperative Tools" (104), "Placement of Ventricular Catheters" (86), "Spine Surgery" (85), "New Systems" (80), "Guided Biopsies" (61), and "Surgical Approach" (61). All topics except for "Planning and Visualization", "Intraoperative Tools", and "New Systems" exhibited a monotonic positive trend. When analyzing subcategories, there were a greater number of clinical assessments or usage of existing neuronavigation systems (77%) rather than modification or development of new apparatuses (18%). Conclusion NF research appears to focus on the clinical assessment of neuronavigation and to a lesser extent on the development of new systems. Although neuronavigation has made significant strides, NF research output appears to have plateaued in the last decade.
Collapse
Affiliation(s)
- Gina Watanabe
- John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Andie Conching
- John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Scott Nishioka
- John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Tyler Steed
- Emory University School of Medicine, Atlanta, GA, USA
| | - Masako Matsunaga
- John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Scott Lozanoff
- John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Thomas Noh
- John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
4
|
Prediction of the Topography of the Corticospinal Tract on T1-Weighted MR Images Using Deep-Learning-Based Segmentation. Diagnostics (Basel) 2023; 13:diagnostics13050911. [PMID: 36900055 PMCID: PMC10000710 DOI: 10.3390/diagnostics13050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
INTRODUCTION Tractography is an invaluable tool in the planning of tumor surgery in the vicinity of functionally eloquent areas of the brain as well as in the research of normal development or of various diseases. The aim of our study was to compare the performance of a deep-learning-based image segmentation for the prediction of the topography of white matter tracts on T1-weighted MR images to the performance of a manual segmentation. METHODS T1-weighted MR images of 190 healthy subjects from 6 different datasets were utilized in this study. Using deterministic diffusion tensor imaging, we first reconstructed the corticospinal tract on both sides. After training a segmentation model on 90 subjects of the PIOP2 dataset using the nnU-Net in a cloud-based environment with graphical processing unit (Google Colab), we evaluated its performance using 100 subjects from 6 different datasets. RESULTS Our algorithm created a segmentation model that predicted the topography of the corticospinal pathway on T1-weighted images in healthy subjects. The average dice score was 0.5479 (0.3513-0.7184) on the validation dataset. CONCLUSIONS Deep-learning-based segmentation could be applicable in the future to predict the location of white matter pathways in T1-weighted scans.
Collapse
|
5
|
Yang JYM, Chen J, Alexander B, Schilling K, Kean M, Wray A, Seal M, Maixner W, Beare R. Assessment of intraoperative diffusion EPI distortion and its impact on estimation of supratentorial white matter tract positions in pediatric epilepsy surgery. Neuroimage Clin 2022; 35:103097. [PMID: 35759887 PMCID: PMC9250069 DOI: 10.1016/j.nicl.2022.103097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 10/26/2022]
Abstract
The effectiveness of correcting diffusion Echo Planar Imaging (EPI) distortion and its impact on tractography reconstruction have not been adequately investigated in the intraoperative MRI setting, particularly for High Angular Resolution Diffusion Imaging (HARDI) acquisition. In this study, we evaluated the effectiveness of EPI distortion correction using 27 legacy intraoperative HARDI datasets over two consecutive surgical time points, acquired without reverse phase-encoded data, from 17 children who underwent epilepsy surgery at our institution. The data was processed with EPI distortion correction using the Synb0-Disco technique (Schilling et al., 2019) and without distortion correction. The corrected and uncorrected b0 diffusion-weighted images (DWI) were first compared visually. The mutual information indices between the original T1-weighted images and the fractional anisotropy images derived from corrected and uncorrected DWI were used to quantify the effect of distortion correction. Sixty-four white matter tracts were segmented from each dataset, using a deep-learning based automated tractography algorithm for the purpose of a standardized and unbiased evaluation. Displacement was calculated between tracts generated before and after distortion correction. The tracts were grouped based on their principal morphological orientations to investigate whether the effects of EPI distortion vary with tract orientation. Group differences in tract distortion were investigated both globally, and regionally with respect to proximity to the resecting lesion in the operative hemisphere. Qualitatively, we observed notable improvement in the corrected diffusion images, over the typically affected brain regions near skull-base air sinuses, and correction of additional distortion unique to intraoperative open cranium images, particularly over the resection site. This improvement was supported quantitatively, as mutual information indices between the FA and T1-weighted images were significantly greater after the correction, compared to before the correction. Maximum tract displacement between the corrected and uncorrected data, was in the range of 7.5 to 10.0 mm, a magnitude that would challenge the safety resection margin typically tolerated for tractography-informed surgical guidance. This was particularly relevant for tracts oriented partially or fully in-line with the acquired diffusion phase-encoded direction. Portions of these tracts passing close to the resection site demonstrated significantly greater magnitude of displacement, compared to portions of tracts remote from the resection site in the operative hemisphere. Our findings have direct clinical implication on the accuracy of intraoperative tractography-informed image guidance and emphasize the need to develop a distortion correction technique with feasible intraoperative processing time.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Jian Chen
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Bonnie Alexander
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Kurt Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Centre, Nashville, USA
| | - Michael Kean
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Medical Imaging, The Royal Children's Hospital, Melbourne, Australia
| | - Alison Wray
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Marc Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Wirginia Maixner
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Richard Beare
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Peninsula Clinical School, Faculty of Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
6
|
Dundar TT, Yurtsever I, Pehlivanoglu MK, Yildiz U, Eker A, Demir MA, Mutluer AS, Tektaş R, Kazan MS, Kitis S, Gokoglu A, Dogan I, Duru N. Machine Learning-Based Surgical Planning for Neurosurgery: Artificial Intelligent Approaches to the Cranium. Front Surg 2022; 9:863633. [PMID: 35574559 PMCID: PMC9099011 DOI: 10.3389/fsurg.2022.863633] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 01/22/2023] Open
Abstract
ObjectivesArtificial intelligence (AI) applications in neurosurgery have an increasing momentum as well as the growing number of implementations in the medical literature. In recent years, AI research define a link between neuroscience and AI. It is a connection between knowing and understanding the brain and how to simulate the brain. The machine learning algorithms, as a subset of AI, are able to learn with experiences, perform big data analysis, and fulfill human-like tasks. Intracranial surgical approaches that have been defined, disciplined, and developed in the last century have become more effective with technological developments. We aimed to define individual-safe, intracranial approaches by introducing functional anatomical structures and pathological areas to artificial intelligence.MethodsPreoperative MR images of patients with deeply located brain tumors were used for planning. Intracranial arteries, veins, and neural tracts are listed and numbered. Voxel values of these selected regions in cranial MR sequences were extracted and labeled. Tumor tissue was segmented as the target. Q-learning algorithm which is a model-free reinforcement learning algorithm was run on labeled voxel values (on optimal paths extracted from the new heuristic-based path planning algorithm), then the algorithm was assigned to list the cortico-tumoral pathways that aim to remove the maximum tumor tissue and in the meantime that functional anatomical tissues will be least affected.ResultsThe most suitable cranial entry areas were found with the artificial intelligence algorithm. Cortico-tumoral pathways were revealed using Q-learning from these optimal points.ConclusionsAI will make a significant contribution to the positive outcomes as its use in both preoperative surgical planning and intraoperative technique equipment assisted neurosurgery, its use increased.
Collapse
Affiliation(s)
- Tolga Turan Dundar
- Bezmiâlem Vakif Üniversitesi, Istanbul, Turkey
- *Correspondence: Tolga Turan Dundar
| | | | | | | | | | | | | | | | | | | | | | | | - Nevcihan Duru
- Kocaeli Health and Technology University, Başiskele, Turkey
| |
Collapse
|
7
|
Dupic G, Delmaire C, Savatovsky J, Kourilsky A. Intérêt de la tractographie pour la radiochirurgie et la radiothérapie stéréotaxique cérébrale. Cancer Radiother 2022; 26:736-741. [DOI: 10.1016/j.canrad.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022]
|
8
|
Drakopoulos F, Tsolakis C, Angelopoulos A, Liu Y, Yao C, Kavazidi KR, Foroglou N, Fedorov A, Frisken S, Kikinis R, Golby A, Chrisochoides N. Adaptive Physics-Based Non-Rigid Registration for Immersive Image-Guided Neuronavigation Systems. Front Digit Health 2021; 2:613608. [PMID: 34713074 PMCID: PMC8521897 DOI: 10.3389/fdgth.2020.613608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: In image-guided neurosurgery, co-registered preoperative anatomical, functional, and diffusion tensor imaging can be used to facilitate a safe resection of brain tumors in eloquent areas of the brain. However, the brain deforms during surgery, particularly in the presence of tumor resection. Non-Rigid Registration (NRR) of the preoperative image data can be used to create a registered image that captures the deformation in the intraoperative image while maintaining the quality of the preoperative image. Using clinical data, this paper reports the results of a comparison of the accuracy and performance among several non-rigid registration methods for handling brain deformation. A new adaptive method that automatically removes mesh elements in the area of the resected tumor, thereby handling deformation in the presence of resection is presented. To improve the user experience, we also present a new way of using mixed reality with ultrasound, MRI, and CT. Materials and methods: This study focuses on 30 glioma surgeries performed at two different hospitals, many of which involved the resection of significant tumor volumes. An Adaptive Physics-Based Non-Rigid Registration method (A-PBNRR) registers preoperative and intraoperative MRI for each patient. The results are compared with three other readily available registration methods: a rigid registration implemented in 3D Slicer v4.4.0; a B-Spline non-rigid registration implemented in 3D Slicer v4.4.0; and PBNRR implemented in ITKv4.7.0, upon which A-PBNRR was based. Three measures were employed to facilitate a comprehensive evaluation of the registration accuracy: (i) visual assessment, (ii) a Hausdorff Distance-based metric, and (iii) a landmark-based approach using anatomical points identified by a neurosurgeon. Results: The A-PBNRR using multi-tissue mesh adaptation improved the accuracy of deformable registration by more than five times compared to rigid and traditional physics based non-rigid registration, and four times compared to B-Spline interpolation methods which are part of ITK and 3D Slicer. Performance analysis showed that A-PBNRR could be applied, on average, in <2 min, achieving desirable speed for use in a clinical setting. Conclusions: The A-PBNRR method performed significantly better than other readily available registration methods at modeling deformation in the presence of resection. Both the registration accuracy and performance proved sufficient to be of clinical value in the operating room. A-PBNRR, coupled with the mixed reality system, presents a powerful and affordable solution compared to current neuronavigation systems.
Collapse
Affiliation(s)
- Fotis Drakopoulos
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States
| | - Christos Tsolakis
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States.,Department of Computer Science, Old Dominion University, Norfolk, VA, United States
| | - Angelos Angelopoulos
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States.,Department of Computer Science, Old Dominion University, Norfolk, VA, United States
| | - Yixun Liu
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States
| | - Chengjun Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | | | - Nikolaos Foroglou
- Department of Neurosurgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andrey Fedorov
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sarah Frisken
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexandra Golby
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Nikos Chrisochoides
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States.,Department of Computer Science, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
9
|
Utility of multi-material three-dimensional print model in preoperative simulation for glioma surgery. J Clin Neurosci 2021; 93:200-205. [PMID: 34656248 DOI: 10.1016/j.jocn.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Although the three-dimensional (3D) printing technology has spread in the field of neurosurgery, the use of 3D print models concerning glioma surgery has rarely reported. For glioma surgery, some preoperative and intraoperative assistive methods have been developed to avoid injury to the cortex and fiber that are related to the neurological function. Furthermore, in order to perform preoperative simulation of glioma surgery, we created a 3D print model using a multi-material 3D printer that provided the flexibility of adjusting the color, hardness, and translucency of each structure arbitrarily. The use of 3D print model was demonstrated in one case involving an intramedullary tumor in the right temporal lobe. The tumor, optic radiation, brain parenchyma, tentorium, ventricle, and sinus were constructed in a single model in one printing process. Design of the degree of resection, insertion of the fence-post, and tumor resection paying attention to the optic radiation were simulated preoperatively using this model. The surgery was performed generally as the simulation and gross total removal of the tumor was achieved. This model was useful for understanding the degree of resection, adequate insertion of the fence-post, and the relationship of the tumor with other important structures. A variety of printing materials contributed to make the model realistic and to understand anatomical relationship. In conclusion, the 3D print model can supplement an image of some portions that are not visible perioperatively and serve as a preoperative assistant modality.
Collapse
|
10
|
Bernard F, Haemmerli J, Zegarek G, Kiss-Bodolay D, Schaller K, Bijlenga P. Augmented reality-assisted roadmaps during periventricular brain surgery. Neurosurg Focus 2021; 51:E4. [PMID: 34333465 DOI: 10.3171/2021.5.focus21220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 11/06/2022]
Abstract
Visualizing major periventricular anatomical landmarks intraoperatively during brain tumor removal is a decisive measure toward preserving such structures and thus the patient's postoperative quality of life. The aim of this study was to describe potential standardized preoperative planning using standard landmarks and procedures and to demonstrate the feasibility of using augmented reality (AR) to assist in performing surgery according to these "roadmaps." The authors have depicted stepwise AR surgical roadmaps applied to periventricular brain surgery with the aim of preserving major cognitive function. In addition to the technological aspects, this study highlights the importance of using emerging technologies as potential tools to integrate information and to identify and visualize landmarks to be used during tumor removal.
Collapse
Affiliation(s)
- Florian Bernard
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.,2Division of Neurosurgery, Angers University Hospitals.,3Laboratory of Anatomy, University of Angers; and.,4CRCINA, UMR 1232 INSERM/CNRS and EA7315 team, Angers, France
| | - Julien Haemmerli
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Gregory Zegarek
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Daniel Kiss-Bodolay
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Bijlenga
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
11
|
Yang JYM, Yeh CH, Poupon C, Calamante F. Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges. Phys Med Biol 2021; 66. [PMID: 34157706 DOI: 10.1088/1361-6560/ac0d90] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is currently the only imaging technique that allows for non-invasive delineation and visualisation of white matter (WM) tractsin vivo,prompting rapid advances in related fields of brain MRI research in recent years. One of its major clinical applications is for pre-surgical planning and intraoperative image guidance in neurosurgery, where knowledge about the location of WM tracts nearby the surgical target can be helpful to guide surgical resection and optimise post-surgical outcomes. Surgical injuries to these WM tracts can lead to permanent neurological and functional deficits, making the accuracy of tractography reconstructions paramount. The quality of dMRI tractography is influenced by many modifiable factors, ranging from MRI data acquisition through to the post-processing of tractography output, with the potential of error propagation based on decisions made at each and subsequent processing steps. Research over the last 25 years has significantly improved the anatomical accuracy of tractography. An updated review about tractography methodology in the context of neurosurgery is now timely given the thriving research activities in dMRI, to ensure more appropriate applications in the clinical neurosurgical realm. This article aims to review the dMRI physics, and tractography methodologies, highlighting recent advances to provide the key concepts of tractography-informed neurosurgery, with a focus on the general considerations, the current state of practice, technical challenges, potential advances, and future demands to this field.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fernando Calamante
- The University of Sydney, Sydney Imaging, Sydney, Australia.,The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| |
Collapse
|
12
|
Asimakidou E, Abut PA, Raabe A, Seidel K. Motor Evoked Potential Warning Criteria in Supratentorial Surgery: A Scoping Review. Cancers (Basel) 2021; 13:2803. [PMID: 34199853 PMCID: PMC8200078 DOI: 10.3390/cancers13112803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/31/2022] Open
Abstract
During intraoperative monitoring of motor evoked potentials (MEP), heterogeneity across studies in terms of study populations, intraoperative settings, applied warning criteria, and outcome reporting exists. A scoping review of MEP warning criteria in supratentorial surgery was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sixty-eight studies fulfilled the eligibility criteria. The most commonly used alarm criteria were MEP signal loss, which was always a major warning sign, followed by amplitude reduction and threshold elevation. Irreversible MEP alterations were associated with a higher number of transient and persisting motor deficits compared with the reversible changes. In almost all studies, specificity and Negative Predictive Value (NPV) were high, while in most of them, sensitivity and Positive Predictive Value (PPV) were rather low or modest. Thus, the absence of an irreversible alteration may reassure the neurosurgeon that the patient will not suffer a motor deficit in the short-term and long-term follow-up. Further, MEPs perform well as surrogate markers, and reversible MEP deteriorations after successful intervention indicate motor function preservation postoperatively. However, in future studies, a consensus regarding the definitions of MEP alteration, critical duration of alterations, and outcome reporting should be determined.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Pablo Alvarez Abut
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
- Department of Neurosurgery, Clínica 25 de Mayo, 7600 Mar del Plata, Argentina
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Kathleen Seidel
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| |
Collapse
|
13
|
Henderson F, Abdullah KG, Verma R, Brem S. Tractography and the connectome in neurosurgical treatment of gliomas: the premise, the progress, and the potential. Neurosurg Focus 2021; 48:E6. [PMID: 32006950 DOI: 10.3171/2019.11.focus19785] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
Abstract
The ability of diffusion tensor MRI to detect the preferential diffusion of water in cerebral white matter tracts enables neurosurgeons to noninvasively visualize the relationship of lesions to functional neural pathways. Although viewed as a research tool in its infancy, diffusion tractography has evolved into a neurosurgical tool with applications in glioma surgery that are enhanced by evolutions in crossing fiber visualization, edema correction, and automated tract identification. In this paper the current literature supporting the use of tractography in brain tumor surgery is summarized, highlighting important clinical studies on the application of diffusion tensor imaging (DTI) for preoperative planning of glioma resection, and risk assessment to analyze postoperative outcomes. The key methods of tractography in current practice and crucial white matter fiber bundles are summarized. After a review of the physical basis of DTI and post-DTI tractography, the authors discuss the methodologies with which to adapt DT image processing for surgical planning, as well as the potential of connectomic imaging to facilitate a network approach to oncofunctional optimization in glioma surgery.
Collapse
Affiliation(s)
- Fraser Henderson
- 1Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania.,3Department of Neurosurgery, The Medical University of South Carolina, Charleston, South Carolina; and
| | - Kalil G Abdullah
- 4Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ragini Verma
- 1Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania.,2DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven Brem
- 1Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
14
|
Ille S, Schroeder A, Wagner A, Negwer C, Kreiser K, Meyer B, Krieg SM. Intraoperative MRI-based elastic fusion for anatomically accurate tractography of the corticospinal tract: correlation with intraoperative neuromonitoring and clinical status. Neurosurg Focus 2021; 50:E9. [PMID: 33386010 DOI: 10.3171/2020.10.focus20774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Tractography is a useful technique that is standardly applied to visualize subcortical pathways. However, brain shift hampers tractography use during the course of surgery. While intraoperative MRI (ioMRI) has been shown to be beneficial for use in oncology, intraoperative tractography can rarely be performed due to scanner, protocol, or head clamp limitations. Elastic fusion (EF), however, enables adjustment for brain shift of preoperative imaging and even tractography based on intraoperative images. The authors tested the hypothesis that adjustment of tractography by ioMRI-based EF (IBEF) correlates with the results of intraoperative neuromonitoring (IONM) and clinical outcome and is therefore a reliable method. METHODS In 304 consecutive patients treated between June 2018 and March 2020, 8 patients, who made up the basic study cohort, showed an intraoperative loss of motor evoked potentials (MEPs) during motor-eloquent glioma resection for a subcortical lesion within the corticospinal tract (CST) as shown by ioMRI. The authors preoperatively visualized the CST using tractography. Also, IBEFs of pre- and intraoperative images were obtained and the location of the CST was compared in relation to a subcortical lesion. In 11 patients (8 patients with intraoperative loss of MEPs, one of whom also showed loss of MEPs on IBEF evaluation, plus 3 additional patients with loss of MEPs on IBEF evaluation), the authors examined the location of the CST by direct subcortical stimulation (DSCS). The authors defined the IONM results and the functional outcome data as ground truth for analysis. RESULTS The maximum mean ± SD correction was 8.8 ± 2.9 (range 3.8-12.0) mm for the whole brain and 5.3 ± 2.4 (range 1.2-8.7) mm for the CST. The CST was located within the lesion before IBEF in 3 cases and after IBEF in all cases (p = 0.0256). All patients with intraoperative loss of MEPs suffered from surgery-related permanent motor deficits. By approximation, the location of the CST after IBEF could be verified by DSCS in 4 cases. CONCLUSIONS The present study shows that tractography after IBEF accurately correlates with IONM and patient outcomes and thus demonstrates reliability in this initial study.
Collapse
Affiliation(s)
- Sebastian Ille
- 1Department of Neurosurgery.,2TUM Neuroimaging Center, and
| | - Axel Schroeder
- 1Department of Neurosurgery.,2TUM Neuroimaging Center, and
| | - Arthur Wagner
- 1Department of Neurosurgery.,2TUM Neuroimaging Center, and
| | | | - Kornelia Kreiser
- 3Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | | | - Sandro M Krieg
- 1Department of Neurosurgery.,2TUM Neuroimaging Center, and
| |
Collapse
|
15
|
Lukyanchikov VA, Senko IV, Ryzhkova ES, Dmitriev AY. [Navigation in vascular neurosurgery]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:82-89. [PMID: 32759931 DOI: 10.17116/neiro20208404182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Literature review is devoted to the role of frameless neuronavigation in surgery of distal aneurysms, cavernomas, arteriovenous malformations, Kimmerle's anomaly and revascularization surgeries. Visualization methods used in preoperative preparation of patients with vascular lesions compatible with frameless neuronavigation and the methods of intraoperative visualization as an addition to navigation are described.
Collapse
Affiliation(s)
- V A Lukyanchikov
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia.,Peoples' Friendship University of Russia, Moscow, Russia
| | - I V Senko
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia.,Federal Center for Brain and Neurotechnologies, Moscow, Russia
| | - E S Ryzhkova
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia.,Peoples' Friendship University of Russia, Moscow, Russia
| | - A Yu Dmitriev
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia
| |
Collapse
|
16
|
Buch VP, McShane BJ, Beatson N, Yang A, Blanke A, Tilden D, Korn M, Chaibainou H, Ramayya A, Wombacher K, Maier S, Marashlian T, Wolf R, Baltuch GH. Focused Ultrasound Thalamotomy with Dentato-Rubro-Thalamic Tractography in Patients with Spinal Cord Stimulators and Cardiac Pacemakers. Stereotact Funct Neurosurg 2020; 98:263-269. [PMID: 32403106 DOI: 10.1159/000507031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/27/2020] [Indexed: 11/19/2022]
Abstract
Magnetic resonance image-guided high-intensity focused ultrasound (MRgFUS)-based thermal ablation of the ventral intermediate nucleus of the thalamus (VIM) is a minimally invasive treatment modality for essential tremor (ET). Dentato-rubro-thalamic tractography (DRTT) is becoming increasingly popular for direct targeting of the presumed VIM ablation focus. It is currently unclear if patients with implanted pulse generators (IPGs) can safely undergo MRgFUS ablation and reliably acquire DRTT suitable for direct targeting. We present an 80-year-old male with a spinal cord stimulator (SCS) and an 88-year-old male with a cardiac pacemaker who both underwent MRgFUS for medically refractory ET. Clinical outcomes were measured using the Clinical Rating Scale for Tremor (CRST). DRTT was successfully created and imaging parameter adjustments did not result in any delay in procedural time in either case. In the first case, 7 therapeutic sonications were delivered. The patient improved immediately and durably with a 90% CRST-disability improvement at 6-week follow-up. In our second case, 6 therapeutic sonications were delivered with durable, 75% CRST-disability improvement at 6 weeks. These are the first cases of MRgFUS thalamotomy in patients with IPGs. DRTT targeting and MRgFUS-based thermal ablation can be safely performed in these patients using a 1.5-T MRI.
Collapse
Affiliation(s)
- Vivek P Buch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,
| | - Brendan J McShane
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan Beatson
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Yang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Hanane Chaibainou
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashwin Ramayya
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirsten Wombacher
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shannon Maier
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tigran Marashlian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald Wolf
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gordon H Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Wende T, Hoffmann KT, Meixensberger J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J Neurol Surg A Cent Eur Neurosurg 2020; 81:442-455. [PMID: 32176926 DOI: 10.1055/s-0039-1691823] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to visualize the brain's fiber connections noninvasively in vivo is relatively young compared with other possibilities of functional magnetic resonance imaging. Although many studies showed tractography to be of promising value for neurosurgical care, the implications remain inconclusive. An overview of current applications is presented in this systematic review. A search was conducted for (("tractography" or "fiber tracking" or "fibre tracking") and "neurosurgery") that produced 751 results. We identified 260 relevant articles and added 20 more from other sources. Most publications concerned surgical planning for resection of tumors (n = 193) and vascular lesions (n = 15). Preoperative use of transcranial magnetic stimulation was discussed in 22 of these articles. Tractography in skull base surgery presents a special challenge (n = 29). Fewer publications evaluated traumatic brain injury (TBI) (n = 25) and spontaneous intracranial bleeding (n = 22). Twenty-three articles focused on tractography in pediatric neurosurgery. Most authors found tractography to be a valuable addition in neurosurgical care. The accuracy of the technique has increased over time. There are articles suggesting that tractography improves patient outcome after tumor resection. However, no reliable biomarkers have yet been described. The better rehabilitation potential after TBI and spontaneous intracranial bleeding compared with brain tumors offers an insight into the process of neurorehabilitation. Tractography and diffusion measurements in some studies showed a correlation with patient outcome that might help uncover the neuroanatomical principles of rehabilitation itself. Alternative corticofugal and cortico-cortical networks have been implicated in motor recovery after ischemic stroke, suggesting more complex mechanisms in neurorehabilitation that go beyond current models. Hence tractography may potentially be able to predict clinical deficits and rehabilitation potential, as well as finding possible explanations for neurologic disorders in retrospect. However, large variations of the results indicate a lack of data to establish robust diagnostical concepts at this point. Therefore, in vivo tractography should still be interpreted with caution and by experienced surgeons.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
18
|
Vanderweyen DC, Theaud G, Sidhu J, Rheault F, Sarubbo S, Descoteaux M, Fortin D. The role of diffusion tractography in refining glial tumor resection. Brain Struct Funct 2020; 225:1413-1436. [PMID: 32180019 DOI: 10.1007/s00429-020-02056-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
Primary brain tumors are notoriously hard to resect surgically. Due to their infiltrative nature, finding the optimal resection boundary without damaging healthy tissue can be challenging. One potential tool to help make this decision is diffusion-weighted magnetic resonance imaging (dMRI) tractography. dMRI exploits the diffusion of water molecule along axons to generate a 3D modelization of the white matter bundles in the brain. This feature is particularly useful to visualize how a tumor affects its surrounding white matter and plan a surgical path. This paper reviews the different ways in which dMRI can be used to improve brain tumor resection, its benefits and also its limitations. We expose surgical tools that can be paired with dMRI to improve its impact on surgical outcome, such as loading the 3D tractography in the neuronavigation system and direct electrical stimulation to validate the position of the white matter bundles of interest. We also review articles validating dMRI findings using other anatomical investigation techniques, such as postmortem dissections, manganese-enhanced MRI, electrophysiological stimulations, and phantom studies with known ground truth. We will be discussing the areas of the brain where dMRI performs well and where the future challenges are. We will conclude this review with suggestions and take home messages for neurosurgeons, tractographers, and vendors for advancing the field and on how to benefit from tractography's use in clinical practice.
Collapse
Affiliation(s)
- Davy Charles Vanderweyen
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada.
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Jasmeen Sidhu
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - Silvio Sarubbo
- Division of Neurosurgery, Emergency Area, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, 2500 Boulevard Université, Sherbrooke, QC, J1K2R1, Canada
| | - David Fortin
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sherbrooke, 3001 12 Ave N, Sherbrooke, QC, J1H 5H3, Canada
| |
Collapse
|
19
|
Kamada K, Kapeller C, Takeuchi F, Gruenwald J, Guger C. Tailor-Made Surgery Based on Functional Networks for Intractable Epilepsy. Front Neurol 2020; 11:73. [PMID: 32117032 PMCID: PMC7031351 DOI: 10.3389/fneur.2020.00073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Normal and pathological networks related to seizure propagation have got attention to elucide complex seizure semiology and contribute to diagnosis and surgical monitoring in epilepsy treatment. Since focal and generalized epileptogenic syndromes abnormalities might involve multiple foci and large-scale networks, we applied electrophysiolpgy (cortco-cortico evoked potential; CCEP), and tractography to make detailed diagnosis for complex syndrome. All 14 epilepsy patients with no or little abnormality on images investigations underwent subdural grid implantation for epilepsy diagnosis. To perform quick network analysis, we recorded and analyzed high gamma activity (HGA) of epileptogenic activity and CCEPs to identify pathological activity distribution and network connectivity. [Results] Pathological CCEPs showed two negative deflections consisting of early (>40 ms) and late (>150 ms) components in electrically stable circumstance at bed side and early CCEPs appeared in 57% of the patients. On the basis of the CCEP findings, tractography detected anatomical connections. Early components of pathological CCEPs diminished after complete disconnection of tractoography-based fibers between the foci in seven of eight cases. One case with residual pathological CCEPs showed poorer outcome. Thirteen (92.8%) patients with or without CCEPs who underwent network surgery had favorable prognosis except for a case with wide traumatic epilepsy. Intraoperative CCEP measurements and HGA mapping enabled visualization of pathological networks and clinical impotence as a biomarker to improve functional prognosis. HGA/CCEP recording should shed light on pathological and complex propagation for epilepsy surgery.
Collapse
Affiliation(s)
- Kyousuke Kamada
- Department of Neurosurgery, Megumino Hospital, Eniwa, Japan.,ATR Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Christoph Kapeller
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Fumiya Takeuchi
- Department of Research Promotion Center, Asahikawa Medical University, Asahikawa, Japan
| | - Johannes Gruenwald
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Christoph Guger
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| |
Collapse
|
20
|
Diehl CD, Schwendner MJ, Sollmann N, Oechsner M, Meyer B, Combs SE, Krieg SM. Application of presurgical navigated transcranial magnetic stimulation motor mapping for adjuvant radiotherapy planning in patients with high-grade gliomas. Radiother Oncol 2019; 138:30-37. [DOI: 10.1016/j.radonc.2019.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/17/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022]
|
21
|
Kamada K, Ogawa H, Kapeller C, Prueckl R, Hiroshima S, Tamura Y, Takeuchi F, Guger C. Disconnection of the pathological connectome for multifocal epilepsy surgery. J Neurosurg 2018; 129:1182-1194. [PMID: 29271713 DOI: 10.3171/2017.6.jns17452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVERecent neuroimaging studies suggest that intractable epilepsy involves pathological functional networks as well as strong epileptogenic foci. Combining cortico-cortical evoked potential (CCEP) recording and tractography is a useful strategy for mapping functional connectivity in normal and pathological networks. In this study, the authors sought to demonstrate the efficacy of preoperative combined CCEP recording, high gamma activity (HGA) mapping, and tractography for surgical planning, and of intraoperative CCEP measures for confirmation of selective pathological network disconnection.METHODSThe authors treated 4 cases of intractable epilepsy. Diffusion tensor imaging-based tractography data were acquired before the first surgery for subdural grid implantation. HGA and CCEP investigations were done after the first surgery, before the second surgery was performed to resect epileptogenic foci, with continuous CCEP monitoring during resection.RESULTSAll 4 patients in this report had measurable pathological CCEPs. The mean negative peak-1 latency of normal CCEPs related to language functions was 22.2 ± 3.5 msec, whereas pathological CCEP latencies varied between 18.1 and 22.4 msec. Pathological CCEPs diminished after complete disconnection in all cases. At last follow-up, all of the patients were in long-term postoperative seizure-free status, although 1 patient still suffered from visual aura every other month.CONCLUSIONSCombined CCEP measurement, HGA mapping, and tractography greatly facilitated targeted disconnection of pathological networks in this study. Although CCEP recording requires technical expertise, it allows for assessment of pathological network involvement in intractable epilepsy and may improve seizure outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fumiya Takeuchi
- 3Center for Advanced Research and Education, School of Medicine, Asahikawa Medical University, Hokkaido, Japan; and
| | | |
Collapse
|
22
|
Schwendner MJ, Sollmann N, Diehl CD, Oechsner M, Meyer B, Krieg SM, Combs SE. The Role of Navigated Transcranial Magnetic Stimulation Motor Mapping in Adjuvant Radiotherapy Planning in Patients With Supratentorial Brain Metastases. Front Oncol 2018; 8:424. [PMID: 30333959 PMCID: PMC6176094 DOI: 10.3389/fonc.2018.00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 12/05/2022] Open
Abstract
Purpose: In radiotherapy (RT) of brain tumors, the primary motor cortex is not regularly considered in target volume delineation, although decline in motor function is possible due to radiation. Non-invasive identification of motor-eloquent brain areas is currently mostly restricted to functional magnetic resonance imaging (fMRI), which has shown to lack precision for this purpose. Navigated transcranial magnetic stimulation (nTMS) is a novel tool to identify motor-eloquent brain areas. This study aims to integrate nTMS motor maps in RT planning and evaluates the influence on dosage modulations in patients harboring brain metastases. Materials and Methods: Preoperative nTMS motor maps of 30 patients diagnosed with motor-eloquent brain metastases were fused with conventional planning imaging and transferred to the RT planning software. RT plans of eleven patients were optimized by contouring nTMS motor maps as organs at risk (OARs). Dose modulation analyses were performed using dose-volume histogram (DVH) parameters. Results: By constraining the dose applied to the nTMS motor maps outside the planning target volume (PTV) to 15 Gy, the mean dose (Dmean) to the nTMS motor maps was significantly reduced by 18.1% from 23.0 Gy (16.9–30.4 Gy) to 18.9 Gy (13.5–28.8 Gy, p < 0.05). The Dmean of the PTV increased by 0.6 ± 0.3 Gy (1.7%). Conclusion: Implementing nTMS motor maps in standard RT planning is feasible in patients suffering from intracranial metastases. A significant reduction of the dose applied to the nTMS motor maps can be achieved without impairing treatment doses to the PTV. Thus, nTMS might provide a valuable tool for safer application of RT in patients harboring motor-eloquent brain metastases.
Collapse
Affiliation(s)
- Maximilian J Schwendner
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Nico Sollmann
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian D Diehl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Markus Oechsner
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Radiation Sciences, Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
23
|
Plans G, Fernández-Conejero I, Rifà-Ros X, Fernández-Coello A, Rosselló A, Gabarrós A. Evaluation of the High-Frequency Monopolar Stimulation Technique for Mapping and Monitoring the Corticospinal Tract in Patients With Supratentorial Gliomas. A Proposal for Intraoperative Management Based on Neurophysiological Data Analysis in a Series of 92 Patients. Neurosurgery 2018; 81:585-594. [PMID: 28327942 DOI: 10.1093/neuros/nyw087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 11/25/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Intraoperative identification and preservation of the corticospinal tract is often necessary for glioma resection. OBJECTIVE To make a proposal for intraoperative management with the high-frequency monopolar stimulation technique for monitoring the corticospinal tract. METHODS Ninety-two patients operated on with the assistance of the high-frequency monopolar stimulation. Clinical and neurophysiological data have been related with the motor status at 3 months to establish prognostic factors of motor deterioration. RESULTS Twenty-one patients (22.8%) presented intraoperative alterations in motor-evoked potentials (MEPs). Twelve (13%) presented an increment in the MEP threshold ≥5 mA (no deficit at 3 months). Two (2.2%) presented an MEP amplitude reduction >50% (100% deficit at 3 months). Seven (7.6%) had an intraoperative MEP loss (80% deficit at 3 months). Subcortical stimulation was positive in 75 patients (81.5%). Eighty-five patients were available for the analysis at 3 months. Fourteen presented new deficits (16.5%). Among them, 5 presented a deficit in nonmonitored muscles (5.9%) and 1 presented a new deficit not detected intraoperatively. The combination of patients with preoperative motor deficits, MEP deterioration, or loss and intensity of subcortical stimulation ≤3 mA showed the highest sensitivity and specificity in the prediction of new deficits. CONCLUSIONS Persistent MEP loss or deterioration is associated with a high probability of new deficits. It seems recommendable to stop the subcortical resection before obtaining a subcortical MEP threshold at 3 mA especially in patients with preoperative motor deficits. A careful selection of muscles for the registration of MEPs is mandatory to avoid deficits in nonmonitored muscles.
Collapse
Affiliation(s)
- Gerard Plans
- Department of Neurosurgery, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel Fernández-Conejero
- Department of Neurophysiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Rifà-Ros
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute-IDIBELL, and Department of Basic Psychology, Campus Bellvitge, Universitat de Barcelona, L'Hos-pitalet de Llobregat, Barcelona, Spain
| | - Alejandro Fernández-Coello
- Department of Neurosurgery, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Aleix Rosselló
- Department of Neurosurgery, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Andreu Gabarrós
- Department of Neurosurgery, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
24
|
Castellano A, Cirillo S, Bello L, Riva M, Falini A. Functional MRI for Surgery of Gliomas. Curr Treat Options Neurol 2017; 19:34. [PMID: 28831723 DOI: 10.1007/s11940-017-0469-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Advanced neuroimaging techniques such as functional MRI (fMRI) and diffusion MR tractography have been increasingly used at every stage of the surgical management of brain gliomas, as a means to improve tumor resection while preserving brain functions. This review provides an overview of the last advancements in the field of functional MRI techniques, with a particular focus on their current clinical use and reliability in the preoperative and intraoperative setting, as well as their future perspectives for personalized multimodal management of patients with gliomas. RECENT FINDINGS fMRI and diffusion MR tractography give relevant insights on the anatomo-functional organization of eloquent cortical areas and subcortical connections near or inside a tumor. Task-based fMRI and diffusion tensor imaging (DTI) tractography have proven to be valid and highly sensitive tools for localizing the distinct eloquent cortical and subcortical areas before surgery in glioma patients; they also show good accuracy when compared with intraoperative stimulation mapping data. Resting-state fMRI functional connectivity as well as new advanced HARDI (high angular resolution diffusion imaging) tractography methods are improving and reshaping the role of functional MRI for surgery of gliomas, with potential benefit for personalized treatment strategies. Noninvasive functional MRI techniques may offer the opportunity to perform a multimodal assessment in brain tumors, to be integrated with intraoperative mapping and clinical data for improving surgical management and oncological and functional outcome in patients affected by gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy.
| | - Sara Cirillo
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.,Unit of Oncological Neurosurgery, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Riva
- Unit of Oncological Neurosurgery, Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy
| |
Collapse
|
25
|
Hoefnagels FWA, de Witt Hamer PC, Pouwels PJW, Barkhof F, Vandertop WP. Impact of Gradient Number and Voxel Size on Diffusion Tensor Imaging Tractography for Resective Brain Surgery. World Neurosurg 2017. [PMID: 28624562 DOI: 10.1016/j.wneu.2017.06.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. METHODS Of 67 patients with intracerebral lesions who had 2 different DTI scans, 3 DTI series were reconstructed to compare the effects of NGD and SR. Tractographies for 4 clinically relevant tracts (corticospinal tract, superior longitudinal fasciculus, optic radiation, and inferior fronto-occipital fasciculus) were constructed with a probabilistic tracking algorithm and automated region of interest placement and compared for 3 quantitative measurements: tract volume, median fiber density, and mean fractional anisotropy, using linear mixed-effects models. The mean tractography volume and intersubject reliability were visually compared across scanning protocols, to assess the clinical relevance of the quantitative differences. RESULTS Both NGD and SR significantly influenced tract volume, median fiber density, and mean fractional anisotropy, but not to the same extent. In particular, higher NGD increased tract volume and median fiber density. More importantly, these effects further increased when tracts were affected by disease. The effects were tract specific, but not dependent on threshold. The superior longitudinal fasciculus and inferior fronto-occipital fasciculus showed the most significant differences. Qualitative assessment showed larger tract volumes given a fixed confidence level, and better intersubject reliability for the higher NGD protocol. SR in the range we considered seemed less relevant than NGD. CONCLUSIONS This study indicates that, under time constraints of clinical imaging, a higher number of diffusion gradients is more important than spatial resolution for superior DTI probabilistic tractography in patients undergoing brain tumor surgery.
Collapse
Affiliation(s)
- Friso W A Hoefnagels
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | - Philip C de Witt Hamer
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Department of Physics & Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - W Peter Vandertop
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Yang JYM, Beare R, Seal ML, Harvey AS, Anderson VA, Maixner WJ. A systematic evaluation of intraoperative white matter tract shift in pediatric epilepsy surgery using high-field MRI and probabilistic high angular resolution diffusion imaging tractography. J Neurosurg Pediatr 2017; 19:592-605. [PMID: 28304232 DOI: 10.3171/2016.11.peds16312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Characterization of intraoperative white matter tract (WMT) shift has the potential to compensate for neuronavigation inaccuracies using preoperative brain imaging. This study aimed to quantify and characterize intraoperative WMT shift from the global hemispheric to the regional tract-based scale and to investigate the impact of intraoperative factors (IOFs). METHODS High angular resolution diffusion imaging (HARDI) diffusion-weighted data were acquired over 5 consecutive perioperative time points (MR1 to MR5) in 16 epilepsy patients (8 male; mean age 9.8 years, range 3.8-15.8 years) using diagnostic and intraoperative 3-T MRI scanners. MR1 was the preoperative planning scan. MR2 was the first intraoperative scan acquired with the patient's head fixed in the surgical position. MR3 was the second intraoperative scan acquired following craniotomy and durotomy, prior to lesion resection. MR4 was the last intraoperative scan acquired following lesion resection, prior to wound closure. MR5 was a postoperative scan acquired at the 3-month follow-up visit. Ten association WMT/WMT segments and 1 projection WMT were generated via a probabilistic tractography algorithm from each MRI scan. Image registration was performed through pairwise MRI alignments using the skull segmentation. The MR1 and MR2 pairing represented the first surgical stage. The MR2 and MR3 pairing represented the second surgical stage. The MR3 and MR4 (or MR5) pairing represented the third surgical stage. The WMT shift was quantified by measuring displacements between a pair of WMT centerlines. Linear mixed-effects regression analyses were carried out for 6 IOFs: head rotation, craniotomy size, durotomy size, resected lesion volume, presence of brain edema, and CSF loss via ventricular penetration. RESULTS The average WMT shift in the operative hemisphere was 2.37 mm (range 1.92-3.03 mm) during the first surgical stage, 2.19 mm (range 1.90-3.65 mm) during the second surgical stage, and 2.92 mm (range 2.19-4.32 mm) during the third surgical stage. Greater WMT shift occurred in the operative than the nonoperative hemisphere, in the WMTs adjacent to the surgical lesion rather than those remote to it, and in the superficial rather than the deep segment of the pyramidal tract. Durotomy size and resection size were significant, independent IOFs affecting WMT shift. The presence of brain edema was a marginally significant IOF. Craniotomy size, degree of head rotation, and ventricular penetration were not significant IOFs affecting WMT shift. CONCLUSIONS WMT shift occurs noticeably in tracts adjacent to the surgical lesions, and those motor tracts superficially placed in the operative hemisphere. Intraoperative probabilistic HARDI tractography following craniotomy, durotomy, and lesion resection may compensate for intraoperative WMT shift and improve neuronavigation accuracy.
Collapse
Affiliation(s)
| | - Richard Beare
- Developmental Imaging Group and.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Marc L Seal
- Developmental Imaging Group and.,Department of Paediatrics and
| | | | - Vicki A Anderson
- Psychology, Royal Children's Hospital.,Clinical Sciences Theme, Murdoch Childrens Research Institute.,Department of Paediatrics and.,School of Psychological Sciences, University of Melbourne; and
| | | |
Collapse
|
27
|
Sun L, Qu B, Wang J, Ju Z, Zhang Z, Cui Z, Jack Y, Ling Z, Yu X, Pan L. Integration of Functional MRI and White Matter Tractography in CyberKnife Radiosurgery. Technol Cancer Res Treat 2017; 16:850-856. [PMID: 28425348 PMCID: PMC5762040 DOI: 10.1177/1533034617705283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose: To investigate the efficacy of the integration of functional magnetic resonance imaging and diffusion-tensor imaging tractography data into CyberKnife radiosurgery for intracranial tumor management. Materials and Methods: Functional neuroimaging, anatomical magnetic resonance imaging, and computed tomography images of patients with brain lesions in critical areas were acquired before radiosurgery. The acquired data sets were coregistered using the MIM image fusion software module and then were imported into the CyberKnife Robotic Radiosurgery System (Multiplan 4.0.2) for delineating the target, organs at risk, and possible nearby functionally relevant cortical and subcortical areas. Radiation dose distributions with and without the functionally relevant cortical and subcortical areas into the optimization process were developed and compared. Results: There were significant differences between the treatment plans with and without the functionally relevant cortical and subcortical areas into the optimization process. An average 22.71% reduction in the maximum dose to functional areas was observed. No neurological complication due to radiation damage was observed in the follow-up period. Conclusion: The functional neuroimaging could be easily and reliably integrated into the CyberKnife treatment planning. Consideration of functional structures and fiber tracts during treatment planning could clinically reduce the radiation doses to these critical structures, thereby preserving its unique function of brain.
Collapse
Affiliation(s)
- Lu Sun
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Baolin Qu
- Department of Radiation Oncology, PLA General Hospital, Beijing, China
| | - Jinyuan Wang
- Department of Radiation Oncology, PLA General Hospital, Beijing, China
| | - Zhongjian Ju
- Department of Radiation Oncology, PLA General Hospital, Beijing, China
| | - Zizhong Zhang
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Zhiqiang Cui
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Yang Jack
- Department of Radiation Oncology, Monmouth Medical Center, Long Branch, NJ, USA
| | - Zhipei Ling
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Longsheng Pan
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
D'Andrea G, Trillo' G, Picotti V, Raco A. Functional Magnetic Resonance Imaging (fMRI), Pre-intraoperative Tractography in Neurosurgery: The Experience of Sant' Andrea Rome University Hospital. ACTA NEUROCHIRURGICA. SUPPLEMENT 2017; 124:241-250. [PMID: 28120080 DOI: 10.1007/978-3-319-39546-3_36] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND The goal of neurosurgery for cerebral intraparenchymal neoplasms of the eloquent areas is maximal resection with the preservation of normal functions, and minimizing operative risk and postoperative morbidity. Currently, modern technological advances in neuroradiological tools, neuronavigation, and intraoperative magnetic resonance imaging (MRI) have produced great improvements in postoperative morbidity after the surgery of cerebral eloquent areas. The integration of preoperative functional MRI (fMRI), intraoperative MRI (volumetric and diffusion tensor imaging [DTI]), and neuronavigation, defined as "functional neuronavigation" has improved the intraoperative detection of the eloquent areas. METHODS We reviewed 142 patients operated between 2004 and 2010 for intraparenchymal neoplasms involving or close to one or more major white matter tracts (corticospinal tract [CST], arcuate fasciculus [AF], optic radiation). All the patients underwent neurosurgery in a BrainSUITE equipped with a 1.5 T MR scanner and were preoperatively studied with fMRI and DTI for tractography for surgical planning. The patients underwent MRI and DTI during surgery after dural opening, after the gross total resection close to the white matter tracts, and at the end of the procedure. We evaluated the impact of fMRI on surgical planning and on the selection of the entry point on the cortical surface. We also evaluated the impact of preoperative and intraoperative DTI, in order to modify the surgical approach, to define the borders of resection, and to correlate this modality with subcortical neurophysiological monitoring. We evaluated the impact of the preoperative fMRI by intraoperative neurophysiological monitoring, performing "neuronavigational" brain mapping, following its data to localize the previously elicited areas after brain shift correction by intraoperative MRI. RESULTS The mean age of the 142 patients (89 M/53 F) was 59.1 years and the lesion involved the CST in 66 patients (57 %), the language pathways in 24 (21 %), and the optic radiations in 25 (22 %). The integration of tractographic data into the volumetric dataset for neuronavigation was technically possible in all cases. In all patients intraoperative DTI demonstrated a shift of the bundle position caused by the surgical procedure; its dislocation was both outward and inward in the range of +6 mm and -2 mm. CONCLUSION We found a high concordance between fMRI/DTI and intraoperative brain mapping; their combination improves the sensitivity of each technique, reducing pitfalls and so defining "functional neuronavigation", increasing the definition of eloquent areas and also reducing the time of surgery.
Collapse
Affiliation(s)
- Giancarlo D'Andrea
- Institute of Neurosurgery, S Andrea Hospital, University of Rome "La Sapienza", V. L. Mantegazza 8, 00152, Rome, Italy.
| | - Giuseppe Trillo'
- Institute of Neurosurgery, S Andrea Hospital, University of Rome "La Sapienza", V. L. Mantegazza 8, 00152, Rome, Italy
| | - Veronica Picotti
- Institute of Neurosurgery, S Andrea Hospital, University of Rome "La Sapienza", V. L. Mantegazza 8, 00152, Rome, Italy
| | - Antonino Raco
- Institute of Neurosurgery, S Andrea Hospital, University of Rome "La Sapienza", V. L. Mantegazza 8, 00152, Rome, Italy
| |
Collapse
|
29
|
Shurkhay VA, Goryaynov SA, Kutin MA, Eolchiyan SA, Capitanov DN, Fomichev DV, Kalinin PL, Shkarubo AN, Kopachev DN, Melikyan AG, Nersesyan MV, Shkatova AM, Konovalov AN, Potapov AA. [Application of intraoperative electromagnetic frameless navigation in transcranial and endoscopic neurosurgical interventions]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2017; 81:5-16. [PMID: 29076463 DOI: 10.17116/neiro20178155-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
UNLABELLED The paper summarizes the experience in using a system of electromagnetic intraoperative frameless navigation in various neurosurgical pathologies of the brain. The electromagnetic navigation technique was used for 102 operations in 98 patients, including 36 transnasal endoscopic interventions. There were no intraoprtative and postoperative complications associated with the use of the system. In the process of using the system, factors influencing the accuracy of navigation and requiring additional control by the surgeon were identified. PURPOSE The study purpose was to evaluate the use of electromagnetic navigation in surgical treatment of patients with various brain lesions. MATERIAL AND METHODS The system of electromagnetic navigation was used for 102 operations in 98 patients (42 males and 56 females, including 18 children; median age, 34.8 years (min, 2.2 years; max, 69 years)) in the period from December 2012 to December 2016. In 36 patients, the system was used for endoscopic interventions. In 19 patients, electromagnetic navigation was used in combination with neurophysiological monitoring. RESULTS In our series of cases, the frameless electromagnetic navigation system was used in 66 transcranial operations. The mean error of navigation was 1.9±0.5 mm. In 5 cases, we used the data of preoperative functional MRI (fMRI) and tractography for navigation. At the same time, in all 7 operations with simultaneous direct stimulation of the cortex, there was interference and significant high-frequency noise, which distorted the electrophysiological data. A navigation error of more than 3 mm was associated with the use of neuroimaging data with an increment of more than 3 mm, image artifacts from the head locks, high rate of patient registration, inconsequence of touching points on the patient's head, and unsatisfactory fixation to the skin or subsequent displacement of a non-invasive localizer of the patient. In none of the cases, there was a significant effect of standard metal surgical tools (clamps, tweezers, aspirators) located near the patient's head on the navigation system. In two cases, the use of massive retractors located near the patient's localizer caused noise in the localizer and navigation errors of more than 10 mm due to significant distortions of the electromagnetic field. Thirty-six transnasal endoscopic interventions were performed using the electromagnetic frameless navigation system. The mean navigation error was 2.5±0.8 mm. CONCLUSION In general, electromagnetic navigation is an accurate, safe, and effective technique that can be used in surgical treatment of patients with various brain lesions. The mean navigation error in our series of cases was 1.9±0.5 mm for transcranial surgery and 2.5±0.8 mm for endoscopic surgery. Electromagnetic navigation can be used for different, both transcranial and endoscopic, neurosurgical interventions. Electromagnetic navigation is most convenient for interventions that do not require fixation of the patient's head, in particular for CSF shunting procedures, drainage of various space-occupying lesions (cysts, hematomas, and abscesses), and optimization of the size and selection of options for craniotomy. In repeated interventions, disruption of the normal anatomical relationships and landmarks necessitates application of neuronavigation systems in almost mandatory manner. The use of electromagnetic navigation does not limit application of the entire range of necessary intraoperative neurophysiological examinations at appropriate surgical stages. Succession in application of neuronavigation should be used to get adequate test results.
Collapse
Affiliation(s)
- V A Shurkhay
- Burdenko Neurosurgical Institute, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny Moscow Region, Russia
| | | | - M A Kutin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - D V Fomichev
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - P L Kalinin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A N Shkarubo
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - D N Kopachev
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A G Melikyan
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - A M Shkatova
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
30
|
Tamura Y, Ogawa H, Kapeller C, Prueckl R, Takeuchi F, Anei R, Ritaccio A, Guger C, Kamada K. Passive language mapping combining real-time oscillation analysis with cortico-cortical evoked potentials for awake craniotomy. J Neurosurg 2016; 125:1580-1588. [DOI: 10.3171/2015.4.jns15193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Electrocortical stimulation (ECS) is the gold standard for functional brain mapping; however, precise functional mapping is still difficult in patients with language deficits. High gamma activity (HGA) between 80 and 140 Hz on electrocorticography is assumed to reflect localized cortical processing, whereas the cortico-cortical evoked potential (CCEP) can reflect bidirectional responses evoked by monophasic pulse stimuli to the language cortices when there is no patient cooperation. The authors propose the use of “passive” mapping by combining HGA mapping and CCEP recording without active tasks during conscious resections of brain tumors.
METHODS
Five patients, each with an intraaxial tumor in their dominant hemisphere, underwent conscious resection of their lesion with passive mapping. The authors performed functional localization for the receptive language area, using real-time HGA mapping, by listening passively to linguistic sounds. Furthermore, single electrical pulses were delivered to the identified receptive temporal language area to detect CCEPs in the frontal lobe. All mapping results were validated by ECS, and the sensitivity and specificity were evaluated.
RESULTS
Linguistic HGA mapping quickly identified the language area in the temporal lobe. Electrical stimulation by linguistic HGA mapping to the identified temporal receptive language area evoked CCEPs on the frontal lobe. The combination of linguistic HGA and frontal CCEPs needed no patient cooperation or effort. In this small case series, the sensitivity and specificity were 93.8% and 89%, respectively.
CONCLUSIONS
The described technique allows for simple and quick functional brain mapping with higher sensitivity and specificity than ECS mapping. The authors believe that this could improve the reliability of functional brain mapping and facilitate rational and objective operations. Passive mapping also sheds light on the underlying physiological mechanisms of language in the human brain.
Collapse
Affiliation(s)
| | | | | | | | - Fumiya Takeuchi
- 3Center for Advanced Research and Education, School of Medicine, Asahikawa Medical University, Hokkaido, Japan
| | | | - Anthony Ritaccio
- 4Department of Neurology, Albany Medical Center, Albany, New York
| | | | | |
Collapse
|
31
|
Gomes JGR, Gorgulho AA, de Oliveira López A, Saraiva CWC, Damiani LP, Pássaro AM, Salvajoli JV, de Oliveira Siqueira L, Salvajoli BP, De Salles AAF. The role of diffusion tensor imaging tractography for Gamma Knife thalamotomy planning. J Neurosurg 2016; 125:129-138. [DOI: 10.3171/2016.7.gks161553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEThe role of tractography in Gamma Knife thalamotomy (GK-T) planning is still unclear. Pyramidal tractography might reduce the risk of radiation injury to the pyramidal tract and reduce motor complications.METHODSIn this study, the ventralis intermedius nucleus (VIM) targets of 20 patients were bilaterally defined using Iplannet Stereotaxy Software, according to the anterior commissure–posterior commissure (AC-PC) line and considering the localization of the pyramidal tract. The 40 targets and tractography were transferred as objects to the GammaPlan Treatment Planning System (GP-TPS). New targets were defined, according to the AC-PC line in the functional targets section of the GP-TPS. The target offsets required to maintain the internal capsule (IC) constraint of < 15 Gy were evaluated. In addition, the strategies available in GP-TPS to maintain the minimum conventional VIM target dose at > 100 Gy were determined.RESULTSA difference was observed between the positions of both targets and the doses to the IC. The lateral (x) and the vertical (z) coordinates were adjusted 1.9 mm medially and 1.3 mm cranially, respectively. The targets defined considering the position of the pyramidal tract were more medial and superior, based on the constraint of 15 Gy touching the object representing the IC in the GP-TPS. The best strategy to meet the set constraints was 90° Gamma angle (GA) with automatic shaping of dose distribution; this was followed by 110° GA. The worst GA was 70°. Treatment time was substantially increased by the shaping strategy, approximately doubling delivery time.CONCLUSIONSRoutine use of DTI pyramidal tractography might be important to fine-tune GK-T planning. DTI tractography, as well as anisotropy showing the VIM, promises to improve Gamma Knife functional procedures. They allow for a more objective definition of dose constraints to the IC and targeting. DTI pyramidal tractography introduced into the treatment planning may reduce the incidence of motor complications and improve efficacy. This needs to be validated in a large clinical series.
Collapse
Affiliation(s)
- João Gabriel Ribeiro Gomes
- 1Department of Neurosurgery and Radiotherapy of the Hospital do Coração (HCOR Neurosciences), Gamma Knife Unit, São Paulo-SP, Brazil; and
- 2Department of Neurosurgery, Real Hospital Português, Recife-PE, Brazil
| | - Alessandra Augusta Gorgulho
- 1Department of Neurosurgery and Radiotherapy of the Hospital do Coração (HCOR Neurosciences), Gamma Knife Unit, São Paulo-SP, Brazil; and
| | | | - Crystian Wilian Chagas Saraiva
- 1Department of Neurosurgery and Radiotherapy of the Hospital do Coração (HCOR Neurosciences), Gamma Knife Unit, São Paulo-SP, Brazil; and
| | - Lucas Petri Damiani
- 1Department of Neurosurgery and Radiotherapy of the Hospital do Coração (HCOR Neurosciences), Gamma Knife Unit, São Paulo-SP, Brazil; and
| | - Anderson Martins Pássaro
- 1Department of Neurosurgery and Radiotherapy of the Hospital do Coração (HCOR Neurosciences), Gamma Knife Unit, São Paulo-SP, Brazil; and
| | - João Victor Salvajoli
- 1Department of Neurosurgery and Radiotherapy of the Hospital do Coração (HCOR Neurosciences), Gamma Knife Unit, São Paulo-SP, Brazil; and
| | - Ludmila de Oliveira Siqueira
- 1Department of Neurosurgery and Radiotherapy of the Hospital do Coração (HCOR Neurosciences), Gamma Knife Unit, São Paulo-SP, Brazil; and
| | - Bernardo Peres Salvajoli
- 1Department of Neurosurgery and Radiotherapy of the Hospital do Coração (HCOR Neurosciences), Gamma Knife Unit, São Paulo-SP, Brazil; and
| | - Antônio Afonso Ferreira De Salles
- 1Department of Neurosurgery and Radiotherapy of the Hospital do Coração (HCOR Neurosciences), Gamma Knife Unit, São Paulo-SP, Brazil; and
| |
Collapse
|
32
|
Enatsu R, Kanno A, Ohtaki S, Akiyama Y, Ochi S, Mikuni N. Intraoperative Subcortical Fiber Mapping with Subcortico-Cortical Evoked Potentials. World Neurosurg 2016; 86:478-83. [DOI: 10.1016/j.wneu.2015.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
|
33
|
Contralateral Anterior Interhemispheric Transparaterminal Gyrus Approach for Thalamopeduncular Pilocytic Astrocytoma in an Adult: Technical Report. World Neurosurg 2015; 87:21-5. [PMID: 26409092 DOI: 10.1016/j.wneu.2015.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Thalamopeduncular gliomas arise at the junction of the thalamus and cerebral peduncle and constitute a subgroup of thalamic gliomas. These are surgically challenging lesions because of close proximity to important neural structures including corticospinal tracts (CSTs) and the thalamus. These tumors usually displace CSTs anterolaterally or extend to the lateral ventricular surface. Such tumors can be removed by either temporal or transventricular approaches. However, if CSTs cover the entire lateral surface of tumor and tumor does not extend to the ventricular surface, temporal and transventricular approaches cannot be used because the trajectories of both approaches would pass through normal eloquent structures (CSTs and thalamus), and consequently there would be a very high risk of postoperative neurologic deficits developing. CASE DESCRIPTION A 50-year-old woman presented with contralateral hemiparesis. Radiologic evaluation revealed a right Thalamopeduncular glioma that displaced CSTs laterally and was covered by normal thalamus superiorly. Some CST fibers passed through the tumor. Because both lateral and superior surfaces were covered by eloquent structures, we used an anterior interhemispheric transparaterminal gyrus approach to access the tumor successfully and achieved subtotal excision. The patient had transient neurologic deterioration postoperatively that recovered to preoperative level within 2 weeks. CONCLUSIONS The anterior interhemispheric transparaterminal gyrus approach has not been described previously for accessing brainstem lesions. This approach can be used to access tumors of the cerebral peduncle that displace CSTs laterally and are covered by normal thalamus superiorly. The anterior interhemispheric transparaterminal gyrus approach adds to the armamentarium of neurosurgeons for treatment of cerebral peduncular lesions.
Collapse
|
34
|
Shiban E, Krieg SM, Haller B, Buchmann N, Obermueller T, Boeckh-Behrens T, Wostrack M, Meyer B, Ringel F. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract? J Neurosurg 2015; 123:711-20. [DOI: 10.3171/2014.10.jns141289] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
Subcortical stimulation is a method used to evaluate the distance from the stimulation site to the corticospinal tract (CST) and to decide whether the resection of an adjacent lesion should be terminated to prevent damage to the CST. However, the correlation between stimulation intensity and distance to the CST has not yet been clearly assessed. The objective of this study was to investigate the appropriate correlation between the subcortical stimulation pattern and the distance to the CST.
METHODS
Monopolar subcortical motor evoked potential (MEP) mapping was performed in addition to continuous MEP monitoring in 37 consecutive patients with lesions located in motor-eloquent locations. The proximity of the resection cavity to the CST was identified by subcortical MEP mapping. At the end of resection, the point at which an MEP response was still measurable with minimal subcortical MEP intensity was marked with a titanium clip. At this location, different stimulation paradigms were executed with cathodal or anodal stimulation at 0.3-, 0.5-, and 0.7-msec pulse durations. Postoperatively, the distance between the CST as defined by postoperative diffusion tensor imaging fiber tracking and the titanium clip was measured. The correlation between this distance and the subcortical MEP electrical charge was calculated.
RESULTS
Subcortical MEP mapping was successful in all patients. There were no new permanent motor deficits. Transient new postoperative motor deficits were observed in 14% (5/36) of cases. Gross-total resection was achieved in 75% (27/36) and subtotal resection (> 80% of tumor mass) in 25% (9/36) of cases. Stimulation intensity with various pulse durations as well as current intensity was plotted against the measured distance between the CST and the titanium clip on postoperative MRI using diffusion-weighted imaging fiberitracking tractography. Correlational and regression analyses showed a nonlinear correlation between stimulation intensity and the distance to the CST. Cathodal stimulation appeared better suited for subcortical stimulation.
CONCLUSIONS
Subcortical MEP mapping is an excellent intraoperative method to determine the distance to the CST during resection of motor-eloquent lesions and is highly capable of further reducing the risk of a new neurological deficit.
Collapse
Affiliation(s)
| | | | - Bernhard Haller
- 3Institute for Medical Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | | | | | - Tobias Boeckh-Behrens
- 2Section of Neuroradiology, Department of Radiology, Klinikum rechts der Isar, Technische Universität München; and
| | | | | | | |
Collapse
|
35
|
[Diffusion-weighted imaging and diffusion tensor imaging in preoperative diagnostics]. Radiologe 2015; 55:775-81. [PMID: 26293602 DOI: 10.1007/s00117-015-0005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The extent of anisotropy and the direction of diffusion of H protons characterize the tissue structure and qualitative and quantitative evaluation of the appropriate parameters provide inferences for the membrane permeability, axon thickness, integrity and connectivity. The technique of fiber tracking is implemented in the presurgical diagnostics for lesions in the brain to show the relationship of the lesion to the fiber system. The benefit of this technique for preoperative and intraoperative localization of the pyramidal tracts, the primary motor areas, the optic radiation and the speech regions could be confirmed. In focal gliomas the fibers are often displaced to the edge of the tumor; however, in diffusely growing tumors the fiber system is infiltrated by tumor cells. In high-grade gliomas destruction of the fibers often occurs. Limitations are always present in brain regions where several fiber systems cross in different directions, such as the centrum semiovale. Appropriate neuroanatomical knowledge must be present in order to be able to immediately recognize such possible deviant pathways of the fiber tracking.
Collapse
|
36
|
White NS, McDonald C, McDonald CR, Farid N, Kuperman J, Karow D, Schenker-Ahmed NM, Bartsch H, Rakow-Penner R, Holland D, Shabaik A, Bjørnerud A, Hope T, Hattangadi-Gluth J, Liss M, Parsons JK, Chen CC, Raman S, Margolis D, Reiter RE, Marks L, Kesari S, Mundt AJ, Kane CJ, Kaine CJ, Carter BS, Bradley WG, Dale AM. Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res 2015; 74:4638-52. [PMID: 25183788 DOI: 10.1158/0008-5472.can-13-3534] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diffusion-weighted imaging (DWI) has been at the forefront of cancer imaging since the early 2000s. Before its application in clinical oncology, this powerful technique had already achieved widespread recognition due to its utility in the diagnosis of cerebral infarction. Following this initial success, the ability of DWI to detect inherent tissue contrast began to be exploited in the field of oncology. Although the initial oncologic applications for tumor detection and characterization, assessing treatment response, and predicting survival were primarily in the field of neurooncology, the scope of DWI has since broadened to include oncologic imaging of the prostate gland, breast, and liver. Despite its growing success and application, misconceptions about the underlying physical basis of the DWI signal exist among researchers and clinicians alike. In this review, we provide a detailed explanation of the biophysical basis of diffusion contrast, emphasizing the difference between hindered and restricted diffusion, and elucidating how diffusion parameters in tissue are derived from the measurements via the diffusion model. We describe one advanced DWI modeling technique, called restriction spectrum imaging (RSI). This technique offers a more direct in vivo measure of tumor cells, due to its ability to distinguish separable pools of water within tissue based on their intrinsic diffusion characteristics. Using RSI as an example, we then highlight the ability of advanced DWI techniques to address key clinical challenges in neurooncology, including improved tumor conspicuity, distinguishing actual response to therapy from pseudoresponse, and delineation of white matter tracts in regions of peritumoral edema. We also discuss how RSI, combined with new methods for correction of spatial distortions inherent in diffusion MRI scans, may enable more precise spatial targeting of lesions, with implications for radiation oncology and surgical planning. See all articles in this Cancer Research section, "Physics in Cancer Research."
Collapse
Affiliation(s)
- Nathan S White
- Department of Radiology, University of California, San Diego, San Diego, California.
| | | | - Carrie R McDonald
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Niky Farid
- Department of Radiology, University of California, San Diego, San Diego, California
| | - Josh Kuperman
- Department of Radiology, University of California, San Diego, San Diego, California
| | - David Karow
- Department of Radiology, University of California, San Diego, San Diego, California
| | | | - Hauke Bartsch
- Department of Radiology, University of California, San Diego, San Diego, California
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California, San Diego, San Diego, California
| | - Dominic Holland
- Department of Radiology, University of California, San Diego, San Diego, California
| | - Ahmed Shabaik
- Department of Pathology, University of California, San Diego, San Diego, California
| | | | - Tuva Hope
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jona Hattangadi-Gluth
- Department of Radiation Oncology, University of California, San Diego, San Diego, California
| | - Michael Liss
- Department of Urology, University of California, San Diego, San Diego, California
| | - J Kellogg Parsons
- Department of Urology, University of California, San Diego, San Diego, California
| | - Clark C Chen
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California, San Diego, San Diego, California
| | - Steve Raman
- Department of Radiology, University of California, Los Angeles, Los Angeles, California
| | - Daniel Margolis
- Department of Radiology, University of California, Los Angeles, Los Angeles, California
| | - Robert E Reiter
- Department of Urology, University of California, Los Angeles, Los Angeles, California
| | - Leonard Marks
- Department of Urology, University of California, Los Angeles, Los Angeles, California
| | - Santosh Kesari
- Department of Neuosciences, University of California, San Diego, San Diego, California
| | - Arno J Mundt
- Department of Radiation Oncology, University of California, San Diego, San Diego, California
| | | | - Christopher J Kaine
- Department of Urology, University of California, San Diego, San Diego, California
| | - Bob S Carter
- Center for Theoretical and Applied Neuro-Oncology, Division of Neurosurgery, University of California, San Diego, San Diego, California
| | - William G Bradley
- Department of Radiology, University of California, San Diego, San Diego, California
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, San Diego, California. Department of Neuosciences, University of California, San Diego, San Diego, California
| |
Collapse
|
37
|
Forster MT, Hoecker AC, Kang JS, Quick J, Seifert V, Hattingen E, Hilker R, Weise LM. Does Navigated Transcranial Stimulation Increase the Accuracy of Tractography? A Prospective Clinical Trial Based on Intraoperative Motor Evoked Potential Monitoring During Deep Brain Stimulation. Neurosurgery 2015; 76:766-75; discussion 775-6. [DOI: 10.1227/neu.0000000000000715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractBACKGROUND:Tractography based on diffusion tensor imaging has become a popular tool for delineating white matter tracts for neurosurgical procedures.OBJECTIVE:To explore whether navigated transcranial magnetic stimulation (nTMS) might increase the accuracy of fiber tracking.METHODS:Tractography was performed according to both anatomic delineation of the motor cortex (n = 14) and nTMS results (n = 9). After implantation of the definitive electrode, stimulation via the electrode was performed, defining a stimulation threshold for eliciting motor evoked potentials recorded during deep brain stimulation surgery. Others have shown that of arm and leg muscles. This threshold was correlated with the shortest distance between the active electrode contact and both fiber tracks. Results were evaluated by correlation to motor evoked potential monitoring during deep brain stimulation, a surgical procedure causing hardly any brain shift.RESULTS:Distances to fiber tracks clearly correlated with motor evoked potential thresholds. Tracks based on nTMS had a higher predictive value than tracks based on anatomic motor cortex definition (P < .001 and P = .005, respectively). However, target site, hemisphere, and active electrode contact did not influence this correlation.CONCLUSION:The implementation of tractography based on nTMS increases the accuracy of fiber tracking. Moreover, this combination of methods has the potential to become a supplemental tool for guiding electrode implantation.
Collapse
Affiliation(s)
| | | | - Jun-Suk Kang
- Neurology, Goethe University Hospital, Frankfurt, Germany
| | - Johanna Quick
- Departments of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Volker Seifert
- Departments of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Elke Hattingen
- Neuroradiology, Goethe University Hospital, Frankfurt, Germany
| | - Rüdiger Hilker
- Neurology, Goethe University Hospital, Frankfurt, Germany
| | - Lutz Martin Weise
- Departments of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| |
Collapse
|
38
|
Wang M, Ma H, Wang X, Guo Y, Xia X, Xia H, Guo Y, Huang X, He H, Jia X, Xie Y. Integration of BOLD-fMRI and DTI into radiation treatment planning for high-grade gliomas located near the primary motor cortexes and corticospinal tracts. Radiat Oncol 2015; 10:64. [PMID: 25884395 PMCID: PMC4357178 DOI: 10.1186/s13014-015-0364-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/19/2015] [Indexed: 01/03/2023] Open
Abstract
Background The main objective of this study was to evaluate the efficacy of integrating the blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) and diffusion tensor imaging (DTI) data into radiation treatment planning for high-grade gliomas located near the primary motor cortexes (PMCs) and corticospinal tracts (CSTs). Methods A total of 20 patients with high-grade gliomas adjacent to PMCs and CSTs between 2012 and 2014 were recruited. The bilateral PMCs and CSTs were located in the normal regions without any overlapping with target volume of the lesions. BOLD-fMRI, DTI and conventional MRI were performed on patients (Karnofsky performance score ≥ 70) before radical radiotherapy treatment. Four different imaging studies were conducted in each patient: a planning computed tomography (CT), an anatomical MRI, a DTI and a BOLD-fMRI. For each case, three treatment plans (3DCRT, IMRT and IMRT_PMC&CST) were developed by 3 different physicists using the Pinnacle planning system. Results Our study has shown that there was no significant difference between the 3DCRT and IMRT plans in terms of dose homogeneity, but IMRT displayed better planning target volume (PTV) dose conformity. In addition, we have found that the Dmax and Dmean to the ipsilateral and contralateral PMC and CST regions were considerably decreased in IMRT_PMC&CST group (p < 0.001). Conclusions In conclusion, integration of BOLD-fMRI and DTI into radiation treatment planning is feasible and beneficial. With the assistance of the above-described techniques, the bilateral PMCs and CSTs adjacent to the target volume could be clearly marked as OARs and spared during treatment.
Collapse
Affiliation(s)
- Minglei Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Hui Ma
- Ningxia Key Laboratory for Cerebrocranial Diseases, Yinchuan, China. .,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Xiaodong Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China. .,Ningxia Key Laboratory for Cerebrocranial Diseases, Yinchuan, China.
| | - Yanhong Guo
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Xinshe Xia
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Hechun Xia
- Ningxia Key Laboratory for Cerebrocranial Diseases, Yinchuan, China. .,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Yulin Guo
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Xueying Huang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Hong He
- Department of Radiology, Xi'an NO.1 Hospital, Xi'an, China.
| | - Xiaoxiong Jia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Yan Xie
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China. .,Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| |
Collapse
|
39
|
Diffusion tensor tractography of normal facial and vestibulocochlear nerves. Int J Comput Assist Radiol Surg 2014; 10:383-92. [PMID: 25408307 DOI: 10.1007/s11548-014-1129-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Diffusion tensor tractography (DTT) is not adequately reliable for prediction of facial and vestibulocochlear (VII-VIII) nerve locations, especially relative to a vestibular schwannoma (VS). Furthermore, it is often not possible to visualize normal VII-VIII nerves by DTT (visualization rates were 12.5-63.6%). Therefore, DTT post-processing was optimized for normal VII-VIII nerve visualization with and without manual noise elimination. METHODS DTT examinations of ten patients were evaluated to assess the improvement in performance by modifying seed region of interest (ROI) and fractional anisotropy (FA) threshold. Seed ROI was placed at the porus of the internal auditory meatus, and FA threshold values were either fixed or variable for each patient. DTT visualization of cranial nerves VII-VIII was evaluated and the noise effect was measured. RESULTS Cranial nerves VII-VIII were visualized in 90% of patients without using manual noise elimination by modifying the seed ROI and FA threshold. The visualization rate with FA threshold of the upper limit in each patient (100%) was significantly higher than that with FA threshold of 0.1 (75%) (p = 0.02). The incidence rate of noise with FA threshold of the upper limit (10%) was not significantly different than the FA threshold of 0.1 (20%) (p = 0.66). CONCLUSION Seed ROI modification and FA thresholding can improve the visualization of cranial nerve VII-VIII locations in DTT. This technique is promising for its potential to determine the relationship of cranial nerves VII-VIII to VS.
Collapse
|
40
|
Ohue S, Kohno S, Inoue A, Yamashita D, Matsumoto S, Suehiro S, Kumon Y, Kikuchi K, Ohnishi T. Surgical results of tumor resection using tractography-integrated navigation-guided fence-post catheter techniques and motor-evoked potentials for preservation of motor function in patients with glioblastomas near the pyramidal tracts. Neurosurg Rev 2014; 38:293-306; discussion 306-7. [DOI: 10.1007/s10143-014-0593-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 09/09/2014] [Accepted: 09/28/2014] [Indexed: 11/28/2022]
|
41
|
Osorio JA, Aghi MK. Optimizing glioblastoma resection: intraoperative mapping and beyond. CNS Oncol 2014; 3:359-66. [PMID: 25363008 DOI: 10.2217/cns.14.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The management of glioblastomas starts with surgical resection if possible, along with subsequent chemotherapy and radiation therapy. Several retrospective studies have suggested that extent of resection plays a role in the prognosis of glioblastoma patients. The importance of extent of resection must be balanced with preserving patient's functional status for tumors in eloquent areas. Here we review the preoperative imaging modalities such as functional MRI and magnetoencephalography (MEG), and the intraoperative techniques such as motor and language mapping, intraoperative MRI, and intraoperative techniques such as 5-aminolevulinic acid administration, that allow maximal safe operative resection of glioblastomas.
Collapse
Affiliation(s)
- Joseph A Osorio
- Department of Neurological Surgery, University of California, 505 Parnassus Avenue, Room M779, San Francisco, CA 94143-0112, USA
| | | |
Collapse
|
42
|
The role of diffusion tensor imaging in brain tumor surgery: A review of the literature. Clin Neurol Neurosurg 2014; 124:51-8. [DOI: 10.1016/j.clineuro.2014.06.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/27/2014] [Accepted: 06/08/2014] [Indexed: 12/31/2022]
|
43
|
Corticospinal tract-sparing intensity-modulated radiotherapy treatment planning. Rep Pract Oncol Radiother 2014; 19:310-6. [DOI: 10.1016/j.rpor.2014.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/30/2013] [Accepted: 01/23/2014] [Indexed: 11/19/2022] Open
|
44
|
Ostrý S, Belšan T, Otáhal J, Beneš V, Netuka D. Is intraoperative diffusion tensor imaging at 3.0T comparable to subcortical corticospinal tract mapping? Neurosurgery 2014; 73:797-807; discussion 806-7. [PMID: 23863765 DOI: 10.1227/neu.0000000000000087] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Primary brain tumors in motor eloquent areas are associated with high-risk surgical procedures because of potentially permanent and often disabling motor deficits. Intraoperative primary motor cortex mapping and corticospinal tract (CST) monitoring are well-developed and reliable techniques. Imaging of the CST by diffusion tensor tractography (DTT) is also feasible. OBJECTIVE To evaluate the practical value of 3.0T intraoperative MRI (iMRI) with intraoperative DTT (iDTT) in surgery close to the CST, and to compare high-field iDTT with intraoperative neurophysiological CST mapping during glioma and metastasis resection in a routine setting. METHODS Twenty-five patients (13 males, 12 females, median 47 years) were enrolled prospectively from June 2010 to June 2012. Patients were included if they had a solitary supratentorial intracerebral lesion compressing or infiltrating the CST according to preoperative MRI. Subcortical CST mapping was performed by monopolar (cathodal) stimulation (500 Hz, 400 μs, 5 pulses). CST DTT was made both at preoperative and intraoperative 3.0T MRI. Subcortical motor-evoked potential threshold current and probe-CST distance were recorded at 155 points before and at 103 points after iMRI. Current-distance correlations were performed both for pre-iMRI and for post-iMRI data. RESULTS The correlation coefficient pre-iMRI was R = 0.470 (P < .001); post-iMRI, the correlation coefficient was R = 0.338 (P < .001). MRI radical resection was achieved in 17 patients (68%), subtotal in 5 (24%), and partial in 3 (12%). Postoperative paresis developed in 8 patients (32%); the paresis was permanent in 1 case (4%). CONCLUSION The linear current-distance correlation was found both in pre-iMRI and in post-iMRI data. Intraoperative image distortion appeared in 36%. Neurophysiological subcortical mapping remains superior to DTT. Combining these 2 methods in selected cases can help increase the safety of tumor resection close to the CST.
Collapse
Affiliation(s)
- Svatopluk Ostrý
- *Department of Neurosurgery, First Medical Faculty, Charles University in Prague, Central Military Hospital-Military University Hospital Prague, Czech Republic; ‡Department of Radiology, Central Military Hospital-Military University Hospital Prague, Czech Republic; and §Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
45
|
Picht T, Schilt S, Frey D, Vajkoczy P, Kufeld M. Integration of navigated brain stimulation data into radiosurgical planning: potential benefits and dangers. Acta Neurochir (Wien) 2014; 156:1125-33. [PMID: 24744010 DOI: 10.1007/s00701-014-2079-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/25/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiosurgical treatment of brain lesions near motor or language eloquent areas requires careful planning to achieve the optimal balance between effective dose prescription and preservation of function. Navigated brain stimulation (NBS) is the only non-invasive modality that allows the identification of functionally essential areas by electrical stimulation or inhibition of cortical neurons analogous to the gold-standard of intraoperative electrical mapping. OBJECTIVE To evaluate the feasibility of NBS data integration into the radiosurgical environment, and to analyze the influence of NBS data on the radiosurgical treatment planning for lesions near or within motor or language eloquent areas of the brain. METHODS Eleven consecutive patients with brain lesions in presumed motor or language eloquent locations eligible for radiosurgical treatment were mapped with NBS. The radiosurgical team prospectively analyzed the data transfer and classified the influence of the functional NBS information on the radiosurgical treatment planning using a standardized questionnaire. RESULTS The semi-automatized data transfer to the radiosurgical planning workstation was flawless in all cases. The NBS data influenced the radiosurgical treatment planning procedure as follows: improved risk-benefit balancing in all cases, target contouring in 0 %, dose plan modification in 81.9 %, reduction of radiation dosage in 72.7 % and treatment indication in 63.7 % of the cases. CONCLUSIONS NBS data integration into radiosurgical treatment planning is feasible. By mapping the spatial relationship between the lesion and functionally essential areas, NBS has the potential to improve radiosurgical planning safety for eloquently located lesions.
Collapse
Affiliation(s)
- Thomas Picht
- Department of Neurosurgery, Charité University Hospital, Augustenburger Platz 1, 13353, Berlin, Germany,
| | | | | | | | | |
Collapse
|
46
|
Abdullah KG, Lubelski D, Nucifora PGP, Brem S. Use of diffusion tensor imaging in glioma resection. Neurosurg Focus 2014; 34:E1. [PMID: 23544405 DOI: 10.3171/2013.1.focus12412] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diffusion tensor imaging (DTI) is increasingly used in the resection of both high- and low-grade gliomas. Whereas conventional MRI techniques provide only anatomical information, DTI offers data on CNS connectivity by enabling visualization of important white matter tracts in the brain. Importantly, DTI allows neurosurgeons to better guide their surgical approach and resection. Here, the authors review basic scientific principles of DTI, include a primer on the technology and image acquisition, and outline the modality's evolution as a frequently used tool for glioma resection. Current literature supporting its use is summarized, highlighting important clinical studies on the application of DTI in preoperative planning for glioma resection, preoperative diagnosis, and postoperative outcomes. The authors conclude with a review of future directions for this technology.
Collapse
Affiliation(s)
- Kalil G Abdullah
- Department of Neurosurgery, Section of Neuroradiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
47
|
Zhang Q, Ni M, Zhou HF, Ding SQ, Fan ZM. Value of evoked potential in study of functional bowel disorders. Shijie Huaren Xiaohua Zazhi 2014; 22:184-189. [DOI: 10.11569/wcjd.v22.i2.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the development of neurogastroenterology and the application of neurophysiologic examinations have gradually revealed the association of gastrointestinal activity with cortical activity through the efferent and afferent pathways. The state of nerve conduction pathway between the brain and gastrointestinal tract is closely related with specific functions of the anus and rectum. Scholars have put forward the "brain gut axis" and "brain gut interaction" theories to explain the bidirectional interaction between the gastrointestinal tract and central nervous system. Evoked potentials have an important role in the diagnosis and research of electrophysiological changes in various parts of the neural system, which provides practical information for the study of the brain-gut pathway, promotes the diagnosis and understanding of diseases related to the brain-gut axis abnormalities, and provides the basis for developing new treatment methods. In this paper, we summarize the roles of various evoked potential techniques in the study of functional bowel disorders.
Collapse
|
48
|
Intraoperative Neurophysiologic Sensorimotor Mapping and Monitoring in Supratentorial Surgery. J Clin Neurophysiol 2013; 30:571-90. [DOI: 10.1097/01.wnp.0000436897.02502.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Yoshino M, Kin T, Saito T, Nakagawa D, Nakatomi H, Kunimatsu A, Oyama H, Saito N. Optimal setting of image bounding box can improve registration accuracy of diffusion tensor tractography. Int J Comput Assist Radiol Surg 2013; 9:333-339. [PMID: 23959670 DOI: 10.1007/s11548-013-0934-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE When we register diffusion tensor tractography (DTT) to anatomical images such as fast imaging employing steady-state acquisition (FIESTA), we register the B0 image to FIESTA. Precise registration of the DTT B0 image to FIESTA is possible with non-rigid registration compared to rigid registration, although the non-rigid methods lack convenience. We report the effect of image data bounding box settings on registration accuracy using a normalized mutual information (NMI) method METHODS: MRI scans of 10 patients were used in this study. Registration was performed without modification of the bounding box in the control group, and the results were compared with groups re-registered using multiple bounding boxes limited to the region of interest (ROI). The distance of misalignment after registration at 3 anatomical characteristic points that are common to both FIESTA and B0 images was used as an index of accuracy. RESULTS Mean ([Formula: see text]SD) misalignment at the 3 anatomical points decreased significantly from [Formula: see text] to [Formula: see text] mm, [Formula: see text]), [Formula: see text] to [Formula: see text] mm, ([Formula: see text], and [Formula: see text] to [Formula: see text] mm, ([Formula: see text], each showing improvement compared to the control group CONCLUSION: Narrowing the image data bounding box to the ROI improves the accuracy of registering B0 images to FIESTA by NMI method. With our proposed methodology, accuracy can be improved in extremely easy steps, and this methodology may prove useful for DTT registration to anatomical image.
Collapse
Affiliation(s)
- Masanori Yoshino
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bucci M, Mandelli ML, Berman JI, Amirbekian B, Nguyen C, Berger MS, Henry RG. Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods. NEUROIMAGE-CLINICAL 2013; 3:361-8. [PMID: 24273719 PMCID: PMC3815019 DOI: 10.1016/j.nicl.2013.08.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 12/18/2022]
Abstract
Introduction Diffusion MRI tractography has been increasingly used to delineate white matter pathways in vivo for which the leading clinical application is presurgical mapping of eloquent regions. However, there is rare opportunity to quantify the accuracy or sensitivity of these approaches to delineate white matter fiber pathways in vivo due to the lack of a gold standard. Intraoperative electrical stimulation (IES) provides a gold standard for the location and existence of functional motor pathways that can be used to determine the accuracy and sensitivity of fiber tracking algorithms. In this study we used intraoperative stimulation from brain tumor patients as a gold standard to estimate the sensitivity and accuracy of diffusion tensor MRI (DTI) and q-ball models of diffusion with deterministic and probabilistic fiber tracking algorithms for delineation of motor pathways. Methods We used preoperative high angular resolution diffusion MRI (HARDI) data (55 directions, b = 2000 s/mm2) acquired in a clinically feasible time frame from 12 patients who underwent a craniotomy for resection of a cerebral glioma. The corticospinal fiber tracts were delineated with DTI and q-ball models using deterministic and probabilistic algorithms. We used cortical and white matter IES sites as a gold standard for the presence and location of functional motor pathways. Sensitivity was defined as the true positive rate of delineating fiber pathways based on cortical IES stimulation sites. For accuracy and precision of the course of the fiber tracts, we measured the distance between the subcortical stimulation sites and the tractography result. Positive predictive rate of the delineated tracts was assessed by comparison of subcortical IES motor function (upper extremity, lower extremity, face) with the connection of the tractography pathway in the motor cortex. Results We obtained 21 cortical and 8 subcortical IES sites from intraoperative mapping of motor pathways. Probabilistic q-ball had the best sensitivity (79%) as determined from cortical IES compared to deterministic q-ball (50%), probabilistic DTI (36%), and deterministic DTI (10%). The sensitivity using the q-ball algorithm (65%) was significantly higher than using DTI (23%) (p < 0.001) and the probabilistic algorithms (58%) were more sensitive than deterministic approaches (30%) (p = 0.003). Probabilistic q-ball fiber tracks had the smallest offset to the subcortical stimulation sites. The offsets between diffusion fiber tracks and subcortical IES sites were increased significantly for those cases where the diffusion fiber tracks were visibly thinner than expected. There was perfect concordance between the subcortical IES function (e.g. hand stimulation) and the cortical connection of the nearest diffusion fiber track (e.g. upper extremity cortex). Discussion This study highlights the tremendous utility of intraoperative stimulation sites to provide a gold standard from which to evaluate diffusion MRI fiber tracking methods and has provided an object standard for evaluation of different diffusion models and approaches to fiber tracking. The probabilistic q-ball fiber tractography was significantly better than DTI methods in terms of sensitivity and accuracy of the course through the white matter. The commonly used DTI fiber tracking approach was shown to have very poor sensitivity (as low as 10% for deterministic DTI fiber tracking) for delineation of the lateral aspects of the corticospinal tract in our study. Effects of the tumor/edema resulted in significantly larger offsets between the subcortical IES and the preoperative fiber tracks. The provided data show that probabilistic HARDI tractography is the most objective and reproducible analysis but given the small sample and number of stimulation points a generalization about our results should be given with caution. Indeed our results inform the capabilities of preoperative diffusion fiber tracking and indicate that such data should be used carefully when making pre-surgical and intra-operative management decisions. Diffusion MRI tractography is used for presurgical brain mapping. We use intraoperative electric stimulation as a gold standard. We delineate motor tracts with deterministic and probabilistic DTI and q-ball models. Probabilistic q-ball has the best sensitivity (79%). Probabilistic q-ball fiber tracks had the smallest offset to the subcortical IES.
Collapse
Affiliation(s)
- Monica Bucci
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|