1
|
Feygin MS, Brenner A, Tanweer O. Magnesium sulfate in the management of acute ischemic stroke: A review of the literature and future directions. J Stroke Cerebrovasc Dis 2025; 34:108188. [PMID: 39667438 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND The management of acute ischemic stroke (AIS) was revolutionized within the last 15 years with the introduction of mechanical thrombectomy (MT) to standard of care. Despite the success of mechanical thrombectomy (MT) in achieving high recanalization rates for large vessel occlusion, functional independence post-treatment remains suboptimal. The current limitations of MT prompt evaluation of the role of adjunctive pharmacologic neuroprotective therapies to prevent excitotoxicity, cellular apoptosis, and inflammation that cause irreversible neuronal damage during AIS. Magnesium (MgSO4) provides an attractive neuroprotectant profile, having many different effects, and is inexpensive, readily available, and has a long-established safety and tolerability profile in the management of myocardial infarction and eclampsia. OBSERVATIONS This gap between technical success and patient outcomes is largely due to the inability to fully protect brain tissue from infarction during ischemia. MgSO4 has shown promise in preclinical studies for its neuroprotective properties, including blocking NMDA receptors, increasing cerebral blood flow, and stabilizing ion channels. However, clinical trials, such as FAST-MAG and IMAGES, failed to demonstrate significant benefits when MgSO4 was administered intravenously, due to delayed drug administration or delivery to target tissue. These trials highlighted the need for faster, more targeted drug delivery. Intra-arterial (IA) administration of MgSO4 via the catheter used in MT could address these limitations by delivering high doses directly to ischemic brain tissue, potentially enhancing neuroprotection while reducing systemic exposure. Preclinical studies and some clinical trials have demonstrated the safety and feasibility of IA, but not IA MgSO4. Further investigation is needed to assess its efficacy. CONCLUSIONS While past trials have not succeeded, IA administration of neuroprotective agents like MgSO4 may improve functional outcomes in stroke patients post-MT. Ongoing and future studies will determine if this approach can effectively complement reperfusion strategies, potentially ushering in a new era of stroke care.
Collapse
Affiliation(s)
- Maximillian S Feygin
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge St Ste 9B, Houston, TX 77030, United States.
| | - Alex Brenner
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge St Ste 9B, Houston, TX 77030, United States.
| | - Omar Tanweer
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge St Ste 9B, Houston, TX 77030, United States.
| |
Collapse
|
2
|
Fraser JF, Pahwa S, Maniskas M, Michas C, Martinez M, Pennypacker KR, Dornbos D. Now that the door is open: an update on ischemic stroke pharmacotherapeutics for the neurointerventionalist. J Neurointerv Surg 2024; 16:425-428. [PMID: 37258227 DOI: 10.1136/jnis-2022-019293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
The last 10 years have seen a major shift in management of large vessel ischemic stroke with changes towards ever-expanding use of reperfusion therapies (intravenous thrombolysis and mechanical thrombectomy). These strategies 'open the door' to acute therapeutics for ischemic tissue, and we should investigate novel therapeutic approaches to enhance survival of recently reperfused brain. Key insights into new approaches have been provided through translational research models and preclinical paradigms, and through detailed research on ischemic mechanisms. Additional recent clinical trials offer exciting salvos into this new strategy of pairing reperfusion with neuroprotective therapy. This pairing strategy can be employed using drugs that have shown neuroprotective efficacy; neurointerventionalists can administer these during or immediately after reperfusion therapy. This represents a crucial moment when we emphasize reperfusion, and have the technological capability along with the clinical trial experience to lead the way in multiprong approaches to stroke treatment.
Collapse
Affiliation(s)
- Justin F Fraser
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Shivani Pahwa
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Michael Maniskas
- Department of Neurology, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Christopher Michas
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Mesha Martinez
- Department of Neurointerventional Radiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
- University of Kentucky, Lexington, Kentucky, USA
| | - David Dornbos
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Tai SH, Huang SY, Chao LC, Lin YW, Huang CC, Wu TS, Shan YS, Lee AH, Lee EJ. Lithium upregulates growth-associated protein-43 (GAP-43) and postsynaptic density-95 (PSD-95) in cultured neurons exposed to oxygen-glucose deprivation and improves electrophysiological outcomes in rats subjected to transient focal cerebral ischemia following a long-term recovery period. Neurol Res 2022; 44:870-878. [PMID: 35348035 DOI: 10.1080/01616412.2022.2056817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Lithium has numerous neuroplastic and neuroprotective effects in patients with stroke. Here, we evaluated whether delayed and short-term lithium treatment reduces brain infarction volume and improves electrophysiological and neurobehavioral outcomes following long-term recovery after cerebral ischemia and the possible contributions of lithium-mediated mechanisms of neuroplasticity. METHODS Male Sprague Dawley rats were subjected to right middle cerebral artery occlusion for 90 min, followed by 28 days of recovery. Lithium chloride (1 mEq/kg) or vehicle was administered via intraperitoneal infusion once per day at 24 h after reperfusion onset. Neurobehavioral outcomes and somatosensory evoked potentials (SSEPs) were examined before and 28 days after ischemia-reperfusion. Brain infarction was assessed using Nissl staining. Primary cortical neuron cultures were exposed to oxygen-glucose deprivation (OGD) and treated with 2 or 20 μM lithium for 24 or 48 h; subsequent brain-derived neurotrophic factor (BDNF), growth-associated protein-43 (GAP-43), postsynaptic density-95 (PSD-95), and synaptosomal-associated protein-25 (SNAP-25) levels were analyzed using western blotting. RESULTS Compared to controls, lithium significantly reduced infarction volume in the ischemic brain and improved electrophysiological and neurobehavioral outcomes at 28 days post-insult. In cultured cortical neurons, BDNF, GAP-43, and PSD-95 expression were enhanced by 24- and 48-h treatment with lithium after OGD. CONCLUSION Lithium upregulates BDNF, GAP-43, and PSD-95, which partly accounts for its improvement of neuroplasticity and provision of long-term neuroprotection in the ischemic brain.Abbreviations: BDNF: brain-derived neurotrophic factor; ECM: extracellular matrix; EDTA: ethylenediaminetetraacetic acid; GAP-43: growth-associated protein-43; GSK-3β: glycogen synthase kinase-3β; HBSS: Hank's balanced salt solution; LCBF: local cortical blood perfusion; LDF: laser-Doppler flowmetry; MCAO: middle cerebral artery occlusion; MMP: matrix metalloproteinase; NMDA: N-methyl-D-aspartate; NMDAR: N-methyl-D-aspartate receptor; OCT: optimal cutting temperature compound; OGD: oxygen-glucose deprivation; PSD-95: postsynaptic density-95; SDS: sodium dodecyl sulfate; SNAP-25: synaptosomal-associated protein-25; SSEP: somatosensory evoked potential.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yang Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Chun Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Lin
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chih Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Hua Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - E-Jian Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Tai SH, Chao LC, Huang TY, Chang CC, Huang SY, Wu TS, Lee EJ. Short-term lithium treatment protects the brain against ischemia-reperfusion injury by enhancing the neuroplasticity of cortical neurons. Neurol Res 2021; 44:128-138. [PMID: 34396932 DOI: 10.1080/01616412.2021.1965427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Lithium exerts a broad neuroprotective effect on the brain. This study examined whether lithium exerts therapeutic effects on stroke by restoring neural connections at the ischemic core of cortices post brain insult. METHODS We treated rats with lithium or vehicle (saline) every 24 h for the first 72 h, starting at the beginning of reperfusion after inducing middle cerebral artery occlusion (MCAO) in rats. Somatosensory evoked potential (SSEP) recording and behavioral testing were employed to evaluate the beneficial effects of lithium treatment. To examine the effects of lithium-induced neuroplasticity, we evaluated the dendritic morphology in cortex pyramidal cells and the primary neuronal cell culture that underwent brain insults and oxygen and glucose deprivation (OGD), respectively. RESULTS The results demonstrated that rats subjected to MCAO had prolonged N1 latency and a decreased N1/P1 amplitude at the ipsilateral cortex. Four doses of lithium reduced the brain infarction volume and enhanced the SSEP amplitude. The results of neurobehavioral tests demonstrated that lithium treatment improved sensory function, as demonstrated by improved 28-point clinical scale scores. In vitro study results showed that lithium treatment increased the dendritic lengths and branches of cultured neurons and reversed the suppressive effects of OGD. The in vivo study results indicated that lithium treatment increased cortical spine density in various layers and resulted in the development of the dendritic structure in the contralateral hemisphere. CONCLUSION Our study confirmed that neuroplasticity in cortical neurons is crucial for lithium-induced brain function 50 recovery after brain ischemia.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Chun Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tung-Yi Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Che-Chao Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yang Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - E-Jian Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory and Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Neuroprotective effect of magnesium supplementation on cerebral ischemic diseases. Life Sci 2021; 272:119257. [PMID: 33631176 DOI: 10.1016/j.lfs.2021.119257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Ischemic encephalopathy is associated with a high mortality and rate of disability. The most common type of ischemic encephalopathy, ischemic stroke, is the second leading cause of death in the world. At present, the main treatment for ischemic stroke is to reopen blocked blood vessels. However, despite revascularization, many patients are not able to achieve good functional results. At the same time, the strict time window (<4.5 h) of thrombolytic therapy limits clinical application. Therefore, it is important to explore effective neuroprotective drugs for the treatment of ischemic stroke. Magnesium is a natural calcium antagonist, which exerts neuroprotective effects through various mechanisms. However, while most basic studies have shown that magnesium supplementation can help treat cerebral ischemia, intravenous magnesium supplementation in large clinical trials has failed to improve prognosis of ischemic patients. Therefore, we review the basic and clinical studies of magnesium supplementation for cerebral ischemia. According to the route of administration, treatment can be divided into intraperitoneal magnesium supplementation, intravenous magnesium supplementation, arterial magnesium supplementation and intracranial magnesium supplementation. We also summarized the potential influencing factors of magnesium ion intervention in cerebral ischemia injury. Finally, in combination with influencing factors derived from basic research, this article proposes three future research directions, including magnesium supplementation into the circulatory system combined with magnesium supplementation in the lateral ventricle, magnesium supplementation in the lateral ventricle combined with hypothermia therapy, and lateral ventricle magnesium supplementation combined with intracarotid magnesium supplementation combined with selective hypothermia.
Collapse
|
6
|
Link TW, Santillan A, Patsalides A. Intra-arterial neuroprotective therapy as an adjunct to endovascular intervention in acute ischemic stroke: A review of the literature and future directions. Interv Neuroradiol 2020; 26:405-415. [PMID: 32423272 DOI: 10.1177/1591019920925677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mechanical thrombectomy for acute ischemic stroke due to large vessel occlusion has been shown to significantly improve outcomes. However, despite efficient rates of recanalization (60-90%), the rates of functional independence remain suboptimal (14-58%), most likely due to pathways of cell death in the brain that have already committed despite successful reperfusion. Pharmacologic neuroprotection provides a potential means of preventing this inevitable damage through targeting excitotoxicity, reactive oxygen species, cellular apoptosis, and inflammation. Numerous clinical trials using various neuroprotective agents have failed, but the majority of these trials did not include endovascular reperfusion, and thus the drugs were not reaching the therapeutic target. Intra-arterial delivery of neuroprotective agents via the guide catheter already in place for mechanical thrombectomy could provide a way to deliver high doses directly to the affected territory while limiting systemic exposure. Agents that have shown promise via the intra-arterial route in preclinical as well as some clinical models include magnesium sulfate, verapamil, cold saline, stem cells, and various combined approaches. Targeted hypothermia, achieved with intra-carotid infusion of cold saline, may provide an effective means of achieving hypothermia of the ischemic tissue while avoiding the systemic effects that have limited its use previously. Combination therapy of targeted hypothermia and a cocktail of drugs that provide anti-excitotoxic, anti-oxidant, anti-apopototic, and anti-inflammatory effects may provide an ideal approach that deserves further study in clinical trials.
Collapse
Affiliation(s)
- Thomas W Link
- Department of Neurosurgery, Weill Cornell Medical Institution New York Presbyterian Hospital, New York, NY, USA
| | - Alejandro Santillan
- Department of Neurosurgery, Weill Cornell Medical Institution New York Presbyterian Hospital, New York, NY, USA
| | - Athos Patsalides
- Department of Neurology, Weill Cornell Medical Institution New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
7
|
Huang SY, Chang CH, Hung HY, Lin YW, Lee EJ. Neuroanatomical and electrophysiological recovery in the contralateral intact cortex following transient focal cerebral ischemia in rats. Neurol Res 2018; 40:130-138. [PMID: 29262766 DOI: 10.1080/01616412.2017.1411454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives Focal cerebral ischemia may induce synaptic, electrophysiological, and metabolic dysfunction in remote areas. We have shown that the remote dendritic spine density changes and electrophysiological diaschisis in the acute and subacute stages after stroke previously. Here, we further evaluated electrophysiological outcomes and synapto-dendritic plasticity in long-term recovery in the contralateral cortex following focal cerebral ischemia. Methods Male Sprague-Dawley rats were subjected to intraluminal suture occlusion for 90 min or sham-occlusion. Somatosensory electrophysiological recordings (SSEPs) and neurobehavioral tests were recorded each day for 28 days. Postmortem brains were sectioned and subjected to Nissl staining and Golgi-Cox impregnation through a 28-day period following ischemic stroke. Results In the ipsilateral cortex, infarct size in the cortex and striatum was decreased after the subacute stage; the brains showed reduced swelling in the cortex and stratum 3 days after ischemic insults. Dendritic spine density and SSEP amplitude decreased significantly during a 28-day recovery period. In the contralateral cortex, dendritic spine density and SSEP amplitude decreased significantly for 21 days after ischemic stroke, but recovered to baseline by day 28. The deterioration of the dendritic spine (density reduction) in the ischemic cortex was observed; however, this increased neuroplasticity in the contralateral cortex in the subacute stage. Discussion Focal cerebral ischemia-reperfusion induces time-dependent reduction of dendritic spine density and electrophysiological depression in both the ipsilateral and contralateral cortices and intact brain. This neuroanatomical and electrophysiological evidence suggests that neuroplasticity and functional re-organization in the contralateral cortex is possible following focal cerebral ischemia.
Collapse
Affiliation(s)
- Sheng-Yang Huang
- a Institute of Biomedical Engineering , National Cheng Kung University , Tainan , Taiwan.,b Neurophysiology Laboratory, Department of Surgery , National Cheng Kung University Medical Center and Medical School , Tainan , Taiwan
| | - Chih-Han Chang
- a Institute of Biomedical Engineering , National Cheng Kung University , Tainan , Taiwan
| | - Hsin-Yi Hung
- c School of Pharmacy , National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Yu-Wen Lin
- b Neurophysiology Laboratory, Department of Surgery , National Cheng Kung University Medical Center and Medical School , Tainan , Taiwan
| | - E-Jian Lee
- b Neurophysiology Laboratory, Department of Surgery , National Cheng Kung University Medical Center and Medical School , Tainan , Taiwan
| |
Collapse
|
8
|
Lin YW, Chen TY, Hung CY, Tai SH, Huang SY, Chang CC, Hung HY, Lee EJ. Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress. Int J Mol Med 2018; 42:182-192. [PMID: 29620280 PMCID: PMC5979830 DOI: 10.3892/ijmm.2018.3607] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/11/2018] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress plays a vital role in mediating ischemic reperfusion damage in brain. In this study, we evaluated whether melatonin inhibits ER stress in cultured neurons exposed to oxygen and glucose deprivation (OGD) and in rats subjected to transient focal cerebral ischemia. Sprague-Dawley rats were treated with melatonin (5 mg/kg) or control at reperfusion onset after transient occlusion of the right middle cerebral artery (MCA) for 90 min. Brain infarction and hemorrhage within infarcts were measured. The expression of ER stress proteins of phosphorylation of PRKR-like endoplasmic reticulum kinase (p-PERK), phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were detected by western blotting and immunohistochemistry analysis. The terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) method, cleaved caspase-3 and cytochrome c were used to investigate cell apoptosis in OGD-induced cultured neurons. Our results demonstrated that animals treated with melatonin had significantly reduced infarction volumes and individual cortical lesion sizes as well as increased numbers of surviving neurons. Melatonin can significantly modulate protein levels by decreasing both p-PERK and p-eIF2α in the ischemic core and penumbra. Moreover, the expressions of ATF4 and CHOP were restrained in the ischemic core and penumbra, respectively. Furthermore, pretreatment with melatonin at 10–100 µM effectively reduced the levels of p-PERK and p-eIF2α in cultured neurons after OGD injury. Melatonin treatment also effectively decreased neuron apoptosis resulting from OGD-induced neuron injury. These results indicate that melatonin effectively attenuated post-ischemic ER stress after ischemic stroke.
Collapse
Affiliation(s)
- Yu Wen Lin
- Neurophysiology Laboratory, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan, R.O.C
| | - Tsung Ying Chen
- Department of Anesthesiology, Buddhist Tzu-Chi University and Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan, R.O.C
| | - Chia Yang Hung
- Neurophysiology Laboratory, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan, R.O.C
| | - Shih Huang Tai
- Neurophysiology Laboratory, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan, R.O.C
| | - Sheng Yang Huang
- Neurophysiology Laboratory, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan, R.O.C
| | - Che Chao Chang
- Neurophysiology Laboratory, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan, R.O.C
| | - Hsin Yi Hung
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan, R.O.C
| | - E Jian Lee
- Neurophysiology Laboratory, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan, R.O.C
| |
Collapse
|
9
|
Juan WS, Huang SY, Chang CC, Hung YC, Lin YW, Chen TY, Lee AH, Lee AC, Wu TS, Lee EJ. Melatonin improves neuroplasticity by upregulating the growth-associated protein-43 (GAP-43) and NMDAR postsynaptic density-95 (PSD-95) proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to transient focal cerebral ischemia even during a long-term recovery period. J Pineal Res 2014; 56:213-23. [PMID: 24350898 DOI: 10.1111/jpi.12114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/13/2013] [Indexed: 01/22/2023]
Abstract
Recent evidence shows that the NMDAR postsynaptic density-95 (PSD-95), growth-associated protein-43 (GAP-43), and matrix metalloproteinase-9 (MMP-9) protein enhance neuroplasticity at the subacute stage of stroke. Here, we evaluated whether melatonin would modulate the PSD-95, GAP-43, and MMP-9 proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to experimental stroke. Adult male Sprague-Dawley rats were treated with melatonin (5 mg/kg) or vehicle at reperfusion onset after transient occlusion of the right middle cerebral artery (tMCAO) for 90 min. Animals were euthanized for Western immunoblot analyses for the PSD-95 and GAP-43 proteins and gelatin zymography for the MMP-9 activity at 7 days postinsult. Another set of animals was sacrificed for histologic and Golgi-Cox-impregnated sections at 28 days postinsult. In cultured neurons exposed to glutamate excitotoxicity, melatonin significantly upregulated the GAP-43 and PSD-95 expressions and improved dendritic aborizations (P<0.05, respectively). Relative to controls, melatonin-treated stroke animals caused a significant improvement in GAP-43 and PSD-95 expressions as well as the MMP-9 activity in the ischemic brain (P<0.05). Consequently, melatonin also significantly promoted the dendritic spine density and reduced infarction in the ischemic brain, and improved neurobehaviors as well at 28 days postinsult (P<0.05, respectively). Together, melatonin upregulates GAP-43, PSD-95, and MMP-9 proteins, which likely accounts for its actions to improve neuroplasticity in cultured neurons exposed to glutamate excitotoxicity and to enhance long-term neuroprotection, neuroplasticity, and brain remodeling in stroke rats.
Collapse
Affiliation(s)
- Wei-Sheng Juan
- Neurophysiology Laboratory, Institute of Biomedical Engineering & Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wong GKC, Chan MTV, Poon WS, Boet R, Gin T. Magnesium therapy within 48 hours of an aneurysmal subarachnoid hemorrhage: neuro-panacea. Neurol Res 2013; 28:431-5. [PMID: 16759446 DOI: 10.1179/016164106x115035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Whereas advances in neurosurgical treatment and intensive care management improve the results from many of the devastating complications associated with aneurysmal subarachnoid hemorrhage, cerebral vasospasm remains a major cause of neurological morbidity and mortality. Experimental studies suggested that MgSO(4) inhibits excitatory amino acid release, blocks N-methyl-D-aspartate (NMDA) receptors and prevents calcium entry into the cell. Magnesium also increases red blood cell deformability. These changes may reduce the occurrence of cerebral vasospasm and minimize neuronal injury during episodes of cerebral vasospasm. Our group is currently hosting the intravenous magnesium sulfate to improve outcome after aneurysmal subarachnoid hemorrhage (IMASH) trial, which is a randomized, placebo-controlled, double-blinded, multicentered trial to evaluate the effect of magnesium sulfate infusion on the clinical outcome of patients with aneurysmal subarachnoid hemorrhage since 2002. The pilot result showed a trend towards decreased clinical vasospasm and better patient outcome. Magnesium sulfate infusion may prove to be an effective and inexpensive way to reduce the morbidity and mortality associated with aneurysmal subarachnoid hemorrhage, which is a major breakthrough in the current management.
Collapse
Affiliation(s)
- George K C Wong
- Division of Neurosurgery, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
11
|
Hung YC, Chou YS, Chang CH, Lin HW, Chen HY, Chen TY, Tai SH, Lee EJ. Early reperfusion improves the recovery of contralateral electrophysiological diaschisis following focal cerebral ischemia in rats. Neurol Res 2013; 32:828-34. [DOI: 10.1179/016164109x12581096870032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Song W, Wu YM, Ji Z, Ji YB, Wang SN, Pan SY. Intra-carotid cold magnesium sulfate infusion induces selective cerebral hypothermia and neuroprotection in rats with transient middle cerebral artery occlusion. Neurol Sci 2012; 34:479-86. [PMID: 22466873 DOI: 10.1007/s10072-012-1064-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Local hypothermia induced by intra-arterial infusion of cold saline reduces brain injury in ischemic stroke. Administration of magnesium sulfate through the internal carotid artery is also known to reduce ischemic brain damage. The neuroprotective effects of combination therapy with local endovascular hypothermia and intra-carotid magnesium sulfate infusion has not been evaluated. The aim of the study was to determine whether infusion of intra-carotid cold magnesium offers neuroprotective efficacy superior to cold saline infusion alone. Sixty-eight Sprague-Dawley rats were subjected to 3 h of middle cerebral artery occlusion and were randomly divided into six groups: sham-operated group; stroke control group; local cold magnesium infusion group; local cold saline infusion group; local normothermic magnesium infusion group; and local normothermic saline infusion group. Before reperfusion, ischemic rats received local infusion or no treatment. Infarct volume, neurological deficit, and brain water content were evaluated at 48 h after reperfusion. Selective brain hypothermia (33-34 °C) was successfully induced by intra-carotid cold infusion. Local cold saline infusion and local cold magnesium infusion reduced the infarct volumes by 48 % (p < 0.001) and 65 % (p < 0.001), respectively, compared with stroke controls. Brain water content was decreased significantly in animals treated with local cold magnesium infusion. Furthermore, the rats given a local cold magnesium infusion had the best neurological outcome. Local normothermic infusion failed to improve ischemic brain damage. These data suggest that local hypothermia induced by intra-carotid administration of cold magnesium is more effective in reducing acute ischemic damage than infusion of cold saline alone.
Collapse
Affiliation(s)
- Wei Song
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Cinnamophilin offers prolonged neuroprotection against gray and white matter damage and improves functional and electrophysiological outcomes after transient focal cerebral ischemia. Crit Care Med 2011; 39:1130-7. [PMID: 21283002 DOI: 10.1097/ccm.0b013e31820a9442] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We have previously shown that cinnamophilin ([8R, 8'S]-4, 4'-dihydroxy-3, 3'-dimethoxy-7-oxo-8, 8'-neolignan) exhibited potent antioxidant, radical-scavenging, and anti-inflammatory actions and reduced acute ischemic brain damage, even when it was given up to 6 hrs postinsult. Here, we characterized the long-lasting neuroprotection of cinnamophilin against gray and white matter damage and its beneficial effects on electrophysiological and functional outcomes in a model of stroke. DESIGN Prospective laboratory animal study. SETTING Research laboratory in a university teaching hospital. SUBJECTS Adult male Sprague-Dawley rats (240-290 g). INTERVENTIONS Under controlled conditions of normoxia, normocarbia, and normothermia, spontaneously breathing, halothane-anesthetized (1.0-1.5%) rats were subjected to transient middle cerebral artery occlusion for 90 mins. Cinnamophilin (80 mg/kg) or vehicle was given intravenously at reperfusion onset. MEASUREMENTS AND MAIN RESULTS Physiological parameters, including arterial blood gases and cortical blood perfusion, somatosensory-evoked potentials, and neurobehavioral outcomes, were serially examined. Animals were euthanized at 7 days or 21 days postinsult. Gray matter and white matter (axonal and myelin) damage were then evaluated by quantitative histopathology and immunohistochemistry against phosphorylated component-H neurofilaments and myelin basic protein, respectively. After the follow-up period of 7 and 21 days, our results showed that cinnamophilin significantly decreased gray matter damage by 31.6% and 34.9% (p < .05, respectively) without notable adverse effects. Additionally, cinnamophilin effectively reduced axonal and myelin damage by 46.3-68.6% (p < .05) and 25.2-28.1% (p < .05), respectively. Furthermore, cinnamophilin not only improved the ipsilateral field potentials (p < .05, respectively), but also reduced the severity of contralateral electrophysiological diaschisis (p < .05). Consequently, cinnamophilin improved sensorimotor outcomes up to 21 days postinsult (p < .05, respectively). CONCLUSIONS Administration with cinnamophilin provides long-lasting neuroprotection against gray and white matter damage and improves functional and electrophysiological outcomes after ischemic stroke. The results suggest a need for further studies to characterize the potential of cinnamophilin in the field of ischemic stroke.
Collapse
|
14
|
Kim JE, Jeon JP, No HC, Choi JH, Lee SH, Ryu KH, Kim ES. The effects of magnesium pretreatment on reperfusion injury during living donor liver transplantation. Korean J Anesthesiol 2011; 60:408-15. [PMID: 21738843 PMCID: PMC3121087 DOI: 10.4097/kjae.2011.60.6.408] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 11/29/2022] Open
Abstract
Background Ischemia reperfusion (IR) injury is a complex phenomenon that leads to organ dysfunction and causes primary liver failure following liver transplantation. We investigated whether an intravenous administration of magnesium before reperfusion can prevent or reduce IR injury. Methods Fifty-nine living donor liver transplant recipients were randomly assigned to an MG group (n = 31) or an NS group (n = 28). Each group was also divided in two groups based on the preoperative magnesium levels (normal: ≥ 0.70 mmol/L, low: < 0.70 mmol/L). The MG groups received 25 mg/kg of MgSO4 mixed in 100 ml normal saline intravenously before reperfusion and the NS groups received an equal volume of normal saline. The levels of lactate, pH, arterial oxygen tension, and base excess were measured to assess reperfusion injury at five specific times, which were 10 min after the beginning of anhepatic phase, and 10, 30, 60 and 120 min after reperfusion. To evaluate postoperative organ function, the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin and creatinine levels were measured at preoperative day 1, postoperative day 1 and 5. Results The blood lactate levels were significantly lower at 10, 30, 60 and 120 min after reperfusion in the MG groups compared to the NS groups. In addition, significantly higher blood lactate levels were observed in the NS group with preoperative hypomagnesemia than in MG groups. Conclusions Magnesium administration before reperfusion of liver transplantation significantly reduces blood lactate levels. These findings suggest that magnesium treatment may have protective effects on IR injury during living donor liver transplantation.
Collapse
Affiliation(s)
- Jeong Eun Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Tai SH, Hung YC, Lee EJ, Lee AC, Chen TY, Shen CC, Chen HY, Lee MY, Huang SY, Wu TS. Melatonin protects against transient focal cerebral ischemia in both reproductively active and estrogen-deficient female rats: the impact of circulating estrogen on its hormetic dose-response. J Pineal Res 2011; 50:292-303. [PMID: 21210839 DOI: 10.1111/j.1600-079x.2010.00839.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin (5-15 mg/kg) protects male animals against ischemic stroke. We explored the potential interactions and synergistic neuroprotection of melatonin and estrogen using a panel of lipid peroxidation and radical-scavenging assays, primary neuronal cultures subjected to oxygen-glucose deprivation (OGD), and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Neuroprotective efficacy of melatonin was also evaluated in both reproductively active and ovariectomized female rats subjected to transient focal cerebral ischemia. Relative to melatonin or estradiol (E2) alone, a combination of the two agents exhibited robust, synergistic antioxidant and radical-scavenging actions (P<0.05, respectively). Additionally, the two agents, when combined at large doses, showed synergistic inhibition in the production of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in the LPS-stimulated RAW 264.7 cells (P<0.05, respectively). Alternatively, co-treatment with melatonin and E2 independently, but not combined, showed a U-shaped dose-responsive (hormetic) cytoprotection for neuronal cultures subjected to OGD. When combined at a dosage either positively or negatively skewed from each optimal dosage, however, co-treatment caused synergistic neuroprotection. Relative to vehicle-injected controls, melatonin given intravenously at 1-5 mg/kg, but not 0.1 or 15 mg/kg, significantly reduced brain infarction and improved neurobehavioral outcomes (P<0.05, respectively) in reproductively active female rats. In ovariectomized stroke rats, melatonin was only effective at a large dosage (15-50 mg/kg). These results demonstrate complex interactions and synergistic antioxidant, radical-scavenging, and anti-inflammatory actions between estradiol and melatonin, and highlight the potential need to rectify the melatonin's hormetic dose-response by the level of circulating estradiol in the treatment of female stroke patients.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tai SH, Chen HY, Lee EJ, Chen TY, Lin HW, Hung YC, Huang SY, Chen YH, Lee WT, Wu TS. Melatonin inhibits postischemic matrix metalloproteinase-9 (MMP-9) activation via dual modulation of plasminogen/plasmin system and endogenous MMP inhibitor in mice subjected to transient focal cerebral ischemia. J Pineal Res 2010; 49:332-41. [PMID: 20663046 DOI: 10.1111/j.1600-079x.2010.00797.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have shown that melatonin attenuated matrix metalloproteinase-9 (MMP-9) activation and decreased the risk of hemorrhagic transformation following cerebral ischemia-reperfusion. Herein, we investigate the possible involvement of the plasminogen/plasmin system and endogenous MMPs inhibitor underlying the melatonin-mediated MMP-9 inhibition. Mice were subjected to 1-hr ischemia and 48-hr reperfusion of the right middle cerebral artery. Melatonin (5 mg/kg) or vehicle was intravenously injected upon reperfusion. Brain infarction and hemorrhagic transformation were measured. Extracellular matrix damage was determined by Western immunoblot analysis for laminin protein. The activity and expression of MMP-2 and MMP-9 were determined by gelatin zymography, in situ zymography, and Western immunoblot analysis. In addition, the activities of tissue and urokinase plasminogen activators (tPA and uPA) were evaluated by plasminogen-dependent casein zymography. Endogenous plasminogen activator inhibitor (PAI) and tissue inhibitors of MMP (TIMP-1) were investigated using enzyme-linked immunosorbent assay (ELISA) and Western immunoblot analysis, respectively. Cerebral ischemia-reperfusion induced increased MMP-9 activity and expression at 12-48 hr after reperfusion onset. Relative to controls, melatonin-treated animals had significantly decreased MMP-9 activity and expression (P<0.05), in addition to reduced brain infarction and hemorrhagic transformation as well as improved laminin protein preservation. This melatonin-mediated MMP-9 inhibition was accompanied by reduced uPA activity (P<0.05), as well as increased TIMP-1 expression and PAI activity (P<0.05, respectively). These results demonstrate the melatonin's pluripotent mechanisms for attenuating postischemic MMP-9 activation and neurovascular damage, and further support it as an add-on to thrombolytic therapy for ischemic stroke patients.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen HY, Hung YC, Chen TY, Huang SY, Wang YH, Lee WT, Wu TS, Lee EJ. Melatonin improves presynaptic protein, SNAP-25, expression and dendritic spine density and enhances functional and electrophysiological recovery following transient focal cerebral ischemia in rats. J Pineal Res 2009; 47:260-70. [PMID: 19709397 DOI: 10.1111/j.1600-079x.2009.00709.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synapto-dendritic dysfunction and rearrangement takes place over time at the peri-infarct brain after stroke, and the event plays an important role in post-stroke functional recovery. Here, we evaluated whether melatonin would modulate the synapto-dendritic plasticity after stroke. Adult male Sprague-Dawley rats were treated with melatonin (5 mg/kg) or vehicle at reperfusion onset after transient occlusion of the right middle cerebral artery (tMCAO) for 90 min. Local cerebral blood perfusion, somatosensory electrophysiological recordings and neurobehavioral tests were serially measured. Animals were sacrificed at 7 days after tMCAO. The brain was processed for Nissl-stained histology, Golgi-Cox-impregnated sections, or Western blotting for presynaptic proteins, synaptosomal-associated protein of 25 kDa (SNAP-25) and synaptophysin (a calcium-binding protein found on presynaptic vesicle membranes). Relative to controls, melatonin-treated animals had significantly reduced infarction volumes (P < 0.05) and improved neurobehavioral outcomes, as accessed by sensorimotor and rota-rod motor performance tests (P < 0.05, respectively). Melatonin also significantly improved the SNAP-25, but not synaptophysin, protein expression in the ischemic brain (P < 0.05). Moreover, melatonin significantly improved the dendritic spine density and the somatosensory electrophysiological field potentials both in the ischemic brain and the contralateral homotopic intact brain (P < 0.05, respectively). Together, melatonin not only effectively attenuated the loss of presynaptic protein, SANP-25, and dendritic spine density in the ischemic territory, but also improved the reductions in the dendritic spine density in the contralateral intact brain. This synapto-dendritic plasticity may partly account for the melatonin-mediated improvements in functional and electrophysiological circuitry after stroke.
Collapse
Affiliation(s)
- Hung-Yi Chen
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Magnesium treatment and spontaneous mild hypothermia after transient focal cerebral ischemia in the rat. Brain Res Bull 2009; 79:224-5. [DOI: 10.1016/j.brainresbull.2009.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 02/17/2009] [Indexed: 11/21/2022]
|
19
|
Lee EJ, Chen HY, Hung YC, Chen TY, Lee MY, Yu SC, Chen YH, Chuang IC, Wu TS. Therapeutic window for cinnamophilin following oxygen-glucose deprivation and transient focal cerebral ischemia. Exp Neurol 2009; 217:74-83. [PMID: 19416670 DOI: 10.1016/j.expneurol.2009.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 01/21/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Cinnamophilin (CINN, (8R, 8'S)-4, 4'-dihydroxy-3, 3'-dimethoxy-7-oxo-8, 8'-neolignan) protects against ischemic stroke in mice. While some anti-oxidative effects of CINN have been characterized, its therapeutic window and molecular basis for neuroprotection remain unclear. We evaluated antioxidant and anti-inflammatory properties and therapeutic window of CINN against brain ischemia using a panel of in vitro and in vivo assays. Data from lipid peroxidation and radical scavenging assays showed that CINN was a robust antioxidant and radical scavenger. CINN effectively inhibited the production of tumor necrosis factor alpha (TNF-alpha), nitrite/nitrate, interleukin-6 (IL-6) in lipopolysaccharide (LPS)-stimulated RAW 264.7 and BV2 cells (P<0.05, respectively). Relative to controls, CINN, administrated at 80 mg/kg, 2, 4, or 6 h postinsult, but not 12 h, significantly reduced brain infarction by 34-43% (P<0.05) and improved neurobehavioral outcome (P<0.05) following transient focal cerebral ischemia in rats. CINN (10-30 microM) also significantly reduced oxygen-glucose deprivation-induced neuronal damage (P<0.05) in rat organotypic hippocampal slices, even when it was administrated 2, 4, or 6 h postinsult. Together, CINN protects against ischemic brain damage with a therapeutic window up to 6 h in vivo and in vitro, which may, at least in part, be attributed by its direct antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- E-Jian Lee
- Department of Surgery, Neurophysiology Laboratory, Neurosurgical Service, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee EJ, Hung YC, Chen HY, Wu TS, Chen TY. Delayed Treatment with Carboxy-PTIO Permits a 4-h Therapeutic Window of Opportunity and Prevents Against Ischemia-Induced Energy Depletion Following Permanent Focal Cerebral Ischemia in Mice. Neurochem Res 2008; 34:1157-66. [DOI: 10.1007/s11064-008-9892-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2008] [Indexed: 11/28/2022]
|
21
|
Philip M, Benatar M, Fisher M, Savitz SI. Methodological quality of animal studies of neuroprotective agents currently in phase II/III acute ischemic stroke trials. Stroke 2008; 40:577-81. [PMID: 19074479 DOI: 10.1161/strokeaha.108.524330] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Numerous neuroprotective agents have proven effective in animal stroke studies, but every drug has failed to achieve its primary outcome when brought forward to clinical trials. We analyzed the quality and adequacy of animal studies supporting the efficacy of NXY-059 and other neuroprotective agents that are currently being investigated in phase II/III trials. METHODS We conducted a systematic search of all neuroprotective drugs in Phase II or III trials and collected data from animal studies of focal cerebral ischemia testing agents systemically administered within 24 hours of occlusion. The methodological rigor of each individual study was evaluated using 5 criteria derived from the STAIR guidelines. The adequacy of the preclinical "package" for each drug was then evaluated by combining the results of all studies for each drug to determine which of a further 5 STAIR criteria were met before moving forward from animal to human studies. RESULTS Our search yielded 13 agents of which 10 had published data in peer-reviewed journals. There is substantial within-drug variability in the quality of preclinical studies as well as substantial variation in the completeness of the collective preclinical literature for different drugs. There has been little or no improvement in the quality of animal studies since NXY-059, and current agents have not been subjected to a more complete preclinical evaluation. CONCLUSIONS There is significant heterogeneity in the quality of animal testing for neuroprotective agents in stroke. Drugs in the post-SAINT era have not been subjected to more thorough preclinical evaluation.
Collapse
Affiliation(s)
- Maria Philip
- Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
22
|
Hung YC, Chen TY, Lee EJ, Chen WL, Huang SY, Lee WT, Lee MY, Chen HY, Wu TS. Melatonin decreases matrix metalloproteinase-9 activation and expression and attenuates reperfusion-induced hemorrhage following transient focal cerebral ischemia in rats. J Pineal Res 2008; 45:459-67. [PMID: 18624955 DOI: 10.1111/j.1600-079x.2008.00617.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously shown that melatonin reduces postischemic rises in the blood-brain barrier (BBB) permeability and improves neurovascular dysfunction and hemorrhagic transformation following ischemic stroke. It is known that activation of the matrix metalloproteinases (MMPs) plays a crucial role in the pathogenesis of brain edema and hemorrhagic transformation after ischemic stroke. We, herein, investigated whether melatonin would ameliorate MMP-2 and MMP-9 activation and expression in a rat model of transient focal cerebral ischemia. Adult male Sprague-Dawley rats were subjected to a 90-min middle cerebral artery (MCA) occlusion using an intraluminal filament. Melatonin (5 mg/kg) or vehicle was intravenously injected upon reperfusion. Brain infarction and hemorrhage within infarcts were measured, and neurological deficits were scored. The activity and expression of MMP-2 and MMP-9 were determined by zymography, in situ zymography and Western immunoblot analysis. Cerebral ischemia-reperfusion induced increased pro-MMP-9 and MMP-9 activity and expression 24 hr after reperfusion onset. Relative to controls, melatonin-treated animals, however, had significantly reduced levels in the MMP-9 activity and expression (P < 0.01), in addition to reduced brain infarct volume and hemorrhagic transformation as well as improved sensorimotor neurobehavioral outcomes. No significant change in MMP-2 activity was observed throughout the course experiments. Our results indicate that the melatonin-mediated reductions in ischemic brain damage and reperfusion-induced hemorrhage are partly attributed to its ability to reduce postischemic MMP-9 activation and increased expression, and further support the fact that melatonin is a suitable as an add-on to thrombolytic therapy for ischemic stroke patients.
Collapse
Affiliation(s)
- Yu-Chang Hung
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee MY, Kuan YH, Chen HY, Chen TY, Chen ST, Huang CC, Yang IP, Hsu YS, Wu TS, Lee EJ. Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J Pineal Res 2007; 42:297-309. [PMID: 17349029 DOI: 10.1111/j.1600-079x.2007.00420.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown that exogenous melatonin improves the preservation of the blood-brain barrier (BBB) and neurovascular unit following cerebral ischemia-reperfusion. Recent evidence indicates that postischemic microglial activation exaggerates the damage to the BBB. Herein, we explored whether melatonin mitigates the cellular inflammatory response after transient focal cerebral ischemia for 90 min in rats. Melatonin (5 mg/kg) or vehicle was given intravenously at reperfusion onset. Immunohistochemistry and flow cytometric analysis were used to evaluate the cellular inflammatory response at 48 hr after reperfusion. Relative to controls, melatonin-treated animals did not have significantly changed systemic cellular inflammatory responses in the bloodstream (P > 0.05). Melatonin, however, significantly decreased the cellular inflammatory response by 41% (P < 0.001) in the ischemic hemisphere. Specifically, melatonin effectively decreased the extent of neutrophil emigration (Ly6G-positive/CD45-positive) and macrophage/activated microglial infiltration (CD11b-positive/CD45-positive) by 51% (P < 0.01) and 66% (P < 0.01), respectively, but did not significantly alter the population composition of T lymphocyte (CD3-positive/CD45-positive; P > 0.05). This melatonin-mediated decrease in the cellular inflammatory response was accompanied by both reduced brain infarction and improved neurobehavioral outcome by 43% (P < 0.001) and 50% (P < 0.001), respectively. Thus, intravenous administration of melatonin upon reperfusion effectively decreased the emigration of circulatory neutrophils and macrophages/monocytes into the injured brain and inhibited focal microglial activation following cerebral ischemia-reperfusion. The finding demonstrates melatonin's inhibitory ability against the cellular inflammatory response after cerebral ischemia-reperfusion, and further supports its pleuripotent neuroprotective actions suited either as a monotherapy or an add-on to the thrombolytic therapy for ischemic stroke patients.
Collapse
Affiliation(s)
- Ming-Yang Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rochelson B, Dowling O, Schwartz N, Metz CN. Magnesium sulfate suppresses inflammatory responses by human umbilical vein endothelial cells (HuVECs) through the NFkappaB pathway. J Reprod Immunol 2006; 73:101-107. [PMID: 16952401 DOI: 10.1016/j.jri.2006.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/26/2006] [Accepted: 06/29/2006] [Indexed: 12/13/2022]
Abstract
Dysfunctional endothelial cell activation and cytokines are implicated in preterm labor, a condition commonly treated with the tocolytic agent, magnesium sulfate (MgSO(4)). Based on recent findings showing the inflammatory effects of magnesium deficiency, we examined the effect of MgSO(4) on human umbilical vein endothelial cell (HuVEC) inflammatory responses in vitro. HuVECs isolated from term umbilical cords were incubated with MgSO(4) prior to stimulation with lipopolysaccharide (LPS) and then assessed for endothelial cell activation. Endothelial cell supernatants were assayed for inflammatory mediator production (interleukin-8; IL-8), and endothelial cell-associated intercellular adhesion molecule (ICAM-1) expression was determined. In the absence of LPS stimulation, MgSO(4) had no effect on HuVEC responses. Treatment of HuVECs with MgSO(4) prior to LPS stimulation inhibited inflammatory mediator production (p<0.05) and cell adhesion molecule expression (p<0.05) in a dose-dependent manner. Mechanistic studies showed that MgSO(4) reduced NFkappaB nuclear translocation and protected cytoplasmic IkappaBalpha from degradation in LPS-treated HuVECs. In conclusion, MgSO(4) inhibits endothelial cell activation, as measured by levels of IL-8 and ICAM-1 expression, via NFkappaB. Our results support the hypothesis that MgSO(4) treatment may function as an anti-inflammatory agent during preterm labor.
Collapse
Affiliation(s)
- Burton Rochelson
- Division of Maternal-Fetal Medicine, North Shore University Hospital, 300 Community Drive, Manhasset, NY 11030, USA
| | - Oonagh Dowling
- The Susan & Herman Merinoff Center for Patient Oriented Research, The Feinstein Institute for Medical Research North Shore-LIJ Health System, 350 Community Drive, Manhasset, NY 11030, USA
| | - Nadav Schwartz
- Division of Maternal-Fetal Medicine, North Shore University Hospital, 300 Community Drive, Manhasset, NY 11030, USA
| | - Christine N Metz
- The Susan & Herman Merinoff Center for Patient Oriented Research, The Feinstein Institute for Medical Research North Shore-LIJ Health System, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
25
|
Seitz RJ, Buetefisch CM. Recovery from ischemic stroke: a translational research perspective for neurology. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.5.571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischemic stroke is the most frequent neurological disease, characterized by an age-related incidence and chronic disability in the majority of patients. A great challenge in acute stroke is to predict the degree to which a patient will eventually recover. Magnetic resonance imaging has revealed that treatment-induced reperfusion limits the extent of ischemic brain damage, thereby enabling rapid and profound recovery. Nevertheless, patients may retain deficits in motor, sensory or cognitive functions due to the residual lesion. Functional neuroimaging and transcranial magnetic stimulation have shown that recovery is associated with abnormal activation in the perilesional vicinity and in brain areas remote from the lesion. This is likely related to altered functional properties or morphological changes in both cerebral hemispheres. Recent neurorehabilitative strategies, including forced use, mental imagery and peripheral nerve or cortex stimulation, aim at modulating these functional networks. Accordingly, translational research has provided new vistas on the neurobiological mechanisms of recovery and opened future avenues for science-based pharmacological and neurophysiological training strategies in stroke.
Collapse
Affiliation(s)
- Rüdiger J Seitz
- Department of Neurology, Biomedical Research Centre, Hienrich-Heine-University Düsseldorf, Brain Imaging Centre West, Research Centre Jülich, University Hospital Düsseldorf, Moorenstrasse 5 40225 Düsseldorf, Germany
| | - Cathrin M Buetefisch
- Department of Neurology, Robert C Byrd Health Science Center, , 1 Medical Center Drive, West Virginia University PO Box 9180, Morgantown, WV 26505, USA
| |
Collapse
|
26
|
Chen HY, Chen TY, Lee MY, Chen ST, Hsu YS, Kuo YL, Chang GL, Wu TS, Lee EJ. Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood-brain barrier permeability after transient focal cerebral ischemia in mice. J Pineal Res 2006; 41:175-82. [PMID: 16879324 DOI: 10.1111/j.1600-079x.2006.00351.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently shown that melatonin decreases the late (24 hr) increase in blood-brain barrier (BBB) permeability and the risk of tissue plasminogen activator-induced hemorrhagic transformation following ischemic stroke in mice. In the study, we further explored whether melatonin would reduce postischemic neurovascular oxidative/nitrosative damage and, therefore, improve preservation of the early increase in the BBB permeability at 4 hr after transient focal cerebral ischemia for 60 min in mice. Melatonin (5 mg/kg) or vehicle was given intraperitoneally at the beginning of reperfusion. Hydroethidine (HEt) in situ detection and immunohistochemistry for nitrotyrosine were used to evaluate postischemic accumulation in reactive oxygen and nitrogen species, respectively, in the ischemic neurovascular unit. BBB permeability was evaluated by spectrophotometric and microscopic quantitation of Evans Blue leakage. Relative to controls, melatonin-treated animals not only had a significantly reduced superoxide accumulation in neurovascular units in boundary zones of infarction, by reducing 35% and 54% cytosolic oxidized HEt in intensity and cell-expressing percentage, respectively (P < 0.001), but also exhibited a reduction in nitrotyrosine by 52% (P < 0.01). Additionally, melatonin-treated animals had significantly reduced early postischemic disruption in the BBB permeability by 53% (P < 0.001). Thus, melatonin reduced postischemic oxidative/nitrosative damage to the ischemic neurovascular units and improved the preservation of BBB permeability at an early phase following transient focal cerebral ischemia in mice. The findings further highlight the ability of melatonin in anatomical and functional preservation for the ischemic neurovascular units and its relevant potential in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hung-Yi Chen
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery and Institute of Biomedical Engineering, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen TY, Lee MY, Chen HY, Kuo YL, Lin SC, Wu TS, Lee EJ. Melatonin attenuates the postischemic increase in blood-brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice. J Pineal Res 2006; 40:242-50. [PMID: 16499561 DOI: 10.1111/j.1600-079x.2005.00307.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melatonin protects against transient middle cerebral artery (MCA) occlusion and may be suited as an add-on therapy of tissue plasminogen activator (t-PA) thrombolysis. Herein, we examined whether melatonin would reduce postischemic increase in the blood-brain barrier (BBB) permeability and, therefore, attenuate the risk of hemorrhagic transformation after t-PA therapy in experimental stroke. Twelve mice were subjected to transient occlusion of the MCA for 1 hr, followed by 24 hr of reperfusion. Melatonin (5 mg/kg, i.p.) or vehicle was given at the beginning of reperfusion. BBB permeability was evaluated by quantitation of Evans Blue leakage. An additional 32 mice underwent photothrombotic occlusion of the distal MCA, and were administered vehicle or t-PA (10 mg/kg, i.v.), alone or in combination with melatonin (5 mg/kg, i.p.), at 6 hr postinsult. The animals were then killed after 24 hr for the determination of infarct and hemorrhage volumes. Relative to controls, melatonin-treated animals had significantly reduced BBB permeability (by 52%; P < 0.001). Additionally, we found that at 6 hr after photo-irradiation, either t-PA or melatonin, or a combined administration of t-PA plus melatonin, did not significantly affect brain infarction (P > 0.05), compared with controls. Mice treated with t-PA alone, however, had significantly increased hemorrhagic formation (P < 0.05), and the event was effectively reversed by co-treatment with melatonin (P < 0.05). Thus, melatonin improved postischemic preservation of the BBB permeability and a decreased risk of adverse hemorrhagic transformation after t-PA therapy for ischemic stroke. The findings further highlight melatonin's potential role in the field of thrombolytic treatment for ischemic stroke patients.
Collapse
Affiliation(s)
- Tsung-Ying Chen
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|