1
|
Price SJ, Hughes JG, Jain S, Kelly C, Sederias I, Cozzi FM, Fares J, Li Y, Kennedy JC, Mayrand R, Wong QHW, Wan Y, Li C. Precision Surgery for Glioblastomas. J Pers Med 2025; 15:96. [PMID: 40137412 PMCID: PMC11943082 DOI: 10.3390/jpm15030096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Glioblastomas are the most common primary malignant brain tumor. Most of the recent improvements their treatment are due to improvements in surgery. Although many would consider surgery as the most personalized treatment, the variation in resection between surgeons suggests there remains a need for objective measures to determine the best surgical treatment for individualizing therapy for glioblastoma. We propose applying a personalized medicine approach to improve outcomes for patients. We suggest looking at personalizing preoperative preparation, improving the resection target by understanding what needs removing and what ca not be removed, and better patient selection with personalized rehabilitation plans for all patients.
Collapse
Affiliation(s)
- Stephen J. Price
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Jasmine G. Hughes
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Swati Jain
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
- Division of Neurosurgery, University Surgical Cluster, National University Health System, 1E Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Caroline Kelly
- Department of Neuro-Oncology Outpatient Physiotherapy, Cambridge University Hospitals, Cambridge CB2 0QQ, UK
| | - Ioana Sederias
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Francesca M. Cozzi
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Jawad Fares
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Yonghao Li
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Jasmine C. Kennedy
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Roxanne Mayrand
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Queenie Hoi Wing Wong
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Yizhou Wan
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
- Department of Neurosurgery, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Chao Li
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
- Department of Biomedical Engineering, School of Science and Engineering, Fulton Building, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
2
|
Abstract
The care of patients with both high-grade glioma and low-grade glioma necessitates an interdisciplinary collaboration between neurosurgeons, neuro-oncologists, neurologists and other practitioners. In this review, we aim to detail the considerations, approaches and advances in the neurosurgical care of gliomas. We describe the impact of extent-of-resection in high-grade and low-grade glioma, with particular focus on primary and recurrent glioblastoma. We address advances in surgical methods and adjunct technologies such as intraoperative imaging and fluorescence guided surgery that maximize extent-of-resection while minimizing the potential for iatrogenic neurological deficits. Finally, we review surgically-mediated therapies other than resection and discuss the role of neurosurgery in emerging paradigm-shifts in inter-disciplinary glioma management such as serial tissue sampling and "window of opportunity trials".
Collapse
Affiliation(s)
- Andrew A Hardigan
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Joshua D Jackson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Anoop P Patel
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
3
|
Ius T, Sabatino G, Panciani PP, Fontanella MM, Rudà R, Castellano A, Barbagallo GMV, Belotti F, Boccaletti R, Catapano G, Costantino G, Della Puppa A, Di Meco F, Gagliardi F, Garbossa D, Germanò AF, Iacoangeli M, Mortini P, Olivi A, Pessina F, Pignotti F, Pinna G, Raco A, Sala F, Signorelli F, Sarubbo S, Skrap M, Spena G, Somma T, Sturiale C, Angileri FF, Esposito V. Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review. J Neurooncol 2023; 162:267-293. [PMID: 36961622 PMCID: PMC10167129 DOI: 10.1007/s11060-023-04274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. METHODS A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. RESULTS A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). CONCLUSIONS A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.
Collapse
Affiliation(s)
- Tamara Ius
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
| | - Marco Maria Fontanella
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
- Neurology Unit, Hospital of Castelfranco Veneto, 31033, Castelfranco Veneto, Italy
| | - Antonella Castellano
- Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico - San Marco" University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Francesco Belotti
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Giuseppe Catapano
- Division of Neurosurgery, Department of Neurological Sciences, Ospedale del Mare, Naples, Italy
| | | | - Alessandro Della Puppa
- Neurosurgical Clinical Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, USA
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, University of Turin, Torino, Italy
| | | | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica Delle Marche, Azienda Ospedali Riuniti, Ancona, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Italy
| | - Fabrizio Pignotti
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134, Verona, Italy
| | - Antonino Raco
- Division of Neurosurgery, Department of NESMOS, AOU Sant'Andrea, Sapienza University, Rome, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134, Verona, Italy
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neurosurgery Unit, University "Aldo Moro", 70124, Bari, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Miran Skrap
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | | | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | | | | | - Vincenzo Esposito
- Department of Neurosurgery "Giampaolo Cantore"-IRCSS Neuromed, Pozzilli, Italy
- Department of Human, Neurosciences-"Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
4
|
Yang Z, Zhao C, Zong S, Piao J, Zhao Y, Chen X. A review on surgical treatment options in gliomas. Front Oncol 2023; 13:1088484. [PMID: 37007123 PMCID: PMC10061125 DOI: 10.3389/fonc.2023.1088484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Gliomas are one of the most common primary central nervous system tumors, and surgical treatment remains the principal role in the management of any grade of gliomas. In this study, based on the introduction of gliomas, we review the novel surgical techniques and technologies in support of the extent of resection to achieve long-term disease control and summarize the findings on how to keep the balance between cytoreduction and neurological morbidity from a list of literature searched. With modern neurosurgical techniques, gliomas resection can be safely performed with low morbidity and extraordinary long-term functional outcomes.
Collapse
Affiliation(s)
- Zhongxi Yang
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Chen Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Shan Zong
- Department of Gynecology Oncology, The First Hospital of Jilin University, Jilin, China
| | - Jianmin Piao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- *Correspondence: Xuan Chen,
| |
Collapse
|
5
|
Cardone D, Trevisi G, Perpetuini D, Filippini C, Merla A, Mangiola A. Intraoperative thermal infrared imaging in neurosurgery: machine learning approaches for advanced segmentation of tumors. Phys Eng Sci Med 2023; 46:325-337. [PMID: 36715852 PMCID: PMC10030394 DOI: 10.1007/s13246-023-01222-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Surgical resection is one of the most relevant practices in neurosurgery. Finding the correct surgical extent of the tumor is a key question and so far several techniques have been employed to assist the neurosurgeon in preserving the maximum amount of healthy tissue. Some of these methods are invasive for patients, not always allowing high precision in the detection of the tumor area. The aim of this study is to overcome these limitations, developing machine learning based models, relying on features obtained from a contactless and non-invasive technique, the thermal infrared (IR) imaging. The thermal IR videos of thirteen patients with heterogeneous tumors were recorded in the intraoperative context. Time (TD)- and frequency (FD)-domain features were extracted and fed different machine learning models. Models relying on FD features have proven to be the best solutions for the optimal detection of the tumor area (Average Accuracy = 90.45%; Average Sensitivity = 84.64%; Average Specificity = 93,74%). The obtained results highlight the possibility to accurately detect the tumor lesion boundary with a completely non-invasive, contactless, and portable technology, revealing thermal IR imaging as a very promising tool for the neurosurgeon.
Collapse
Affiliation(s)
- Daniela Cardone
- Department of Engineering and Geology, University G. d'Annunzio Chieti-Pescara, Pescara, Italy.
| | - Gianluca Trevisi
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - David Perpetuini
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Chiara Filippini
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| | - Arcangelo Merla
- Department of Engineering and Geology, University G. d'Annunzio Chieti-Pescara, Pescara, Italy
| | - Annunziato Mangiola
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio Chieti-Pescara, Chieti, Italy
| |
Collapse
|
6
|
Singh A, Das KK, Khatri D, Singh S, Gosal JS, Jaiswal S, Mishra P, Mehrotra A, Bhaisora K, Sardhara J, Srivastava AK, Jaiswal A, Behari S. Insular glioblastoma: surgical challenges, survival outcomes and prognostic factors. Br J Neurosurg 2023; 37:26-34. [PMID: 33356607 DOI: 10.1080/02688697.2020.1859089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Insular gliomas are unique, challenging and evoke a lot of interest amongst neurosurgeons. Publications on insular glioma generally focus on the surgical intricacies and extent of resection pertaining to the low-grade gliomas. Insular glioblastomas (iGBM) have not been analysed separately before. METHODS Histologically proven WHO grade IV gliomas involving the insula over a 9-year period were studied. Their clinical presentation, radiological features, surgical findings and survival outcomes were assessed. Statistical methods were used to determine the favourable predictors of survival. RESULTS Out of 27 patients (M:F = 2.9:1), 18 (66%) patients had a tumour extension beyond the insula, 10 (37%) of whom had basal ganglia involvement. Total, near total and subtotal excisions were performed in 7 (26%), 9 (33%) and 11 (40.7%) patients, respectively. Twenty-three patients had glioblastoma, while four had gliosarcoma. IDH mutation was negative in six of the seven patients where it was done. Median overall survival was 5 months. Multivariate analysis showed that a female gender (p = 0.013), seizures in the preoperative period (p = 0.048) and completion of adjuvant therapy (p = 0.003) were associated with a longer survival. CONCLUSION Insular glioblastomas have a poor prognosis. Insular location and certain tumour characteristics often limit the extent of resection of iGBMs. Moreover, postoperative complications sometimes negate the advantages of a radical resection. A female gender, presentation with seizures and completion of adjuvant chemoradiotherapy appear to be good prognostic factors.
Collapse
Affiliation(s)
- Amanjot Singh
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Kuntal Kanti Das
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Deepak Khatri
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Suyash Singh
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Jaskaran Singh Gosal
- Department of Neurosurgery, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Sushila Jaiswal
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prabhakar Mishra
- Department of Biostatistics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anant Mehrotra
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Kamlesh Bhaisora
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Jayesh Sardhara
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Arun Kumar Srivastava
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Awadhesh Jaiswal
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Sanjay Behari
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
7
|
Lavalle L, D'Elia A, Ciavarro M, Esposito V. Subpial technique in supratentorial glioma resection: state of the art and analysis of costs and effectiveness in a single institute experience. J Neurosurg Sci 2023; 67:73-82. [PMID: 32989970 DOI: 10.23736/s0390-5616.20.05046-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Many neurosurgeons advocate subpial technique as the best technique to remove supratentorial gliomas. However, few authors clearly defined advantages and features of this technique. The aim of our study is to describe microsurgical subpial technique related to glioma surgery, with regard to its safety and cost effectiveness. METHODS We analyzed retrospectively all consecutive patients surgically treated for supratentorial glioma from January 2017 to April 2018 at Neurosurgery Department of Neuromed Institute. All patients underwent to surgical glioma resection performing microsurgical subpial technique. Extent of resection and neurological complications were evaluated as primary outcomes; Karnofsky Performance Status and postoperative edema extent were secondary outcomes. Statistical analysis was obtained. RESULTS The study included 70 patients. Gross Total Removal was obtained in 91.3% of patients with low grade glioma (LGG) and in 81% of patients with high grade glioma. Neurological complications amounted to 34% at early assessment in LGG patients, which were permanent at 3 months in 17% of patients. In high grade glioma patients, neurological complications amounted to 51% at early assessment, which were permanent at 3 months in 25% of them. CONCLUSIONS We obtained good postoperative results with regard to the extent of tumor resection using this technique. Subpial resection is an effective surgical technique to get a safer and more complete tumor resection. It should be combined with other modern neurosurgical tools such as neuronavigation, ultrasound and cortical mapping to obtain the best tumor resection and functional neurological preservation.
Collapse
Affiliation(s)
- Laura Lavalle
- Department of Neurosurgery, IRCCS Neuromed, Pozzilli, Isernia, Italy -
| | - Alessandro D'Elia
- Department of Neurosurgery, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Marco Ciavarro
- Department of Neurosurgery, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Vincenzo Esposito
- Department of Neurosurgery, IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
8
|
Bonosi L, Marrone S, Benigno UE, Buscemi F, Musso S, Porzio M, Silven MP, Torregrossa F, Grasso G. Maximal Safe Resection in Glioblastoma Surgery: A Systematic Review of Advanced Intraoperative Image-Guided Techniques. Brain Sci 2023; 13:brainsci13020216. [PMID: 36831759 PMCID: PMC9954589 DOI: 10.3390/brainsci13020216] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) represents the most common and aggressive central nervous system tumor associated with a poor prognosis. The aim of this study was to depict the role of intraoperative imaging techniques in GBM surgery and how they can ensure the maximal extent of resection (EOR) while preserving the functional outcome. The authors conducted a systematic review following PRISMA guidelines on the PubMed/Medline and Scopus databases. A total of 1747 articles were identified for screening. Studies focusing on GBM-affected patients, and evaluations of EOR and functional outcomes with the aid of advanced image-guided techniques were included. The resulting studies were assessed for methodological quality using the Risk of Bias in Systematic Review tool. Open Science Framework registration DOI 10.17605/OSF.IO/3FDP9. Eighteen studies were eligible for this systematic review. Among the selected studies, eight analyzed Sodium Fluorescein, three analyzed 5-aminolevulinic acid, two evaluated IoMRI imaging, two evaluated IoUS, and three evaluated multiple intraoperative imaging techniques. A total of 1312 patients were assessed. Gross Total Resection was achieved in the 78.6% of the cases. Follow-up time ranged from 1 to 52 months. All studies assessed the functional outcome based on the Karnofsky Performance Status scale, while one used the Neurologic Assessment in Neuro-Oncology score. In 77.7% of the cases, the functional outcome improved or was stable over the pre-operative assessment. Combining multiple intraoperative imaging techniques could provide better results in GBM surgery than a single technique. However, despite good surgical outcomes, patients often present a neurocognitive decline leading to a marked deterioration of the quality of life. Advanced intraoperative image-guided techniques can allow a better understanding of the anatomo-functional relationships between the tumor and the surrounding brain, thus maximizing the EOR while preserving functional outcomes.
Collapse
|
9
|
A Systematic Review of Amino Acid PET Imaging in Adult-Type High-Grade Glioma Surgery: A Neurosurgeon's Perspective. Cancers (Basel) 2022; 15:cancers15010090. [PMID: 36612085 PMCID: PMC9817716 DOI: 10.3390/cancers15010090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Amino acid PET imaging has been used for a few years in the clinical and surgical management of gliomas with satisfactory results in diagnosis and grading for surgical and radiotherapy planning and to differentiate recurrences. Biological tumor volume (BTV) provides more meaningful information than standard MR imaging alone and often exceeds the boundary of the contrast-enhanced nodule seen in MRI. Since a gross total resection reflects the resection of the contrast-enhanced nodule and the majority of recurrences are at a tumor's margins, an integration of PET imaging during resection could increase PFS and OS. A systematic review of the literature searching for "PET" [All fields] AND "glioma" [All fields] AND "resection" [All fields] was performed in order to investigate the diffusion of integration of PET imaging in surgical practice. Integration in a neuronavigation system and intraoperative use of PET imaging in the primary diagnosis of adult high-grade gliomas were among the criteria for article selection. Only one study has satisfied the inclusion criteria, and a few more (13) have declared to use multimodal imaging techniques with the integration of PET imaging to intentionally perform a biopsy of the PET uptake area. Despite few pieces of evidence, targeting a biologically active area in addition to other tools, which can help intraoperatively the neurosurgeon to increase the amount of resected tumor, has the potential to provide incremental and complementary information in the management of brain gliomas. Since supramaximal resection based on the extent of MRI FLAIR hyperintensity resulted in an advantage in terms of PFS and OS, PET-based biological tumor volume, avoiding new neurological deficits, deserves further investigation.
Collapse
|
10
|
Van Hese L, De Vleeschouwer S, Theys T, Rex S, Heeren RMA, Cuypers E. The diagnostic accuracy of intraoperative differentiation and delineation techniques in brain tumours. Discov Oncol 2022; 13:123. [PMID: 36355227 PMCID: PMC9649524 DOI: 10.1007/s12672-022-00585-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022] Open
Abstract
Brain tumour identification and delineation in a timeframe of seconds would significantly guide and support surgical decisions. Here, treatment is often complicated by the infiltration of gliomas in the surrounding brain parenchyma. Accurate delineation of the invasive margins is essential to increase the extent of resection and to avoid postoperative neurological deficits. Currently, histopathological annotation of brain biopsies and genetic phenotyping still define the first line treatment, where results become only available after surgery. Furthermore, adjuvant techniques to improve intraoperative visualisation of the tumour tissue have been developed and validated. In this review, we focused on the sensitivity and specificity of conventional techniques to characterise the tumour type and margin, specifically fluorescent-guided surgery, neuronavigation and intraoperative imaging as well as on more experimental techniques such as mass spectrometry-based diagnostics, Raman spectrometry and hyperspectral imaging. Based on our findings, all investigated methods had their advantages and limitations, guiding researchers towards the combined use of intraoperative imaging techniques. This can lead to an improved outcome in terms of extent of tumour resection and progression free survival while preserving neurological outcome of the patients.
Collapse
Affiliation(s)
- Laura Van Hese
- Division of Mass Spectrometry Imaging, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- Department of Anaesthesiology, University Hospitals Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Steven De Vleeschouwer
- Neurosurgery Department, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory for Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute (LBI), 3000, Leuven, Belgium
| | - Tom Theys
- Neurosurgery Department, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory for Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute (LBI), 3000, Leuven, Belgium
| | - Steffen Rex
- Department of Anaesthesiology, University Hospitals Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Ron M A Heeren
- Division of Mass Spectrometry Imaging, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Eva Cuypers
- Division of Mass Spectrometry Imaging, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Kim JT, Di L, Etame AB, Olson S, Vogelbaum MA, Tran ND. Use of virtual magnetic resonance imaging to compensate for brain shift during image-guided surgery: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE21683. [PMID: 35733635 PMCID: PMC9204912 DOI: 10.3171/case21683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Maximal safe resection is the paramount objective in the surgical management of malignant brain tumors. It is facilitated through use of image-guided neuronavigation. Intraoperative image guidance systems use preoperative magnetic resonance imaging (MRI) as the navigational map. The accuracy of neuronavigation is limited by intraoperative brain shift and can become less accurate over the course of the procedure. Intraoperative MRI can compensate for dynamic brain shift but requires significant space and capital investment, often unavailable at many centers. OBSERVATIONS The authors described a case in which an image fusion algorithm was used in conjunction with an intraoperative computed tomography (CT) system to compensate for brain shift during resection of a brainstem hemorrhagic melanoma metastasis. Following initial debulking of the hemorrhagic metastasis, intraoperative CT was performed to ascertain extent of resection. An elastic image fusion (EIF) algorithm was used to create virtual MRI relative to both the intraoperative CT scan and preoperative MRI, which facilitated complete resection of the tumor while preserving critical brainstem anatomy. LESSONS EIF algorithms can be used with multimodal images (preoperative MRI and intraoperative CT) and create an updated virtual MRI data set to compensate for brain shift in neurosurgery and aid in maximum safe resection of malignant brain tumors.
Collapse
Affiliation(s)
- John T. Kim
- Department of Neurosurgery, University of South Florida, Tampa, Florida; and
| | - Long Di
- Department of Neurosurgery, University of South Florida, Tampa, Florida; and
| | - Arnold B. Etame
- Department of Neurosurgery, University of South Florida, Tampa, Florida; and
- Department of Neuro-Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sarah Olson
- Department of Neuro-Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Michael A. Vogelbaum
- Department of Neurosurgery, University of South Florida, Tampa, Florida; and
- Department of Neuro-Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nam D. Tran
- Department of Neurosurgery, University of South Florida, Tampa, Florida; and
- Department of Neuro-Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
12
|
Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022; 21:148-167. [PMID: 34880193 PMCID: PMC9199972 DOI: 10.2463/mrms.rev.2021-0116] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
Collapse
Affiliation(s)
- Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Nishiyama
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
13
|
Neidert N, Straehle J, Erny D, Sacalean V, El Rahal A, Steybe D, Schmelzeisen R, Vlachos A, Reinacher PC, Coenen VA, Mizaikoff B, Heiland DH, Prinz M, Beck J, Schnell O. Stimulated Raman histology in the neurosurgical workflow of a major European neurosurgical center - part A. Neurosurg Rev 2021; 45:1731-1739. [PMID: 34914024 PMCID: PMC8976801 DOI: 10.1007/s10143-021-01712-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022]
Abstract
Histopathological diagnosis is the current standard for the classification of brain and spine tumors. Raman spectroscopy has been reported to allow fast and easy intraoperative tissue analysis. Here, we report data on the intraoperative implementation of a stimulated Raman histology (SRH) as an innovative strategy offering intraoperative near real-time histopathological analysis. A total of 429 SRH images from 108 patients were generated and analyzed by using a Raman imaging system (Invenio Imaging Inc.). We aimed at establishing a dedicated workflow for SRH serving as an intraoperative diagnostic, research, and quality control tool in the neurosurgical operating room (OR). First experiences with this novel imaging modality were reported and analyzed suggesting process optimization regarding tissue collection, preparation, and imaging. The Raman imaging system was rapidly integrated into the surgical workflow of a large neurosurgical center. Within a few minutes of connecting the device, the first high-quality images could be acquired in a “plug-and-play” manner. We did not encounter relevant obstacles and the learning curve was steep. However, certain prerequisites regarding quality and acquisition of tissue samples, data processing and interpretation, and high throughput adaptions must be considered. Intraoperative SRH can easily be integrated into the workflow of neurosurgical tumor resection. Considering few process optimizations that can be implemented rapidly, high-quality images can be obtained near real time. Hence, we propose SRH as a complementary tool for the diagnosis of tumor entity, analysis of tumor infiltration zones, online quality and safety control and as a research tool in the neurosurgical OR.
Collapse
Affiliation(s)
- Nicolas Neidert
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vlad Sacalean
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
| | - Amir El Rahal
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - David Steybe
- Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Rainer Schmelzeisen
- Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Freiburg, Germany.,Medical Faculty, Freiburg University, Freiburg, Germany
| | - Andreas Vlachos
- Medical Faculty, Freiburg University, Freiburg, Germany.,Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Peter Christoph Reinacher
- Medical Faculty, Freiburg University, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Volker Arnd Coenen
- Medical Faculty, Freiburg University, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany.,Hahn-Schickard Institute for Microanalysis Systems, Ulm, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany.,Medical Faculty, Freiburg University, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Medical Faculty, Freiburg University, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Medical Faculty, Freiburg University, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany. .,Medical Faculty, Freiburg University, Freiburg, Germany.
| |
Collapse
|
14
|
Schupper AJ, Baron RB, Cheung W, Rodriguez J, Kalkanis SN, Chohan MO, Andersen BJ, Chamoun R, Nahed BV, Zacharia BE, Kennedy J, Moulding HD, Zucker L, Chicoine MR, Olson JJ, Jensen RL, Sherman JH, Zhang X, Price G, Fowkes M, Germano IM, Carter BS, Hadjipanayis CG, Yong RL. 5-Aminolevulinic acid for enhanced surgical visualization of high-grade gliomas: a prospective, multicenter study. J Neurosurg 2021:1-10. [PMID: 34624862 DOI: 10.3171/2021.5.jns21310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Greater extent of resection (EOR) is associated with longer overall survival in patients with high-grade gliomas (HGGs). 5-Aminolevulinic acid (5-ALA) can increase EOR by improving intraoperative visualization of contrast-enhancing tumor during fluorescence-guided surgery (FGS). When administered orally, 5-ALA is converted by glioma cells into protoporphyrin IX (PPIX), which fluoresces under blue 400-nm light. 5-ALA has been available for use in Europe since 2010, but only recently gained FDA approval as an intraoperative imaging agent for HGG tissue. In this first-ever, to the authors' knowledge, multicenter 5-ALA FGS study conducted in the United States, the primary objectives were the following: 1) assess the diagnostic accuracy of 5-ALA-induced PPIX fluorescence for HGG histopathology across diverse centers and surgeons; and 2) assess the safety profile of 5-ALA FGS, with particular attention to neurological morbidity. METHODS This single-arm, multicenter, prospective study included adults aged 18-80 years with Karnofsky Performance Status (KPS) score > 60 and an MRI diagnosis of suspected new or recurrent resectable HGG. Intraoperatively, 3-5 samples per tumor were taken and their fluorescence status was recorded by the surgeon. Specimens were submitted for histopathological analysis. Patients were followed for 6 weeks postoperatively for adverse events, changes in the neurological exam, and KPS score. Multivariate analyses were performed of the outcomes of KPS decline, EOR, and residual enhancing tumor volume to identify predictive patient and intraoperative variables. RESULTS Sixty-nine patients underwent 5-ALA FGS, providing 275 tumor samples for analysis. PPIX fluorescence had a sensitivity of 96.5%, specificity of 29.4%, positive predictive value (PPV) for HGG histopathology of 95.4%, and diagnostic accuracy of 92.4%. Drug-related adverse events occurred at a rate of 22%. Serious adverse events due to intraoperative neurological injury, which may have resulted from FGS, occurred at a rate of 4.3%. There were 2 deaths unrelated to FGS. Compared to preoperative KPS scores, postoperative KPS scores were significantly lower at 48 hours and 2 weeks but were not different at 6 weeks postoperatively. Complete resection of enhancing tumor occurred in 51.9% of patients. Smaller preoperative tumor volume and use of intraoperative MRI predicted lower residual tumor volume. CONCLUSIONS PPIX fluorescence, as judged by the surgeon, has a high sensitivity and PPV for HGG. 5-ALA was well tolerated in terms of drug-related adverse events, and its application by trained surgeons in FGS for HGGs was not associated with any excess neurological morbidity.
Collapse
Affiliation(s)
- Alexander J Schupper
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Rebecca B Baron
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - William Cheung
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Jessica Rodriguez
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Steven N Kalkanis
- 2Department of Neurological Surgery, Henry Ford Medical Center, Detroit, Michigan
| | - Muhammad O Chohan
- 3Department of Neurological Surgery, University of New Mexico Hospital, Albuquerque, New Mexico
| | - Bruce J Andersen
- 4Department of Neurological Surgery, St. Alphonsus Regional Medical Center, Boise, Idaho
| | - Roukoz Chamoun
- 5Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Brian V Nahed
- 6Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Brad E Zacharia
- 7Department of Neurological Surgery, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | - Hugh D Moulding
- 9Department of Neurological Surgery, St. Luke's University Health Network, Bethlehem, Pennsylvania
| | - Lloyd Zucker
- 10Department of Neurological Surgery, Delray Medical Center, Delray Beach, Florida
| | - Michael R Chicoine
- 11Department of Neurological Surgery, Barnes-Jewish Hospital, St. Louis, Missouri
| | - Jeffrey J Olson
- 12Department of Neurological Surgery, Emory University Hospital, Atlanta, Georgia
| | - Randy L Jensen
- 13Department of Neurological Surgery, Huntsman Cancer Institute, Salt Lake City, Utah; and
| | - Jonathan H Sherman
- 14Department of Neurological Surgery, George Washington University Hospital, Washington, DC
| | - Xiangnan Zhang
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Gabrielle Price
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Mary Fowkes
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Isabelle M Germano
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Bob S Carter
- 6Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Raymund L Yong
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| |
Collapse
|
15
|
Gosal JS, Tiwari S, Sharma T, Agrawal M, Garg M, Mahal S, Bhaskar S, Sharma RK, Janu V, Jha DK. Simulation of surgery for supratentorial gliomas in virtual reality using a 3D volume rendering technique: a poor man's neuronavigation. Neurosurg Focus 2021; 51:E23. [PMID: 34333461 DOI: 10.3171/2021.5.focus21236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Different techniques of performing image-guided neurosurgery exist, namely, neuronavigation systems, intraoperative ultrasound, and intraoperative MRI, each with its limitations. Except for ultrasound, other methods are expensive. Three-dimensional virtual reconstruction and surgical simulation using 3D volume rendering (VR) is an economical and excellent technique for preoperative surgical planning and image-guided neurosurgery. In this article, the authors discuss several nuances of the 3D VR technique that have not yet been described. METHODS The authors included 6 patients with supratentorial gliomas who underwent surgery between January 2019 and March 2021. Preoperative clinical data, including patient demographics, preoperative planning details (done using the VR technique), and intraoperative details, including relevant photos and videos, were collected. RadiAnt software was used for generating virtual 3D images using the VR technique on a computer running Microsoft Windows. RESULTS The 3D VR technique assists in glioma surgery with a preoperative simulation of the skin incision and craniotomy, virtual cortical surface marking and navigation for deep-seated gliomas, preoperative visualization of morbid cortical surface and venous anatomy in surfacing gliomas, identifying the intervenous surgical corridor in both surfacing and deep-seated gliomas, and pre- and postoperative virtual 3D images highlighting the exact spatial geometric residual tumor location and extent of resection for low-grade gliomas (LGGs). CONCLUSIONS Image-guided neurosurgery with the 3D VR technique using RadiAnt software is an economical, easy-to-learn, and user-friendly method of simulating glioma surgery, especially in resource-constrained countries where expensive neuronavigation systems are not readily available. Apart from cortical sulci/gyri anatomy, FLAIR sequences are ideal for the 3D visualization of nonenhancing diffuse LGGs using the VR technique. In addition to cortical vessels (especially veins), contrast MRI sequences are perfect for the 3D visualization of contrast-enhancing high-grade gliomas.
Collapse
Affiliation(s)
| | - Sarbesh Tiwari
- 2Diagnostic & Interventional Radiology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | | | | | | | - Sayani Mahal
- 2Diagnostic & Interventional Radiology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | | | | | | | | |
Collapse
|
16
|
Revilla-Pacheco F, Rodríguez-Salgado P, Barrera-Ramírez M, Morales-Ruiz MP, Loyo-Varela M, Rubalcava-Ortega J, Herrada-Pineda T. Extent of resection and survival in patients with glioblastoma multiforme: Systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26432. [PMID: 34160432 PMCID: PMC8238332 DOI: 10.1097/md.0000000000026432] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) owes an ominous prognosis: its mean overall survival is 14 months. The extent of surgical resection (ESR) highlights among factors in which an association has been found to a somewhat better prognosis. However, the association between greater ESR and prolonged overall (OS) survival is not a constant finding nor a proven cause-and-effect phenomenon. To our objective is to establish the strength of association between ESR and OS in patients with GBM through a systematic review and meta-analysis. METHODS In accordance with PRISMA-P recommendations, we conducted a systematic literature search; we included studies with adult patients who had undergone craniotomy for GBM. Our primary outcome is overall postoperative survival at 12 and 24 months. We reviewed 180 studies, excluded 158, and eliminated 8; 14 studies that suited our requirements were analyzed. RESULTS The initial level of evidence of all studies is low, and it may be degraded to very low according to GRADE criteria because of design issues. The definition of different levels of the extent of resection is heterogeneous and poorly defined. We found a great amount of variation in the methodology of the operation and the adjuvant treatment protocol. The combined result for relative risk (RR) for OS for 12 months analysis is 1.25 [95% confidence interval (95% CI) 1.14-1.36, P < .01], absolute risk reduction (ARR) of 15.7% (95% CI 11.9-19.4), relative risk reduction (RRR) of 0.24 (95% CI 0.18-0.31), number needed to treat (NNT) 6; for 24-month analysis RR is 1.59 (95% CI 1.11-2.26, P < .01) ARR of 11.5% (95% CI 7.7-15.1), relative risk reduction (RRR) of 0.53 (95% CI 0.33-0.76), (NNT) 9. In each term analysis, the proportion of alive patients who underwent more extensive resection is significantly higher than those who underwent subtotal resection. CONCLUSION Our results sustain a weak but statistically significant association between the ESR and OS in patients with GBM obtained from observational studies with a very low level of evidence according to GRADE criteria. As a consequence, any estimate of effect is very uncertain. Current information cannot sustain a cause-and-effect relationship between these variables.
Collapse
|
17
|
Moiraghi A, Prada F, Delaidelli A, Guatta R, May A, Bartoli A, Saini M, Perin A, Wälchli T, Momjian S, Bijlenga P, Schaller K, DiMeco F. Navigated Intraoperative 2-Dimensional Ultrasound in High-Grade Glioma Surgery: Impact on Extent of Resection and Patient Outcome. Oper Neurosurg (Hagerstown) 2021; 18:363-373. [PMID: 31435672 DOI: 10.1093/ons/opz203] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/16/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Maximizing extent of resection (EOR) and reducing residual tumor volume (RTV) while preserving neurological functions is the main goal in the surgical treatment of gliomas. Navigated intraoperative ultrasound (N-ioUS) combining the advantages of ultrasound and conventional neuronavigation (NN) allows for overcoming the limitations of the latter. OBJECTIVE To evaluate the impact of real-time NN combining ioUS and preoperative magnetic resonance imaging (MRI) on maximizing EOR in glioma surgery compared to standard NN. METHODS We retrospectively reviewed a series of 60 cases operated on for supratentorial gliomas: 31 operated under the guidance of N-ioUS and 29 resected with standard NN. Age, location of the tumor, pre- and postoperative Karnofsky Performance Status (KPS), EOR, RTV, and, if any, postoperative complications were evaluated. RESULTS The rate of gross total resection (GTR) in NN group was 44.8% vs 61.2% in N-ioUS group. The rate of RTV > 1 cm3 for glioblastomas was significantly lower for the N-ioUS group (P < .01). In 13/31 (42%), RTV was detected at the end of surgery with N-ioUS. In 8 of 13 cases, (25.8% of the cohort) surgeons continued with the operation until complete resection. Specificity was greater in N-ioUS (42% vs 31%) and negative predictive value (73% vs 54%). At discharge, the difference between pre- and postoperative KPS was significantly higher for the N-ioUS (P < .01). CONCLUSION The use of an N-ioUS-based real-time has been beneficial for resection in noneloquent high-grade glioma in terms of both EOR and neurological outcome, compared to standard NN. N-ioUS has proven usefulness in detecting RTV > 1 cm3.
Collapse
Affiliation(s)
- Alessandro Moiraghi
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy.,Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia.,Focused Ultrasound Foundation, Charlottesville, Virginia
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ramona Guatta
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Adrien May
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Bartoli
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Marco Saini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy
| | - Alessandro Perin
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy
| | - Thomas Wälchli
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Group of CNS Angiogenesis and Neurovascular Link, Physician-Scientist Program, Institute for Regenerative Medicine, Neuroscience Center Zurich, University Hospital Zurich, Zurich, Switzerland.,Division of Neurosurgery, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), University Hospital Zurich, Zurich, Switzerland.,Department of Fundamental Neurobiology, Krembil Research Institute, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Canada
| | - Shahan Momjian
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Bijlenga
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, Maryland
| |
Collapse
|
18
|
Abdelhameed E, Abdelghany MS, Abdelkhalek H, Elatrozy HIS. Awake surgery for lesions near eloquent brain under scalp block and clinical monitoring: experience of single center with limited resources. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021; 57:78. [PMID: 34149281 PMCID: PMC8205193 DOI: 10.1186/s41983-021-00333-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background Surgery of the brain tumors near eloquent areas carries the risk of either disabling neurological deficit or inadequate resection with bad prognosis in both situations. Awake surgery is the gold standard procedure for such lesions. However, it requires certain anesthetic drugs, advanced techniques, and trained teams that are not available in every neurosurgical institute. This work aims to evaluate safety, feasibility, and outcome of operating on patients with space occupying lesions near eloquent areas under scalp block being continuously examined by a neurologist through retrospective study of 20 cases with supratentorial lesions related to language or sensorimotor cortex. Results There were 12 males and 8 females with mean age 36.8 years. Forty percent of patients were presented by motor weakness. Tumors were related to motor cortex in 11 patients and to language areas in 9 patients. Mean operative time was 210 min. Gross or near total resection was achieved in 15cases, four cases had subtotal resection and biopsy only was done in 1 case. Two patients suffered from intraoperative seizures and conversion to general anesthesia was required in one patient. Conclusion Operating on tumors near eloquent brain areas under scalp block and continuous neurological examination during tumor resection proved to be effective in early detection and prevention of permanent major deficits especially in the developing countries with limited resources.
Collapse
Affiliation(s)
- Esam Abdelhameed
- Department of Neurosurgery, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Shebl Abdelghany
- Department of Anaethesia and Surgical Intensive Care, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hazem Abdelkhalek
- Department of Neuropsychiatry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hytham Ibrahim Shokry Elatrozy
- Department of Neurosurgery, Faculty of Medicine, Tanta University, Tanta, Egypt.,Neurosurgery Department, Tanta University Hospital, Elgeish Street, Tanta, 31257 Egypt
| |
Collapse
|
19
|
Schupper AJ, Yong RL, Hadjipanayis CG. The Neurosurgeon's Armamentarium for Gliomas: An Update on Intraoperative Technologies to Improve Extent of Resection. J Clin Med 2021; 10:jcm10020236. [PMID: 33440712 PMCID: PMC7826675 DOI: 10.3390/jcm10020236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Maximal safe resection is the standard of care in the neurosurgical treatment of high-grade gliomas. To aid surgeons in the operating room, adjuvant techniques and technologies centered around improving intraoperative visualization of tumor tissue have been developed. In this review, we will discuss the most advanced technologies, specifically fluorescence-guided surgery, intraoperative imaging, neuromonitoring modalities, and microscopic imaging techniques. The goal of these technologies is to improve detection of tumor tissue beyond what conventional microsurgery has permitted. We describe the various advances, the current state of the literature that have tested the utility of the different adjuvants in clinical practice, and future directions for improving intraoperative technologies.
Collapse
|
20
|
Fountain DM, Bryant A, Barone DG, Waqar M, Hart MG, Bulbeck H, Kernohan A, Watts C, Jenkinson MD. Intraoperative imaging technology to maximise extent of resection for glioma: a network meta-analysis. Cochrane Database Syst Rev 2021; 1:CD013630. [PMID: 33428222 PMCID: PMC8094975 DOI: 10.1002/14651858.cd013630.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple studies have identified the prognostic relevance of extent of resection in the management of glioma. Different intraoperative technologies have emerged in recent years with unknown comparative efficacy in optimising extent of resection. One previous Cochrane Review provided low- to very low-certainty evidence in single trial analyses and synthesis of results was not possible. The role of intraoperative technology in maximising extent of resection remains uncertain. Due to the multiple complementary technologies available, this research question is amenable to a network meta-analysis methodological approach. OBJECTIVES To establish the comparative effectiveness and risk profile of specific intraoperative imaging technologies using a network meta-analysis and to identify cost analyses and economic evaluations as part of a brief economic commentary. SEARCH METHODS We searched CENTRAL (2020, Issue 5), MEDLINE via Ovid to May week 2 2020, and Embase via Ovid to 2020 week 20. We performed backward searching of all identified studies. We handsearched two journals, Neuro-oncology and the Journal of Neuro-oncology from 1990 to 2019 including all conference abstracts. Finally, we contacted recognised experts in neuro-oncology to identify any additional eligible studies and acquire information on ongoing randomised controlled trials (RCTs). SELECTION CRITERIA RCTs evaluating people of all ages with presumed new or recurrent glial tumours (of any location or histology) from clinical examination and imaging (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Additional imaging modalities (e.g. positron emission tomography, magnetic resonance spectroscopy) were not mandatory. Interventions included fluorescence-guided surgery, intraoperative ultrasound, neuronavigation (with or without additional image processing, e.g. tractography), and intraoperative MRI. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the search results for relevance, undertook critical appraisal according to known guidelines, and extracted data using a prespecified pro forma. MAIN RESULTS We identified four RCTs, using different intraoperative imaging technologies: intraoperative magnetic resonance imaging (iMRI) (2 trials, with 58 and 14 participants); fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) (1 trial, 322 participants); and neuronavigation (1 trial, 45 participants). We identified one ongoing trial assessing iMRI with a planned sample size of 304 participants for which results are expected to be published around winter 2020. We identified no published trials for intraoperative ultrasound. Network meta-analyses or traditional meta-analyses were not appropriate due to absence of homogeneous trials across imaging technologies. Of the included trials, there was notable heterogeneity in tumour location and imaging technologies utilised in control arms. There were significant concerns regarding risk of bias in all the included studies. One trial of iMRI found increased extent of resection (risk ratio (RR) for incomplete resection was 0.13, 95% confidence interval (CI) 0.02 to 0.96; 49 participants; very low-certainty evidence) and one trial of 5-ALA (RR for incomplete resection was 0.55, 95% CI 0.42 to 0.71; 270 participants; low-certainty evidence). The other trial assessing iMRI was stopped early after an unplanned interim analysis including 14 participants; therefore, the trial provided very low-quality evidence. The trial of neuronavigation provided insufficient data to evaluate the effects on extent of resection. Reporting of adverse events was incomplete and suggestive of significant reporting bias (very low-certainty evidence). Overall, the proportion of reported events was low in most trials and, therefore, issues with power to detect differences in outcomes that may or may not have been present. Survival outcomes were not adequately reported, although one trial reported no evidence of improvement in overall survival with 5-ALA (hazard ratio (HR) 0.82, 95% CI 0.62 to 1.07; 270 participants; low-certainty evidence). Data for quality of life were only available for one study and there was significant attrition bias (very low-certainty evidence). AUTHORS' CONCLUSIONS Intraoperative imaging technologies, specifically 5-ALA and iMRI, may be of benefit in maximising extent of resection in participants with high-grade glioma. However, this is based on low- to very low-certainty evidence. Therefore, the short- and long-term neurological effects are uncertain. Effects of image-guided surgery on overall survival, progression-free survival, and quality of life are unclear. Network and traditional meta-analyses were not possible due to the identified high risk of bias, heterogeneity, and small trials included in this review. A brief economic commentary found limited economic evidence for the equivocal use of iMRI compared with conventional surgery. In terms of costs, one non-systematic review of economic studies suggested that, compared with standard surgery, use of image-guided surgery has an uncertain effect on costs and that 5-ALA was more costly. Further research, including completion of ongoing trials of ultrasound-guided surgery, is needed.
Collapse
Affiliation(s)
- Daniel M Fountain
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Andrew Bryant
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Damiano Giuseppe Barone
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Mueez Waqar
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Michael G Hart
- Academic Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, Cambridge, UK
| | | | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Colin Watts
- Chair Birmingham Brain Cancer Program, University of Birmingham, Edgbaston, UK
| | - Michael D Jenkinson
- Department of Neurosurgery & Institute of Systems Molecular and Integrative Biology, The Walton Centre & University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Hu LS, Brat DJ, Bloch O, Ramkissoon S, Lesser GJ. The Practical Application of Emerging Technologies Influencing the Diagnosis and Care of Patients With Primary Brain Tumors. Am Soc Clin Oncol Educ Book 2020; 40:1-12. [PMID: 32324425 DOI: 10.1200/edbk_280955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, a variety of new and innovative technologies has led to important advances in the diagnosis and management of patients with primary malignant brain tumors. New approaches to surgical navigation and tumor localization, advanced imaging to define tumor biology and treatment response, and the widespread adoption of a molecularly defined integrated diagnostic paradigm that complements traditional histopathologic diagnosis continue to impact the day-to-day care of these patients. In the neuro-oncology clinic, discussions with patients about the role of tumor treating fields (TTFields) and the incorporation of next-generation sequencing (NGS) data into therapeutic decision-making are now a standard practice. This article summarizes newer applications of technology influencing the pathologic, neuroimaging, neurosurgical, and medical management of patients with malignant primary brain tumors.
Collapse
Affiliation(s)
- Leland S Hu
- Neuroradiology Section, Department of Radiology, Mayo Clinic, Phoenix, AZ
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Orin Bloch
- Department of Neurologic Surgery, UC Davis Comprehensive Cancer Center, Sacramento, CA
| | - Shakti Ramkissoon
- Foundation Medicine, Inc., Morrisville, NC.,Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC.,Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Glenn J Lesser
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC
| |
Collapse
|
22
|
Reuter G, Lommers E, Balteau E, Simon J, Phillips C, Scholtes F, Martin D, Lombard A, Maquet P. Multiparameter quantitative histological MRI values in high-grade gliomas: a potential biomarker of tumor progression. Neurooncol Pract 2020; 7:646-655. [PMID: 33304600 PMCID: PMC7716186 DOI: 10.1093/nop/npaa047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Conventional MRI poorly distinguishes brain parenchyma microscopically invaded by high-grade gliomas (HGGs) from the normal brain. By contrast, quantitative histological MRI (hMRI) measures brain microstructure in terms of physical MR parameters influenced by histochemical tissue composition. We aimed to determine the relationship between hMRI parameters in the area surrounding the surgical cavity and the presence of HGG recurrence. Methods Patients were scanned after surgery with an hMRI multiparameter protocol that allowed for estimations of longitudinal relaxation rate (R1) = 1/T1, effective transverse relaxation rate (R2)*=1/T2*, magnetization transfer saturation (MTsat), and proton density. The initial perioperative zone (IPZ) was segmented on the postoperative MRI. Once recurrence appeared on conventional MRI, the area of relapsing disease was delineated (extension zone, EZ). Conventional MRI showing recurrence and hMRI were coregistered, allowing for the extraction of parameters R1, R2*, MTsat, and PD in 3 areas: the overlap area between the IPZ and EZ (OZ), the peritumoral brain zone, PBZ (PBZ = IPZ - OZ), and the area of recurrence (RZ = EZ - OZ). Results Thirty-one patients with HGG who underwent gross-total resection were enrolled. MTsat and R1 were the most strongly associated with tumor progression. MTsat was significantly lower in the OZ and RZ, compared to PBZ. R1 was significantly lower in RZ compared to PBZ. PD was significantly higher in OZ compared to PBZ, and R2* was higher in OZ compared to PBZ or RZ. These changes were detected 4 to 120 weeks before recurrence recognition on conventional MRI. Conclusions HGG recurrence was associated with hMRI parameters' variation after initial surgery, weeks to months before overt recurrence.
Collapse
Affiliation(s)
- Gilles Reuter
- GIGA Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | - Emilie Lommers
- GIGA Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Jessica Simon
- Psychology and Neuroscience of Cognition-PsyNCogn, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,GIGA In Silico Medicine, University of Liège, Liège, Belgium
| | - Felix Scholtes
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium.,Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium.,Department of Neuroanatomy, University of Liège, Liège, Belgium
| | - Didier Martin
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | - Arnaud Lombard
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium.,Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
23
|
Ashraf M, Choudhary N, Hussain SS, Kamboh UA, Ashraf N. Role of intraoperative computed tomography scanner in modern neurosurgery - An early experience. Surg Neurol Int 2020; 11:247. [PMID: 32905376 PMCID: PMC7468186 DOI: 10.25259/sni_303_2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Intraoperative imaging addresses the limitations of frameless neuronavigation systems by providing real-time image updates. With the advent of new multidetector intraoperative computed tomography (CT), soft tissue can be visualized far better than before. We report the early departmental experience of our intraoperative CT scanner’s use in a wide range of technically challenging neurosurgical cases. Methods: We retrospectively analyzed the data of all patients in whom intraoperative CT scanner was utilized. Out of 31 patients, 24 (77.4%) were cranial and 8 (22.6%) spinal cases. There were 13 male (41.9%) and 18 (58.1%) female patients, age ranged from 1 to 83 years with a mean age of 34.29 years ±17.54 years. Seven patients underwent spinal surgery, 2 cases were of orbital tumors, and 16 intra-axial brain tumors, including 5 low- grade gliomas, 10 high-grade gliomas, and 1 colloid cyst. There were four sellar lesions and two multiloculated hydrocephalus. Results: The intraoperative CT scan guided us to correct screw placement and was crucial in managing four complex spinal instabilities. In intracranial lesions, 59% of cases were benefitted due to intraoperative CT scan. It helped in the precise placement of ventricular catheter in multiloculated hydrocephalus and external ventricular drain for a third ventricular colloid cyst. Conclusion: Intraoperative CT scan is safe and logistically and financially advantageous. It provides versatile benefits allowing for safe and maximal surgery, requiring minimum changes to an existing neurosurgical setup. Intraoperative CT scan provides clinical benefit in technically difficult cases and has a smooth workflow.
Collapse
Affiliation(s)
- Mohammad Ashraf
- rd Year Medical Student, University of Glasgow, Wolfson School of Medicine, Glasgow, Scotland, United Kingdom.,Visiting Medical Student, Allama Iqbal Medical College, Department of Neurosurgery, Jinnah Hospital, Lahore, Pakistan
| | - Nabeel Choudhary
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital, Lahore, Pakistan
| | - Syed Shahzad Hussain
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital, Lahore, Pakistan
| | - Usman Ahmad Kamboh
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital, Lahore, Pakistan
| | - Naveed Ashraf
- Department of Neurosurgery, Allama Iqbal Medical College, Jinnah Hospital, Lahore, Pakistan
| |
Collapse
|
24
|
Surface-Registration Frameless Stereotactic Navigation Is Less Accurate During Prone Surgeries: Intraoperative Near-Infrared Visualization Using Second Window Indocyanine Green Offers an Adjunct. Mol Imaging Biol 2020; 22:1572-1580. [PMID: 32232627 DOI: 10.1007/s11307-020-01495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Frameless neuronavigation allows neurosurgeons to visualize and relate the position of surgical instruments to intracranial pathologies based on preoperative tomographic imaging. However, neuronavigation can often be inaccurate. Multiple factors have been proposed as potential causes, and new technologies are needed to overcome these challenges. OBJECTIVE To evaluate the accuracy of neuronavigation systems compared to near-infrared (NIR) fluorescence imaging using Second Window Indocyanine Green, a novel technique, and to determine factors that lead to neuronavigation errors. METHODS A retrospective analysis was conducted on 56 patients who underwent primary resections of intracranial tumors. Patients received 5 mg/kg ICG approximately 24 h preoperatively. Intraoperatively, neuronavigation was used to plan craniotomies to place the tumors in the center. After craniotomy, NIR imaging visualized tumor-specific NIR signals. The accuracy of neuronavigation and NIR fluorescence imaging for delineating the tumor boundary prior to durotomy was compared. RESULTS The neuronavigation centers and NIR centers were 23.0 ± 7.7 % and 2.6 ± 1.1 % deviated from the tumor centers, respectively, relative to the craniotomy sizes. In 12 cases, significant changes were made to the planned durotomy based on NIR imaging. Patient position was a significant predictor of neuronavigation inaccuracy on both univariate and multivariate analysis, with the prone position having significantly higher inaccuracy (29.2 ± 8.1 %) compared to the supine (16.2 ± 8.1 %, p value < 0.001) or the lateral (17.9 ± 5.1 %, p value = 0.003) positions. CONCLUSION Patient position significantly affects neuronavigation accuracy. Intraoperative NIR fluorescence imaging before durotomy offers an opportunity to readjust the neuronavigation image space to better align with the patient space.
Collapse
|
25
|
Öztürk M. Ege Üniversitesi Hastanesinde glioblastomaların epidemiyolojik ve sağ kalım özellikleri. EGE TIP DERGISI 2019. [DOI: 10.19161/etd.668263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Reliability of intraoperative ultrasound in detecting tumor residual after brain diffuse glioma surgery: a systematic review and meta-analysis. Neurosurg Rev 2019; 43:1221-1233. [PMID: 31410683 DOI: 10.1007/s10143-019-01160-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Intraoperative ultrasonography (iUS) is considered an accurate, safe, and cost-effective tool to estimate the extent of resection of both high-grade (HGG) and low-grade (DLGG) diffuse gliomas (DGs). However, it is currently missing an evidence-based assessment of iUS diagnostic accuracy in DGs surgery. The objective of review is to perform a systematic review and meta-analysis of the diagnostic performance of iUS in detecting tumor residue after DGs resection. A comprehensive literature search for studies published through October 2018 was performed according to PRISMA-DTA and STARD 2015 guidelines, using the following algorithm: ("ultrasound" OR "ultrasonography" OR "ultra-so*" OR "echo*" OR "eco*") AND ("brain" OR "nervous") AND ("tumor" OR "tumour" OR "lesion" OR "mass" OR "glio*" OR "GBM") AND ("surgery" OR "surgical" OR "microsurg*" OR "neurosurg*"). Pooled sensitivity, specificity, positive and negative likelihood ratios (LR+ and LR-), and diagnostic odds ratio (DOR) of iUS in DGs were calculated. A subgroup analysis for HGGs and DLGGs was also conducted. Thirteen studies were included in the systematic review (665 DGs). Ten articles (409 DGs) were selected for the meta-analysis with the following results: sensitivity 72.2%, specificity 93.5%, LR- 0.29, LR+ 3, and DOR 9.67. Heterogeneity among studies was non-significant. Subgroup analysis demonstrates a better diagnostic performance of iUS for DLGGs compared with HGGs. iUS is an effective technique in assessing DGs resection. No significant differences are seen regarding iUS modality and transducer characteristics. Its diagnostic performance is higher in DLGGs than HGGs and could be worsened by previous treatments, surgical artifacts, and small tumor residue volumes.
Collapse
|
27
|
Abstract
BACKGROUND This is an update of the original review published in the Cochrane Database of Systematic Reviews Issue 1, 2000 and updated in 2003, 2007 and 2010.People with a presumed high-grade glioma (HGG) identified by clinical evaluation and radiological investigation have two initial surgical options: biopsy or resection. In certain situations, such as severe raised intracranial pressure, surgical resection is clinically indicated. Where surgical resection is not feasible, biopsy is the only reasonable option. Most people fall somewhere between these extremes, and in such circumstances it is uncertain which procedure is the best surgical option for the patient. Opinion is divided regarding the relative risks and benefits of each procedure. OBJECTIVES To estimate the clinical effectiveness of surgical resection compared to biopsy in people with a new presumptive diagnosis of HGG. SEARCH METHODS We updated our searches of the following databases to 12 September 2018: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase. We also handsearched the Journal of Neuro-Oncology and Neuro-Oncology from 2010 to 2018 (including all conference abstracts). SELECTION CRITERIA We included randomised controlled trials (RCTs) involving people of all ages with a presumed diagnosis of HGG based upon clinical and radiological investigation. Interventions included any form of biopsy or resection. Surgery was at the time of initial presentation and not for recurrence. DATA COLLECTION AND ANALYSIS Two reviews authors independently assessed the search results for relevance and undertook critical appraisal according to prespecified guidelines. Outcome measures included survival, time to progression/progression-free survival, quality of life, symptom control, adverse events, and mortality. MAIN RESULTS We identified a single RCT of biopsy versus resection in presumed HGG. No other articles met the inclusion criteria. Personal communication revealed that an RCT of biopsy versus resection in elderly people with HGG is underway. Further communication as part of this 2018 update revealed that the results of this study are due to be published in 2019. AUTHORS' CONCLUSIONS There is no high-quality evidence on biopsy versus resection for HGG that can be used to guide management. The single included RCT was of inadequate methodology to reach reliable conclusions. Further large, multicentred RCTs are required to conclusively answer the question of whether biopsy or resection is the best initial surgical management for HGG.
Collapse
Affiliation(s)
- Michael G Hart
- Addenbrookes HospitalAcademic Division of Neurosurgery, Department of Clinical NeurosciencesBox 167CambridgeUKCB2 0QQ
| | | | - Emma F Solyom
- University of St AndrewsSt AndrewsFifeScotlandUKKY16 9AJ
| | - Robin Grant
- Western General HospitalEdinburgh Centre for Neuro‐Oncology (ECNO)Crewe RoadEdinburghScotlandUKEH4 2XU
| | | |
Collapse
|
28
|
Abraham P, Sarkar R, Brandel MG, Wali AR, Rennert RC, Lopez Ramos C, Padwal J, Steinberg JA, Santiago-Dieppa DR, Cheung V, Pannell JS, Murphy JD, Khalessi AA. Cost-effectiveness of Intraoperative MRI for Treatment of High-Grade Gliomas. Radiology 2019; 291:689-697. [PMID: 30912721 PMCID: PMC6543900 DOI: 10.1148/radiol.2019182095] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023]
Abstract
Background Intraoperative MRI has been shown to improve gross-total resection of high-grade glioma. However, to the knowledge of the authors, the cost-effectiveness of intraoperative MRI has not been established. Purpose To construct a clinical decision analysis model for assessing intraoperative MRI in the treatment of high-grade glioma. Materials and Methods An integrated five-state microsimulation model was constructed to follow patients with high-grade glioma. One-hundred-thousand patients treated with intraoperative MRI were compared with 100 000 patients who were treated without intraoperative MRI from initial resection and debulking until death (median age at initial resection, 55 years). After the operation and treatment of complications, patients existed in one of three health states: progression-free survival (PFS), progressive disease, or dead. Patients with recurrence were offered up to two repeated resections. PFS, valuation of health states (utility values), probabilities, and costs were obtained from randomized controlled trials whenever possible. Otherwise, national databases, registries, and nonrandomized trials were used. Uncertainty in model inputs was assessed by using deterministic and probabilistic sensitivity analyses. A health care perspective was used for this analysis. A willingness-to-pay threshold of $100 000 per quality-adjusted life year (QALY) gained was used to determine cost efficacy. Results Intraoperative MRI yielded an incremental benefit of 0.18 QALYs (1.34 QALYs with intraoperative MRI vs 1.16 QALYs without) at an incremental cost of $13 447 ($176 460 with intraoperative MRI vs $163 013 without) in microsimulation modeling, resulting in an incremental cost-effectiveness ratio of $76 442 per QALY. Because of parameter distributions, probabilistic sensitivity analysis demonstrated that intraoperative MRI had a 99.5% chance of cost-effectiveness at a willingness-to-pay threshold of $100 000 per QALY. Conclusion Intraoperative MRI is likely to be a cost-effective modality in the treatment of high-grade glioma. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Bettmann in this issue.
Collapse
Affiliation(s)
- Peter Abraham
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - Reith Sarkar
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - Michael G. Brandel
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - Arvin R. Wali
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - Robert C. Rennert
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - Christian Lopez Ramos
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - Jennifer Padwal
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - Jeffrey A. Steinberg
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - David R. Santiago-Dieppa
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - Vincent Cheung
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - J. Scott Pannell
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - James D. Murphy
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| | - Alexander A. Khalessi
- From the School of Medicine (P.A., R.S., M.G.B., C.L.R., J.P.),
Department of Neurosurgery (A.R.W., R.C.R., J.A.S., D.R.S.D., V.C., J.S.P.,
A.A.K.), and Department of Radiation Oncology (J.D.M.), University of
California–San Diego, 9300 Campus Point Dr, Mail Code 7893, La Jolla, CA
92037
| |
Collapse
|
29
|
Marner L, Nysom K, Sehested A, Borgwardt L, Mathiasen R, Henriksen OM, Lundemann M, Munck Af Rosenschöld P, Thomsen C, Bøgeskov L, Skjøth-Rasmussen J, Juhler M, Kruse A, Broholm H, Scheie D, Lauritsen T, Forman JL, Wehner PS, Højgaard L, Law I. Early Postoperative 18F-FET PET/MRI for Pediatric Brain and Spinal Cord Tumors. J Nucl Med 2019; 60:1053-1058. [PMID: 30683767 DOI: 10.2967/jnumed.118.220293] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022] Open
Abstract
Complete resection is the treatment of choice for most pediatric brain tumors, but early postoperative MRI for detection of residual tumor may be misleading because of MRI signal changes caused by the operation. PET imaging with amino acid tracers in adults increases the diagnostic accuracy for brain tumors, but the literature in pediatric neurooncology is limited. A hybrid PET/MRI system is highly beneficial in children, reducing the number of scanning procedures, and this is to our knowledge the first larger study using PET/MRI in pediatric neurooncology. We evaluated if additional postoperative 18F-fluoro-ethyl-tyrosine (18F-FET) PET in children and adolescents would improve diagnostic accuracy for the detection of residual tumor as compared with MRI alone and would assist clinical management. Methods: Twenty-two patients (7 male; mean age, 9.5 y; range, 0-19 y) were included prospectively and consecutively in the study and had 27 early postoperative 18F-FET PET exams performed preferentially in a hybrid PET/MRI system (NCT03402425). Results: Using follow-up (93%) or reoperation (7%) as the reference standard, PET combined with MRI discriminated tumor from treatment effects with a lesion-based sensitivity/specificity/accuracy (95% confidence intervals) of 0.73 (0.50-1.00)/1.00 (0.74-1.00)/0.87 (0.73-1.00) compared with MRI alone: 0.80 (0.57-1.00)/0.75 (0.53-0.94)/0.77 (0.65-0.90); that is, the specificity for PET/MRI was 1.00 as compared with 0.75 for MRI alone (P = 0.13). In 11 of 27 cases (41%), results from the 18F-FET PET scans added relevant clinical information, including one scan that directly influenced clinical management because an additional residual tumor site was identified. 18F-FET uptake in reactive changes was frequent (52%), but correct interpretation was possible in all cases. Conclusion: The high specificity for detecting residual tumor suggests that supplementary 18F-FET PET is relevant in cases where reoperation for residual tumor is considered.
Collapse
Affiliation(s)
- Lisbeth Marner
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Karsten Nysom
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Astrid Sehested
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Lise Borgwardt
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - René Mathiasen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Otto Mølby Henriksen
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Michael Lundemann
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Carsten Thomsen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Denmark.,Department of Radiology, Zealand University Hospital, Køge, Denmark
| | - Lars Bøgeskov
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Anders Kruse
- Department of Orthopaedic Surgery, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Helle Broholm
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - David Scheie
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Torsten Lauritsen
- Department of Anaesthesiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; and
| | - Peder Skov Wehner
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Liselotte Højgaard
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
30
|
Atallah S, Parra-Davila E, Melani AGF, Romagnolo LG, Larach SW, Marescaux J. Robotic-assisted stereotactic real-time navigation: initial clinical experience and feasibility for rectal cancer surgery. Tech Coloproctol 2019; 23:53-63. [PMID: 30656579 DOI: 10.1007/s10151-018-1914-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Real-time stereotactic navigation for transanal total mesorectal excision has been demonstrated to be feasible in small pilot series using laparoscopic techniques. The possibility of real-time stereotactic navigation coupled with robotics has not been previously explored in a clinical setting. METHODS After pre-clinical assessment, and configuration of a robotic-assisted navigational system, two patients with locally advanced rectal cancer were selected for enrollment into a pilot study designed to assess the feasibility of navigation coupled with the robotic da Vinci Xi platform via TilePro interface. In one case, fluorescence-guided surgery was also used as an adjunct for structure localization, with local administration of indocyanine green into the ureters and at the tumor site. RESULTS Each operation was successfully completed with a robotic-assisted approach; image-guided navigation provided computed accuracy of ± 4.5 to 4.6 mm. The principle limitation encountered was navigation signal dropout due to temporary loss of direct line-of-sight with the navigational system's infrared camera. Subjectively, the aid of navigation assisted the operating surgeon in identifying critical anatomical planes. The combination of fluorescence with image-guided surgery further augmented the surgeon's perception of the operative field. CONCLUSIONS The combination of stereotactic navigation and robotic surgery is feasible, although some limitations and technical challenges were observed. For complex surgery, the addition of navigation to robotics can improve surgical precision. This will likely represent the next step in the evolution of robotics and in the development of digital surgery.
Collapse
Affiliation(s)
- S Atallah
- Department of Colorectal Surgery, EndoSurgical Center of Florida, Florida Hospital, 100 N. Dean Road, Orlando, FL, 32825, USA.
| | - E Parra-Davila
- Department of Surgery, Good Samaritan Hospital, West Palm Beach, FL, 33401, USA
| | - A G F Melani
- Department of Surgery, IRCAD, Latin America, Rio de Jeneiro, Brazil
| | - L G Romagnolo
- Department of Surgery, IRCAD, Latin America, Barretos, Brazil
| | - S W Larach
- Department of Colorectal Surgery, EndoSurgical Center of Florida, Florida Hospital, 100 N. Dean Road, Orlando, FL, 32825, USA
| | - J Marescaux
- Department of Surgery, IRCAD, France, Strasbourg, France
| |
Collapse
|
31
|
Jooma R, Waqas M, Khan I. Diffuse Low-Grade Glioma - Changing Concepts in Diagnosis and Management: A Review. Asian J Neurosurg 2019; 14:356-363. [PMID: 31143247 PMCID: PMC6516028 DOI: 10.4103/ajns.ajns_24_18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Though diffuse low-grade gliomas (dLGGs) represent only 15% of gliomas, they have been receiving increasing attention in the past decade. Significant advances in knowledge of the natural history and clinical diversity have been documented, and an improved pathological classification of gliomas that integrates histological features with molecular markers has been issued by the WHO. Advances in the radiological assessment of dLGG, particularly new magnetic resonance imaging scanning sequences, allow improved diagnostic and prognostic information. The management paradigms are evolving from “wait and watch” of the past to more active interventional therapy to obviate the risk of malignant transformation. New surgical technologies allow more aggressive surgical resections with a reduction of morbidity. Many reports suggest the association of gross total resection with longer overall survival and progression-free survival in addition to better seizure control. The literature also shows the use of chemotherapeutics and radiation therapy as important adjuncts to surgery. The goals of management have has been increasing survival with increasing stress on quality of life. Our review highlights the recent advances in the molecular diagnosis and management of dLGG with trends toward multidisciplinary and multimodality management of dLGG with an aim to surgically resect the primary disease, followed by chemoradiation in cases of progressive or recurrent disease.
Collapse
Affiliation(s)
- Rashid Jooma
- Department of Surgery, The Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Waqas
- Department of Surgery, The Aga Khan University Hospital, Karachi, Pakistan
| | - Inamullah Khan
- Department of Surgery, The Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
32
|
Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci 2018; 54:7-13. [PMID: 29801989 DOI: 10.1016/j.jocn.2018.05.002] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 04/09/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is among the most deadly neoplasms associated with one of the worst 5-year overall survival (OS) rates among all human cancers. The aim of this systematic review is to present all cases with OS of a decade or more and to perform a descriptive analysis of the group. This systematic review was conducted in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. A comprehensive search for relevant articles was performed on PubMed, Embase and Google Scholar for a period until June 10, 2016, using the following search words: glioblastoma multiforme, glioblastoma, GBM, long-term survival/survivors. Reports containing cases with the long-term survival of 10 years or longer were included in the review. The search produced 36 studies with 162 cases published in the years 1950-2014. The rate of long survivors in the cohort studied was established 0.76%. Mean age at diagnosis, OS and PFS were 31.1 ± 11.1, 15.9 ± 6.3, 11.9 ± 5.6 years respectively. Total and subtotal resections were found in 82 and 58 patients respectively. Nine cases received a biopsy alone. No statistical differences were found in a comparison of PFS, OS and age between total and subtotal resection groups. A regression analysis showed a significant correlation between PFS and OS, with an inverse relationship stated between age at diagnosis and OS. The 10-year survival rate in the cohort studied with GBM was estimated 0.71%. OS was positively correlated with the length of PFS and inversely related with age at diagnosis.
Collapse
Affiliation(s)
- Tomasz Tykocki
- Department of Neurosurgery, Western Hospital in Grodzisk Mazowiecki, Poland.
| | - Mohamed Eltayeb
- Royal Victoria Infirmary, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
33
|
Stepp H, Stummer W. 5‐ALA in the management of malignant glioma. Lasers Surg Med 2018; 50:399-419. [DOI: 10.1002/lsm.22933] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Stepp
- LIFE Center and Department of UrologyUniversity Hospital of MunichFeodor‐Lynen‐Str. 1981377MunichGermany
| | - Walter Stummer
- Department of NeurosurgeryUniversity Clinic MünsterAlbert‐Schweitzer‐Campus 1, Gebäude A148149MünsterGermany
| |
Collapse
|
34
|
Abstract
INTRODUCTION Radical glioma resection improves overall survival, both in low-grade and high-grade glial tumors. However, preservation of the quality of life is also crucial. Areas covered: Due to the diffuse feature of gliomas, which invade the central nervous system, and due to considerable variations of brain organization among patients, an individual cerebral mapping is mandatory to solve the classical dilemma between the oncological and functional issues. Because functional neuroimaging is not reliable enough, intraoperative electrical stimulation, especially in awake patients benefiting from a real-time cognitive monitoring, is the best way to increase the extent of resection while sparing eloquent neural networks. Expert commentary: Here, we propose a paradigmatic shift from image-guided resection to functional mapping-guided resection, based on the study of the dynamic distribution of delocalized cortico-subcortical circuits at the individual level, i.e., the investigation of brain connectomics and neuroplastic potential. This surgical philosophy results in an improvement of both oncological outcomes and quality of life. This highlights the need to reinforce the link between glioma surgery and cognitive neurosciences.
Collapse
Affiliation(s)
| | - Hugues Duffau
- b Department of Neurosurgery , Gui de Chauliac Hospital, Montpellier University Medical Center , Montpellier , France.,c National Institute for Health and Medical Research (INSERM), U1051 Laboratory, Team "Brain Plasticity, Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier , Montpellier University Medical Center , Montpellier , France
| |
Collapse
|
35
|
Jenkinson MD, Barone DG, Bryant A, Vale L, Bulbeck H, Lawrie TA, Hart MG, Watts C. Intraoperative imaging technology to maximise extent of resection for glioma. Cochrane Database Syst Rev 2018; 1:CD012788. [PMID: 29355914 PMCID: PMC6491323 DOI: 10.1002/14651858.cd012788.pub2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Extent of resection is considered to be a prognostic factor in neuro-oncology. Intraoperative imaging technologies are designed to help achieve this goal. It is not clear whether any of these sometimes very expensive tools (or their combination) should be recommended as standard care for people with brain tumours. We set out to determine if intraoperative imaging technology offers any advantage in terms of extent of resection over standard surgery and if any one technology was more effective than another. OBJECTIVES To establish the overall effectiveness and safety of intraoperative imaging technology in resection of glioma. To supplement this review of effects, we also wished to identify cost analyses and economic evaluations as part of a Brief Economic Commentary (BEC). SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 7, 2017), MEDLINE (1946 to June, week 4, 2017), and Embase (1980 to 2017, week 27). We searched the reference lists of all identified studies. We handsearched two journals, the Journal of Neuro-Oncology and Neuro-oncology, from 1991 to 2017, including all conference abstracts. We contacted neuro-oncologists, trial authors, and manufacturers regarding ongoing and unpublished trials. SELECTION CRITERIA Randomised controlled trials evaluating people of all ages with presumed new or recurrent glial tumours (of any location or histology) from clinical examination and imaging (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Additional imaging modalities (e.g. positron emission tomography, magnetic resonance spectroscopy) were not mandatory. Interventions included intraoperative MRI (iMRI), fluorescence-guided surgery, ultrasound, and neuronavigation (with or without additional image processing, e.g. tractography). DATA COLLECTION AND ANALYSIS Two review authors independently assessed the search results for relevance, undertook critical appraisal according to known guidelines, and extracted data using a prespecified pro forma. MAIN RESULTS We identified four randomised controlled trials, using different intraoperative imaging technologies: iMRI (2 trials including 58 and 14 participants, respectively); fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) (1 trial, 322 participants); and neuronavigation (1 trial, 45 participants). We identified one ongoing trial assessing iMRI with a planned sample size of 304 participants for which results are expected to be published around autumn 2018. We identified no trials for ultrasound.Meta-analysis was not appropriate due to differences in the tumours included (eloquent versus non-eloquent locations) and variations in the image guidance tools used in the control arms (usually selective utilisation of neuronavigation). There were significant concerns regarding risk of bias in all the included studies. All studies included people with high-grade glioma only.Extent of resection was increased in one trial of iMRI (risk ratio (RR) of incomplete resection 0.13, 95% confidence interval (CI) 0.02 to 0.96; 1 study, 49 participants; very low-quality evidence) and in the trial of 5-ALA (RR of incomplete resection 0.55, 95% CI 0.42 to 0.71; 1 study, 270 participants; low-quality evidence). The other trial assessing iMRI was stopped early after an unplanned interim analysis including 14 participants, therefore the trial provides very low-quality evidence. The trial of neuronavigation provided insufficient data to evaluate the effects on extent of resection.Reporting of adverse events was incomplete and suggestive of significant reporting bias (very low-quality evidence). Overall, reported events were low in most trials. There was no clear evidence of improvement in overall survival with 5-ALA (hazard ratio 0.83, 95% CI 0.62 to 1.07; 1 study, 270 participants; low-quality evidence). Progression-free survival data were not available in an appropriate format for analysis. Data for quality of life were only available for one study and suffered from significant attrition bias (very low-quality evidence). AUTHORS' CONCLUSIONS Intra-operative imaging technologies, specifically iMRI and 5-ALA, may be of benefit in maximising extent of resection in participants with high grade glioma. However, this is based on low to very low quality evidence, and is therefore very uncertain. The short- and long-term neurological effects are uncertain. Effects of image-guided surgery on overall survival, progression-free survival, and quality of life are unclear. A brief economic commentary found limited economic evidence for the equivocal use of iMRI compared with conventional surgery. In terms of costs, a non-systematic review of economic studies suggested that compared with standard surgery use of image-guided surgery has an uncertain effect on costs and that 5-aminolevulinic acid was more costly. Further research, including studies of ultrasound-guided surgery, is needed.
Collapse
Affiliation(s)
- Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, Merseyside, UK, L9 7LJ
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pavlov V, Meyronet D, Meyer-Bisch V, Armoiry X, Pikul B, Dumot C, Beuriat PA, Signorelli F, Guyotat J. Intraoperative Probe-Based Confocal Laser Endomicroscopy in Surgery and Stereotactic Biopsy of Low-Grade and High-Grade Gliomas: A Feasibility Study in Humans. Neurosurgery 2017; 79:604-12. [PMID: 27643918 DOI: 10.1227/neu.0000000000001365] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The management of gliomas is based on precise histologic diagnosis. The tumor tissue can be obtained during open surgery or via stereotactic biopsy. Intraoperative tissue imaging could substantially improve biopsy precision and, ultimately, the extent of resection. OBJECTIVE To show the feasibility of intraoperative in vivo probe-based confocal laser endomicroscopy (pCLE) in surgery and biopsy of gliomas. METHODS In our prospective observational study, 9 adult patients were enrolled between September 2014 and January 2015. Two contrast agents were used: 5-aminolevulinic acid (3 cases) or intravenous fluorescein (6 cases). Intraoperative imaging was performed with the Cellvizio system (Mauna Kea Technologies, Paris). A 0.85-mm probe was used for stereotactic procedures, with the biopsy needle modified to have a distal opening. During open brain surgery, a 2.36-mm probe was used. Each series corresponds to a separate histologic fragment. RESULTS The diagnoses of the lesions were glioblastoma (4 cases), low-grade glioma (2), grade III oligoastrocytoma (2), and lymphoma (1). Autofluorescence of neurons in cortex was observed. Cellvizio images enabled differentiation of healthy "normal" tissue from pathological tissue in open surgery and stereotactic biopsy using fluorescein. 5-Aminolevulinic acid confocal patterns were difficult to establish. No intraoperative complications related to pCLE or to use of either contrast agent were observed. CONCLUSION We report the initial feasibility and safety of intraoperative pCLE during primary brain tumor resection and stereotactic biopsy procedures. Pending further investigation, pCLE of brain tissue could be utilized for intraoperative surgical guidance, improvement in brain biopsy yield, and optimization of glioma resection via analysis of tumor margins. ABBREVIATIONS 5-ALA, 5-aminolevulinic acidpCLE, probe-based confocal laser endomicroscopyPpIX, protoporphyrin IX.
Collapse
Affiliation(s)
- Vladislav Pavlov
- *Department of Neurosurgery, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France;‡Centre de Pathologie et de Neuropathologie Est, Hospices Civils de Lyon, Lyon, France;§Innovation and Clinical Research Unit, Hospices Civils de Lyon, Lyon, France;¶Department of Neurosurgery, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Mahboob SO, Eljamel M. Intraoperative image-guided surgery in neuro-oncology with specific focus on high-grade gliomas. Future Oncol 2017; 13:2349-2361. [PMID: 29121778 DOI: 10.2217/fon-2017-0195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Surgery is paramount in glioma management and extent of resection is an independent significant prognostic factor. However, these tumors are often invisible intraoperatively. Hence imaging plays an important role in surgical guidance. A critical literature review, using MEDLINE/PubMed service was carried out. It demonstrated a gross total resection (GTR) with neuronavigation (NNS) of 31-36%, adding 5-aminolevulinic acid or fluorescein fluorescence, or intraoperative ultrasound or MRI improved GTR to 69.1, 84.4, 73.4 and 70% respectively. The differences between the four intraoperative technologies were not statistically significant. Therefore, NNS provided a platform for planning surgical approaches and localization of lesions, however significant brain shift rendered NNS useless without the addition of intraoperative imaging, of which 5-aminolevulinic acid, fluorescein, intraoperative ultrasound and intraoperative MRI significantly improved GTR and outcome of glioma surgery.
Collapse
Affiliation(s)
| | - Muftah Eljamel
- Neurosciences, HTNMS, 20/22 Torphichen Street, Edinburgh, EH3 8JB, UK
| |
Collapse
|
39
|
Awake Craniotomy for Tumor Resection: Further Optimizing Therapy of Brain Tumors. ACTA NEUROCHIRURGICA. SUPPLEMENT 2017; 124:309-313. [PMID: 28120089 DOI: 10.1007/978-3-319-39546-3_45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In recent years more and more data have emerged linking the most radical resection to prolonged survival in patients harboring brain tumors. Since total tumor resection could increase postoperative morbidity, many methods have been suggested to reduce the risk of postoperative neurological deficits: awake craniotomy with the possibility of continuous patient-surgeon communication is one of the possibilities of finding out how radical a tumor resection can possibly be without causing permanent harm to the patient.In 1994 we started to perform awake craniotomy for glioma resection. In 2005 the use of intraoperative high-field magnetic resonance imaging (MRI) was included in the standard tumor therapy protocol. Here we review our experience in performing awake surgery for gliomas, gained in 219 patients.Patient selection by the operating surgeon and a neuropsychologist is of primary importance: the patient should feel as if they are part of the surgical team fighting against the tumor. The patient will undergo extensive neuropsychological testing, functional MRI, and fiber tractography in order to define the relationship between the tumor and the functionally relevant brain areas. Attention needs to be given at which particular time during surgery the intraoperative MRI is performed. Results from part of our series (without and with ioMRI scan) are presented.
Collapse
|
40
|
Abstract
Maximal safe resection is the cornerstone of treatment for low-grade and high-grade gliomas. In addition to high-resolution anatomic MRI studies that highlight tumor architecture, it is important to determine the relationship of the tumor to the eloquent cortical and subcortical areas to avoid introducing or exacerbating a neurologic deficit. The goal of this review was to highlight imaging modalities that provide functional information and can be integrated with intraoperative MRI navigation to maximize the extent of resection while preserving a patient's neurologic function.
Collapse
|
41
|
Picart T, Armoiry X, Berthiller J, Dumot C, Pelissou-Guyotat I, Signorelli F, Guyotat J. Is fluorescence-guided surgery with 5-ala in eloquent areas for malignant gliomas a reasonable and useful technique? Neurochirurgie 2017; 63:189-196. [DOI: 10.1016/j.neuchi.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/29/2016] [Accepted: 12/04/2016] [Indexed: 11/30/2022]
|
42
|
Klein JS, Mitchell GS, Cherry SR. Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery. Phys Med Biol 2017; 62:4183-4201. [PMID: 28287074 DOI: 10.1088/1361-6560/aa6641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cerenkov luminescence imaging (CLI) is a developing imaging modality that detects radiolabeled molecules via visible light emitted during the radioactive decay process. We used a Monte Carlo based computer simulation to quantitatively investigate CLI compared to direct detection of the ionizing radiation itself as an intraoperative imaging tool for assessment of brain tumor margins. Our brain tumor model consisted of a 1 mm spherical tumor remnant embedded up to 5 mm in depth below the surface of normal brain tissue. Tumor to background contrast ranging from 2:1 to 10:1 were considered. We quantified all decay signals (e±, gamma photon, Cerenkov photons) reaching the brain volume surface. CLI proved to be the most sensitive method for detecting the tumor volume in both imaging and non-imaging strategies as assessed by contrast-to-noise ratio and by receiver operating characteristic output of a channelized Hotelling observer.
Collapse
Affiliation(s)
- Justin S Klein
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
| | | | | |
Collapse
|
43
|
Zebian B, Vergani F, Lavrador JP, Mukherjee S, Kitchen WJ, Stagno V, Chamilos C, Pettorini B, Mallucci C. Recent technological advances in pediatric brain tumor surgery. CNS Oncol 2016; 6:71-82. [PMID: 28001090 DOI: 10.2217/cns-2016-0022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
X-rays and ventriculograms were the first imaging modalities used to localize intracranial lesions including brain tumors as far back as the 1880s. Subsequent advances in preoperative radiological localization included computed tomography (CT; 1971) and MRI (1977). Since then, other imaging modalities have been developed for clinical application although none as pivotal as CT and MRI. Intraoperative technological advances include the microscope, which has allowed precise surgery under magnification and improved lighting, and the endoscope, which has improved the treatment of hydrocephalus and allowed biopsy and complete resection of intraventricular, pituitary and pineal region tumors through a minimally invasive approach. Neuronavigation, intraoperative MRI, CT and ultrasound have increased the ability of the neurosurgeon to perform safe and maximal tumor resection. This may be facilitated by the use of fluorescing agents, which help define the tumor margin, and intraoperative neurophysiological monitoring, which helps identify and protect eloquent brain.
Collapse
Affiliation(s)
- Bassel Zebian
- Department of Pediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool L12 2AP, UK.,Department of Pediatric & Adult Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Francesco Vergani
- Department of Pediatric & Adult Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - José Pedro Lavrador
- Department of Pediatric & Adult Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Soumya Mukherjee
- Department of Neurosurgery, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - William John Kitchen
- Department of Pediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool L12 2AP, UK
| | - Vita Stagno
- Department of Pediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool L12 2AP, UK
| | - Christos Chamilos
- Department of Pediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool L12 2AP, UK
| | - Benedetta Pettorini
- Department of Pediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool L12 2AP, UK
| | - Conor Mallucci
- Department of Pediatric Neurosurgery, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool L12 2AP, UK
| |
Collapse
|
44
|
Sakuma I. Regulatory science based approach in development of novel medical devices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:1729-32. [PMID: 26736611 DOI: 10.1109/embc.2015.7318711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For development rational evaluation method for medical devices' safety and efficacy, regulatory science studies are important. Studies on regulatory affairs related to a medical device under development should be conducted as well as its technological development. Clinical performance of a medical device is influenced by performance of the device, medical doctors' skill, pathological condition of a patient, and so on. Thus it is sometimes difficult to demonstrate superiority of the device in terms of clinical outcome although its efficacy as a medical device is accepted. Setting of appropriate end points is required to evaluate a medical device appropriately. Risk assessment and risk management are the basis of medical device safety assurance. In case of medical device software, there are difficulties in identifying the risk due to its complexity of user environment and different design and manufacturing procedure compared with conventional hardware based medical devices. Recent technological advancement such as information and communication technologies (ICT) for medical devices and wireless network has raised new issue on risk management: cybersecurity. We have to watch closely the progress of safety standard development.
Collapse
|
45
|
Insular gliomas and the role of intraoperative assistive technologies: Results from a volumetry-based retrospective cohort. Clin Neurol Neurosurg 2016; 149:104-10. [PMID: 27509592 DOI: 10.1016/j.clineuro.2016.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 01/28/2023]
Abstract
INTRODUCTION In the field of Glioma surgery, there has been an increasing interest in the use of assistive technologies to overcome the difficulty of preserving brain function while improving surgical radicality. In most reports, tumor localization has seldom been considered a variable and the role of intraoperative adjuncts is yet to be determined for gliomas of the insula. OBJECTIVES To evaluate the efficacy of fluorescence-guided resection with 5-ALA, intraoperative neurophysiological monitoring (IOM), neuronavigation, and tractography in the Extent of Resection (EOR), functionality scores, overall survival (OS) and progression-free survival (PFS) in a retrospective cohort of insular gliomas. METHODS We reviewed all cases of insular tumors operated on at the Department of Neurosurgery, University Hospital of Tübingen - Germany, between May 2008 and November 2013. EOR was determined by volumetric analysis. Mann Whitney, Chi-square and Kaplan Meier functions were used for assessment of each technology's effect on primary and secondary outcomes. RESULTS 28 cases (18 men (64%) and 10 women (36%); median age at diagnosis: 52.5 years, range 12 - 59) were considered eligible for analysis. High grade and low grade gliomas accounted for 20 (71%) and 8 (29%) cases, respectively. The most used technologies were IOM (64%) and Neuronavigation (68%). 5-ALA was the only technique associated with EOR ≥90% (p=0.05). Tractography determined improvement in the Karnofsky Performance Scale (50% vs. 5% cases improved, p=0.02). There was a positive association between the use of neuronavigation and overall survival (23 vs. 27.4 months, p=0.03), but the use of 5-ALA was associated with shorter OS (34.8 vs. 21.1 months, p=0.01) and PFS (24.4 vs. 11.8, p=0.01). CONCLUSIONS We demonstrate for the first time that for insular gliomas 5-ALA plays a role in achieving higher EOR, although this technology was associated with poor OS and PFS; also tractography and neuronavigation can be of great importance in the treatment of insular gliomas as they determined better functionality and OS in this study, respectively. Prospective studies with a more prominent sample and proper multivariate analysis will help determine the real benefit of these adjuncts in the setting of insular gliomas.
Collapse
|
46
|
Eljamel MS, Mahboob SO. The effectiveness and cost-effectiveness of intraoperative imaging in high-grade glioma resection; a comparative review of intraoperative ALA, fluorescein, ultrasound and MRI. Photodiagnosis Photodyn Ther 2016; 16:35-43. [PMID: 27491856 DOI: 10.1016/j.pdpdt.2016.07.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/19/2016] [Accepted: 07/30/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Surgical resection of high-grade gliomas (HGG) is standard therapy because it imparts significant progression free (PFS) and overall survival (OS). However, HGG-tumor margins are indistinguishable from normal brain during surgery. Hence intraoperative technology such as fluorescence (ALA, fluorescein) and intraoperative ultrasound (IoUS) and MRI (IoMRI) has been deployed. This study compares the effectiveness and cost-effectiveness of these technologies. METHODS Critical literature review and meta-analyses, using MEDLINE/PubMed service. The list of references in each article was double-checked for any missing references. We included all studies that reported the use of ALA, fluorescein (FLCN), IoUS or IoMRI to guide HGG-surgery. The meta-analyses were conducted according to statistical heterogeneity between studies. If there was no heterogeneity, fixed effects model was used; otherwise, a random effects model was used. Statistical heterogeneity was explored by χ2 and inconsistency (I2) statistics. To assess cost-effectiveness, we calculated the incremental cost per quality-adjusted life-year (QALY). RESULTS Gross total resection (GTR) after ALA, FLCN, IoUS and IoMRI was 69.1%, 84.4%, 73.4% and 70% respectively. The differences were not statistically significant. All four techniques led to significant prolongation of PFS and tended to prolong OS. However none of these technologies led to significant prolongation of OS compared to controls. The cost/QALY was $16,218, $3181, $6049 and $32,954 for ALA, FLCN, IoUS and IoMRI respectively. CONCLUSIONS ALA, FLCN, IoUS and IoMRI significantly improve GTR and PFS of HGG. Their incremental cost was below the threshold for cost-effectiveness of HGG-therapy, denoting that each intraoperative technology was cost-effective on its own.
Collapse
|
47
|
Abstract
Stereotactic navigation allows for real-time, image-guided surgery, thus providing an augmented working environment for the operator. This technique can be applied to complex minimally invasive surgery for fixed anatomic targets. Transanal minimally invasive surgery represents a new approach to rectal cancer surgery that is technically demanding and introduces the potential for procedure-specific morbidity. Feasibility of stereotactic navigation for TAMIS-TME has been demonstrated, and this could theoretically translate into improved resection quality by improving the surgeon's spatial awareness. The future of minimally invasive surgery as it relates to augmented reality and image-guided surgery is discussed.
Collapse
|
48
|
Technical principles in glioma surgery and preoperative considerations. J Neurooncol 2016; 130:243-252. [DOI: 10.1007/s11060-016-2171-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/01/2016] [Indexed: 01/16/2023]
|
49
|
Moon JH, Kim SH, Shim JK, Roh TH, Sung KS, Lee JH, Park J, Choi J, Kim EH, Kim SH, Kang SG, Chang JH. Histopathological implications of ventricle wall 5-aminolevulinic acid-induced fluorescence in the absence of tumor involvement on magnetic resonance images. Oncol Rep 2016; 36:837-44. [DOI: 10.3892/or.2016.4881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/28/2016] [Indexed: 11/05/2022] Open
|
50
|
Kobyakov GL, Lubnin AY, Kulikov AS, Gavrilov AG, Goryaynov SA, Poddubskiy AA, Lodygina KS. [Awake craniotomy]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2016; 80:107-116. [PMID: 27186613 DOI: 10.17116/neiro2016801107-116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Awake craniotomy is a neurosurgical intervention aimed at identifying and preserving the eloquent functional brain areas during resection of tumors located near the cortical and subcortical language centers. This article provides a review of the modern literature devoted to the issue. The anatomical rationale and data of preoperative functional neuroimaging, intraoperative electrophysiological monitoring, and neuropsychological tests as well as the strategy of active surgical intervention are presented. Awake craniotomy is a rapidly developing technique aimed at both preserving speech and motor functions and improving our knowledge in the field of speech psychophysiology.
Collapse
Affiliation(s)
- G L Kobyakov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A Yu Lubnin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A S Kulikov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A G Gavrilov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - K S Lodygina
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|