1
|
Chanu MP, Kumar G, Vinjamuri RK, Kakoty NM. Computational model for control of hand movement in Parkinson's disease using deep brain stimulation. Exp Brain Res 2025; 243:74. [PMID: 39987542 DOI: 10.1007/s00221-025-07026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterized by the loss of dopamine in the substantia nigra resulting in movement disorder. Although several computational models have been proposed to explore different aspects of PD, a comprehensive computational model of PD and its suppression remains elusive. This study presents a computational model of the Cortico-Basal Ganglia Thalamus (CBGT) network, and demonstrates the effects of close-loop deep brain stimulation (DBS) as a potential therapeutic intervention. The model focuses on addressing abnormal brain wave patterns associated with PD-related hand movement through DBS. To assess the model performance, a three-link manipulator is incorporated into the CBGT model, with the joints corresponding to shoulder, elbow and wrist of human arm. PD-like symptoms are simulated by modulating the dopaminergic input. The striatal (STR) neurons were selected as target neurons for application of DBS. A proportional-integral (PI) controller regulates DBS at different frequencies in striatal neurons based on errors in manipulator movement. The effectiveness of DBS at STR was compared with the DBS at globus pallidus externus and subthalamic nucleus. DBS suppressed neuronal signal oscillations at 13-30 Hz and reduced abnormal hand movements. The results demonstrate that application of DBS at STR could correct manipulator movement. Additionally, the trajectory of movement by the end-effector were compared with DBS at different target neurons in CBGT. These findings suggest the therapeutic potential of the proposed computational model in development of neuroprosthesis for PD patients.
Collapse
Affiliation(s)
- Maibam Pooya Chanu
- Embedded Systems and Robotics Laboratory, Tezpur University, Tezpur, Assam, India.
| | - Gajendra Kumar
- Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, Providence, USA
- Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University and Emma Pendleton Bradley Hospital, East Providence, RI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Ramana Kumar Vinjamuri
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, USA
| | - Nayan M Kakoty
- Embedded Systems and Robotics Laboratory, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
2
|
Paulo DL, Johnson GW, Doss DJ, Allen JH, González HFJ, Shults R, Li R, Ball TJ, Bick SK, Hassell TJ, D'Haese PF, Konrad PE, Dawant BM, Narasimhan S, Englot DJ. Intraoperative physiology augments atlas-based data in awake deep brain stimulation. J Neurol Neurosurg Psychiatry 2023; 95:86-96. [PMID: 37679029 PMCID: PMC11101241 DOI: 10.1136/jnnp-2023-331248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is commonly performed with patients awake to perform intraoperative microelectrode recordings and/or macrostimulation testing to guide final electrode placement. Supplemental information from atlas-based databases derived from prior patient data and visualised as efficacy heat maps transformed and overlaid onto preoperative MRIs can be used to guide preoperative target planning and intraoperative final positioning. Our quantitative analysis of intraoperative testing and corresponding changes made to final electrode positioning aims to highlight the value of intraoperative neurophysiological testing paired with image-based data to optimise final electrode positioning in a large patient cohort. METHODS Data from 451 patients with movement disorders treated with 822 individual DBS leads at a single institution from 2011 to 2021 were included. Atlas-based data was used to guide surgical targeting. Intraoperative testing data and coordinate data were retrospectively obtained from a large patient database. Medical records were reviewed to obtain active contact usage and neurologist-defined outcomes at 1 year. RESULTS Microelectrode recording firing profiles differ per track, per target and inform the locations where macrostimulation testing is performed. Macrostimulation performance correlates with the final electrode track chosen. Centroids of atlas-based efficacy heat maps per target were close in proximity to and may predict active contact usage at 1 year. Overall, patient outcomes at 1 year were improved for patients with better macrostimulation response. CONCLUSIONS Atlas-based imaging data is beneficial for target planning and intraoperative guidance, and in conjunction with intraoperative neurophysiological testing during awake DBS can be used to individualize and optimise final electrode positioning, resulting in favourable outcomes.
Collapse
Affiliation(s)
- Danika L Paulo
- Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Graham W Johnson
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Derek J Doss
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jackson H Allen
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hernán F J González
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Neurosurgery, UCSD, La Jolla, California, USA
| | - Robert Shults
- Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rui Li
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Tyler J Ball
- Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah K Bick
- Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Travis J Hassell
- Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Pierre-François D'Haese
- Neuroradiology, West Virginia University Rockefeller Neuroscience Institute, Morgantown, West Virginia, USA
| | - Peter E Konrad
- Neurosurgery, West Virginia University Rockefeller Neuroscience Institute, Morgantown, West Virginia, USA
| | - Benoit M Dawant
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Saramati Narasimhan
- Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Sadeghi-Tarakameh A, DelaBarre L, Zulkarnain NIH, Harel N, Eryaman Y. Implant-friendly MRI of deep brain stimulation electrodes at 7 T. Magn Reson Med 2023; 90:2627-2642. [PMID: 37533196 PMCID: PMC10543551 DOI: 10.1002/mrm.29825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE The purpose of this study is to present a strategy to calculate the implant-friendly (IF) excitation modes-which mitigate the RF heating at the contacts of deep brain stimulation (DBS) electrodes-of multichannel RF coils at 7 T. METHODS An induced RF current on an implantable electrode generates a scattered magnetic field whose left-handed circularly polarizing component (B 1 + $$ B{1}^{+} $$ ) is approximated using aB 1 + $$ B{1}^{+} $$ -mapping technique and subsequently used as a gauge for the electrode's induced current. Using this approach, the relative induced currents resulting from each channel of a multichannel RF coil on the DBS electrode were calculated. The IF modes of the corresponding multichannel coil were determined by calculating the null space of the relative induced currents. The proposed strategy was tested and validated for unilateral and bilateral commercial DBS electrodes (directional lead; Infinity DBS system, Abbott Laboratories) placed inside a uniform phantom by performing heating and imaging studies on a 7T MRI scanner using a 16-channel transceive RF coil. RESULTS Neither individual IF modes nor shim solutions obtained from IF modes induced significant temperature increase when used for a high-power turbo spin-echo sequence. In contrast, shimming with the scanner's toolbox (i.e., based on per-channelB 1 + $$ B{1}^{+} $$ fields) resulted in a more than 2°C temperature increase for the same amount of input power. CONCLUSION A strategy for calculating the IF modes of a multichannel RF coil is presented. This strategy was validated using a 16-channel RF coil at 7 T for unilateral and bilateral commercial DBS electrodes inside a uniform phantom.
Collapse
Affiliation(s)
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Noam Harel
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Melo M, Furlanetti L, Hasegawa H, Mundil N, Ashkan K. Comparison of direct MRI guided versus atlas-based targeting for subthalamic nucleus and globus pallidus deep brain stimulation. Br J Neurosurg 2023; 37:1040-1045. [PMID: 33416411 DOI: 10.1080/02688697.2020.1850641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The subthalamic nucleus (STN) and globus pallidus internus (GPi) targets for deep brain stimulation (DBS) can be defined by atlas coordinates or direct visualisation of the target on MRI. The aim of this study was to evaluate geometric differences between atlas-based targeting and MRI-guided direct targeting. METHODS One-hundred-nine Parkinson's disease or dystonia patients records who underwent DBS surgery between 2005 and 2016 were prospectively reviewed. MRI-guided direct targeting coordinates was used to implant 205 STN and 64 GPi electrodes and compared with atlas-based coordinates. RESULTS The directly targeted coordinates (mean, SD, range) for STN were x: [9.9 ± 1.1 (7.1 - 13.2)], y: [-0.8 ± 1.1 (-4.2 - 2)] and z: [-4.7 ± 0.53 (-5.9 - -3.2)]. The mean value for the STN was 2.1 mm more medial (p < 0.0001), 1.2 mm more anterior (p < 0.0001) and 0.7 mm more ventral (p < 0.0001) than the atlas target. The targeted coordinates for GPi were x: [22.3 ± 2.0 (17.8 - 26.1)], y: [-0.2 ± 2.2 (-4.5 - 3.4)], z: [-4.3 ± 0.8 (-6.2 - -2.3)]. The mean value for the GPi was 2.2 mm (p < 0.001) more posterior and 0.3 mm (p < 0.01) more ventral than the atlas-based coordinates. CONCLUSION MRI-guided targeting may be more accurate than atlas-based targeting due to individual variations in anatomy.
Collapse
Affiliation(s)
- Mariane Melo
- Department of Neurosurgery, King's College Hospital, London, UK
| | | | | | - Nilesh Mundil
- Department of Neurosurgery, King's College Hospital, London, UK
| | | |
Collapse
|
5
|
Hernandez-Martin E, Kasiri M, Abe S, MacLean J, Olaya J, Liker M, Chu J, Sanger TD. Globus pallidus internus activity increases during voluntary movement in children with dystonia. iScience 2023; 26:107066. [PMID: 37389183 PMCID: PMC10300218 DOI: 10.1016/j.isci.2023.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/27/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
The rate model of basal ganglia function predicts that muscle activity in dystonia is due to disinhibition of thalamus resulting from decreased inhibitory input from pallidum. We seek to test this hypothesis in children with dyskinetic cerebral palsy undergoing evaluation for deep brain stimulation (DBS) to analyze movement-related activity in different brain regions. The results revealed prominent beta-band frequency peaks in the globus pallidus interna (GPi), ventral oralis anterior/posterior (VoaVop) subnuclei of the thalamus, and subthalamic nucleus (STN) during movement but not at rest. Connectivity analysis indicated stronger coupling between STN-VoaVop and STN-GPi compared to GPi-STN. These findings contradict the hypothesis of decreased thalamic inhibition in dystonia, suggesting that abnormal patterns of inhibition and disinhibition, rather than reduced GPi activity, contribute to the disorder. Additionally, the study implies that correcting abnormalities in GPi function may explain the effectiveness of DBS targeting the STN and GPi in treating dystonia.
Collapse
Affiliation(s)
- Estefania Hernandez-Martin
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Maral Kasiri
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Sumiko Abe
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Jennifer MacLean
- Department of Neurosurgery and Neurology, Children’s Hospital of Orange County (CHOC), Orange, CA, USA
| | - Joffre Olaya
- Department of Neurosurgery and Neurology, Children’s Hospital of Orange County (CHOC), Orange, CA, USA
| | - Mark Liker
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Jason Chu
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Terence D. Sanger
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Neurosurgery and Neurology, Children’s Hospital of Orange County (CHOC), Orange, CA, USA
| |
Collapse
|
6
|
Dzhalagoniya IZ, Usova SV, Gamaleya AA, Tomskiy AA, Shaikh AG, Sedov AS. DYT1 dystonia: Neurophysiological properties of the pallidal activity. Parkinsonism Relat Disord 2023; 112:105447. [PMID: 37267819 DOI: 10.1016/j.parkreldis.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The aim of this paper is to find the differences in the physiology of the pallidal neurons in DYT1 and non-DYT1 dystonia. METHODS We performed microelectrode recording of the single unit activity in both segments of the globus pallidus during stereotactic implantation of electrodes for deep brain stimulation (DBS). RESULTS We found a reduced firing rate, reduced burst rate, and increased pause index in both pallidal segments in DYT1. Also, in DYT1 the activity in both pallidal segments was similar, but not so in non-DYT1. CONCLUSION The results suggest a common pathological focus for both pallidal segments, located in the striatum. We also speculate that strong striatal influence on GPi and GPe overrides other input sources to the pallidal nuclei causing similarity in neuronal activity. SIGNIFICANCE We found significant differences in neuronal activity between DYT1 and non-DYT1 neurons. Our findings shed light on the pathophysiology of DYT-1 dystonia which can be very different from non-DYT1 dystonia and have other efficient treatment tactics.
Collapse
Affiliation(s)
- Indiko Z Dzhalagoniya
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation.
| | - Svetlana V Usova
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation
| | - Anna A Gamaleya
- N.N. Burdenko National Medical Research Center for Neurosurgery, 4th Tverskaya-Yamskaya st. 16, Moscow, Russian Federation
| | - Alexey A Tomskiy
- N.N. Burdenko National Medical Research Center for Neurosurgery, 4th Tverskaya-Yamskaya st. 16, Moscow, Russian Federation
| | - Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA; Daroff-DelOsso Ocular Motility Laboratory, Neurology Service, Louis Stoke VA Medical Center, 10701 East Blvd, Cleveland, OH, USA
| | - Alexey S Sedov
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation
| |
Collapse
|
7
|
Baláž M, Búřil J, Jurková T, Koriťáková E, Hrabovský D, Kunst J, Bártová P, Chrastina J. Intraoperative electrophysiological monitoring determines the final electrode position for pallidal stimulation in dystonia patients. Front Surg 2023; 10:1206721. [PMID: 37284558 PMCID: PMC10239835 DOI: 10.3389/fsurg.2023.1206721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Background Bilateral deep brain stimulation (DBS) of the globus pallidus internus (GPi) is an effective treatment for refractory dystonia. Neuroradiological target and stimulation electrode trajectory planning with intraoperative microelectrode recordings (MER) and stimulation are used. With improving neuroradiological techniques, the need for MER is in dispute mainly because of the suspected risk of hemorrhage and the impact on clinical post DBS outcome. Objective The aim of the study is to compare the preplanned GPi electrode trajectories with final trajectories selected for electrode implantation after electrophysiological monitoring and to discuss the factors potentially responsible for differences between preplanned and final trajectories. Finally, the potential association between the final trajectory selected for electrode implantation and clinical outcome will be analyzed. Methods Forty patients underwent bilateral GPi DBS (right-sided implants first) for refractory dystonia. The relationship between preplanned and final trajectories (MicroDrive system) was correlated with patient (gender, age, dystonia type and duration) and surgery characteristics (anesthesia type, postoperative pneumocephalus) and clinical outcome measured using CGI (Clinical Global Impression parameter). The correlation between the preplanned and final trajectories together with CGI was compared between patients 1-20 and 21-40 for the learning curve effect. Results The trajectory selected for definitive electrode implantation matched the preplanned trajectory in 72.5% and 70% on the right and left side respectively; 55% had bilateral definitive electrodes implanted along the preplanned trajectories. Statistical analysis did not confirm any of the studied factors as predictor of the difference between the preplanned and final trajectories. Also no association between CGI and final trajectory selected for electrode implantation in the right/left hemisphere has been proven. The percentages of final electrodes implanted along the preplanned trajectory (the correlation between anatomical planning and intraoperative electrophysiology results) did not differ between patients 1-20 and 21-40. Similarly, there were no statistically significant differences in CGI (clinical outcome) between patients 1-20 and 21-40. Conclusion The final trajectory selected after electrophysiological study differed from the preplanned trajectory in a significant percentage of patients. No predictor of this difference was identified. The anatomo-electrophysiological difference was not predictive of the clinical outcome (as measured using CGI parameter).
Collapse
Affiliation(s)
- Marek Baláž
- First Department of Neurology, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiří Búřil
- First Department of Neurology, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tereza Jurková
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Eva Koriťáková
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Dušan Hrabovský
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jonáš Kunst
- First Department of Neurology, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Bártová
- Department of Neurology, Faculty Hospital Ostrava, Ostrava, Czechia
| | - Jan Chrastina
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
8
|
Grabel M, Merola A. Pallidal deep brain stimulation for tardive dystonia: meta-analysis of clinical outcomes. Neurol Sci 2023; 44:827-833. [PMID: 36378365 DOI: 10.1007/s10072-022-06506-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Tardive dystonia (TD) is a disabling complication of pharmacological therapy with dopaminergic receptor antagonists, usually resistant to oral medications. Several reports have shown that deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) might be effective in TD, but the overall level of evidence remains limited to case reports or small case series. OBJECTIVES We sought to summarize the collective evidence in support of GPi-DBS for TD using a meta-analytic approach. METHODS We searched PubMed for human studies reporting tardive dystonia cases treated with GPi-DBS that reported the validated Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) as outcome measure. Data extracted were reviewed for risk of bias. Then, through linear mixed effects modeling of the percent improvement seen on an individual level, we estimated the average improvement effect varying by study. RESULTS The searching strategy resulted in a total of n = 78 studies, which were screened for eligibility criteria resulting in the inclusion of n = 14 studies, yielding 134 TD patients for the final analyses. The overall estimate improvement in the BFMDRS after GPi-DBS was 66.88 ± 11.96%. The review of individual case reports indicated rare worsening (n = 4) or lack of improvement (n = 3) following GPi-DBS. CONCLUSIONS Bilateral GPi-DBS can be an effective therapeutic option for severe cases of TD resistant to oral pharmacological therapies, even though rare cases of symptom worsening or lack of improvement have also been reported.
Collapse
Affiliation(s)
- Michael Grabel
- Department of Environmental Health Division of Biostatistics and Bioinformatics, University of Cincinnati College of Medicine, Kettering Lab Building, Room 112, 160 Panzeca Way, Cincinnati, OH, 45267-0056, USA.
| | - Aristide Merola
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
9
|
Szczakowska A, Gabryelska A, Gawlik-Kotelnicka O, Strzelecki D. Deep Brain Stimulation in the Treatment of Tardive Dyskinesia. J Clin Med 2023; 12:1868. [PMID: 36902655 PMCID: PMC10003252 DOI: 10.3390/jcm12051868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Tardive dyskinesia (TD) is a phenomenon observed following the predominantly long-term use of dopamine receptor blockers (antipsychotics) widely used in psychiatry. TD is a group of involuntary, irregular hyperkinetic movements, mainly in the muscles of the face, eyelid, lips, tongue, and cheeks, and less frequently in the limbs, neck, pelvis, and trunk. In some patients, TD takes on an extremely severe form, massively disrupting functioning and, moreover, causing stigmatization and suffering. Deep brain stimulation (DBS), a method used, among others, in Parkinson's disease, is also an effective treatment for TD and often becomes a method of last resort, especially in severe, drug-resistant forms. The group of TD patients who have undergone DBS is still very limited. The procedure is relatively new in TD, so the available reliable clinical studies are few and consist mainly of case reports. Unilateral and bilateral stimulation of two sites has proven efficacy in TD treatment. Most authors describe stimulation of the globus pallidus internus (GPi); less frequent descriptions involve the subthalamic nucleus (STN). In the present paper, we provide up-to-date information on the stimulation of both mentioned brain areas. We also compare the efficacy of the two methods by comparing the two available studies that included the largest groups of patients. Although GPi stimulation is more frequently described in literature, our analysis indicates comparable results (reduction of involuntary movements) with STN DBS.
Collapse
Affiliation(s)
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| |
Collapse
|
10
|
Ma FZ, Liu DF, Yang AC, Zhang K, Meng FG, Zhang JG, Liu HG. Application of the robot-assisted implantation in deep brain stimulation. Front Neurorobot 2022; 16:996685. [PMID: 36531913 PMCID: PMC9755501 DOI: 10.3389/fnbot.2022.996685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/21/2022] [Indexed: 08/15/2023] Open
Abstract
INTRODUCTION This work aims to assess the accuracy of robotic assistance guided by a videometric tracker in deep brain stimulation (DBS). METHODS We retrospectively reviewed a total of 30 DBS electrode implantations, assisted by the Remebot robotic system, with a novel frameless videometric registration workflow. Then we selected 30 PD patients who used stereotactic frame surgery to implant electrodes during the same period. For each electrode, accuracy was assessed using radial and axial error. RESULTS The average radial error of the robot-assisted electrode implantation was 1.28 ± 0.36 mm, and the average axial error was 1.20 ± 0.40 mm. No deaths or associated hemorrhages, infections or poor incision healing occurred. CONCLUSION Robot-assisted implantation guided by a videometric tracker is accurate and safe.
Collapse
Affiliation(s)
- Fang-Zhou Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Feng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - An-Chao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan-Gang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Huan-Guang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Hernandez-Martin E, Arguelles E, Liker M, Robison A, Sanger TD. Increased movement-related signals in both basal ganglia and cerebellar output pathways in two children with dystonia. Front Neurol 2022; 13:989340. [PMID: 36158959 PMCID: PMC9500435 DOI: 10.3389/fneur.2022.989340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
The contribution of different brain regions to movement abnormalities in children with dystonia is unknown. Three awake subjects undergoing depth electrode implantation for assessments of potential deep brain recording targets performed a rhythmic figure-8 drawing task. Two subjects had dystonia, one was undergoing testing for treatment of Tourette Syndrome and had neither dystonia nor abnormal movements during testing. Movement-related signals were evaluated by determining the magnitude of task-related frequency components. Brain signals were recorded in globus pallidus internus (GPi), the ventral oralis anterior/posterior (VoaVop) and the ventral intermediate (Vim) nuclei of the thalamus. In comparison to the subject without dystonia, both children with dystonia showed increased task-related activity in GPi and Vim. This finding is consistent with a role of both basal ganglia and cerebellar outputs in the pathogenesis of dystonia. Our results further suggest that frequency analysis of brain recordings during cyclic movements may be a useful tool for analysis of the presence of movement-related signals in various brain regions.
Collapse
Affiliation(s)
- Estefania Hernandez-Martin
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Estefania Hernandez-Martin
| | - Enrique Arguelles
- Neuroscience Institute, Children's Hospital of Orange County (CHOC), Orange, CA, United States
| | - Mark Liker
- Department of Neurology, Children's Hospital of Los Angeles (CHLA), Los Angeles, CA, United States
| | - Aaron Robison
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States
| | - Terence D. Sanger
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of Southern California (USC), Los Angeles, CA, United States
| |
Collapse
|
12
|
Giridharan N, Katlowitz KA, Anand A, Gadot R, Najera RA, Shofty B, Snyder R, Larrinaga C, Prablek M, Karas PJ, Viswanathan A, Sheth SA. Robot-Assisted Deep Brain Stimulation: High Accuracy and Streamlined Workflow. Oper Neurosurg (Hagerstown) 2022; 23:254-260. [PMID: 35972090 DOI: 10.1227/ons.0000000000000298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND A number of stereotactic platforms are available for performing deep brain stimulation (DBS) lead implantation. Robot-assisted stereotaxy has emerged more recently demonstrating comparable accuracy and shorter operating room times compared with conventional frame-based systems. OBJECTIVE To compare the accuracy of our streamlined robotic DBS workflow with data in the literature from frame-based and frameless systems. METHODS We retrospectively reviewed 126 consecutive DBS lead placement procedures using a robotic stereotactic platform. Indications included Parkinson disease (n = 94), essential tremor (n = 21), obsessive compulsive disorder (n = 7), and dystonia (n = 4). Procedures were performed using a stereotactic frame for fixation and the frame pins as skull fiducials for robot registration. We used intraoperative fluoroscopic computed tomography for registration and postplacement verification. RESULTS The mean radial error for the target point was 1.06 mm (SD: 0.55 mm, range 0.04-2.80 mm) on intraoperative fluoroscopic computed tomography. The mean operative time for an asleep, bilateral implant without implantable pulse generator placement was 238 minutes (SD: 52 minutes), and skin-to-skin procedure time was 116 minutes (SD: 42 minutes). CONCLUSION We describe a streamlined workflow for DBS lead placement using robot-assisted stereotaxy with a comparable accuracy profile. Obviating the need for checking and switching coordinates, as is standard for frame-based DBS, also reduces the chance for human error and facilitates training.
Collapse
Affiliation(s)
- Nisha Giridharan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Deep brain stimulation in dystonia: factors contributing to variability in outcome in short and long term follow-up. Curr Opin Neurol 2022; 35:510-517. [PMID: 35787538 DOI: 10.1097/wco.0000000000001072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is currently the most effective treatment for medically refractory dystonia with globus pallidus internus (GPi) usually the preferred target. Despite the overall success of DBS in dystonia, there remains variability in treatment outcome in both short and long-term follow-up, due to various factors. Factors contributing to variability in outcome comprise 'Dystonia Related' including dystonia classification, semiology, duration, body distribution, orthopaedic deformity, aetiology and genetic cause. The majority of these factors are identifiable from clinical assessment, brain MRI and genetic testing, and therefore merit careful preoperative consideration. 'DBS related' factors include brain target, accuracy of lead placement, stimulation parameters, time allowed for response, neurostimulation technology employed and DBS induced side-effects. In this review, factors contributing to variability in short and long-term dystonia DBS outcome are reviewed and discussed. RECENT FINDINGS The recognition of differential DBS benefit in monogenic dystonia, increasing experience with subthalamic nucleus (STN) DBS and in DBS for Meige syndrome, elucidation of DBS side effects and novel neurophysiological and imaging techniques to assist in predicting clinical outcome. SUMMARY Improved understanding of factors contributing to variability of DBS outcome in dystonia may assist in patient selection and predicting surgical outcomes.
Collapse
|
14
|
Sadeghi-Tarakameh A, Zulkarnain NIH, He X, Atalar E, Harel N, Eryaman Y. A workflow for predicting temperature increase at the electrical contacts of deep brain stimulation electrodes undergoing MRI. Magn Reson Med 2022; 88:2311-2325. [PMID: 35781696 PMCID: PMC9545305 DOI: 10.1002/mrm.29375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022]
Abstract
Purpose The purpose of this study is to present a workflow for predicting the radiofrequency (RF) heating around the contacts of a deep brain stimulation (DBS) lead during an MRI scan. Methods The induced RF current on the DBS lead accumulates electric charge on the metallic contacts, which may cause a high local specific absorption rate (SAR), and therefore, heating. The accumulated charge was modeled by imposing a voltage boundary condition on the contacts in a quasi‐static electromagnetic (EM) simulation allowing thermal simulations to be performed with the resulting SAR distributions. Estimating SAR and temperature increases from a lead in vivo through EM simulation is not practical given anatomic differences and variations in lead geometry. To overcome this limitation, a new parameter, transimpedance, was defined to characterize a given lead. By combining the transimpedance, which can be measured in a single calibration scan, along with MR‐based current measurements of the lead in a unique orientation and anatomy, local heating can be estimated. Heating determined with this approach was compared with results from heating studies of a commercial DBS electrode in a gel phantom with different lead configurations to validate the proposed method. Results Using data from a single calibration experiment, the transimpedance of a commercial DBS electrode (directional lead, Infinity DBS system, Abbott Laboratories, Chicago, IL) was determined to be 88 Ω. Heating predictions using the DBS transimpedance and rapidly acquired MR‐based current measurements in 26 different lead configurations resulted in a <23% (on average 11.3%) normalized root‐mean‐square error compared to experimental heating measurements during RF scans. Conclusion In this study, a workflow consisting of an MR‐based current measurement on the DBS lead and simple quasi‐static EM/thermal simulations to predict the temperature increase around a DBS electrode undergoing an MRI scan is proposed and validated using a commercial DBS electrode. Click here for author‐reader discussions
Collapse
Affiliation(s)
| | | | - Xiaoxuan He
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Noam Harel
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia. Proc Natl Acad Sci U S A 2022; 119:e2114985119. [PMID: 35357970 PMCID: PMC9168456 DOI: 10.1073/pnas.2114985119] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied deep brain stimulation effects in two types of dystonia and conclude that different specific connections between the pallidum and thalamus are responsible for optimal treatment effects. Since alternative treatment options for dystonia beyond deep brain stimulation are scarce, our results will be crucial to maximize treatment outcome in this population of patients. Dystonia is a debilitating disease with few treatment options. One effective option is deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations regarding optimal stimulation sites and potential network effects have not been carried out. Here, we retrospectively studied clinical results following DBS for cervical and generalized dystonia in a multicenter cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce an approach to map optimal stimulation sites to anatomical space. Second, we investigate which tracts account for optimal clinical improvements, when modulated. Third, we investigate distributed stimulation effects on a whole-brain functional connectome level. Our results show marked differences of optimal stimulation sites that map to the somatotopic structure of the internal pallidum. While modulation of the striatopallidofugal axis of the basal ganglia accounted for optimal treatment of cervical dystonia, modulation of pallidothalamic bundles did so in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in the form of connectivity to the cerebellum and somatomotor cortex. Our results suggest a brief divergence of optimal stimulation networks for cervical vs. generalized dystonia within the pallidothalamic loop that merge again on a thalamo-cortical level and share a common whole-brain network.
Collapse
|
16
|
Patel RR, Zauber SE, Yadav AP, Witt TC, Halum S, Gupta K. Globus Pallidus Interna and Ventral Intermediate Nucleus of the Thalamus Deep Brain Stimulation for Adductor Laryngeal Dystonia: a Case Report of Blinded Analyses of Objective Voice Outcomes in 2 Patients. Neurosurgery 2022; 90:457-463. [PMID: 35138294 DOI: 10.1227/neu.0000000000001851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Adductor laryngeal dystonia (ADLD) is a substantially debilitating focal progressive neurological voice disorder. Current standard of care is symptomatic treatment with repeated injections of botulinum toxin into specific intrinsic laryngeal muscles with extremely variable and temporary benefits. We report the use of bilateral deep brain stimulation (DBS) of globus pallidus (GPi) for long-term improvement of ADLD voice symptoms. OBJECTIVE To investigate the effects of bilateral DBS of the GPi and ventral intermediate nucleus (VIM) of the thalamus on vocal function in 2 patients with ADLD associated with voice and hand tremor. METHODS Blinded objective and quantitative analyses of voice were conducted before and after treatment in 2 female patients (70 and 69 years). Paired t-tests were conducted to compare voice measurements pre-GPi and post-GPi and VIM-DBS. A 2-way analysis of variance was conducted to determine the interaction between target (GPi/VIM) and time (pre/post) for each voice measure. RESULTS Although the follow-up period differed between patients, the GPi-DBS implanted patient had notable improvement in vowel voicing (%), extent of tremor intensity (%), and overall speech intelligibility (%), compared with preoperative status. GPi-DBS also resulted in significant improvement in cepstral peak prominence (dB). VIM-DBS resulted in a significantly greater change in the tremor rate (Hz). CONCLUSION Changes in phonatory function provide preliminary support for the use of bilateral GPi-DBS for treatment of ADLD and bilateral VIM-DBS for vocal tremor predominant ADLD. Future studies with larger sample sizes and standardized follow-up periods are needed to better assess the role of DBS for ADLD.
Collapse
Affiliation(s)
- Rita R Patel
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine/Indiana University Bloomington, Indianapolis, Indiana, USA
| | - S Elizabeth Zauber
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amol P Yadav
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas C Witt
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stacey Halum
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine/Indiana University Bloomington, Indianapolis, Indiana, USA
| | - Kunal Gupta
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
The risk factors of intracerebral hemorrhage in deep brain stimulation: does target matter? Acta Neurochir (Wien) 2022; 164:587-598. [PMID: 34997354 DOI: 10.1007/s00701-021-04977-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Although deep brain stimulation (DBS) is a relatively safe and effective surgery compared with ablative surgeries, intracerebral hemorrhage (ICH) is a serious complication during DBS that could result in a fatal prognosis. We retrospectively investigated whether ICH incidence differed between patients who underwent DBS in the subthalamic nucleus (STN) and in the globus pallidus interna (GPi), together with previously identified risk factors for ICH. METHODS We retrospectively reviewed the medical records of 275 patients (527 DBS targets) who received DBS for Parkinson's disease or dystonia from April 2001 to December 2020. In cases that developed intra- or postoperative ICH, patients were classified as asymptomatic, symptomatic with temporary neurological deficit or symptomatic with permanent neurological deficit, according to patient clinical status. RESULTS ICH occurred in 12 procedures (2.3%) among the 527 DBS procedures (275 patients) evaluated. In multivariable logistic regression analysis, the risk factor for all cases of ICH was systolic blood pressure (BP) during surgery (cut-off value 129.4 mmHg) (OR = 1.05, 95% CI = 1.01-1.09, P = 0.023). In addition, for ICH with permanent neurological deficit, STN target site (P = 0.024) and systolic BP during surgery (cut-off value: 148.3 mmHg) (P = 0.004) were identified as risk factors in univariable analyses. CONCLUSION Even though the risk factor for all ICH in DBS was BP during surgery, when focused on ICH evoking permanent neurological deficit, the target location as well as systolic BP during surgery proved to be related.
Collapse
|
18
|
Fenoy AJ, Conner CR. Frameless Robot-Assisted vs Frame-Based Awake Deep Brain Stimulation Surgery: An Evaluation of Technique and New Challenges. Oper Neurosurg (Hagerstown) 2022; 22:171-178. [PMID: 34989699 DOI: 10.1227/ons.0000000000000059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Methodological approaches to deep brain stimulation (DBS) continue to evolve from awake frame-based to asleep frameless procedures with robotic assistance, primarily directed to optimize operative efficiency, lead accuracy, and patient comfort. Comparison between the 2 is scarce. OBJECTIVE To analyze the impacts of methodological differences on operative efficiency and stereotactic accuracy using a frame compared with a frameless robotic platform while maintaining the awake state and use of multiple microelectrode recording (MER) trajectories. METHODS Thirty-four consecutive patients who underwent bilateral awake frameless robot-assisted DBS were compared with a previous cohort of 30 patients who underwent frame-based surgery. Patient demographics, operative times, and MER data were collected for both cohorts. Two-dimensional radial errors of lead placements were calculated. RESULTS Preoperative setup, surgical, and total operating room times were all significantly greater for the robot-assisted cohort (P < .001). The need for computed tomography imaging when referencing the robotic fiducials led to increased setup duration because of patient transport, unnecessary for the frame-based cohort. Multiple simultaneous MER trajectories increased surgical time (mean 26 min) for the robot-assisted cohort only. The mean radial errors in the robot-assisted and frame cohorts were 0.98 ± 0.66 and 0.74 ± 0.49 mm (P = .03), respectively. CONCLUSION The use of a truly frameless robotic platform such as the Mazor Renaissance (Mazor Robotics Ltd) presented challenges when implementing techniques used during awake frame-based surgery. Maintaining good accuracy, intraoperative reference imaging, and limited MER trajectories will help integrate frameless robot assistance into the awake DBS surgical workflow.
Collapse
Affiliation(s)
- Albert J Fenoy
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas, USA
| | | |
Collapse
|
19
|
Soares C, Reich MM, Costa F, Lange F, Roothans J, Reis C, Vaz R, Rosas MJ, Volkmann J. Predicting Outcome in a Cohort of Isolated and Combined Dystonia within Probabilistic Brain Mapping. Mov Disord Clin Pract 2021; 8:1234-1239. [PMID: 34761057 PMCID: PMC8564825 DOI: 10.1002/mdc3.13345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background Probabilistic brain mapping is a promising tool to estimate the expected benefit of pallidal deep brain stimulation (GPi‐DBS) in patients with isolated dystonia (IsoD). Objectives To investigate the role of probabilistic mapping in combined dystonia (ComD). Methods We rendered the pallidal atlas and the volume of tissue activated (VTA) for a cohort of patients with IsoD (n = 20) and ComD (n = 10) that underwent GPi‐DBS. The VTA was correlated with clinical improvement. Afterwards, each VTA was applied on the previously published probabilistic model (Reich et al., 2019). The correlation between predicted and observed clinical benefit was studied in a linear regression model. Results A good correlation between observed and predicted outcome was found for both patients with IsoD (n = 14) and ComD (n = 7) (r2 = 0.32; P < 0.05). In ComD, 42% of the variance in DBS response is explained by VTA‐based outcome map. Conclusion A probabilistic model would be helpful in clinical practice to circumvent unpredictable and less impressive motor results often found in ComD.
Collapse
Affiliation(s)
- Carolina Soares
- Neurology Department Centro Hospitalar Universitário de São João, EPE Porto Portugal.,Department of Clinic Neurosciences and Mental Health, Faculty of Medicine University of Porto Porto Portugal
| | - Martin M Reich
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| | - Francisca Costa
- Department of Medical Imaging, Neuroradiology Unit, Centro Hospitalar Vila Nova de Gaia/Espinho Porto Portugal
| | - Florian Lange
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| | - Jonas Roothans
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| | - Carina Reis
- Neuroradiology Department Centro Hospitalar Universitário de São João Porto Portugal
| | - Rui Vaz
- Neurosurgery Department Centro Hospitalar Universitário de São João Porto Portugal.,Department of Clinic Neurosciences and Mental Health, Faculty of Medicine University of Porto Porto Portugal
| | - Maria José Rosas
- Neurology Department Centro Hospitalar Universitário de São João, EPE Porto Portugal
| | - Jens Volkmann
- Neurology Department Julius-Maximilians-University Würzburg Würzburg Germany
| |
Collapse
|
20
|
Bhagwat AA, Deogaonkar M, Deopujari CE. Microsurgery and Neuromodulation for Facial Spasms. Neurol India 2021; 68:S196-S201. [PMID: 33318350 DOI: 10.4103/0028-3886.302455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Facial spasms are of various types. Hemifacial spasm (HFS) is characterized by unilateral tonic-clonic contractions of facial muscles, following a specific pattern of disease progression. It has well-delineated clinical, radiological and electrophysiological features. We have conducted an extensive review of existing literature on the subject, as regards etiopathogenesis, clinical features, investigations and management options for facial spasms. Primary Hemifacial spasm (HFS) may be treated using pharmacotherapy, botulinum toxin injections or microvascular decompression surgery. Microvascular decompression has the potential to reverse the pathological changes of the disease and has proved to be the most successful of all treatment options. Other facial spasms are exceedingly difficult to treat and may need neuromodulation as an option. The following article attempts to review the clinical features and therapeutic approaches to managing patients with facial spasms.
Collapse
Affiliation(s)
- Aniruddha A Bhagwat
- Department of Neurosurgery, Bombay Hospital Institute of Medical Sciences, Mumbai, Maharashtra, India
| | - Milind Deogaonkar
- Department of Neurosurgery, University of West Virginia, Medical Centre Drive, Morgantown WV, USA
| | | |
Collapse
|
21
|
Long-Term Follow-Up of 12 Patients Treated with Bilateral Pallidal Stimulation for Tardive Dystonia. Life (Basel) 2021; 11:life11060477. [PMID: 34074009 PMCID: PMC8225108 DOI: 10.3390/life11060477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Tardive dystonia (TD) is a side effect of prolonged dopamine receptor antagonist intake. TD can be a chronic disabling movement disorder despite medical treatment. We previously demonstrated successful outcomes in six patients with TD using deep brain stimulation (DBS); however, more patients are needed to better understand the efficacy of DBS for treating TD. We assessed the outcomes of 12 patients with TD who underwent globus pallidus internus (GPi) DBS by extending the follow-up period of previously reported patients and enrolling six additional patients. All patients were refractory to pharmacotherapy and were referred for surgical intervention by movement disorder neurologists. In all patients, DBS electrodes were implanted bilaterally within the GPi under general anesthesia. The mean ages at TD onset and surgery were 39.2 ± 12.3 years and 44.6 ± 12.3 years, respectively. The Burke–Fahn–Marsden Dystonia Rating Scale (BFMDRS) performed the preoperative and postoperative evaluations. The average BFMDRS improvement rate at 1 month postoperatively was 75.6 ± 27.6% (p < 0.001). Ten patients were assessed in the long term (78.0 ± 50.4 months after surgery), and the long-term BFMDRS improvement was 78.0 ± 20.4%. Two patients responded poorly to DBS. Both had a longer duration from TD onset to surgery and older age at surgery. A cognitive and psychiatric decline was observed in the oldest patients, while no such decline ware observed in the younger patients. In most patients with TD, GPi-DBS could be a beneficial therapeutic option for long-term relief of TD.
Collapse
|
22
|
Efficacy and safety of general anesthesia deep brain stimulation for dystonia: an individual patient data meta-analysis of 341 cases. Neurol Sci 2021; 42:2661-2671. [PMID: 33855621 DOI: 10.1007/s10072-021-05214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The efficacy and safety of deep brain stimulation (DBS) under general anesthesia for the treatment of dystonia have not yet been confirmed with high level of evidence. This meta-analysis with pooled individual patient data aims to assess the clinical outcomes and identify the potential prognostic factors of dystonia patients who underwent general anesthesia DBS. METHODS We searched PubMed, Web of Science, and Embase for articles describing patients with dystonia who underwent asleep DBS and had individual Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) scores. The relative improvement in BFMDRS scores was considered the primary outcome. Pearson correlation analyses and multivariate linear regression analysis were conducted to explore the prognostic factors. RESULTS A total of 34 studies involving 341 patients were included. The mean postoperative improvement in BFMDRS-M (BFMDRS movement subscale) and BFMDRS-D (BFMDRS disability subscale) scores were 58.6±36.2% and 48.5±38.7% at the last follow-up visit, respectively, with a mean follow-up time of 22.4±27.6 months. Age at surgery and disease duration showed a negative correlation with the percent improvement of BFMDRS-M (%) at the last visit (r=-0.134, P=0.013; r=-0.165, P=0.006). In the stepwise multivariate regression, only disease duration remained a relevant factor. Additionally, the adverse events were acceptable. CONCLUSION General anesthesia DBS is a safe, effective, and feasible option for dystonia patients in the long term. Shorter disease duration predicts better clinical outcomes.
Collapse
|
23
|
Tisch S, Kumar KR. Pallidal Deep Brain Stimulation for Monogenic Dystonia: The Effect of Gene on Outcome. Front Neurol 2021; 11:630391. [PMID: 33488508 PMCID: PMC7820073 DOI: 10.3389/fneur.2020.630391] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Globus pallidus internus deep brain stimulation (GPi DBS) is the most effective intervention for medically refractory segmental and generalized dystonia in both children and adults. Predictive factors for the degree of improvement after GPi DBS include shorter disease duration and dystonia subtype with idiopathic isolated dystonia usually responding better than acquired combined dystonias. Other factors contributing to variability in outcome may include body distribution, pattern of dystonia and DBS related factors such as lead placement and stimulation parameters. The responsiveness to DBS appears to vary between different monogenic forms of dystonia, with some improving more than others. The first observation in this regard was reports of superior DBS outcomes in DYT-TOR1A (DYT1) dystonia, although other studies have found no difference. Recently a subgroup with young onset DYT-TOR1A, more rapid progression and secondary worsening after effective GPi DBS, has been described. Myoclonus dystonia due to DYT-SCGE (DYT11) usually responds well to GPi DBS. Good outcomes following GPi DBS have also been documented in X-linked dystonia Parkinsonism (DYT3). In contrast, poorer, more variable DBS outcomes have been reported in DYT-THAP1 (DYT6) including a recent larger series. The outcome of GPi DBS in other monogenic isolated and combined dystonias including DYT-GNAL (DYT25), DYT-KMT2B (DYT28), DYT-ATP1A3 (DYT12), and DYT-ANO3 (DYT24) have been reported with varying results in smaller numbers of patients. In this article the available evidence for long term GPi DBS outcome between different genetic dystonias is reviewed to reappraise popular perceptions of expected outcomes and revisit whether genetic diagnosis may assist in predicting DBS outcome.
Collapse
Affiliation(s)
- Stephen Tisch
- Department of Neurology, St Vincent's Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
24
|
Li H, Wang T, Zhang C, Su D, Lai Y, Sun B, Li D, Wu Y. Asleep Deep Brain Stimulation in Patients With Isolated Dystonia: Stereotactic Accuracy, Efficacy, and Safety. Neuromodulation 2020; 24:272-278. [PMID: 33325608 DOI: 10.1111/ner.13341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Lead placement for deep brain stimulation (DBS) is routinely performed using neuroimaging or microelectrode recording (MER). Recent studies have demonstrated that DBS under general anesthesia using an imaging-guided target technique ("asleep" DBS) can be performed accurately and effectively with lower surgery complication rates than the MER-guided target method under local anesthesia ("awake" DBS). This suggests that asleep DBS may be a more acceptable method. However, there is limited direct evidence focused on isolated dystonia using this method. Therefore, this study aimed to investigate the clinical outcomes and targeting accuracy in patients with dystonia who underwent asleep DBS. MATERIALS AND METHODS We examined 56 patients (112 leads) with isolated dystonia who underwent asleep DBS targeting in the globus pallidus internus (GPi) and subthalamic nucleus (STN). The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) scores were assessed preoperatively and at 12-month follow-up (12 m-FU). The lead accuracy was evaluated by comparing the coordinates of the preoperative plan with those of the final electrode implantation location. Other measures analyzed included stimulation parameters and adverse events (AEs). RESULTS For both GPi and STN cohorts, mean BFMDRS motor scores were significantly lower at 12 m-FU (8.9 ± 10.9 and 4.6 ± 5.7 points) than at baseline (22.6 ± 16.4 and 16.1 ± 14.1 points, p < 0.001). The mean difference between the planned target and the distal contact of the leads was 1.33 ± 0.54 mm for the right brain electrodes and 1.50 ± 0.57 mm for the left, determined by Euclidian distance. No perioperative complications or AEs related to the device were observed during the complete follow-up. However, AEs associated with stimulation occurred in 12 and 6 patients in the GPi and STN groups, respectively. CONCLUSIONS Asleep DBS may be an accurate, effective, and safe method for treating patients with isolated dystonia regardless of the stimulation target.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daoqing Su
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, China
| | - Yijie Lai
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Functional Neural Changes after Low-Frequency Bilateral Globus Pallidus Internus Deep Brain Stimulation for Post-Hypoxic Cortical Myoclonus: Voxel-Based Subtraction Analysis of Serial Positron Emission. Brain Sci 2020; 10:brainsci10100730. [PMID: 33066158 PMCID: PMC7650619 DOI: 10.3390/brainsci10100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022] Open
Abstract
Post-hypoxic myoclonus (PHM) and Lance–Adams syndrome (LAS) are rare conditions following cardiopulmonary resuscitation. The aim of this study was to identify functional activity in the cerebral cortex after a hypoxic event and to investigate alterations that could be modulated by deep brain stimulation (DBS). A voxel-based subtraction analysis of serial positron emission tomography (PET) scans was performed in a 34-year-old woman with chronic medically refractory PHM that improved with bilateral globus pallidus internus (Gpi) DBS implanted three years after the hypoxic event. The patient required low-frequency stimulation to show myoclonus improvement. Using voxel-based statistical parametric mapping, we identified a decrease in glucose metabolism in the prefrontal lobe including the dorsolateral, orbito-, and inferior prefrontal cortex, which was suspected to be the origin of the myoclonus from postoperative PET/magnetic resonance imaging (MRI) after DBS. Based on the present study results, voxel-based subtraction of PET appears to be a useful approach for monitoring patients with PHM treated with DBS. Further investigation and continuous follow-up on the use of PET analysis and DBS treatment for patients with PHM are necessary to help understanding the pathophysiology of PHM, or LAS.
Collapse
|
26
|
Ho AL, Pendharkar AV, Brewster R, Martinez DL, Jaffe RA, Xu LW, Miller KJ, Halpern CH. Frameless Robot-Assisted Deep Brain Stimulation Surgery: An Initial Experience. Oper Neurosurg (Hagerstown) 2020; 17:424-431. [PMID: 30629245 DOI: 10.1093/ons/opy395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Modern robotic-assist surgical systems have revolutionized stereotaxy for a variety of procedures by increasing operative efficiency while preserving and even improving accuracy and safety. However, experience with robotic systems in deep brain stimulation (DBS) surgery is scarce. OBJECTIVE To present an initial series of DBS surgery performed utilizing a frameless robotic solution for image-guided stereotaxy, and report on operative efficiency, stereotactic accuracy, and complications. METHODS This study included the initial 20 consecutive patients undergoing bilateral robot-assisted DBS. The prior 20 nonrobotic, frameless cohort of DBS cases was sampled as a baseline historic control. For both cohorts, patient demographic and clinical data were collected including postoperative complications. Intraoperative duration and number of Microelectrode recording (MER) and final lead passes were recorded. For the robot-assisted cohort, 2D radial errors were calculated. RESULTS Mean case times (total operating room, anesthesia, and operative times) were all significantly decreased in the robot-assisted cohort (all P-values < .02) compared to frameless DBS. When looking at trends in case times, operative efficiency improved over time in the robot-assisted cohort across all time assessment points. Mean radial error in the robot-assisted cohort was 1.40 ± 0.11 mm, and mean depth error was 1.05 ± 0.18 mm. There was a significant decrease in the average number of MER passes in the robot-assisted cohort (1.05) compared to the nonrobotic cohort (1.45, P < .001). CONCLUSION This is the first report of application of frameless robotic-assistance with the Mazor Renaissance platform (Mazor Robotics Ltd, Caesarea, Israel) for DBS surgery, and our findings reveal that an initial experience is safe and can have a positive impact on operative efficiency, accuracy, and safety.
Collapse
Affiliation(s)
- Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Arjun V Pendharkar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Ryan Brewster
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Derek L Martinez
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Richard A Jaffe
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California
| | - Linda W Xu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Kai J Miller
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
27
|
Bledsoe IO, Viser AC, San Luciano M. Treatment of Dystonia: Medications, Neurotoxins, Neuromodulation, and Rehabilitation. Neurotherapeutics 2020; 17:1622-1644. [PMID: 33095402 PMCID: PMC7851280 DOI: 10.1007/s13311-020-00944-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 02/24/2023] Open
Abstract
Dystonia is a complex disorder with numerous presentations occurring in isolation or in combination with other neurologic symptoms. Its treatment has been significantly improved with the advent of botulinum toxin and deep brain stimulation in recent years, though additional investigation is needed to further refine these interventions. Medications are of critical importance in forms of dopa-responsive dystonia but can be beneficial in other forms of dystonia as well. Many different rehabilitative paradigms have been studied with variable benefit. There is growing interest in noninvasive stimulation as a potential treatment, but with limited long-term benefit shown to date, and additional research is needed. This article reviews existing evidence for treatments from each of these categories. To date, there are many examples of incomplete response to available treatments, and improved therapies are needed.
Collapse
Affiliation(s)
- Ian O. Bledsoe
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| | - Aaron C. Viser
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| | - Marta San Luciano
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| |
Collapse
|
28
|
Bertino S, Basile GA, Bramanti A, Anastasi GP, Quartarone A, Milardi D, Cacciola A. Spatially coherent and topographically organized pathways of the human globus pallidus. Hum Brain Mapp 2020; 41:4641-4661. [PMID: 32757349 PMCID: PMC7555102 DOI: 10.1002/hbm.25147] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022] Open
Abstract
Internal and external segments of globus pallidus (GP) exert different functions in basal ganglia circuitry, despite their main connectional systems share the same topographical organization, delineating limbic, associative, and sensorimotor territories. The identification of internal GP sensorimotor territory has therapeutic implications in functional neurosurgery settings. This study is aimed at assessing the spatial coherence of striatopallidal, subthalamopallidal, and pallidothalamic pathways by using tractography‐derived connectivity‐based parcellation (CBP) on high quality diffusion MRI data of 100 unrelated healthy subjects from the Human Connectome Project. A two‐stage hypothesis‐driven CBP approach has been carried out on the internal and external GP. Dice coefficient between functionally homologous pairs of pallidal maps has been computed. In addition, reproducibility of parcellation according to different pathways of interest has been investigated, as well as spatial relations between connectivity maps and existing optimal stimulation points for dystonic patients. The spatial organization of connectivity clusters revealed anterior limbic, intermediate associative and posterior sensorimotor maps within both internal and external GP. Dice coefficients showed high degree of coherence between functionally similar maps derived from the different bundles of interest. Sensorimotor maps derived from the subthalamopallidal pathway resulted to be the nearest to known optimal pallidal stimulation sites for dystonic patients. Our findings suggest that functionally homologous afferent and efferent connections may share similar spatial territory within the GP and that subcortical pallidal connectional systems may have distinct implications in the treatment of movement disorders.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Giuseppe Pio Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Mackel CE, Papavassiliou E, Alterman RL. Risk Factors for Wire Fracture or Tethering in Deep Brain Stimulation: A 15-Year Experience. Oper Neurosurg (Hagerstown) 2020; 19:708-714. [DOI: 10.1093/ons/opaa215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/03/2020] [Indexed: 11/12/2022] Open
Abstract
Abstract
BACKGROUND
In deep brain stimulation (DBS), tunneled lead and extension wires connect the implantable pulse generator to the subcortical electrode, but circuit discontinuity and wire revision compromise a significant portion of treatments.
OBJECTIVE
To identify factors predisposing to fracture or tethering of the lead or extension wire in patients undergoing DBS.
METHOD
Retrospective review of wire-related complications was performed in a consecutive series of patients treated with DBS at a tertiary academic medical center over 15 yr.
RESULTS
A total of 275 patients had 513 extension wires implanted or revised. There were 258 extensions of 40 cm implanted with a postauricular connector (50.3%), 229 extensions of 60 cm with a parietal connector (44.6%), and 26 extensions 40 cm with a parietal connector (5.1%). In total, 26 lead or extension wires (5.1%) were replaced for fracture. Fracture rates for 60 cm extensions with a parietal connector, 40 cm wires with a postauricular connector, and 40 cm extensions with a parietal connector were 0.2, 1.4, and 12.9 fractures per 100 wire-years, significantly different on log-rank test. Total 16 (89%) 40 cm extension wires with a postauricular connector had fracture implicating the lead wire. Tethering occurred only in patients with 60 cm extensions with parietal connectors (1.14 tetherings per 100 wire-years). Reoperation rate correlated with younger age, dystonia, and target in the GPI.
CONCLUSION
The 40 cm extensions with parietal connectors have the highest fracture risk and should be avoided. Postauricular connectors risk lead wire fracture and should be employed cautiously. The 60 cm parietal wires may reduce fracture risk but increase tethering risk.
Collapse
Affiliation(s)
- Charles E Mackel
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Ron L Alterman
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
30
|
Jiang H, Wang R, Zheng Z, Zhu J. Deep brain stimulation for the treatment of cerebral palsy: A review. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2020.9050002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Deep brain stimulation (DBS) has been used as a safe and effective neuromodulation technique for treatment of various diseases. A large number of patients suffering from movement disorders such as dyskinesia may benefit from DBS. Cerebral palsy (CP) is a group of permanent disorders mainly involving motor impairment, and medical interventions are usually unsatisfactory or temporarily active, especially for dyskinetic CP. DBS may be another approach to the treatment of CP. In this review we discuss the targets for DBS and the mechanisms of action for the treatment of CP, and focus on presurgical assessment, efficacy for dystonia and other symptoms, safety, and risks.
Collapse
Affiliation(s)
- Hongjie Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rui Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhe Zheng
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Junming Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
31
|
Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res 2020; 238:1645-1657. [PMID: 32638036 PMCID: PMC7413898 DOI: 10.1007/s00221-020-05833-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neurophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, studies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, EEG and evoked potentials.
Collapse
|
32
|
Tsuboi T, Cif L, Coubes P, Ostrem JL, Romero DA, Miyagi Y, Lozano AM, De Vloo P, Haq I, Meng F, Sharma N, Ozelius LJ, Wagle Shukla A, Cauraugh JH, Foote KD, Okun MS. Secondary Worsening Following DYT1 Dystonia Deep Brain Stimulation: A Multi-country Cohort. Front Hum Neurosci 2020; 14:242. [PMID: 32670041 PMCID: PMC7330126 DOI: 10.3389/fnhum.2020.00242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: To reveal clinical characteristics of suboptimal responses to deep brain stimulation (DBS) in a multi-country DYT1 dystonia cohort. Methods: In this multi-country multi-center retrospective study, we analyzed the clinical data of DYT1 patients who experienced suboptimal responses to DBS defined as <30% improvement in dystonia scales at the last follow-up compared with baseline. We used a literature-driven historical cohort of 112 DYT1 patients for comparison. Results: Approximately 8% of our study cohort (11 out of 132) experienced suboptimal responses to DBS. Compared with the historical cohort, the multi-country cohort with suboptimal responses had a significantly younger age at onset (mean, 7.0 vs. 8.4 years; p = 0.025) and younger age at DBS (mean, 12.0 vs. 18.6 years; p = 0.019). Additionally, cranial involvement was more common in the multi-country cohort (before DBS, 64% vs. 45%, p = 0.074; before or after DBS, 91% vs. 47%, p = 0.001). Mean motor improvement at the last follow-up from baseline were 0% and 66% for the multi-country and historical cohorts, respectively. All 11 patients of the multi-country cohort had generalization of dystonia within 2.5 years after disease onset. All patients experienced dystonia improvement of >30% postoperatively; however, secondary worsening of dystonia commenced between 6 months and 3 years following DBS. The improvement at the last follow-up was less than 30% despite optimally-placed leads, a trial of multiple programming settings, and additional DBS surgeries in all patients. The on-/off-stimulation comparison at the long-term follow-up demonstrated beneficial effects of DBS despite missing the threshold of 30% improvement over baseline. Conclusion: Approximately 8% of patients represent a more aggressive phenotype of DYT1 dystonia characterized by younger age at onset, faster disease progression, and cranial involvement, which seems to be associated with long-term suboptimal responses to DBS (e.g., secondary worsening). This information could be useful for both clinicians and patients in clinical decision making and patient counseling before and following DBS implantations. Patients with this phenotype may have different neuroplasticity, neurogenetics, or possibly distinct neurophysiology.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Laura Cif
- Department of Neurology, University Hospital Montpellier, Montpellier, France
| | - Philippe Coubes
- Department of Neurosurgery, University Hospital Montpellier, Montpellier, France
| | - Jill L Ostrem
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Danilo A Romero
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Yasushi Miyagi
- Department of Stereotactic and Functional Neurosurgery, Fukuoka Mirai Hospital, Fukuoka, Japan
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital Krembil Neuroscience Center, Toronto, ON, Canada.,Department of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Philippe De Vloo
- Department of Neurosurgery, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, KU Leuven, Leuven, Belgium
| | - Ihtsham Haq
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - James H Cauraugh
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established but growing treatment option for multiple brain disorders. Over the last decade, electrode placement and their effects were increasingly analyzed with modern-day neuroimaging methods like spatial normalization, fibertracking, or resting-state functional MRI. Similarly, specialized basal ganglia MRI sequences were introduced and imaging at high field strengths has become increasingly popular. RECENT FINDINGS To facilitate the process of precise electrode localizations, specialized software pipelines were introduced. By those means, DBS targets could recently be refined and significant relationships between electrode placement and clinical improvement could be shown. Furthermore, by combining electrode reconstructions with network imaging methods, relationships between electrode connectivity and clinical improvement were investigated. This led to a broad series of imaging-based insights about DBS that are reviewed in the present work. SUMMARY The reviewed literature makes a strong case that brain imaging plays an increasingly important role in DBS targeting and programming. Furthermore, brain imaging will likely help to better understand the mechanism of action of DBS.
Collapse
|
34
|
Greene DJ, Marek S, Gordon EM, Siegel JS, Gratton C, Laumann TO, Gilmore AW, Berg JJ, Nguyen AL, Dierker D, Van AN, Ortega M, Newbold DJ, Hampton JM, Nielsen AN, McDermott KB, Roland JL, Norris SA, Nelson SM, Snyder AZ, Schlaggar BL, Petersen SE, Dosenbach NUF. Integrative and Network-Specific Connectivity of the Basal Ganglia and Thalamus Defined in Individuals. Neuron 2020; 105:742-758.e6. [PMID: 31836321 PMCID: PMC7035165 DOI: 10.1016/j.neuron.2019.11.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/28/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
The basal ganglia, thalamus, and cerebral cortex form an interconnected network implicated in many neurological and psychiatric illnesses. A better understanding of cortico-subcortical circuits in individuals will aid in development of personalized treatments. Using precision functional mapping-individual-specific analysis of highly sampled human participants-we investigated individual-specific functional connectivity between subcortical structures and cortical functional networks. This approach revealed distinct subcortical zones of network specificity and multi-network integration. Integration zones were systematic, with convergence of cingulo-opercular control and somatomotor networks in the ventral intermediate thalamus (motor integration zones), dorsal attention and visual networks in the pulvinar, and default mode and multiple control networks in the caudate nucleus. The motor integration zones were present in every individual and correspond to consistently successful sites of deep brain stimulation (DBS; essential tremor). Individually variable subcortical zones correspond to DBS sites with less consistent treatment effects, highlighting the importance of PFM for neurosurgery, neurology, and psychiatry.
Collapse
Affiliation(s)
- Deanna J Greene
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Scott Marek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Evan M Gordon
- VISN17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Joshua S Siegel
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Neurology, Northwestern University, Evanston, IL, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrian W Gilmore
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey J Berg
- Department of Psychology, New York University, New York, NY, USA
| | - Annie L Nguyen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Ortega
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline M Hampton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashley N Nielsen
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Kathleen B McDermott
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Jarod L Roland
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Scott A Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven M Nelson
- VISN17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven E Petersen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Nico U F Dosenbach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Program in Occupational Therapy, Washington University, St. Louis, MO, USA.
| |
Collapse
|
35
|
Okromelidze L, Tsuboi T, Eisinger RS, Burns MR, Charbel M, Rana M, Grewal SS, Lu CQ, Almeida L, Foote KD, Okun MS, Middlebrooks EH. Functional and Structural Connectivity Patterns Associated with Clinical Outcomes in Deep Brain Stimulation of the Globus Pallidus Internus for Generalized Dystonia. AJNR Am J Neuroradiol 2020; 41:508-514. [PMID: 32054614 DOI: 10.3174/ajnr.a6429] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Deep brain stimulation is a well-established treatment for generalized dystonia, but outcomes remain variable. Establishment of an imaging marker to guide device targeting and programming could possibly impact the efficacy of deep brain stimulation in dystonia, particularly in the absence of acute clinical markers to indicate benefit. We hypothesize that the stimulation-based functional and structural connectivity using resting-state fMRI and DTI can predict therapeutic outcomes in patients with generalized dystonia and deep brain stimulation. MATERIALS AND METHODS We performed a retrospective analysis of 39 patients with inherited or idiopathic-isolated generalized dystonia who underwent bilateral globus pallidus internus deep brain stimulation. After electrode localization, the volumes of tissue activated were modeled and used as seed regions for functional and structural connectivity measures using a normative data base. Resulting connectivity maps were correlated with postoperative improvement in the Unified Dystonia Rating Scale score. RESULTS Structural connectivity between the volumes of tissue activated and the primary sensorimotor cortex was correlated with Unified Dystonia Rating Scale improvement, while more anterior prefrontal connectivity was inversely correlated with Unified Dystonia Rating Scale improvement. Functional connectivity between the volumes of tissue activated and primary sensorimotor regions, motor thalamus, and cerebellum was most correlated with Unified Dystonia Rating Scale improvement; however, an inverse correlation with Unified Dystonia Rating Scale improvement was seen in the supplemental motor area and premotor cortex. CONCLUSIONS Functional and structural connectivity with multiple nodes of the motor network is associated with motor improvement in patients with generalized dystonia undergoing deep brain stimulation. Results from this study may serve as a basis for future development of clinical markers to guide deep brain stimulation targeting and programming in dystonia.
Collapse
Affiliation(s)
- L Okromelidze
- From the Departments of Radiology (L.O., C.-Q.L., E.H.M.) and Neurosurgery (S.S.G., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - T Tsuboi
- Department of Neurology (T.T., R.S.E., M.R.B., L.A., K.D.F., M.S.O.), Norman Fixel Institute for Neurological Diseases
| | - R S Eisinger
- Department of Neurology (T.T., R.S.E., M.R.B., L.A., K.D.F., M.S.O.), Norman Fixel Institute for Neurological Diseases
| | - M R Burns
- Department of Neurology (T.T., R.S.E., M.R.B., L.A., K.D.F., M.S.O.), Norman Fixel Institute for Neurological Diseases
| | - M Charbel
- Department of Neurosurgery (K.D.F.), and J. Crayton Pruitt Family Department of Biomedical Engineering (M.C.), University of Florida, Gainesville, Florida
| | - M Rana
- Institute of Medical Psychology and Behavioural Neurobiology (M.R.), University of Tübingen, Tübingen, Germany
| | - S S Grewal
- Department of Neurology (T.T., R.S.E., M.R.B., L.A., K.D.F., M.S.O.), Norman Fixel Institute for Neurological Diseases
| | - C-Q Lu
- From the Departments of Radiology (L.O., C.-Q.L., E.H.M.) and Neurosurgery (S.S.G., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - L Almeida
- Department of Neurosurgery (K.D.F.), and J. Crayton Pruitt Family Department of Biomedical Engineering (M.C.), University of Florida, Gainesville, Florida
| | - K D Foote
- Department of Neurosurgery (K.D.F.), and J. Crayton Pruitt Family Department of Biomedical Engineering (M.C.), University of Florida, Gainesville, Florida
| | - M S Okun
- Department of Neurology (T.T., R.S.E., M.R.B., L.A., K.D.F., M.S.O.), Norman Fixel Institute for Neurological Diseases
| | - E H Middlebrooks
- From the Departments of Radiology (L.O., C.-Q.L., E.H.M.) and Neurosurgery (S.S.G., E.H.M.), Mayo Clinic, Jacksonville, Florida .,Department of Neurology (T.T., R.S.E., M.R.B., L.A., K.D.F., M.S.O.), Norman Fixel Institute for Neurological Diseases
| |
Collapse
|
36
|
Bentley JN, Irwin ZT, Black SD, Roach ML, Vaden RJ, Gonzalez CL, Khan AU, El-Sayed GA, Knight RT, Guthrie BL, Walker HC. Subcortical Intermittent Theta-Burst Stimulation (iTBS) Increases Theta-Power in Dorsolateral Prefrontal Cortex (DLPFC). Front Neurosci 2020; 14:41. [PMID: 32082113 PMCID: PMC7006239 DOI: 10.3389/fnins.2020.00041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Cognitive symptoms from Parkinson’s disease cause severe disability and significantly limit quality of life. Little is known about mechanisms of cognitive impairment in PD, although aberrant oscillatory activity in basal ganglia-thalamo-prefrontal cortical circuits likely plays an important role. While continuous high-frequency deep brain stimulation (DBS) improves motor symptoms, it is generally ineffective for cognitive symptoms. Although we lack robust treatment options for these symptoms, recent studies with transcranial magnetic stimulation (TMS), applying intermittent theta-burst stimulation (iTBS) to dorsolateral prefrontal cortex (DLPFC), suggest beneficial effects for certain aspects of cognition, such as memory or inhibitory control. While TMS is non-invasive, its results are transient and require repeated application. Subcortical DBS targets have strong reciprocal connections with prefrontal cortex, such that iTBS through the permanently implanted lead might represent a more durable solution. Here we demonstrate safety and feasibility for delivering iTBS from the DBS electrode and explore changes in DLPFC electrophysiology. Methods We enrolled seven participants with medically refractory Parkinson’s disease who underwent DBS surgery targeting either the subthalamic nucleus (STN) or globus pallidus interna (GPi). We temporarily placed an electrocorticography strip over DLPFC through the DBS burr hole. After placement of the DBS electrode into either GPi (n = 3) or STN (n = 4), awake subjects rested quietly during iTBS (three 50-Hz pulses delivered at 5 Hz for 2 s, followed by 8 s of rest). We contrasted power spectra in DLPFC local field potentials during iTBS versus at rest, as well as between iTBS and conventional high-frequency stimulation (HFS). Results Dominant frequencies in DLPFC at rest varied among subjects and along the subdural strip electrode, though they were generally localized in theta (3–8 Hz) and/or beta (10–30 Hz) ranges. Both iTBS and HFS were well-tolerated and imperceptible. iTBS increased theta-frequency activity more than HFS. Further, GPi stimulation resulted in significantly greater theta-power versus STN stimulation in our sample. Conclusion Acute subcortical iTBS from the DBS electrode was safe and well-tolerated. This novel stimulation pattern delivered from the GPi may increase theta-frequency power in ipsilateral DLPFC. Future studies will confirm these changes in DLPFC activity during iTBS and evaluate whether they are associated with improvements in cognitive or behavioral symptoms from PD.
Collapse
Affiliation(s)
- J Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zachary T Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarah D Black
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Megan L Roach
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ryan J Vaden
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher L Gonzalez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anas U Khan
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Galal A El-Sayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert T Knight
- Department of Psychology and Neuroscience, University of California, Berkeley, Berkeley, CA, United States.,Department of Neurology and Neurosurgery, University of California, San Francisco, San Francisco, CA, United States
| | - Barton L Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
37
|
Tsuboi T, Wong JK, Almeida L, Hess CW, Wagle Shukla A, Foote KD, Okun MS, Ramirez-Zamora A. A pooled meta-analysis of GPi and STN deep brain stimulation outcomes for cervical dystonia. J Neurol 2020; 267:1278-1290. [DOI: 10.1007/s00415-020-09703-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
|
38
|
Valsky D, Blackwell KT, Tamir I, Eitan R, Bergman H, Israel Z. Real-time machine learning classification of pallidal borders during deep brain stimulation surgery. J Neural Eng 2020; 17:016021. [PMID: 31675740 DOI: 10.1088/1741-2552/ab53ac] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) in patients with Parkinson's disease and dystonia improves motor symptoms and quality of life. Traditionally, pallidal borders have been demarcated by electrophysiological microelectrode recordings (MERs) during DBS surgery. However, detection of pallidal borders can be challenging due to the variability of the firing characteristics of neurons encountered along the trajectory. MER can also be time-consuming and therefore costly. Here we show the feasibility of real-time machine learning classification of striato-pallidal borders to assist neurosurgeons during DBS surgery. APPROACH An electrophysiological dataset from 116 trajectories of 42 patients consisting of 11 774 MER segments of background spiking activity in five classes of disease was used to train the classification algorithm. The five classes included awake Parkinson's disease patients, as well as awake and lightly anesthetized genetic and non-genetic dystonia patients. A machine learning algorithm was designed to provide prediction of the striato-pallidal borders, based on hidden Markov models (HMMs) and the L1-distance measure in normalized root mean square (NRMS) and power spectra of the MER. We tested its performance prospectively against the judgment of three electrophysiologists in the operating rooms of three hospitals using newly collected data. MAIN RESULTS The awake and the light anesthesia dystonia classes could be merged. Using MER NRMS and spectra, the machine learning algorithm was on par with the performance of the three electrophysiologists across the striatum-GPe, GPe-GPi, and GPi-exit transitions for all disease classes. SIGNIFICANCE Machine learning algorithms enable real-time GPi navigation systems to potentially shorten the duration of electrophysiological mapping of pallidal borders, while ensuring correct pallidal border detection.
Collapse
Affiliation(s)
- Dan Valsky
- The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University, Jerusalem, Israel. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
39
|
Ponce FA. Intraoperative Magnetic Resonance Imaging and Computed Tomography. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Baek JS, Park SK, Kim DJ, Park CW, Lim SH, Hyun SC. Analysis and Usefulness of Microelectrode Recording during Deep Brain Stimulation Surgery in Movement Disorders. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.4.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jae-Seung Baek
- Department of Neurology, Samsung Medical Center, Seoul, Korea
| | - Sang-Ku Park
- Department of Neurology, Samsung Medical Center, Seoul, Korea
| | - Dong-Jun Kim
- Department of Neurology, Samsung Medical Center, Seoul, Korea
| | - Chan-Woo Park
- Department of Neurology, Samsung Medical Center, Seoul, Korea
| | - Sung-Hyuk Lim
- Department of Neurology, Samsung Medical Center, Seoul, Korea
| | - Soon-Chul Hyun
- Department of Neurology, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
41
|
Gonzalez-Escamilla G, Muthuraman M, Reich MM, Koirala N, Riedel C, Glaser M, Lange F, Deuschl G, Volkmann J, Groppa S. Cortical network fingerprints predict deep brain stimulation outcome in dystonia. Mov Disord 2019; 34:1537-1546. [PMID: 31433874 DOI: 10.1002/mds.27808] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective evidence-based therapy for dystonia. However, no unequivocal predictors of therapy responses exist. We investigated whether patients optimally responding to DBS present distinct brain network organization and structural patterns. METHODS From a German multicenter cohort of 82 dystonia patients with segmental and generalized dystonia who received DBS implantation in the globus pallidus internus, we classified patients based on the clinical response 3 years after DBS. Patients were assigned to the superior-outcome group or moderate-outcome group, depending on whether they had above or below 70% motor improvement, respectively. Fifty-one patients met MRI-quality and treatment response requirements (mean age, 51.3 ± 13.2 years; 25 female) and were included in further analysis. From preoperative MRI we assessed cortical thickness and structural covariance, which were then fed into network analysis using graph theory. We designed a support vector machine to classify subjects for the clinical response based on individual gray-matter fingerprints. RESULTS The moderate-outcome group showed cortical atrophy mainly in the sensorimotor and visuomotor areas and disturbed network topology in these regions. The structural integrity of the cortical mantle explained about 45% of the DBS stimulation amplitude for optimal response in individual subjects. Classification analyses achieved up to 88% of accuracy using individual gray-matter atrophy patterns to predict DBS outcomes. CONCLUSIONS The analysis of cortical integrity, informed by group-level network properties, could be developed into independent predictors to identify dystonia patients who benefit from DBS. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gabriel Gonzalez-Escamilla
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin M Reich
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Nabin Koirala
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Riedel
- Department of Neuroradiology, UKSH, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Lange
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Günther Deuschl
- Department of Neurology, UKSH, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Sergiu Groppa
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
42
|
Ribot B, Aupy J, Vidailhet M, Mazère J, Pisani A, Bezard E, Guehl D, Burbaud P. Dystonia and dopamine: From phenomenology to pathophysiology. Prog Neurobiol 2019; 182:101678. [PMID: 31404592 DOI: 10.1016/j.pneurobio.2019.101678] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Abstract
A line of evidence suggests that the pathophysiology of dystonia involves the striatum, whose activity is modulated among other neurotransmitters, by the dopaminergic system. However, the link between dystonia and dopamine appears complex and remains unclear. Here, we propose a physiological approach to investigate the clinical and experimental data supporting a role of the dopaminergic system in the pathophysiology of dystonic syndromes. Because dystonia is a disorder of motor routines, we first focus on the role of dopamine and striatum in procedural learning. Second, we consider the phenomenology of dystonia from every angle in order to search for features giving food for thought regarding the pathophysiology of the disorder. Then, for each dystonic phenotype, we review, when available, the experimental and imaging data supporting a connection with the dopaminergic system. Finally, we propose a putative model in which the different phenotypes could be explained by changes in the balance between the direct and indirect striato-pallidal pathways, a process critically controlled by the level of dopamine within the striatum. Search strategy and selection criteria References for this article were identified through searches in PubMed with the search terms « dystonia », « dopamine", « striatum », « basal ganglia », « imaging data », « animal model », « procedural learning », « pathophysiology », and « plasticity » from 1998 until 2018. Articles were also identified through searches of the authors' own files. Only selected papers published in English were reviewed. The final reference list was generated on the basis of originality and relevance to the broad scope of this review.
Collapse
Affiliation(s)
- Bastien Ribot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Jérome Aupy
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Sorbonne Université, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière UPMC Univ Paris 6 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Joachim Mazère
- Université de Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France; Service de médecine nucléaire, CHU de Bordeaux, France
| | - Antonio Pisani
- Department of Neuroscience, University "Tor Vergata'', Rome, Italy; Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Dominique Guehl
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pierre Burbaud
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
43
|
De Vloo P, Lee DJ, Dallapiazza RF, Rohani M, Fasano A, Munhoz RP, Ibrahim GM, Hodaie M, Lozano AM, Kalia SK. Deep brain stimulation for pantothenate kinase-associated neurodegeneration: A meta-analysis. Mov Disord 2019; 34:264-273. [PMID: 30633810 DOI: 10.1002/mds.27563] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pantothenate kinase-associated neurodegeneration is a rare autosomal-recessive disorder, characterized by progressive neurodegeneration associated with brain iron accumulation. DBS has been trialed to treat related movement disorders, particularly dystonia. The objective of this study was to determine the outcome and safety of DBS for pantothenate kinase-associated neurodegeneration. METHODS We performed a meta-analysis using independent participant data (n = 99) from 38 articles. Primary outcome was change in movement and disability scores of the Burke-Fahn-Marsden Dystonia Rating Scale 1 year postoperatively. Secondary outcomes were response rate and complications. RESULTS Patients with classic-type (n = 58) and atypical-type (n = 15) pantothenate kinase-associated neurodegeneration were operated on at a median age of 11 and 31 years, respectively (P < 0.001). GPi was primarily targeted (n = 87). Mean dystonia movement score improved 1 year following GPi-DBS (-26%; 95% confidence interval, -37% to -15%), particularly in atypical versus classic cases (-45% vs -16%; P < 0.001). At least 30% improvement was observed in 34% of classic versus 73% of atypical cases (P = 0.04). Higher preoperative score and atypical type predicted larger improvement. GPi-DBS improved dystonia disability score in atypical (-31%; 95% confidence interval, -49% to -13%) but not classic (-5%; 95% confidence interval, -17% to 8%) cases. Prevalence of surgical infections (6%) and hardware failure (7%) was similar to other dystonia etiologies. Two patients died within 3 months. There was insufficient data to describe outcome > 1 year following GPi-DBS or with other DBS targets. Overall, small sample sizes limited generalizability. CONCLUSIONS This meta-analysis provides level 4 evidence that GPi-DBS for pantothenate kinase-associated neurodegeneration may improve dystonia movement scores in classic type and atypical type and disability scores in atypical type 1 year postoperatively. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Philippe De Vloo
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Neurosurgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| | - Darrin J Lee
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Robert F Dallapiazza
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad Rohani
- Division of Neurology, Iran University of Medical Sciences, Tehran, Iran
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, and Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Renato P Munhoz
- Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, and Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Department of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Neumann WJ, Turner RS, Blankertz B, Mitchell T, Kühn AA, Richardson RM. Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders. Neurotherapeutics 2019; 16:105-118. [PMID: 30607748 PMCID: PMC6361070 DOI: 10.1007/s13311-018-00705-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) represents one of the major clinical breakthroughs in the age of translational neuroscience. In 1987, Benabid and colleagues demonstrated that high-frequency stimulation can mimic the effects of ablative neurosurgery in Parkinson's disease (PD), while offering two key advantages to previous procedures: adjustability and reversibility. Deep brain stimulation is now an established therapeutic approach that robustly alleviates symptoms in patients with movement disorders, such as Parkinson's disease, essential tremor, and dystonia, who present with inadequate or adverse responses to medication. Currently, stimulation electrodes are implanted in specific target regions of the basal ganglia-thalamic circuit and stimulation pulses are delivered chronically. To achieve optimal therapeutic effect, stimulation frequency, amplitude, and pulse width must be adjusted on a patient-specific basis by a movement disorders specialist. The finding that pathological neural activity can be sampled directly from the target region using the DBS electrode has inspired a novel DBS paradigm: closed-loop adaptive DBS (aDBS). The goal of this strategy is to identify pathological and physiologically normal patterns of neuronal activity that can be used to adapt stimulation parameters to the concurrent therapeutic demand. This review will give detailed insight into potential biomarkers and discuss next-generation strategies, implementing advances in artificial intelligence, to further elevate the therapeutic potential of DBS by capitalizing on its modifiable nature. Development of intelligent aDBS, with an ability to deliver highly personalized treatment regimens and to create symptom-specific therapeutic strategies in real-time, could allow for significant further improvements in the quality of life for movement disorders patients with DBS that ultimately could outperform traditional drug treatment.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany.
| | - Robert S Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Blankertz
- Department of Computer Science, Technische Universität Berlin, Berlin, Germany
| | - Tom Mitchell
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany
- Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neurocure, Centre of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Kilbane C, Witt J, Galifianakis N, Glass G, Volz M, Heath S, Starr P, Ostrem J. Long-Term Outcomes of Bilateral Pallidal Deep Brain Stimulation for X-Linked Dystonia and Parkinsonism. Stereotact Funct Neurosurg 2018; 96:320-326. [DOI: 10.1159/000492823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/09/2018] [Indexed: 11/19/2022]
|
46
|
Malekmohammadi M, Sparks H, AuYong N, Hudson A, Pouratian N. Propofol Anesthesia Precludes LFP-Based Functional Mapping of Pallidum during DBS Implantation. Stereotact Funct Neurosurg 2018; 96:249-258. [PMID: 30196280 DOI: 10.1159/000492231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS There are reports that microelectrode recording (MER) can be performed under certain anesthetized conditions for functional confirmation of the optimal deep brain stimulation (DBS) target. However, it is generally accepted that anesthesia affects MER. Due to a potential role of local field potentials (LFPs) in DBS functional mapping, we characterized the effect of propofol on globus pallidus interna (GPi) and externa (GPe) LFPs in Parkinson disease (PD) patients. METHODS We collected LFPs in 12 awake and anesthetized PD patients undergoing DBS implantation. Spectral power of β (13-35 Hz) and high-frequency oscillations (HFOs: 200-300 Hz) was compared across the pallidum. RESULTS Propofol suppressed GPi power by > 20 Hz while increasing power at lower frequencies. A similar power shift was observed in GPe; however, power in the high β range (20-35 Hz) increased with propofol. Before anesthesia both β and HFO activity were significantly greater at the GPi (χ2 = 20.63 and χ2 = 48.81, p < 0.0001). However, during anesthesia, we found no significant difference across the pallidum (χ2 = 0.47, p = 0.79, and χ2 = 4.11, p = 0.12). CONCLUSION GPi and GPe are distinguishable using LFP spectral profiles in the awake condition. Propofol obliterates this spectral differentiation. Therefore, LFP spectra cannot be relied upon in the propofol-anesthetized state for functional mapping during DBS implantation.
Collapse
Affiliation(s)
- Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Hiro Sparks
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Nicholas AuYong
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Andrew Hudson
- Department of Anesthesiology, University of California, Los Angeles, California, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, California, USA.,Neuroscience Interdepartmental Program, University of California, Los Angeles, California, USA.,Brain Research Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
47
|
Patriat R, Cooper SE, Duchin Y, Niederer J, Lenglet C, Aman J, Park MC, Vitek JL, Harel N. Individualized tractography-based parcellation of the globus pallidus pars interna using 7T MRI in movement disorder patients prior to DBS surgery. Neuroimage 2018; 178:198-209. [PMID: 29787868 PMCID: PMC6046264 DOI: 10.1016/j.neuroimage.2018.05.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/26/2018] [Accepted: 05/19/2018] [Indexed: 11/19/2022] Open
Abstract
The success of deep brain stimulation (DBS) surgeries for the treatment of movement disorders relies on the accurate placement of an electrode within the motor portion of subcortical brain targets. However, the high number of electrodes requiring relocation indicates that today's methods do not ensure sufficient accuracy for all patients. Here, with the goal of aiding DBS targeting, we use 7 Tesla (T) MRI data to identify the functional territories and parcellate the globus pallidus pars interna (GPi) into motor, associative and limbic regions in individual subjects. 7 T MRI scans were performed in seventeen patients (prior to DBS surgery) and one healthy control. Tractography-based parcellation of each patient's GPi was performed. The cortex was divided into four masks representing motor, limbic, associative and "other" regions. Given that no direct connections between the GPi and the cortex have been shown to exist, the parcellation was carried out in two steps: 1) The thalamus was parcellated based on the cortical targets, 2) The GPi was parcellated using the thalamus parcels derived from step 1. Reproducibility, via repeated scans of a healthy subject, and validity of the findings, using different anatomical pathways for parcellation, were assessed. Lastly, post-operative imaging data was used to validate and determine the clinical relevance of the parcellation. The organization of the functional territories of the GPi observed in our individual patient population agrees with that previously reported in the literature: the motor territory was located posterolaterally, followed anteriorly by the associative region, and further antero-ventrally by the limbic territory. While this organizational pattern was observed across patients, there was considerable variability among patients. The organization of the functional territories of the GPi was remarkably reproducible in intra-subject scans. Furthermore, the organizational pattern was observed consistently by performing the parcellation of the GPi via the thalamus and via a different pathway, going through the striatum. Finally, the active therapeutic contact of the DBS electrode, identified with a combination of post-operative imaging and post-surgery DBS programming, overlapped with the high-probability "motor" region of the GPi as defined by imaging-based methods. The consistency, validity, and clinical relevance of our findings have the potential for improving DBS targeting, by increasing patient-specific knowledge of subregions of the GPi to be targeted or avoided, at the stage of surgical planning, and later, at the stage when stimulation is adjusted.
Collapse
Affiliation(s)
- Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States.
| | - Scott E Cooper
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Yuval Duchin
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Niederer
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Aman
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Michael C Park
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States; Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
48
|
Mahlknecht P, Georgiev D, Akram H, Brugger F, Vinke S, Zrinzo L, Hariz M, Bhatia KP, Hariz GM, Willeit P, Rothwell JC, Foltynie T, Limousin P. Parkinsonian signs in patients with cervical dystonia treated with pallidal deep brain stimulation. Brain 2018; 141:3023-3034. [DOI: 10.1093/brain/awy217] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Philipp Mahlknecht
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Dejan Georgiev
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Medical University Ljubljana, Ljubljana, Slovenia
| | - Harith Akram
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Florian Brugger
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Saman Vinke
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Marwan Hariz
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Gun-Marie Hariz
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Peter Willeit
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
49
|
Slopsema JP, Peña E, Patriat R, Lehto LJ, Gröhn O, Mangia S, Harel N, Michaeli S, Johnson MD. Clinical deep brain stimulation strategies for orientation-selective pathway activation. J Neural Eng 2018; 15:056029. [PMID: 30095084 DOI: 10.1088/1741-2552/aad978] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study investigated stimulation strategies to increase the selectivity of activating axonal pathways within the brain based on their orientations relative to clinical deep brain stimulation (DBS) lead implants. APPROACH Previous work has shown how varying electrode shape and controlling the primary electric field direction through preclinical electrode arrays can produce orientation-selective axonal stimulation. Here, we significantly extend those results using computational models to evaluate the degree to which clinical DBS leads can direct stimulus-induced electric fields and generate orientation-selective activation of fiber pathways in the brain. Orientation-selective pulse paradigms were evaluated in conceptual models and in patient-specific models of subthalamic nucleus (STN)-DBS for treating Parkinson's disease. MAIN RESULTS Single-contact monopolar or two-contact bipolar stimulation through clinical DBS leads with cylindrical electrodes primarily activated axons orientated parallel to the lead. Conversely, multi-contact monopolar stimulation with a cathode-leading pulse waveform selectively activated axons perpendicular to the DBS lead. Clinical DBS leads with segmented rows of electrodes and a single current source provided additional angular resolution for activating axons oriented 0°, ±22.5°, ±45°, ±67.5°, or 90° relative to the lead shaft. Employing multiple independent current sources to deliver unequal amounts of current through these leads further increased the angular resolution of activation relative to the lead shaft. The patient-specific models indicated that multi-contact cathode configurations, which are rarely used in clinical practice, could increase activation of the hyperdirect pathway collaterals projecting into STN (a putative therapeutic target), while minimizing direct activation of the corticospinal tract of internal capsule, which can elicit sensorimotor side-effects when stimulated. SIGNIFICANCE When combined with patient-specific tissue anisotropy and patient-specific anatomical morphologies of neural pathways responsible for therapy and side effects, orientation-selective DBS approaches show potential to significantly improve clinical outcomes of DBS therapy for a range of existing and investigational clinical indications.
Collapse
Affiliation(s)
- Julia P Slopsema
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Alterman RL, Filippidis AS. Genetic Subtypes and Deep Brain Stimulation in Dystonia. Mov Disord Clin Pract 2018; 5:357-360. [PMID: 30838292 PMCID: PMC6336377 DOI: 10.1002/mdc3.12660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Ron L. Alterman
- Division of NeurosurgeryBeth Israel Deaconess Medical CenterBostonMA
| | | |
Collapse
|