1
|
Moniz-Garcia D, Zermeno JR, Singh R, Virador G, Michaelides L, Genel O, Ortega-Ruiz OR, Vibhute P, Gupta V, Sandhu S, Freeman WD, Tawk RG. Anatomical analysis of vertebral arteries in vertebrobasilar dolichoectasia: A multi-center study. Clin Neurol Neurosurg 2024; 247:108635. [PMID: 39547112 DOI: 10.1016/j.clineuro.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Vertebrobasilar dolichoectasia (VBD) is a rare disease with significant morbidity. Its propensity for posterior circulation and relationship with aneurysms is poorly understood. Here, we aimed to describe the anatomical characteristics of the vertebral arteries (VA) in patients with VBD. METHODS We conducted a multi-center retrospective cohort analysis on patients diagnosed with VBD between January 2009 and December 2022. Anatomical variables were measured after manual segmentation on CTA. Length of the VAs, basilar artery (BA), sectional diameters, and tortuosity index were measured and compared with a control group. RESULTS 124 patients were included: 38 patients with VBD and 86 controls. VBD patients had longer VAs (right VA 262.5 vs. 228.7 mm, p<0.01; left VA 253.4 vs. 222.1 mm, p<0.01), longer BAs (41.9 vs. 30.0 mm, p<0.01), and larger cross-sectional diameters of right V3 (5.1 vs. 4.6 mm, p<0.05) and V4 segments (4.5 vs.2.9 mm, p<0.05) and left V1-V4 segments (V1 6.1 vs. 4.2, V2 7.2 vs.4.8 mm, V3 6.4 vs.5.0 mm, V4 6.5 vs. 3.0 mm, p<0.01). Patients with VBD and fusiform aneurysms had longer VAs and BA than patients without aneurysms (p<0.01). The VAs tortuosity index was higher in VBD than controls (60.69 vs. 44.18, p<0.01). No cases of vertebral stenosis were detected. CONCLUSIONS Our study offers an anatomical study of VBD. While the natural history is poorly understood, the higher tortuosity index with associated wall shear stress, provides a possible mechanism for disease progression. Further studies are needed to better understand the.
Collapse
Affiliation(s)
| | | | - Rahul Singh
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Oktay Genel
- School of Medicine, King's College London, London, UK
| | - Omar R Ortega-Ruiz
- Neurosurgery Department, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | | | - Vivek Gupta
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | - William D Freeman
- Department of Neurocritical Care, Mayo Clinic, Jacksonville, FL, USA
| | - Rabih G Tawk
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Feng L, Yang XZ, Zhang DD, Zhai FF, Li ML, Zhou LX, Ni J, Yao M, Jin ZY, Cui LY, Zhang SY, Han F, Zhu YC. Correlation between Circle of Willis configuration and intracranial arterial dolichoectasia, and genetic contributions. J Stroke Cerebrovasc Dis 2024; 33:107955. [PMID: 39179190 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVES Intracranial arterial dolichoectasia (IADE) is characterized by the dilation, elongation, and tortuosity of intracranial arteries. We aimed to investigate the association between variations of the Circle of Willis (COW) and IADE in the general population, as well as estimate the genetic correlation between COW variations and IADE. METHODS A total of 981 individuals from a population-based cohort were included. Brain magnetic resonance angiography was performed to assess COW variants and measure the diameters of intracranial arteries. IADE was defined as a total intracranial volume-adjusted diameter ≥ 2 standard deviations. Logistic regression models were used to analyze the association between COW variations and IADE. The heritability and genetic correlation were estimated using genome-wide complex trait analysis (GCTA) based on single nucleotide polymorphism (SNP) array data. RESULTS The prevalence of IADE was 6.2 %. Hypoplastic/absent A1 segments were associated with an increase in contralateral ICA diameter (β ± SE, 0.279 ± 0.049; p = 0.001) and a decrease in ipsilateral ICA diameter (β ± SE, -0.300 ± 0.050; p = 0.001). Fetal-type posterior cerebral artery (FTP) was associated with a larger ICA diameter (β ± SE, 0.326 ± 0.048; p = 0.001) and a smaller BA diameter (β ± SE, -0.662 ± 0.043; p = 0.001). FTP revealed a positive genetic correlation with ICA dilation (rG = 0.259 ± 0.175; p = 0.0009) and a negative genetic correlation with BA dilation (rG = -0.192 ± 0.153, p = 0.015). CONCLUSIONS There was an association between COW variations and larger intracranial arterial diameters in the general population. Genetic factors may play a role in the development of intracranial arterial dilation and the formation of COW variants.
Collapse
Affiliation(s)
- Lu Feng
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Xin-Zhuang Yang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Ding-Ding Zhang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Fei-Fei Zhai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Ming-Li Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Li-Xin Zhou
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Jun Ni
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Ming Yao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
3
|
Bailoor S, Seo JH, Schena S, Mittal R. Changes in aorta hemodynamics in Left-Right Type 1 bicuspid aortic valve patients after replacement with bioprosthetic valves: An in-silico study. PLoS One 2024; 19:e0301350. [PMID: 38626136 PMCID: PMC11020955 DOI: 10.1371/journal.pone.0301350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
Bicuspid aortic valve (BAV) is the most common cardiac congenital abnormality with a high rate of concomitant aortic valve and ascending aorta (AAo) pathologic changes throughout the patient's lifetime. The etiology of BAV-related aortopathy was historically believed to be genetic. However, recent studies theorize that adverse hemodynamics secondary to BAVs also contribute to aortopathy, but their precise role, specifically, that of wall shear stress (WSS) magnitude and directionality remains controversial. Moreover, the primary therapeutic option for BAV patients is aortic valve replacement (AVR), but the role of improved post-AVR hemodynamics on aortopathy progression is also not well-understood. To address these issues, this study employs a computational fluid dynamics model to simulate personalized AAo hemodynamics before and after TAVR for a small cohort of 6 Left-Right fused BAV patients. Regional distributions of five hemodynamic metrics, namely, time-averaged wall shear stress (TAWSS) and oscillating shear index (OSI), divergence of wall shear (DWSS), helicity flux integral & endothelial cell activation potential (ECAP), which are hypothesized to be associated with potential aortic injury are computed in the root, proximal and distal ascending aorta. BAVs are characterized by strong, eccentric jets, with peak velocities exceeding 4 m/s and axially circulating flow away from the jets. Such conditions result in focused WSS loading along jet attachment regions on the lumen boundary and weaker, oscillating WSS on other regions. The jet attachment regions also show alternating streaks of positive and negative DWSS, which may increase risk for local tissue stretching. Large WSS magnitudes, strong helical flows and circumferential WSS have been previously implicated in the progression of BAV aortopathy. Post-intervention hemodynamics exhibit weaker, less eccentric jets. Significant reductions are observed in flow helicity, TAWSS and DWSS in localized regions of the proximal AAo. On the other hand, OSI increases post-intervention and ECAP is observed to be low in both pre- and post-intervention scenarios, although significant increases are also observed in this ECAP. These results indicate a significant alleviation of pathological hemodynamics post AVR.
Collapse
Affiliation(s)
- Shantanu Bailoor
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Jung-Hee Seo
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Stefano Schena
- Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Rajat Mittal
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
4
|
Yu L, Xinmiao Z, Yawei W, Wentao F, Jing J, Zhunjun S, Bitian W, Yongjun W, Yubo F. Effects of abnormal vertebral arteries and the circle of Willis on vertebrobasilar dolichoectasia: A multi-scale simulation study. Clin Biomech (Bristol, Avon) 2023; 101:105853. [PMID: 36508951 DOI: 10.1016/j.clinbiomech.2022.105853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vertebrobasilar dolichoectasia is a rare cerebrovascular disease characterized by obvious extension, dilation and tortuosity of vertebrobasilar artery, and its pathophysiological mechanism is not clear. This study focused on local hemodynamic changes in basilar arteries with typical vertebrobasilar dolichoectasia, together with unbalanced vertebral arteries and abnormal structures of the circle of Willis, through multi-scale modeling. METHODS Three-dimensional models of 3 types of vertebrobasilar arteries were constructed from magnetic resonance images. The first type has no vertebrobasilar dolichoectasia, the second type has vertebrobasilar dolichoectasia and balanced vertebral arteries, and the third type has vertebrobasilar dolichoectasia and unbalanced vertebral arteries. A lumped parameter model of the circle of Willis was established and coupled to these three-dimensional models. FINDINGS The results showed that unbalanced bilateral vertebral arteries, especially single vertebral artery deletion mutation, might associate with higher wall shear stress on anterior wall of basilar artery in patients with vertebrobasilar dolichoectasia. And unbalanced bilateral vertebral arteries would increase the blood pressure in basilar artery. Meanwhile, missing communicating arteries in the circle of Willis, especially bilateral posterior communicating arteries absences, would significantly increase blood pressure in basilar artery. The unilateral absence of posterior communicating arteries would increase differences in blood flow between the left and right posterior cerebral arteries. INTERPRETATION This study provided a multi-scale modeling method and some preliminary results for helping understand the role of hemodynamics in occurrence and development of vertebrobasilar dolichoectasia.
Collapse
Affiliation(s)
- Liu Yu
- Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing University, Beijing 100083, China
| | - Zhang Xinmiao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wang Yawei
- Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing University, Beijing 100083, China.
| | - Feng Wentao
- Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing University, Beijing 100083, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Sun Zhunjun
- Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing University, Beijing 100083, China
| | - Wang Bitian
- Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing University, Beijing 100083, China
| | - Wang Yongjun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Fan Yubo
- Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing University, Beijing 100083, China
| |
Collapse
|
5
|
Liu FX, Niu YG, Zhang DP, Zhang HL, Zhang ZQ, Sun RQ, Zhang YK. Modified Protocol for Establishment of Intracranial Arterial Dolichoectasia Model by Injection of Elastase Into Cerebellomedullary Cistern in Mice. Front Neurol 2022; 13:860541. [PMID: 35518204 PMCID: PMC9062172 DOI: 10.3389/fneur.2022.860541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose This study aimed to construct an animal model of intracranial arterial dolichoectasia (IADE) applying the modified modeling protocol. Materials and Methods Twenty five milliunits elastase and inactivated elastase were, respectively, injected into the cerebellomedullary cistern of 60 C57/BL6 mice which were divided into experimental group (EG, n = 30) and control group (CG, n = 30) by using a computer-based random order generator. The modified modeling protocol clarified these aspects including brain three-dimensional parameters of mouse head fixation, angle of head inclination, fixed position of taper ear, needle holding technique, needle entry depth, prevention of liquid drug back flow, and storage conditions of elastase. And it was observed for the following parts such as mortality, inflammatory factors, craniocerebral arteries scanning, vascular tortuosity index, artery diameter, pathology of the cerebrovascular. Results Within differently surveyed stage, the total mortality of mice in EG was 20%. ELISA illustrated that the levels of matrix metalloproteinase-9 (MMP-9) and tumor necrosis factor α (TNF-α) in peripheral blood were increased significantly after modeling. Angiography indicated that 100% of IADE in EG were observed and the diameter and tortuosity index of the basilar artery were significantly increased (P < 0.01). EVG histological processing and staining showed the disrupted internal elastic lamina, the atrophied muscle layer, and the hyalinized connective tissue of the basilar artery with the vascular wall tunica media in EG. Micro-computed tomography reported that the craniocerebral arteries of the mice in EG were outstandingly elongated, tortuous, and dilated. Conclusion The modified modeling protocol can reduce the mortality, improve the success rate, and provide a stable animal model for IADE.
Collapse
Affiliation(s)
- Fei Xiang Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.,Henan Vertigo Disease Diagnosis and Treatment Center, Zhengzhou, China.,Institute of Vertigo Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu Ge Niu
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine Academy, Zhengzhou, China
| | - Dao Pei Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.,Henan Vertigo Disease Diagnosis and Treatment Center, Zhengzhou, China.,Institute of Vertigo Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Huai Liang Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.,Henan Vertigo Disease Diagnosis and Treatment Center, Zhengzhou, China.,Institute of Vertigo Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Qiang Zhang
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine Academy, Zhengzhou, China
| | - Rui Qin Sun
- Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yun Ke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Prevalence, risk factors, and coronary angiographic profile in patients with tortuous coronary artery. COR ET VASA 2021. [DOI: 10.33678/cor.2021.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Vu HD, Huynh PT, Ryu J, Kang UR, Youn SW, Kim H, Ahn HJ, Park K, Hwang SK, Chang YC, Lee YJ, Lee HJ, Lee J. Melittin-loaded Iron Oxide Nanoparticles Prevent Intracranial Arterial Dolichoectasia Development through Inhibition of Macrophage-mediated Inflammation. Int J Biol Sci 2021; 17:3818-3836. [PMID: 34671201 PMCID: PMC8495379 DOI: 10.7150/ijbs.60588] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: In intracranial arterial dolichoectasia (IADE) development, the feedback loop between inflammatory cytokines and macrophages involves TNF-α and NF-κB signaling pathways and leads to subsequent MMP-9 activation and extracellular matrix (ECM) degeneration. In this proof-of-concept study, melittin-loaded L-arginine-coated iron oxide nanoparticle (MeLioN) was proposed as the protective measure of IADE formation for this macrophage-mediated inflammation and ECM degeneration. Methods: IADE was created in 8-week-old C57BL/6J male mice by inducing hypertension and elastase injection into a basal cistern. Melittin was loaded on the surface of ION as a core-shell structure (hydrodynamic size, 202.4 nm; polydispersity index, 0.158). Treatment of MeLioN (2.5 mg/kg, five doses) started after the IADE induction, and the brain was harvested in the third week. In the healthy control, disease control, and MeLioN-treated group, the morphologic changes of the cerebral arterial wall were measured by diameter, thickness, and ECM composition. The expression level of MMP-9, CD68, MCP-1, TNF-α, and NF-κB was assessed from immunohistochemistry, polymerase chain reaction, and Western blot assay. Results: MeLioN prevented morphologic changes of cerebral arterial wall related to IADE formation by restoring ECM alterations and suppressing MMP-9 expression. MeLioN inhibited MCP-1 expression and reduced CD68-positive macrophage recruitments into cerebral arterial walls. MeLioN blocked TNF-α activation and NF-κB signaling pathway. In the Sylvian cistern, co-localization was found between the CD68-positive macrophage infiltrations and the MeLioN distributions detected on Prussian Blue and T2* gradient-echo MRI, suggesting the role of macrophage harboring MeLioN. Conclusions: The macrophage infiltration into the arterial wall plays a critical role in the MMP-9 secretion. MeLioN, designed for ION-mediated melittin delivery, effectively prevents IADE formation by suppressing macrophage-mediated inflammations and MMP activity. MeLioN can be a promising strategy preventing IADE development in high-risk populations.
Collapse
Affiliation(s)
- Huy Duc Vu
- Department of Radiology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Phuong Tu Huynh
- Department of Radiology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Junghwa Ryu
- Department of Radiology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Ung Rae Kang
- Department of Radiology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Sung Won Youn
- Department of Radiology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Hongtae Kim
- Department of Anatomy, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Hyun Jin Ahn
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Kwankyu Park
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Soon-Kyung Hwang
- Department of Molecular Biology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Young-Chae Chang
- Department of Molecular Biology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Yong Jig Lee
- Department of Plastic Surgery, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Hui Joong Lee
- Department of Radiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jongmin Lee
- Department of Radiology, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
8
|
Identification of intima-to-media signals for flow-induced vascular remodeling using correlative gene expression analysis. Sci Rep 2021; 11:16142. [PMID: 34373496 PMCID: PMC8352890 DOI: 10.1038/s41598-021-95403-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Changes in blood flow can induce arterial remodeling. Intimal cells sense flow and send signals to the media to initiate remodeling. However, the nature of such intima-media signaling is not fully understood. To identify potential signals, New Zealand white rabbits underwent bilateral carotid ligation to increase flow in the basilar artery or sham surgery (n = 2 ligated, n = 2 sham). Flow was measured by transcranial Doppler ultrasonography, vessel geometry was determined by 3D angiography, and hemodynamics were quantified by computational fluid dynamics. 24 h post-surgery, the basilar artery and terminus were embedded for sectioning. Intima and media were separately microdissected from the sections, and whole transcriptomes were obtained by RNA-seq. Correlation analysis of expression across all possible intima-media gene pairs revealed potential remodeling signals. Carotid ligation increased flow in the basilar artery and terminus and caused differential expression of 194 intimal genes and 529 medial genes. 29,777 intima-media gene pairs exhibited correlated expression. 18 intimal genes had > 200 medial correlates and coded for extracellular products. Gene ontology of the medial correlates showed enrichment of organonitrogen metabolism, leukocyte activation/immune response, and secretion/exocytosis processes. This demonstrates correlative expression analysis of intimal and medial genes can reveal novel signals that may regulate flow-induced arterial remodeling.
Collapse
|
9
|
Oxidative Stress Mediates Vascular Tortuosity. Antioxidants (Basel) 2021; 10:antiox10060926. [PMID: 34200411 PMCID: PMC8228074 DOI: 10.3390/antiox10060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Vascular tortuosity is associated with various disorders and is being increasingly detected through advances in imaging techniques. The underlying mechanisms for vascular tortuosity, however, remain unclear. Here, we tested the hypothesis that oxidative stress mediates the generation of tortuous vessels. We used the bilateral common carotid artery (CCA) ligation model to induce vascular tortuosity. Both young and adult rats showed basilar artery tortuous morphological changes one month after bilateral CCA ligation. These tortuous changes were permanent but more pronounced in the adult rats. Microarray and real-time PCR analysis revealed that these tortuous changes were accompanied by the induction of oxidative stress-related genes. Moreover, the indicated model in rabbits showed that tortuous morphological changes to the basilar artery were suppressed by antioxidant treatment. These results are highly suggestive of the significance of oxidative stress in the development of vascular tortuosity. Although further studies will be needed to elucidate the possible mechanisms by which oxidative stress enhances vascular tortuosity, our study also points toward possible prophylaxis and treatment for vascular tortuosity.
Collapse
|
10
|
Castle-Kirszbaum M, Maingard J, Lim RP, Barras CD, Kok HK, Chandra RV, Chong W, Asadi H. Four-Dimensional Magnetic Resonance Imaging Assessment of Intracranial Aneurysms: A State-of-the-Art Review. Neurosurgery 2020; 87:453-465. [PMID: 32140714 DOI: 10.1093/neuros/nyaa021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/15/2019] [Indexed: 11/14/2022] Open
Abstract
Treatment of unruptured intracranial aneurysms can reduce the risk of subarachnoid hemorrhage and its associated morbidity and mortality. However, current methods to predict the risk of rupture and optimize treatment strategies for intracranial aneurysms are limited. Assessment of intra-aneurysmal flow using 4-dimensional magnetic resonance imaging (4D MRI) is a novel tool that could be used to guide therapy. A systematic search of the literature was performed to provide a state-of-the-art review on 4D MRI assessment of unruptured intracranial aneurysms. A total of 18 studies were available for review. Eccentric flow on 4D MRI is associated with a greater aspect ratio and peak wall shear stress (WSS). WSS, vorticity, and peak velocity are greater in saccular than fusiform aneurysms. Unstable aneurysms are associated with greater WSS, peak wall stress, and flow jet angle and may exhibit wall enhancement. In comparison to computational fluid dynamics (CFD), 4D MRI has a lower spatial resolution and reports lower WSS and velocity magnitudes, but these parameters equalize when spatial resolution is matched. 4D MRI demonstrates the intra-aneurysmal hemodynamic changes associated with flow diversion, including significantly decreased flow velocity. Thus, 4D MRI is a novel, noninvasive imaging tool used for the evaluation of hemodynamics within intracranial aneurysms. Hemodynamic indices derived from 4D MRI appear to correlate well with the simulated (CFD) values and may be used to measure the success of endovascular therapies and risk factors for aneurysm growth and rupture.
Collapse
Affiliation(s)
- Mendel Castle-Kirszbaum
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Australia.,Department of Neurosurgery, Monash Health, Melbourne, Australia
| | - Julian Maingard
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Australia.,Department of Imaging, Monash Health, Melbourne, Australia.,School of Medicine, Deakin University, Victoria, Australia
| | - Ruth P Lim
- Austin Health, Melbourne, Australia.,The University of Melbourne, Melbourne, Australia
| | - Christen D Barras
- Department of Radiology, Royal Adelaide Hospital, The University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Hong Kuan Kok
- School of Medicine, Deakin University, Victoria, Australia.,Department of Radiology Northern Health, Melbourne, Australia
| | - Ronil V Chandra
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Australia.,Department of Imaging, Monash Health, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Winston Chong
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Australia.,Department of Imaging, Monash Health, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Hamed Asadi
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Australia.,Department of Imaging, Monash Health, Melbourne, Australia.,School of Medicine, Deakin University, Victoria, Australia.,Austin Health, Melbourne, Australia
| |
Collapse
|
11
|
Li B, Zhou B, Zhang MZ, Qin RQ, He Y. Extensive intracranial arterial dolichoectasia involving distal branches of intracranial arteries: two cases report and review of the literature. Int J Neurosci 2020; 131:1133-1138. [PMID: 32449866 DOI: 10.1080/00207454.2020.1774577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
With the rapid development of noninvasive angiography techniques such as Magnetic Resonance Angiography (MRA) and Computer Tomography Angiography (CTA), more and more patients with intracranial arterial dolichoectasia (IADE) have been found, and clinical studies on this kind of vascular abnormity have become hot subjects in neurology. We presented two young patients with IADE extensively involving the branches of intracranial arteries, which were different from patients described in other articles. A young male patient was diagnosed with IADE after examination on admission, and further detailed examination revealed that the patient had osteropathia striata. Another young woman had an arterial malformation that mainly affected the distal branch of the intracranial artery. These two cases give us another perspective to look into IADE.
Collapse
Affiliation(s)
- Bo Li
- Vascular Interventional Department, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Bing Zhou
- Vascular Interventional Department, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Ming-Zhao Zhang
- Vascular Interventional Department, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Rong-Qing Qin
- Vascular Interventional Department, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yang He
- Vascular Interventional Department, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
12
|
Kliś KM, Krzyżewski RM, Kwinta BM, Łasocha B, Brzegowy P, Stachura K, Popiela TJ, Borek R, Gąsowski J. Increased tortuosity of basilar artery might be associated with higher risk of aneurysm development. Eur Radiol 2020; 30:5625-5632. [PMID: 32405752 PMCID: PMC7476915 DOI: 10.1007/s00330-020-06917-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 04/23/2020] [Indexed: 01/30/2023]
Abstract
Objectives We analysed tortuosity of basilar artery (BA) to determine its relationship with the presence of aneurysm. Methods We retrospectively analysed 71 patients with BA aneurysms along with 71 age- and risk factors-matched control patients without BA aneurysm. From patients’ medical records, we obtained their history including previous and current diseases and medications. For each patient, we calculated relative length (RL), sum of angle metrics (SOAM), triangular index (TI), product of angle distance (PAD) and inflexion count metrics (ICM). We used t-test and Mann-Whitney U test for continuous variables and χ2 test for dichotomised variables. To find independent predictors of BA aneurysm, we employed logistic regression analysis. Results We found significant positive correlation between age and SOAM (R = 0.195, p = 0.02) and PAD (R = 0.199, p = 0.018). Our study also showed that patients with BA aneurysm had significantly higher SOAM (0.21 ± 0.16 vs. 0.11 ± 0.08; p < 0.01), PAD (0.30 ± 0.19 vs. 0.18 ± 0.11; p < 0.01), TI (0.23 ± 0.23 vs. 0.10 ± 0.16; p < 0.01) and ICM (0.20 ± 0.16 vs. 0.15 ± 0.11; p = 0.045). In multivariate logistic regression analysis, after adjustment for all possible confounders, SOAM (OR = 1.086; 95% CI 1.046–1.136; p < 0.01) and TI (OR = 1.004; 95%C: 1.002–1.006; p < 0.01) remained independently associated with higher risk of BA aneurysm. Conclusions Increased tortuosity of BA is associated with higher risk of its aneurysm development. Key Points • Basilar artery sum of angle metrics and product of angle distance are correlated with age. • Basilar artery tortuosity is independently associated with higher risk of its aneurysm development. • Basilar artery tortuosity is positively correlated with its diameter and bifurcation angle.
Collapse
Affiliation(s)
- Kornelia M Kliś
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.,Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Kraków, Poland.,TENSOR- Team of NeuroSurgery-Oriented Research, Jagiellonian University Medical College, Kraków, Poland
| | - Roger M Krzyżewski
- TENSOR- Team of NeuroSurgery-Oriented Research, Jagiellonian University Medical College, Kraków, Poland. .,Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Macieja Jakubowskiego 2 Street, 30-688, Kraków, Poland.
| | - Borys M Kwinta
- TENSOR- Team of NeuroSurgery-Oriented Research, Jagiellonian University Medical College, Kraków, Poland.,Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Macieja Jakubowskiego 2 Street, 30-688, Kraków, Poland
| | - Bartłomiej Łasocha
- Department of Radiology, Jagiellonian University Medical College, University Hospital, Kraków, Poland
| | - Paweł Brzegowy
- Department of Radiology, Jagiellonian University Medical College, University Hospital, Kraków, Poland
| | - Krzysztof Stachura
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Macieja Jakubowskiego 2 Street, 30-688, Kraków, Poland
| | - Tadeusz J Popiela
- Department of Radiology, Jagiellonian University Medical College, University Hospital, Kraków, Poland
| | - Radosław Borek
- 1st Department of Internal Medicine with Cardiology Subdivision, Blessed Marta Wiecka District Hospital, Bochnia, Poland
| | - Jerzy Gąsowski
- TENSOR- Team of NeuroSurgery-Oriented Research, Jagiellonian University Medical College, Kraków, Poland.,Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
13
|
Nam Y, Jang J, Lee HY, Choi Y, Shin NY, Ryu KH, Kim DH, Jung SL, Ahn KJ, Kim BS. Estimating age-related changes in in vivo cerebral magnetic resonance angiography using convolutional neural network. Neurobiol Aging 2019; 87:125-131. [PMID: 31918953 DOI: 10.1016/j.neurobiolaging.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/10/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
Although age-related changes of cerebral arteries were observed in in vivo magnetic resonance angiography (MRA), standard tools or methods measuring those changes were limited. In this study, we developed and evaluated a model to measure age-related changes in the cerebral arteries from 3D MRA using a 3D deep convolutional neural network. From participants without any medical abnormality, training (n = 800) and validation sets (n = 88) of 3D MRA were built. After preprocessing and data augmentation, a 3D convolutional neural network was trained to estimate each subject's chronological age from in vivo MRA data. There was good correlation between chronological age and predicted age (r = 0.83) in an independent test set (n = 354). The predicted age difference (PAD) of the test set was 2.41 ± 6.22. Interaction term between age and sex was significant for PAD (p = 0.008). After correcting for age and interaction term, men showed higher PAD (p < 0.001). Hypertension was associated with higher PAD with marginal significance (p = 0.073). We suggested that PAD might be a potential measurement of cerebral vascular aging.
Collapse
Affiliation(s)
- Yoonho Nam
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Hea Yon Lee
- Department of Health Promotion Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Geriatric Medicine, Department of Internal Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yangsean Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Na Young Shin
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang-Hyun Ryu
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - So-Lyung Jung
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kook-Jin Ahn
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bum-Soo Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
14
|
Karamian P, Burford J, Farzad S, Blair NP, Shahidi M. Alterations in Retinal Oxygen Delivery, Metabolism, and Extraction Fraction During Bilateral Common Carotid Artery Occlusion in Rats. Invest Ophthalmol Vis Sci 2019; 60:3247-3253. [PMID: 31343655 PMCID: PMC6660186 DOI: 10.1167/iovs.19-27227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose The purpose of the current study was to investigate alterations in retinal oxygen delivery, metabolism, and extraction fraction and elucidate their relationships in an experimental model of retinal ischemia. Methods We subjected 14 rats to permanent bilateral common carotid artery occlusion using clamp or suture ligation, or they underwent sham procedure. Within 30 minutes of the procedure, phosphorescence lifetime imaging was performed to measure retinal vascular oxygen tension and derive arterial and venous oxygen contents, and arteriovenous oxygen content difference. Fluorescent microsphere and red-free retinal imaging were performed to measure total retinal blood flow. Retinal oxygen delivery rate (DO2), oxygen metabolism rate (MO2), and oxygen extraction fraction (OEF) were calculated. Results DO2 and MO2 were lower in ligation and clamp groups compared to the sham group, and also lower in the ligation group compared to the clamp group (P ≤ 0.05). OEF was higher in the ligation group compared to clamp and sham groups (P ≤ 0.03). The relationships of MO2 and OEF with DO2 were mathematically modeled by exponential functions. With moderate DO2 reductions, OEF increased while MO2 minimally decreased. Under severe DO2 reductions, OEF reached a maximum value and subsequently MO2 decreased with DO2. Conclusions The findings improve knowledge of mechanisms that can maintain MO2 and may clarify the pathophysiology of retinal ischemic injury.
Collapse
Affiliation(s)
- Preny Karamian
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - James Burford
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Shayan Farzad
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Norman P Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
15
|
Relating retinal blood flow and vessel morphology in sickle cell retinopathy. Eye (Lond) 2019; 34:886-891. [PMID: 31558825 PMCID: PMC7182580 DOI: 10.1038/s41433-019-0604-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023] Open
Abstract
Purpose The purpose of the current study was to determine associations between retinal blood flow and vessel morphology metrics in sickle cell retinopathy (SCR) and healthy normal control (NC) subjects. Methods Optical coherence tomography angiography (OCTA) and Doppler OCT imaging were performed in 12 SCR (15 eyes) and 19 NC (26 eyes) subjects. Vessel tortuosity was measured using a dedicated image analysis algorithm applied to OCTA images. Vessel density and spacing between vessels were determined from OCTA images by a fractal dimension analysis method. Retinal blood flow was quantified using a phase-resolved technique applied to en face Doppler OCT images. Results There was a significant association between increased retinal blood flow and increased vessel tortuosity (P = 0.03). Furthermore, increased retinal blood flow was associated with increased vessel density (P = 0.03) and decreased spacing between small vessels (P = 0.01). There was no significant association between retinal blood flow and spacing between large vessels (P = 0.11). Vessel tortuosity and blood flow were increased, whereas spacing between small vessels was decreased in SCR compared to NC group (P ≤ 0.03). There were no significant differences in vessel density or spacing between large vessels between the SCR and NC groups (P ≥ 0.31). Conclusions Associations between retinal hemodynamics and vessel morphology were reported, providing better understanding of retinal pathophysiology and insight into potential quantitative biomarkers to evaluate SCR.
Collapse
|
16
|
Zhang X, Karuna T, Yao ZQ, Duan CZ, Wang XM, Jiang ST, Li XF, Yin JH, He XY, Guo SQ, Chen YC, Liu WC, Li R, Fan HY. High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up. J Neurosurg 2019; 131:868-875. [PMID: 30265195 DOI: 10.3171/2018.4.jns173179] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Among clinical and morphological criteria, hemodynamics is the main predictor of aneurysm growth and rupture. This study aimed to identify which hemodynamic parameter in the parent artery could independently predict the rupture of anterior communicating artery (ACoA) aneurysms by using multivariate logistic regression and two-piecewise linear regression models. An additional objective was to look for a more simplified and convenient alternative to the widely used computational fluid dynamics (CFD) techniques to detect wall shear stress (WSS) as a screening tool for predicting the risk of aneurysm rupture during the follow-up of patients who did not undergo embolization or surgery. METHODS One hundred sixty-two patients harboring ACoA aneurysms (130 ruptured and 32 unruptured) confirmed by 3D digital subtraction angiography at three centers were selected for this study. Morphological and hemodynamic parameters were evaluated for significance with respect to aneurysm rupture. Local hemodynamic parameters were obtained by MR angiography and transcranial color-coded duplex sonography to calculate WSS magnitude. Multivariate logistic regression and a two-piecewise linear regression analysis were performed to identify which hemodynamic parameter independently characterizes the rupture status of ACoA aneurysms. RESULTS Univariate analysis showed that WSS (p < 0.001), circumferential wall tension (p = 0.005), age (p < 0.001), the angle between the A1 and A2 segments of the anterior cerebral artery (p < 0.001), size ratio (p = 0.023), aneurysm angle (p < 0.001), irregular shape (p = 0.005), and hypertension (grade II) (p = 0.006) were significant parameters. Multivariate analyses showed significant association between WSS in the parent artery and ACoA aneurysm rupture (p = 0.0001). WSS magnitude, evaluated by a two-piecewise linear regression model, was significantly correlated with the rupture of the ACoA aneurysm when the magnitude was higher than 12.3 dyne/cm2 (HR 7.2, 95% CI 1.5-33.6, p = 0.013). CONCLUSIONS WSS in the parent artery may be one of the reliable hemodynamic parameters characterizing the rupture status of ACoA aneurysms when the WSS magnitude is higher than 12.3 dyne/cm2. Analysis showed that with each additional unit of WSS (even with a 1-unit increase of WSS), there was a 6.2-fold increase in the risk of rupture for ACoA aneurysms.
Collapse
Affiliation(s)
- Xin Zhang
- 1National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tamrakar Karuna
- 2Department of Neurosurgery, CMS-Teaching Hospital, Bharatpur, Chitwan, Nepal
| | - Zhi-Qiang Yao
- 1National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- 3Department of Interventional Neuroradiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou
| | - Chuan-Zhi Duan
- 1National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Min Wang
- 4Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou; and
| | - Shun-Ting Jiang
- 5Department of Neurosurgery, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xi-Feng Li
- 1National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-He Yin
- 1National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xu-Ying He
- 1National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shen-Quan Guo
- 1National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yun-Chang Chen
- 1National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen-Chao Liu
- 1National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- 1National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Yan Fan
- 1National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Neurosurgery Institute, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Kandil H, Soliman A, Ghazal M, Mahmoud A, Shalaby A, Keynton R, Elmaghraby A, Giridharan G, El-Baz A. A Novel Framework for Early Detection of Hypertension using Magnetic Resonance Angiography. Sci Rep 2019; 9:11105. [PMID: 31366941 PMCID: PMC6668478 DOI: 10.1038/s41598-019-47368-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/11/2019] [Indexed: 11/16/2022] Open
Abstract
Hypertension is a leading mortality cause of 410,000 patients in USA. Cerebrovascular structural changes that occur as a result of chronically elevated cerebral perfusion pressure are hypothesized to precede the onset of systemic hypertension. A novel framework is presented in this manuscript to detect and quantify cerebrovascular changes (i.e. blood vessel diameters and tortuosity changes) using magnetic resonance angiography (MRA) data. The proposed framework consists of: 1) A novel adaptive segmentation algorithm to delineate large as well as small blood vessels locally using 3-D spatial information and appearance features of the cerebrovascular system; 2) Estimating the cumulative distribution function (CDF) of the 3-D distance map of the cerebrovascular system to quantify alterations in cerebral blood vessels' diameters; 3) Calculation of mean and Gaussian curvatures to quantify cerebrovascular tortuosity; and 4) Statistical and correlation analyses to identify the relationship between mean arterial pressure (MAP) and cerebral blood vessels' diameters and tortuosity alterations. The proposed framework was validated using MAP and MRA data collected from 15 patients over a 700-days period. The novel adaptive segmentation algorithm recorded a 92.23% Dice similarity coefficient (DSC), a 94.82% sensitivity, a 99.00% specificity, and a 10.00% absolute vessels volume difference (AVVD) in delineating cerebral blood vessels from surrounding tissues compared to the ground truth. Experiments demonstrated that MAP is inversely related to cerebral blood vessel diameters (p-value < 0.05) globally (over the whole brain) and locally (at circle of Willis and below). A statistically significant direct correlation (p-value < 0.05) was found between MAP and tortuosity (medians of Gaussian and mean curvatures, and average of mean curvature) globally and locally (at circle of Willis and below). Quantification of the cerebrovascular diameter and tortuosity changes may enable clinicians to predict elevated blood pressure before its onset and optimize medical treatment plans of pre-hypertension and hypertension.
Collapse
Affiliation(s)
- Heba Kandil
- Bioimaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY, 40292, USA
- Computer Engineering and Computer Science Department, University of Louisville, Louisville, KY, USA
- Faculty of Computer Science and Information, Information Technology Department, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Soliman
- Bioimaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY, 40292, USA
| | - Mohammed Ghazal
- Electrical and Computer Engineering Department, University of Abu Dhabi, Abu Dhabi, UAE
| | - Ali Mahmoud
- Bioimaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY, 40292, USA
| | - Ahmed Shalaby
- Bioimaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY, 40292, USA
| | - Robert Keynton
- Bioimaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY, 40292, USA
| | - Adel Elmaghraby
- Computer Engineering and Computer Science Department, University of Louisville, Louisville, KY, USA
| | - Guruprasad Giridharan
- Bioimaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY, 40292, USA
| | - Ayman El-Baz
- Bioimaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
18
|
Staarmann B, Smith M, Prestigiacomo CJ. Shear stress and aneurysms: a review. Neurosurg Focus 2019; 47:E2. [DOI: 10.3171/2019.4.focus19225] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Wall shear stress, the frictional force of blood flow tangential to an artery lumen, has been demonstrated in multiple studies to influence aneurysm formation and risk of rupture. In this article, the authors review the ways in which shear stress may influence aneurysm growth and rupture through changes in the vessel wall endothelial cells, smooth-muscle cells, and surrounding adventitia, and they discuss shear stress–induced pathways through which these changes occur.
Collapse
Affiliation(s)
| | - Matthew Smith
- 2Neurology, University of Cincinnati Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
19
|
Rosenbaum MD, Heiferman DM, Raslan OA, Martin B, Dominguez JF, de la Peña PM, Ashley WW, Rosenblum JD, Germanwala AV. Basilar Apex Aneurysms in the Setting of Carotid Artery Stenosis: Case Series and Angiographic Anatomic Study. Curr Neurovasc Res 2019; 16:12-18. [DOI: 10.2174/1567202616666190129150403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 11/22/2022]
Abstract
Background:
Intracranial aneurysms (IAs) are life-threatening lesions known within the
literature to be found incidentally during routine angiographic workup for carotid artery stenosis
(CAS). As IAs are associated with vascular shear stress, it is reasonable to expect that altered flow
demands within the anterior circulation, such as with CAS, increase compensatory flow demands
via the Circle of Willis (COW) and may induce similar stress at the basilar apex.
Objective:
We present a series of nine unruptured basilar apex aneurysms (BAA) with CAS and a
comparative radiographic analysis to BAA without CAS.
Methods:
Twenty-three patients with BAA were retrospectively identified using records from
2011 to 2016. CAS by North American Symptomatic Carotid Endarterectomy Trial (NASCET)
criteria, morphology of BAA, competency of COW, and anatomic relationships within the posterior
circulation were examined independently by a neuroradiologist using angiographic imaging.
Results:
Nine (39%) of the twenty-three BAA patients had CAS, with six having stenosis ≥50%.
Four (67%) of the patients with ≥50% CAS demonstrated aneurysm flow angles contralateral to
the side with highest CAS. Additionally, the angle between the basilar artery (BA) trajectory and
aneurysm neck was observed to be smaller in patients with ≥50% CAS (61 vs 74 degrees). No significant
differences in COW patency, posterior circulation morphology, and degree of stenosis
were observed.
Conclusion:
Changes in the cervical carotid arteries may lead to blood flow alterations in the posterior
circulation that increase the propensity for BAA formation. Posterior circulation imaging can
be considered in CAS patients to screen for BAA.
Collapse
Affiliation(s)
- Mihael D. Rosenbaum
- Department of Neurological Surgery, Loyola University Stritch School of Medicine, Maywood, IL, United States
| | - Daniel M. Heiferman
- Department of Neurological Surgery, Loyola University Stritch School of Medicine, Maywood, IL, United States
| | - Osama A. Raslan
- Department of Radiology, University of California- Davis Medical Center, Sacramento, CA, United States
| | - Brendan Martin
- Department of Research, National Council of State Boards of Nursing, Chicago, IL, United States
| | - Jose F. Dominguez
- Department of Neurological Surgery, New York Medical College, Valhalla, NY, United States
| | - Paula M. de la Peña
- Department of Neurological Surgery, Loyola University Stritch School of Medicine, Maywood, IL, United States
| | - William W. Ashley
- Department of Neurosurgery, The Sandra and Malcolm Berman Brain and Spine Institute, Sinai Hospital and LifeBridge Health System, Baltimore, MD, United States
| | - Jordan D. Rosenblum
- Department of Radiology, Loyola University Stritch School of Medicine, Maywood, IL, United States
| | - Anand V. Germanwala
- Department of Neurological Surgery, Loyola University Stritch School of Medicine, Maywood, IL, United States
| |
Collapse
|
20
|
Smith KJ, Hoiland RL, Grove R, McKirdy H, Naylor L, Ainslie PN, Green DJ. Matched increases in cerebral artery shear stress, irrespective of stimulus, induce similar changes in extra-cranial arterial diameter in humans. J Cereb Blood Flow Metab 2019; 39:849-858. [PMID: 29125372 PMCID: PMC6501503 DOI: 10.1177/0271678x17739220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanistic role of arterial shear stress in the regulation of cerebrovascular responses to physiological stimuli (exercise and hypercapnia) is poorly understood. We hypothesised that, if shear stress is a key regulator of arterial dilation, then matched increases in shear, induced by distinct physiological stimuli, would trigger similar dilation of the large extra-cranial arteries. Participants ( n = 10) participated in three 30-min experimental interventions, each separated by ≥48 h: (1) mild-hypercapnia (FICO2:∼0.045); (2) submaximal cycling (EX; 60%HRreserve); or (3) resting (time-matched control, CTRL). Blood flow, diameter, and shear rate were assessed (via Duplex ultrasound) in the internal carotid and vertebral arteries (ICA, VA) at baseline, during and following the interventions. Hypercapnia and EX produced similar elevations in blood flow and shear rate through the ICA and VA ( p < 0.001), which were both greater than CTRL. Vasodilation of ICA and VA diameter in response to hypercapnia (5.3 ± 0.8 and 4.4 ± 2.0%) and EX (4.7 ± 0.7 and 4.7 ± 2.2%) were similar, and greater than CTRL ( p < 0.001). Our findings indicate that matched levels of shear, irrespective of their driving stimulus, induce similar extra-cranial artery dilation. We demonstrate, for the first time in humans, an important mechanistic role for the endothelium in regulating cerebrovascular response to common physiological stimuli in vivo.
Collapse
Affiliation(s)
- Kurt J Smith
- 1 Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Ryan L Hoiland
- 2 Centre for Hearth Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Grove
- 1 Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Hamish McKirdy
- 1 Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Louise Naylor
- 1 Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Philip N Ainslie
- 2 Centre for Hearth Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daniel J Green
- 1 Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia.,3 Research Institute for Sport and Exercise Sciences, John Moores Liverpool University, UK
| |
Collapse
|
21
|
Kliś KM, Krzyżewski RM, Kwinta BM, Stachura K, Moskała M, Tomaszewski KA. Computer-aided analysis of middle cerebral artery tortuosity: association with aneurysm development. J Neurosurg 2019; 130:1478-1484. [PMID: 29775150 DOI: 10.3171/2017.12.jns172114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/04/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Blood vessel tortuosity may play an important role in the development of vessel abnormalities such as aneurysms. Currently, however, there are no studies analyzing the impact of brain blood vessel tortuosity on the risk of aneurysm formation. Therefore, the authors performed a computer-aided analysis of middle cerebral artery (MCA) tortuosity, especially among patients diagnosed with MCA aneurysms. METHODS Anatomy of the MCAs of 54 patients with unruptured MCA aneurysms was retrospectively analyzed, as was that of 54 sex-, age-, and vessel side-matched control patients without MCA aneurysms. From medical records, the authors obtained each patient's medical history including previous and current diseases and medications. For each patient, they calculated the following tortuosity descriptors: relative length (RL), sum of angle metrics (SOAM), triangular index (TI), product of angle distance (PAD), and inflection count metric (ICM). RESULTS Patients with an MCA aneurysm had significantly lower RLs (0.75 ± 0.09 vs 0.83 ± 0.08, p < 0.01), SOAMs (0.45 ± 0.10 vs 0.60 ± 0.17, p < 0.01), and PADs (0.34 ± 0.09 vs 0.50 ± 0.17, p < 0.01). They also had significantly higher TIs (0.87 ± 0.04 vs 0.81 ± 0.07, p < 0.01) and ICMs (3.07 ± 1.58 vs 2.26 ± 1.12, p < 0.01). Female patients had significantly higher RLs (0.76 ± 0.11 vs 0.80 ± 0.09, p = 0.03) than male patients. CONCLUSIONS Middle cerebral artery aneurysm formation is strongly associated with blood vessel tortuosity parameters, which can potentially be used to screen for patients at risk for MCA aneurysm formation.
Collapse
Affiliation(s)
- Kornelia M Kliś
- 1Jagiellonian University Medical College, Faculty of Medicine
- 2AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications
| | - Roger M Krzyżewski
- 3Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College
| | - Borys M Kwinta
- 3Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College
| | - Krzysztof Stachura
- 3Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College
| | - Marek Moskała
- 3Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College
| | - Krzysztof A Tomaszewski
- 4Department of Anatomy, Jagiellonian University Medical College; and
- 5The Brain and Spine Laboratory, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
22
|
Krzyżewski RM, Kliś KM, Kwinta BM, Gackowska M, Gąsowski J. Increased tortuosity of ACA might be associated with increased risk of ACoA aneurysm development and less aneurysm dome size: a computer-aided analysis. Eur Radiol 2019; 29:6309-6318. [PMID: 30989348 PMCID: PMC6795631 DOI: 10.1007/s00330-019-06146-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 12/02/2022]
Abstract
Objectives We decided to perform computer-aided analysis of the anterior cerebral artery (ACA) to check for a potential correlation with anterior communicating artery (ACoA) aneurysm presence and growth. Methods We retrospectively analyzed the ACA anatomy of 121 patients with ACoA aneurysms along with 121 age, risk factors, and vessel side-matched control patients without an ACoA aneurysm. We obtained their medical history and digital subtraction angiography (DSA) data from their medical records. For each patient’s DSA, we extracted curve representing the course of their ACA and calculated its relative length (RL), sum of angle metrics (SOAM), triangular index (TI), product of angle distance (PAD), and inflection count metrics (ICM). Results Patients with ACoA aneurysm had significantly higher RL (0.64 ± 0.23 vs. 0.56 ± 0.22; p < 0.01), SOAM (0.27 ± 0.19 vs. 0.18 ± 0.15; p < 0.01), PAD (0.12 ± 0.13 vs. 0.09 ± 0.11; p = 0.02), and TI (0.57 ± 0.14 vs. 0.44 ± 0.15; p < 0.01). In multivariate logistic regression analysis, after adjustment for possible confounders, SOAM (OR, 1.34; 95% CI, 1.12–1.63; p < 0.01) and TI (OR, 1.84; 95% CI, 1.47–2.35; p < 0.01) remained independently associated with higher risk of ACoA aneurysm. Additionally, we found significant negative correlations between TI and aneurysm dome size (R = − 0.194; p = 0.047). Conclusions Increased tortuosity of ACA might increase the risk of ACoA aneurysm development and decrease the risk of aneurysm growth. Key Points • Anterior cerebral artery’s sum of angle metrics is associated with hypertension as well as with history of ischemic stroke and myocardial infarction. • Increased tortuosity of anterior cerebral artery might be associated with anterior communicating artery aneurysm development. • Tortuosity of anterior cerebral artery is negatively correlated with anterior communicating artery aneurysm dome size.
Collapse
Affiliation(s)
- Roger M Krzyżewski
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Botaniczna 3 Street, 31-503, Kraków, Poland. .,TENSOR- Team of NeuroSurgery-Oriented Research, Jagiellonian University Medical College, Kraków, Poland.
| | - Kornelia M Kliś
- TENSOR- Team of NeuroSurgery-Oriented Research, Jagiellonian University Medical College, Kraków, Poland.,Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.,Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Kraków, Poland
| | - Borys M Kwinta
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Botaniczna 3 Street, 31-503, Kraków, Poland.,TENSOR- Team of NeuroSurgery-Oriented Research, Jagiellonian University Medical College, Kraków, Poland
| | | | - Jerzy Gąsowski
- TENSOR- Team of NeuroSurgery-Oriented Research, Jagiellonian University Medical College, Kraków, Poland.,Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
23
|
Boghosian ME, Hammes MS, Cassel KW, Akherat SMJ, Coe F. Restoration of wall shear stress in the cephalic vein during extreme hemodynamics. J Med Eng Technol 2018; 42:617-627. [PMID: 30942634 PMCID: PMC6714973 DOI: 10.1080/03091902.2019.1591534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 02/13/2019] [Indexed: 02/02/2023]
Abstract
The surgical creation of an artery-vein connection via a Brachicephalic fistula (BCF) in patients with end stage renal disease (ESRD) provides a unique opportunity to study blood vessel response mechanisms to extreme hemodynamic conditions in relatively short timeframes. After BCF creation, the flow rate in the vein increases by an order of magnitude leading to separated flows and corresponding abnormally low, or negative, wall shear stress (WSS) in the curved arch segment of the cephalic vein. Locations of abnormally low WSS are shown to correlate with development of neointimal hyperplasia (NH) and subsequent stenosis. It is found that the stenosis, prior to a surgical intervention, restores the normal physiological WSS in the vein. As a result, this investigation provides evidence that the adaptation principle, known to apply in the arterial system, is also valid in the venous system. A novel graphical method is developed that combines clinical and computational data to assist in interpreting these physiological mechanisms including adaptation that lead to changes in vein geometry over time.
Collapse
Affiliation(s)
- M E Boghosian
- a Fluid Dynamic Research Center, Department of Mechanical , Materials, and Aerospace Engineering, Illinois Institute of Technology , Chicago , IL , USA
| | - M S Hammes
- b Section of Nephrology, Department of Medicine , University of Chicago , Chicago , IL , USA
| | - K W Cassel
- a Fluid Dynamic Research Center, Department of Mechanical , Materials, and Aerospace Engineering, Illinois Institute of Technology , Chicago , IL , USA
| | - S M J Akherat
- a Fluid Dynamic Research Center, Department of Mechanical , Materials, and Aerospace Engineering, Illinois Institute of Technology , Chicago , IL , USA
| | - F Coe
- b Section of Nephrology, Department of Medicine , University of Chicago , Chicago , IL , USA
| |
Collapse
|
24
|
Byun H, Jang J, Choi HS, Jung SL, Ahn KJ, Kim BS. Associations between Morphological Characteristics of Intracranial Arteries and Atherosclerosis Risk Factors in Subjects with Less Than 50% Intracranial Arterial Stenosis. ACTA ACUST UNITED AC 2018. [DOI: 10.13104/imri.2018.22.3.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Hokyun Byun
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Seok Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - So-Lyung Jung
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kook-Jin Ahn
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bum-soo Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
25
|
Miyamoto T, Kung DK, Kitazato KT, Yagi K, Shimada K, Tada Y, Korai M, Kurashiki Y, Kinouchi T, Kanematsu Y, Satomi J, Hashimoto T, Nagahiro S. Site-specific elevation of interleukin-1β and matrix metalloproteinase-9 in the Willis circle by hemodynamic changes is associated with rupture in a novel rat cerebral aneurysm model. J Cereb Blood Flow Metab 2017; 37:2795-2805. [PMID: 27798272 PMCID: PMC5536789 DOI: 10.1177/0271678x16675369] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathogenesis of subarachnoid hemorrhage remains unclear. No models of cerebral aneurysms elicited solely by surgical procedures and diet have been established. Elsewhere we reported that only few rats in our original rat aneurysm model manifested rupture at the anterior and posterior Willis circle and that many harbored unruptured aneurysms at the anterior cerebral artery-olfactory artery bifurcation. This suggests that rupture was site-specific. To test our hypothesis that a site-specific response to hemodynamic changes is associated with aneurysmal rupture, we modified our original aneurysm model by altering the hemodynamics. During 90-day observation, the incidence of ruptured aneurysms at the anterior and posterior Willis circle was significantly increased and the high incidence of unruptured aneurysms at the anterior cerebral artery-olfactory artery persisted. This phenomenon was associated with an increase in the blood flow volume. Notably, the level of matrix metalloproteinase-9 associated with interleukin-1β was augmented by the increase in the blood flow volume, suggesting that these molecules exacerbated the vulnerability of the aneurysmal wall. The current study first demonstrates that a site-specific increase in interleukin-1β and matrix metalloproteinase-9 elicited by hemodynamic changes is associated with rupture. Our novel rat model of rupture may help to develop pharmaceutical approaches to prevent rupture.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - David K Kung
- 2 Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Keiko T Kitazato
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Yagi
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Shimada
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshiteru Tada
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Masaaki Korai
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshitaka Kurashiki
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoya Kinouchi
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Yasuhisa Kanematsu
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Junichiro Satomi
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoki Hashimoto
- 3 Department of Anesthesia and Perioperative Care, University of California, San Francisco, USA
| | - Shinji Nagahiro
- 1 Department of Neurosurgery, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
26
|
Tutino VM, Liaw N, Spernyak JA, Ionita CN, Siddiqui AH, Kolega J, Meng H. Assessment of Vascular Geometry for Bilateral Carotid Artery Ligation to Induce Early Basilar Terminus Aneurysmal Remodeling in Rats. Curr Neurovasc Res 2016; 13:82-92. [PMID: 26503026 DOI: 10.2174/1567202612666151027143149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 11/22/2022]
Abstract
Bilateral common carotid artery (CCA) ligation in rabbits is a model for basilar terminus (BT) aneurysm formation. We asked if this model could be replicated in rats. Fourteen female Sprague Dawley rats underwent bilateral CCA ligation (n=8) or sham surgery (n=6). After 7 days, 5 ligated and 3 sham rats were euthanized for histological evaluation of BT aneurysm formation, while the remaining rats were imaged with magnetic resonance angiography, euthanized, and subjected to corrosion casting of the Circle of Willis (CoW). 3D micro computed tomography images of CoW casts were used for flow simulations at the rat BT, and electron micrographs of the casts were analyzed for aneurysmal and morphological changes. Results from these analyses were compared to rabbit model data (n=10 ligated and n=6 sham). Bilateral CCA ligation did not produce aneurysmal damage at the rat BT. While the surgical manipulation increased rat basilar artery flow, fluid dynamics simulations showed that the initial hemodynamic stress at the rat BT was significantly less than in rabbits. Rats also exhibited fewer morphological and pathological changes (minor changes only occurred in the posterior CoW) than rabbits, which had drastic changes throughout the CoW. A comparison of CoW anatomies demonstrated a greater number of branching arteries at the BT, larger CoW arteries in relation to basilar artery, and a steeper BT bifurcation angle in the rat. These differences could account for the lower hemodynamic stress at the BT and in the cerebrovasculature of the rat. In conclusion, bilateral CCA ligation in rats does not recapitulate the rabbit model of early flow-induced BT aneurysm. We suspect that the different CoW morphology of the rat lessens hemodynamic insults, thereby diminishing flow-induced aneurysmal remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Meng
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott St, Buffalo, NY 14203, USA.
| |
Collapse
|
27
|
Pico F, Labreuche J, Amarenco P. Pathophysiology, presentation, prognosis, and management of intracranial arterial dolichoectasia. Lancet Neurol 2015. [PMID: 26194931 DOI: 10.1016/s1474-4422(15)00089-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Up to 12% of patients with stroke have intracranial arterial dolichoectasia (IADE) and the basilar artery is affected in 80% of these cases. Diagnostic criteria and prognosis studies of IADE are based on basilar artery diameter, which is a good quantitative marker for the severity of the disease. The pathophysiology is largely unknown, but IADE can be viewed as a common final pathway of arterial wall response or damage in the tunica media due to various mechanisms, such as matrix metalloproteinase dysfunction or muscle cell or elastic fibre injury. No randomised controlled trials have been undertaken in IADE and thus little high-level evidence is available on which to base treatment guidelines. IADE management depends on clinical presentation and disease severity, and includes blood pressure control, antithrombotic treatments, endovascular procedures, and surgery. Further studies are needed to better define IADE in the general population, to establish its prevalence and pathophysiology, to identify subgroups at risk of life-threatening complications, and to offer effective treatment options.
Collapse
Affiliation(s)
- Fernando Pico
- Neurology Department and Stroke Centre, Centre Hospitalier de Versailles, Le Chesnay and Université de Versailles Saint-Quentin-en-Yvelines, Île-de-France, France; INSERM Laboratory for Vascular Translational Science, Paris, France
| | - Julien Labreuche
- Department of Neurology and Stroke Centre, Paris, France; AP-HP Bichat University Hospital, Paris-Diderot University and Medical School, Paris, France
| | - Pierre Amarenco
- INSERM Laboratory for Vascular Translational Science, Paris, France; Department of Neurology and Stroke Centre, Paris, France; AP-HP Bichat University Hospital, Paris-Diderot University and Medical School, Paris, France.
| |
Collapse
|
28
|
Tutino VM, Mandelbaum M, Takahashi A, Pope LC, Siddiqui A, Kolega J, Meng H. Hypertension and Estrogen Deficiency Augment Aneurysmal Remodeling in the Rabbit Circle of Willis in Response to Carotid Ligation. Anat Rec (Hoboken) 2015; 298:1903-10. [PMID: 26248728 DOI: 10.1002/ar.23205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 11/05/2022]
Abstract
Increased cerebral blood flow has been shown to induce pathological structural changes in the Circle of Willis (CoW) in experimental models. Previously, we reported flow-induced aneurysm-like remodeling in the CoW secondary to flow redistribution after bilateral common carotid artery (CCA) ligation in rabbits. In the current study, we tested the hypothesis that loading rabbits with biological risk factors for vascular disease would increase flow-induced aneurysmal remodeling in the CoW. In the same series as the previously-reported bilateral CCA-ligation-alone (n = 6) and sham surgery (n = 3) groups, eight additional female rabbits (the experimental group in this study) were subjected to two risk factors for intracranial aneurysm (hypertension and estrogen deficiency) and then bilateral CCA ligation. Upon euthanasia at 6 months, vascular corrosion casts of the CoW were created and analyzed by scanning electron microscopy for morphological changes and aneurysmal damage. In rabbits with hypertension and estrogen deficiency, arterial caliber increased throughout the CoW, similar to rabbits with CCA ligation alone. However, aneurysmal remodeling (i.e., local bulging) in the CoW was significantly greater than in CCA-ligation-only rabbits and was more widespread, presenting in regions that did not show aneurysmal changes after CCA ligation alone. Furthermore, hypertension and estrogen deficiency caused greater increases in vessel length and tortuosity. These results suggest that hypertension and estrogen deficiency make the CoW more vulnerable to flow-induced aneurysmal remodeling and tortuosity. We propose they do so by lowering the tolerance of vascular tissue to hemodynamic forces caused by CCA ligation, thus lowering the threshold necessary to incite vascular damage.
Collapse
Affiliation(s)
- Vincent M Tutino
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Max Mandelbaum
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York.,Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York
| | - Akira Takahashi
- Department of Neuroendovascular Therapy, Tohoku University, Sendai, Japan
| | - Liza C Pope
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York.,Department of Neurosurgery, University at Buffalo, Buffalo, New York
| | - Adnan Siddiqui
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York.,Department of Neurosurgery, University at Buffalo, Buffalo, New York.,Department of Radiology, University at Buffalo, Buffalo, New York
| | - John Kolega
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York.,Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Hui Meng
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York.,Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York.,Department of Neurosurgery, University at Buffalo, Buffalo, New York
| |
Collapse
|
29
|
Impaired leptomeningeal collateral flow contributes to the poor outcome following experimental stroke in the Type 2 diabetic mice. J Neurosci 2015; 35:3851-64. [PMID: 25740515 DOI: 10.1523/jneurosci.3838-14.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Collateral status is an independent predictor of stroke outcome. However, the spatiotemporal manner in which collateral flow maintains cerebral perfusion during cerebral ischemia is poorly understood. Diabetes exacerbates ischemic brain damage, although the impact of diabetes on collateral dynamics remains to be established. Using Doppler optical coherent tomography, a robust recruitment of leptomeningeal collateral flow was detected immediately after middle cerebral artery (MCA) occlusion in C57BL/6 mice, and it continued to grow over the course of 1 week. In contrast, an impairment of collateral recruitment was evident in the Type 2 diabetic db/db mice, which coincided with a worse stroke outcome compared with their normoglycemic counterpart db/+, despite their equally well-collateralized leptomeningeal anastomoses. Similar to the wild-type mice, both db/+ and db/db mice underwent collateral growth 7 d after MCA stroke, although db/db mice still exhibited significantly reduced retrograde flow into the MCA territory chronically. Acutely induced hyperglycemia in the db/+ mice did not impair collateral flow after stroke, suggesting that the state of hyperglycemia alone was not sufficient to impact collateral flow. Human albumin was efficacious in improving collateral flow and outcome after stroke in the db/db mice, enabling perfusion to proximal MCA territory that was usually not reached by retrograde flow from anterior cerebral artery without treatment. Our results suggest that the impaired collateral status contributes to the exacerbated ischemic injury in mice with Type 2 diabetes, and modulation of collateral flow has beneficial effects on stroke outcome among these subjects.
Collapse
|
30
|
Gutierrez J, Elkind MSV, Gomez-Schneider M, DeRosa JT, Cheung K, Bagci A, Alperin N, Sacco RL, Wright CB, Rundek T. Compensatory intracranial arterial dilatation in extracranial carotid atherosclerosis: the Northern Manhattan study. Int J Stroke 2015; 10:843-8. [PMID: 25753026 DOI: 10.1111/ijs.12464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 01/06/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is a scarcity of data supporting the association between atherosclerosis and dolichoectasia in unbiased samples. AIMS To test the hypothesis that the association between dolichoectasia and extracranial carotid atherosclerosis depends on the degree of collateral circulation. METHODS The Northern Manhattan Study magnetic resonance imaging substudy consists of 1290 participants who remained stroke-free at the time of magnetic resonance imaging. Arterial diameters were collected in all participants with available magnetic resonance angiography. Dolichoectasia was defined as a head-size adjusted diameter >2 standard deviation for each artery. Carotid Doppler was used to evaluate for carotid atherosclerosis (carotid plaque, maximum plaque thickness and carotid intima media thickness). RESULTS We included 994 participants with available Doppler and magnetic resonance angiography data (mean age 63 years, 60% female). Any dolichoectasia was reported in 16% of participants, 54% had at least one carotid plaque and the mean carotid intima media thickness was 0·92 ± 0·09 mm. After adjusting for demographic and clinical characteristics, there was no association between markers of carotid atherosclerosis and dolichoectasia. However, stratifying by collaterals, it was observed that dolichoectasia was more likely in the anterior and posterior circulations when collaterals were available among participants with carotid atherosclerosis. These associations were confirmed by noting an increment in arterial diameters in the corresponding arteries ipsilateral and contralateral to each carotid as well as in the posterior circulation. CONCLUSIONS We did not find an association of extracranial carotid atherosclerosis with dolichoectasia. However, we found that dolichoectasia is more frequent when intracranial collaterals are available suggesting a compensatory process that needs further investigation.
Collapse
Affiliation(s)
- Jose Gutierrez
- Department of Neurology, Columbia University, New York, NY, USA
| | - Mitchell S V Elkind
- Department of Neurology, Columbia University, New York, NY, USA.,Department of Epidemiology, Columbia University, New York, NY, USA
| | | | - Janet T DeRosa
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Ken Cheung
- Division of Biostatistics, Columbia University, New York, NY, USA
| | - Ahmet Bagci
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Noam Alperin
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ralph L Sacco
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Clinton B Wright
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tatjana Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
31
|
Dai D, Kadirvel R, Rezek I, Ding YH, Lingineni R, Kallmes D. Elastase-Induced Intracranial Dolichoectasia Model in Mice. Neurosurgery 2015; 76:337-43; discussion 343. [DOI: 10.1227/neu.0000000000000615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Morphology and function of cerebral arteries in adults with pompe disease. JIMD Rep 2015; 20:27-33. [PMID: 25614309 DOI: 10.1007/8904_2014_385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/20/2014] [Accepted: 11/17/2014] [Indexed: 03/17/2023] Open
Abstract
OBJECTIVE Cerebrovascular abnormalities have been reported in adult patients with Pompe disease. The objective was to study these abnormalities by (1) determining the diameter and mean flow velocity (MFV) of large cerebral arteries and (2) estimating cerebral blood flow (CBF), resistance index (RI) and cerebrovascular reactivity (CVR) as functions of resistance vessels. METHODS In ten adults with Pompe disease and twenty controls, the diameter, peak systolic (PSV) and end-diastolic velocities (EDV) of arteries supplying the brain were quantified by MR angiography and sonography. MFV, RI and CBF were calculated. CVR in the middle cerebral artery (MCA) was determined by hyperventilation and acetazolamide injection. RESULTS MR angiography revealed dilation of cerebral arteries predominantly in the posterior circulation. Dilative arteriopathy was found in three patients; two of them showed vertebrobasilar dolichoectasia. Despite of the dilative arteriopathy, the MFV was normal, indicating increased CBF and dilated resistance vessels. RI of all examined arteries and CVR of MCA were normal. CONCLUSION The data suggest that dilation of small and large cerebral arteries is a common feature in adults with Pompe disease. Increased CBF might be the consequence of dilated resistance vessels. However, dysfunction of resistance vessels was rarely found. SYNOPSIS In adults with Pompe disease, dilation of small and large cerebral arteries is a common feature and might be associated with increased cerebral blood flow.
Collapse
|
33
|
Tanweer O, Wilson TA, Metaxa E, Riina HA, Meng H. A comparative review of the hemodynamics and pathogenesis of cerebral and abdominal aortic aneurysms: lessons to learn from each other. J Cerebrovasc Endovasc Neurosurg 2014; 16:335-49. [PMID: 25599042 PMCID: PMC4296046 DOI: 10.7461/jcen.2014.16.4.335] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/13/2014] [Accepted: 10/29/2014] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Cerebral aneurysms (CAs) and abdominal aortic aneurysms (AAAs) are degenerative vascular pathologies that manifest as abnormal dilations of the arterial wall. They arise with different morphologies in different types of blood vessels under different hemodynamic conditions. Although treated as different pathologies, we examine common pathways in their hemodynamic pathogenesis in order to elucidate mechanisms of formation. MATERIALS AND METHODS A systematic review of the literature was performed. Current concepts on pathogenesis and hemodynamics were collected and compared. RESULTS CAs arise as saccular dilations on the cerebral arteries of the circle of Willis under high blood flow, high wall shear stress (WSS), and high wall shear stress gradient (WSSG) conditions. AAAs arise as fusiform dilations on the infrarenal aorta under low blood flow, low, oscillating WSS, and high WSSG conditions. While at opposite ends of the WSS spectrum, they share high WSSG, a critical factor in arterial remodeling. This alone may not be enough to initiate aneurysm formation, but may ignite a cascade of downstream events that leads to aneurysm development. Despite differences in morphology and the structure, CAs and AAAs share many histopathological and biomechanical characteristics. Endothelial cell damage, loss of elastin, and smooth muscle cell loss are universal findings in CAs and AAAs. Increased matrix metalloproteinases and other proteinases, reactive oxygen species, and inflammation also contribute to the pathogenesis of both aneurysms. CONCLUSION Our review revealed similar pathways in seemingly different pathologies. We also highlight the need for cross-disciplinary studies to aid in finding similarities between pathologies.
Collapse
Affiliation(s)
- Omar Tanweer
- Department of Neurosurgery, New York University School of Medicine, NY, United States
| | - Taylor A Wilson
- Department of Neurosurgery, New York University School of Medicine, NY, United States
| | - Eleni Metaxa
- Foundation for Research and Technology - Hellas Institute of Applied and Computational Mathematics, Crete, Greece
| | - Howard A Riina
- Department of Neurosurgery, New York University School of Medicine, NY, United States
| | - Hui Meng
- Toshiba Stroke Research Center, University at Buffalo, NY, United States. ; Department of Mechanical and Aerospace Engineering, University at Buffalo, NY, United States. ; Department of Neurosurgery, University at Buffalo, NY, United States
| |
Collapse
|
34
|
Liaw N, Dolan Fox JM, Siddiqui AH, Meng H, Kolega J. Endothelial nitric oxide synthase and superoxide mediate hemodynamic initiation of intracranial aneurysms. PLoS One 2014; 9:e101721. [PMID: 24992254 PMCID: PMC4081806 DOI: 10.1371/journal.pone.0101721] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/10/2014] [Indexed: 01/08/2023] Open
Abstract
Background Hemodynamic insults at arterial bifurcations are believed to play a critical role in initiating intracranial aneurysms. Recent studies in a rabbit model indicate that aneurysmal damage initiates under specific wall shear stress conditions when smooth muscle cells (SMCs) become pro-inflammatory and produce matrix metalloproteinases (MMPs). The mechanisms leading to SMC activation and MMP production during hemodynamic aneurysm initiation are unknown. The goal is to determine if nitric oxide and/or superoxide induce SMC changes, MMP production and aneurysmal remodeling following hemodynamic insult. Methods Bilateral common carotid artery ligation was performed on rabbits (n = 19, plus 5 sham operations) to induce aneurysmal damage at the basilar terminus. Ligated animals were treated with the nitric oxide synthase (NOS) inhibitor LNAME (n = 7) or the superoxide scavenger TEMPOL (n = 5) and compared to untreated animals (n = 7). Aneurysm development was assessed histologically 5 days after ligation. Changes in NOS isoforms, peroxynitrite, reactive oxygen species (ROS), MMP-2, MMP-9, and smooth muscle α-actin were analyzed by immunohistochemistry. Results LNAME attenuated ligation-induced IEL loss, media thinning and bulge formation. In untreated animals, immunofluorescence showed increased endothelial NOS (eNOS) after ligation, but no change in inducible or neuronal NOS. Furthermore, during aneurysm initiation ROS increased in the media, but not the intima, and there was no change in peroxynitrite. In LNAME-treated animals, ROS production did not change. Together, this suggests that eNOS is important for aneurysm initiation but not by producing superoxide. TEMPOL treatment reduced aneurysm development, indicating that the increased medial superoxide is also necessary for aneurysm initiation. LNAME and TEMPOL treatment in ligated animals restored α-actin and decreased MMPs, suggesting that eNOS and superoxide both lead to SMC de-differentiation and MMP production. Conclusion Aneurysm-inducing hemodynamics lead to increased eNOS and superoxide, which both affect SMC phenotype, increasing MMP production and aneurysmal damage.
Collapse
Affiliation(s)
- Nicholas Liaw
- Toshiba Stroke and Vascular Research Center and Department of Mechanical and Aerospace Engineering, State University of New York, Buffalo, New York, United States of America
| | - Jennifer M. Dolan Fox
- Toshiba Stroke and Vascular Research Center and Department of Neurosurgery, State University of New York, Buffalo, New York, United States of America
| | - Adnan H. Siddiqui
- Toshiba Stroke and Vascular Research Center and Departments Neurosurgery and Radiology, State University of New York, Buffalo, New York, United States of America
| | - Hui Meng
- Toshiba Stroke and Vascular Research Center and Departments of Mechanical and Aerospace Engineering, Neurosurgery, and Biomedical Engineering, State University of New York, Buffalo, New York, United States of America
| | - John Kolega
- Toshiba Stroke and Vascular Research Center and Department Pathology and Anatomical Sciences, State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Tutino VM, Mandelbaum M, Choi H, Pope LC, Siddiqui A, Kolega J, Meng H. Aneurysmal remodeling in the circle of Willis after carotid occlusion in an experimental model. J Cereb Blood Flow Metab 2014; 34:415-24. [PMID: 24326393 PMCID: PMC3948116 DOI: 10.1038/jcbfm.2013.209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/29/2013] [Accepted: 11/02/2013] [Indexed: 01/10/2023]
Abstract
Carotid occlusions are associated with de novo intracranial aneurysm formation in clinical case reports, but this phenomenon is not widely studied. We performed bilateral carotid ligation (n=9) in rabbits to simulate carotid occlusion, and sham surgery (n=3) for control. Upon euthanasia (n=3 at 5 days, n=6 at 6 months post ligation, and n=3 at 5 days after sham operation), vascular corrosion casts of the circle of Willis (CoW) were created. Using scanning electron microscopy, we quantified gross morphologic, macroscopic, and microscopic changes on the endocasts and compared findings with histologic data. At 5 days, CoW arteries of ligated animals increased caliber. The posterior communicating artery (PCom) increased length and tortuosity, and the ophthalmic artery (OA) origin presented preaneurysmal bulges. At 6 months, calibers were unchanged from 5 days, PComs further increased tortuosity while presenting segmental dilations, and the OA origin and basilar terminus presented preaneurysmal bulges. This exploratory study provides evidence that flow increase after carotid occlusion produces both compensatory arterial augmentation and pathologic remodeling such as tortuosity and saccular/fusiform aneurysm. Our findings may have considerable clinical implications, as these lesser-known consequences should be considered when managing patients with carotid artery disease or choosing carotid ligation as a therapeutic option.
Collapse
Affiliation(s)
- Vincent M Tutino
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, Buffalo, New York, USA
- Department of Biomedical Engineering, Buffalo, New York, USA
| | - Max Mandelbaum
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, Buffalo, New York, USA
- Department of Mechanical & Aerospace Engineering, Buffalo, New York, USA
| | - Hoon Choi
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, Buffalo, New York, USA
- Department of Mechanical & Aerospace Engineering, Buffalo, New York, USA
- Department of Neurosurgery, Buffalo, New York, USA
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Liza C Pope
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, Buffalo, New York, USA
- Department of Neurosurgery, Buffalo, New York, USA
| | - Adnan Siddiqui
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, Buffalo, New York, USA
- Department of Neurosurgery, Buffalo, New York, USA
- Department of Radiology, Buffalo, New York, USA
| | - John Kolega
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, Buffalo, New York, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Hui Meng
- Toshiba Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, Buffalo, New York, USA
- Department of Biomedical Engineering, Buffalo, New York, USA
- Department of Mechanical & Aerospace Engineering, Buffalo, New York, USA
- Department of Neurosurgery, Buffalo, New York, USA
| |
Collapse
|
36
|
Evju Ø, Valen-Sendstad K, Mardal KA. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. J Biomech 2013; 46:2802-8. [PMID: 24099744 DOI: 10.1016/j.jbiomech.2013.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 08/15/2013] [Accepted: 09/01/2013] [Indexed: 11/24/2022]
Abstract
Recent computational fluid dynamics (CFD) studies relate abnormal blood flow to rupture of cerebral aneurysms. However, it is still debated how to model blood flow with sufficient accuracy. Common assumptions made include Newtonian behaviour of blood, traction free outlet boundary conditions and inlet boundary conditions based on available literature. These assumptions are often required since the available patient specific data is usually restricted to the geometry of the aneurysm and the surrounding vasculature. However, the consequences of these assumptions have so far been inadequately addressed. This study investigates the effects of 4 different viscosity models, 2 different inflow conditions and 2 different outflow conditions in 12 middle cerebral artery aneurysms. The differences are quantified in terms of 3 different wall shear stress (WSS) metrics, involving maximal WSS, average WSS, and proportion of aneurysm sac area with low WSS. The results were compared with common geometrical metrics such as volume, aspect ratio, size ratio and parent vessel diameter and classifications in terms of sex and aneurysm type. The results demonstrate strong correlations between the different viscosity models and boundary conditions. The correlation between the different WSS metrics range from weak to medium. No strong correlations were found between the different WSS metrics and the geometrical metrics or classifications.
Collapse
Affiliation(s)
- Øyvind Evju
- Center for Biomedical Computing, Simula Research Laboratory, Martin Linges vei 17, Fornebu, Norway
| | | | | |
Collapse
|
37
|
Mandelbaum M, Kolega J, Dolan JM, Siddiqui AH, Meng H. A critical role for proinflammatory behavior of smooth muscle cells in hemodynamic initiation of intracranial aneurysm. PLoS One 2013; 8:e74357. [PMID: 24023941 PMCID: PMC3759467 DOI: 10.1371/journal.pone.0074357] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/02/2013] [Indexed: 12/23/2022] Open
Abstract
Background Intracranial aneurysm initiation is poorly understood, although hemodynamic insult is believed to play an important role in triggering the pathology. It has recently been found in a rabbit model that while macrophages are absent during hemodynamic aneurysm initiation, matrix metalloproteinases (MMPs) are elevated and co-localize with smooth muscle cells (SMCs). This study investigates whether SMCs play a mechanistic role in aneurysm initiation triggered by hemodynamics. Methods Aneurysmal damage was induced at the basilar terminus via bilateral common carotid artery ligation in rabbits (n = 45, plus 7 sham controls). 16 ligated rabbits were treated with doxycycline to inhibit MMPs, 7 received clodronate liposomes to deplete circulating monocytes, and the rest received no drug. Effects of the treatments on aneurysm development were assessed histologically 5 days and 6 months after ligation. MMP production and expression of inflammatory markers by SMCs was monitored by immunohistochemistry and in situ hybridization. Results Treatment with doxycycline attenuated aneurysmal development examined at 5 days and 6 months, suggesting that MMPs contribute to aneurysm initiation. However, systemic depletion of macrophages did not decrease MMPs or suppress aneurysmal development. Immunofluorescence showed that during aneurysm initiation MMP-2 and MMP-9 were distributed in SMCs, and in situ hybridization indicated that they were transcribed by SMCs. In regions of early aneurysmal lesion, SMCs exhibited decreased expression of smooth muscle actin and increased NF-κB and MCP-1 expressions. Conclusions During aneurysm initiation triggered by hemodynamics, SMCs rather than macrophages are responsible for MMP production that is critical for aneurysmal lesion development. These SMCs exhibit proinflammatory behavior.
Collapse
Affiliation(s)
- Max Mandelbaum
- Department of Mechanical and Aerospace Engineering, State University of New York, Buffalo, New York, United States of America
- Toshiba Stroke and Vascular Research Center, State University of New York, Buffalo, New York, United States of America
| | - John Kolega
- Department Pathology and Anatomical Sciences, State University of New York, Buffalo, New York, United States of America
- Toshiba Stroke and Vascular Research Center, State University of New York, Buffalo, New York, United States of America
| | - Jennifer M. Dolan
- Department of Neurosurgery, State University of New York, Buffalo, New York, United States of America
- Toshiba Stroke and Vascular Research Center, State University of New York, Buffalo, New York, United States of America
| | - Adnan H. Siddiqui
- Departments Neurosurgery and Radiology, State University of New York, Buffalo, New York, United States of America
- Toshiba Stroke and Vascular Research Center, State University of New York, Buffalo, New York, United States of America
| | - Hui Meng
- Departments of Mechanical and Aerospace Engineering, Neurosurgery, and Biomedical Engineering, State University of New York, Buffalo, New York, United States of America
- Toshiba Stroke and Vascular Research Center, State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Kim J, Peruski B, Hunley C, Kwon S, Baek S. Influence of surrounding tissues on biomechanics of aortic wall. INTERNATIONAL JOURNAL OF EXPERIMENTAL AND COMPUTATIONAL BIOMECHANICS 2013; 2:105-117. [PMID: 25031610 PMCID: PMC4096287 DOI: 10.1504/ijecb.2013.056516] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study investigates effects of surrounding tissues and non-uniform wall thickness on the biomechanics of the thoracic aorta. We construct two idealised computational models exemplifying the importance of surrounding tissues and non-uniform wall thickness, namely the uniform-thickness model and the histology image-based model. While the former neglects a connective tissue layer surrounding the aorta, the latter takes it into account with non-uniform wall thickness. Using plane strain finite element analysis, stress distributions in the aortic media between the two models are compared. The histology image-based model substantially enhances the uniformity of stress throughout the aortic media. Furthermore, the altered mechanical properties of surrounding tissues change the stress distribution. These results suggest that surrounding tissues and non-uniform wall thickness should be included in biomechanical analysis to better understand regional adaptation of the aortic wall during normal physiological conditions or pathological conditions such as aortic aneurysms and dissections.
Collapse
Affiliation(s)
- Jungsil Kim
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824-1224, USA
| | - Brooke Peruski
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824-1224, USA
| | - Chris Hunley
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824-1224, USA
| | - Sebastian Kwon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218-2608, USA
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, 2457 Engineering Building, East Lansing, MI 48824-1226, USA
| |
Collapse
|
39
|
High wall shear stress and spatial gradients in vascular pathology: a review. Ann Biomed Eng 2012; 41:1411-27. [PMID: 23229281 DOI: 10.1007/s10439-012-0695-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/06/2012] [Indexed: 12/18/2022]
Abstract
Cardiovascular pathologies such as intracranial aneurysms (IAs) and atherosclerosis preferentially localize to bifurcations and curvatures where hemodynamics are complex. While extensive knowledge about low wall shear stress (WSS) has been generated in the past, due to its strong relevance to atherogenesis, high WSS (typically >3 Pa) has emerged as a key regulator of vascular biology and pathology as well, receiving renewed interests. As reviewed here, chronic high WSS not only stimulates adaptive outward remodeling, but also contributes to saccular IA formation (at bifurcation apices or outer curves) and atherosclerotic plaque destabilization (in stenosed vessels). Recent advances in understanding IA pathogenesis have shed new light on the role of high WSS in pathological vascular remodeling. In complex geometries, high WSS can couple with significant spatial WSS gradient (WSSG). A combination of high WSS and positive WSSG has been shown to trigger aneurysm initiation. Since endothelial cells (ECs) are sensors of WSS, we have begun to elucidate EC responses to high WSS alone and in combination with WSSG. Understanding such responses will provide insight into not only aneurysm formation, but also plaque destabilization and other vascular pathologies and potentially lead to improved strategies for disease management and novel targets for pharmacological intervention.
Collapse
|
40
|
Gutierrez J, Elkind MSV, Petito C, Chung DY, Dwork AJ, Marshall RS. The contribution of HIV infection to intracranial arterial remodeling: a pilot study. Neuropathology 2012; 33:256-63. [PMID: 23067346 DOI: 10.1111/j.1440-1789.2012.01358.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/11/2012] [Indexed: 12/01/2022]
Abstract
Pathological arterial wall changes have been cited as potential mechanisms of cerebrovascular disease in the HIV population. We hypothesize that dilatation would be present in arterial walls of patients with HIV compared to controls. Fifty-one intracranial arteries, obtained from autopsies of five individuals with HIV infection and 13 without, were fixed, embedded, stained, and digitally photographed. Cross-sectional areas of intima, media, adventitia and lumen were measured by preset color thresholding. A measure of arterial remodeling was obtained by calculating the ratio between the lumen diameter and the thickness of the arterial wall. Higher numbers indicate arterial dilatation, while lower numbers indicate arterial narrowing. HIV-infected brain donors were more frequently black (80% vs. 15%, P = 0.02) compared with uninfected donors. Inter and intra-reader agreement measures were excellent. The continuous measure of vascular remodeling was significantly higher in the arteries from HIV donors (β = 2.8, P = 0.02). Adjustments for demographics and clinical covariates strengthen this association (β = 9.3, P = 0.01). We found an association of HIV infection with outward brain arterial remodeling. This association might be mediated by a thinner media layer. The reproduction of these results and the implications of this proposed pathophysiology merits further study.
Collapse
Affiliation(s)
- Jose Gutierrez
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Dolan JM, Sim FJ, Meng H, Kolega J. Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling. Am J Physiol Cell Physiol 2011; 302:C1109-18. [PMID: 22173868 DOI: 10.1152/ajpcell.00369.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic high flow can induce arterial remodeling, and this effect is mediated by endothelial cells (ECs) responding to wall shear stress (WSS). To assess how WSS above physiological normal levels affects ECs, we used DNA microarrays to profile EC gene expression under various flow conditions. Cultured bovine aortic ECs were exposed to no-flow (0 Pa), normal WSS (2 Pa), and very high WSS (10 Pa) for 24 h. Very high WSS induced a distinct expression profile compared with both no-flow and normal WSS. Gene ontology and biological pathway analysis revealed that high WSS modulated gene expression in ways that promote an anti-coagulant, anti-inflammatory, proliferative, and promatrix remodeling phenotype. A subset of characteristic genes was validated using quantitative polymerase chain reaction: very high WSS upregulated ADAMTS1 (a disintegrin and metalloproteinase with thrombospondin motif-1), PLAU (urokinase plasminogen activator), PLAT (tissue plasminogen activator), and TIMP3, all of which are involved in extracellular matrix processing, with PLAT and PLAU also contributing to fibrinolysis. Downregulated genes included CXCL5 and IL-8 and the adhesive glycoprotein THBS1 (thrombospondin-1). Expressions of ADAMTS1 and uPA proteins were assessed by immunhistochemistry in rabbit basilar arteries experiencing increased flow after bilateral carotid artery ligation. Both proteins were significantly increased when WSS was elevated compared with sham control animals. Our results indicate that very high WSS elicits a unique transcriptional profile in ECs that favors particular cell functions and pathways that are important in vessel homeostasis under increased flow. In addition, we identify specific molecular targets that are likely to contribute to adaptive remodeling under elevated flow conditions.
Collapse
Affiliation(s)
- Jennifer M Dolan
- Toshiba Stroke Research Center, University at Buffalo, State University of New York, 14214, USA
| | | | | | | |
Collapse
|
42
|
Lee AY, Han B, Lamm SD, Fierro CA, Han HC. Effects of elastin degradation and surrounding matrix support on artery stability. Am J Physiol Heart Circ Physiol 2011; 302:H873-84. [PMID: 22159998 DOI: 10.1152/ajpheart.00463.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tortuous arteries are often associated with aging, hypertension, atherosclerosis, and degenerative vascular diseases, but the mechanisms are poorly understood. Our recent theoretical analysis suggested that mechanical instability (buckling) may lead to tortuous blood vessels. The objectives of this study were to determine the critical pressure of artery buckling and the effects of elastin degradation and surrounding matrix support on the mechanical stability of arteries. The mechanical properties and critical buckling pressures, at which arteries become unstable and deform into tortuous shapes, were determined for a group of five normal arteries using pressurized inflation and buckling tests. Another group of nine porcine arteries were treated with elastase (8 U/ml), and the mechanical stiffness and critical pressure were obtained before and after treatment. The effect of surrounding tissue support was simulated using a gelatin gel. The critical pressures of the five normal arteries were 9.52 kPa (SD 1.53) and 17.10 kPa (SD 5.11) at axial stretch ratios of 1.3 and 1.5, respectively, while model predicted critical pressures were 10.11 kPa (SD 3.12) and 17.86 kPa (SD 5.21), respectively. Elastase treatment significantly reduced the critical buckling pressure (P < 0.01). Arteries with surrounding matrix support buckled into multiple waves at a higher critical pressure. We concluded that artery buckling under luminal pressure can be predicted by a buckling equation. Elastin degradation weakens the arterial wall and reduces the critical pressure, which thus leads to tortuous vessels. These results shed light on the mechanisms of the development of tortuous vessels due to elastin deficiency.
Collapse
Affiliation(s)
- Avione Y Lee
- Department of Mechanical Engineering, Biomedical Engineering Program, University of Texas at San Antonio and the University of Texas Health Science Center at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
43
|
Kolega J, Gao L, Mandelbaum M, Mocco J, Siddiqui AH, Natarajan SK, Meng H. Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J Vasc Res 2011; 48:429-42. [PMID: 21625176 DOI: 10.1159/000324840] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/27/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Hemodynamics constitute a critical factor in the formation of intracranial aneurysms. However, little is known about how intracranial arteries respond to hemodynamic insult and how that response contributes to aneurysm formation. We examined early cellular responses at rabbit basilar termini exposed to hemodynamic insult that initiates aneurysmal remodeling. METHODS Flow in the basilar artery was increased by bilateral carotid artery ligation. After 2 and 5 days, basilar terminus tissue was examined by immunohistochemistry and quantitative PCR. RESULTS Within 2 days of flow increase, internal elastic lamina (IEL) was lost in the periapical region of the bifurcation, which experienced high wall shear stress and positive wall shear stress gradient. Overlying endothelium was still largely present in this region. IEL loss was associated with localized apoptosis and elevated expression of matrix metalloproteinases (MMPs) 2 and 9. A small number of inflammatory cells were sporadically scattered in the bifurcation adventitia and were not concentrated in regions of IEL loss and MMP elevation. Elevated MMP expression colocalized with smooth muscle α-actin in the media. CONCLUSION The initial vascular response to aneurysm-initiating hemodynamic insult includes localized matrix degradation and cell apoptosis. Such destructive remodeling arises from intrinsic mural cells, rather than through inflammatory cell infiltration.
Collapse
Affiliation(s)
- John Kolega
- Toshiba Stroke Research Center, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Monson KL, Matsumoto MM, Young WL, Manley GT, Hashimoto T. Abrupt increase in rat carotid blood flow induces rapid alteration of artery mechanical properties. J Mech Behav Biomed Mater 2011; 4:9-15. [PMID: 21094476 PMCID: PMC3058727 DOI: 10.1016/j.jmbbm.2010.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 08/06/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
Vascular remodeling is essential to proper vessel function. Dramatic changes in mechanical environment, however, may initiate pathophysiological vascular remodeling processes that lead to vascular disease. Previous work by some of our group has demonstrated a dramatic rise in matrix metalloproteinase (MMP) expression shortly following an abrupt increase in carotid blood flow. We hypothesized that there would be a corresponding change in carotid mechanical properties. Unilateral carotid ligation surgery was performed to produce an abrupt, sustained increase in blood flow through the contralateral carotid artery of rats. The flow-augmented artery was harvested after sham surgery or 1, 2, or 6 days after flow augmentation. Vessel mechanical response in the circumferential direction was then evaluated through a series of pressure-diameter tests. Results show that the extent of circumferential stretch (normalized change in diameter) at in vivo pressure levels was significantly different (p<0.05) from normo-flow controls at 1 and 2 days following flow augmentation. Measurements at 1, 2, and 6 days were not significantly different from one another, but a trend in the data suggested that circumferential stretch was largest 1 day following surgery and subsequently decreased toward baseline values. Because previous work with this model indicated a similar temporal pattern for MMP-9 expression, an exploratory set of experiments was conducted where vessels were tested 1 day following surgery in animals treated with broad spectrum MMP inhibitors (either doxycycline or GM6001). Results showed a trend for the inhibitors to minimize changes in mechanical properties. Observations demonstrate that vessel mechanical properties change rapidly following flow augmentation and that alterations may be linked to expression of MMPs.
Collapse
Affiliation(s)
- Kenneth L Monson
- Department of Mechanical Engineering, University of Utah, 50 S. Central Campus Dr., Salt Lake City, UT 84112, USA.
| | | | | | | | | |
Collapse
|
46
|
Meng H, Metaxa E, Gao L, Liaw N, Natarajan SK, Swartz DD, Siddiqui AH, Kolega J, Mocco J. Progressive aneurysm development following hemodynamic insult. J Neurosurg 2010; 114:1095-103. [PMID: 20950086 DOI: 10.3171/2010.9.jns10368] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Hemodynamic insult has been speculated to be a key factor in intracranial aneurysm formation; however, it is unclear whether a sustained insult is necessary. The authors examined whether aneurysmal degradation would continue despite the normalization of wall shear stress (WSS) by adaptive outward vascular remodeling. METHODS Twenty-five rabbits underwent either sham operation (5 animals) or bilateral common carotid artery ligation (20 animals) to augment basilar artery (BA) flow. Basilar termini (BTs) were harvested at 5 days and 3, 12, and 27 weeks postoperation. Histological changes at the BTs were quantified using an aneurysm development score (ADS) wherein the luminal length of the vessel wall exhibiting internal elastic lamina (IEL) loss, media thinning (> 30% media loss), and bulging was multiplied by the percentage of media thinning divided by the BA diameter. This score and its component variables were evaluated over the specified time points and compared with the WSS time course obtained from multiple angiography and BA flow velocity measurements. RESULTS Serial examination of histological sections from the ligation group (17 rabbits survived the procedure) demonstrated localized, progressive, degenerative, and aneurysmal changes at the BTs. Prominent IEL loss was observed in BT specimens from all ligated animals. Media thinning and luminal bulging significantly progressed over the 27-week follow-up. The composite ADS significantly increased over the study period, indicating progressive aneurysm development, although the WSS returned to preligation baseline values within 5 weeks of ligation. CONCLUSIONS Hemodynamic insult can elicit a pathological vascular response leading to a self-sustaining aneurysmal remodeling that does not require persistence of the original inciting factor to continue its pathological progression.
Collapse
Affiliation(s)
- Hui Meng
- Departments of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14214, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Metaxa E, Tremmel M, Natarajan SK, Xiang J, Paluch RA, Mandelbaum M, Siddiqui AH, Kolega J, Mocco J, Meng H. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke 2010; 41:1774-82. [PMID: 20595660 PMCID: PMC2913882 DOI: 10.1161/strokeaha.110.585992] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/14/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Hemodynamic insult by bilateral common carotid artery ligation has been shown to induce aneurysmal remodeling at the basilar terminus in a rabbit model. To characterize critical hemodynamics that initiate this remodeling, we applied a novel hemodynamics-histology comapping technique. METHODS Eight rabbits received bilateral common carotid artery ligation to increase basilar artery flow. Three underwent sham operations. Hemodynamic insult at the basilar terminus was assessed by computational fluid dynamics. Bifurcation tissue was harvested on day 5; histology was comapped with initial postligation hemodynamic fields of wall shear stress (WSS) and WSS gradient. RESULTS All bifurcations showed internal elastic lamina loss in periapical regions exposed to accelerating flow with high WSS and positive WSS gradient. Internal elastic lamina damage happened 100% of the time at locations where WSS was >122 Pa and WSS gradient was >530 Pa/mm. The degree of destructive remodeling accounting for internal elastic lamina loss, medial thinning, and luminal bulging correlated with the magnitude of the hemodynamic insult. CONCLUSIONS Aneurysmal remodeling initiates when local hemodynamic forces exceed specific limits at the rabbit basilar terminus. A combination of high WSS and positive WSS gradient represents dangerous hemodynamics likely to induce aneurysmal remodeling.
Collapse
Affiliation(s)
- Eleni Metaxa
- Toshiba Stroke Research Center, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lam H, Brink P, Qin YX. Skeletal nutrient vascular adaptation induced by external oscillatory intramedullary fluid pressure intervention. J Orthop Surg Res 2010; 5:18. [PMID: 20222973 PMCID: PMC2845561 DOI: 10.1186/1749-799x-5-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 03/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interstitial fluid flow induced by loading has demonstrated to be an important mediator for regulating bone mass and morphology. It is shown that the fluid movement generated by the intramedullary pressure (ImP) provides a source for pressure gradient in bone. Such dynamic ImP may alter the blood flow within nutrient vessel adjacent to bone and directly connected to the marrow cavity, further initiating nutrient vessel adaptation. It is hypothesized that oscillatory ImP can mediate the blood flow in the skeletal nutrient vessels and trigger vasculature remodeling. The objective of this study was then to evaluate the vasculature remodeling induced by dynamic ImP stimulation as a function of ImP frequency. METHODS Using an avian model, dynamics physiological fluid ImP (70 mmHg, peak-peak) was applied in the marrow cavity of the left ulna at either 3 Hz or 30 Hz, 10 minutes/day, 5 days/week for 3 or 4 weeks. The histomorphometric measurements of the principal nutrient arteries were done to quantify the arterial wall area, lumen area, wall thickness, and smooth muscle cell layer numbers for comparison. RESULTS The preliminary results indicated that the acute cyclic ImP stimuli can significantly enlarge the nutrient arterial wall area up to 50%, wall thickness up to 20%, and smooth muscle cell layer numbers up to 37%. In addition, 3-week of acute stimulation was sufficient to alter the arterial structural properties, i.e., increase of arterial wall area, whereas 4-week of loading showed only minimal changes regardless of the loading frequency. CONCLUSIONS These data indicate a potential mechanism in the interrelationship between vasculature adaptation and applied ImP alteration. Acute ImP could possibly initiate the remodeling in the bone nutrient vasculature, which may ultimately alter blood supply to bone.
Collapse
Affiliation(s)
- Hoyan Lam
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
49
|
Reyal J. Arterial flow focalization could increase tissue oxygen partial pressure, or trigger endothelial shear stress – A new concept to overcome cancer hypoxia-induced radiotherapy resistance, or stimulate liver regeneration during fulminant hepatitis. Med Hypotheses 2010; 74:301-8. [DOI: 10.1016/j.mehy.2009.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/06/2009] [Indexed: 12/27/2022]
|
50
|
Mapping vascular response to in vivo Hemodynamics: application to increased flow at the basilar terminus. Biomech Model Mechanobiol 2010; 9:421-34. [DOI: 10.1007/s10237-009-0185-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
|