1
|
Kim N, Ryu WS, Ha SY, Kim JY, Kang J, Baik SH, Jung C, Han MK, Bae HJ, Lin L, Parsons M, Kim BJ. Optimal Cerebral Blood Flow Thresholds for Ischemic Core Estimation Using Computed Tomography Perfusion and Diffusion-Weighted Imaging. Ann Neurol 2025; 97:919-929. [PMID: 39723650 DOI: 10.1002/ana.27169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Computed tomography perfusion (CTP) imaging is crucial in quantifying cerebral blood flow (CBF) and thereby making an endovascular treatment (EVT) after large vessel occlusion. However, CTP is prone to overestimating the ischemic core. We sought to delineate the optimal regional CBF (rCBF) thresholds of pre-EVT CTP. METHODS We collected acute ischemic stroke patients due to large vessel occlusion who achieved successful recanalization with baseline CTP, immediate post-EVT diffusion-weighted image (DWI) within 3 hours, and delayed post-EVT DWI between 24 and 196 hours. Core volumes estimated by CTP at various rCBF thresholds were validated against immediate and delayed DWI lesion volumes. RESULTS A total of 175 acute large vessel occlusion patients were included. Baseline CTP was taken in a median of 24 minutes (interquartile range [IQR] 21-31 minutes) after arrival; after the CTP, groin puncture in a median of 37 minutes (IQR 28-52 minutes), immediate post-EVT DWI scans in a median of 1.6 hours (IQR 0.8-2.1 hours), and delayed DWI scans in a median of 89 hours (IQR 69-106 hours). The correlations between the rCBF thresholds were the best at rCBF <22% for immediate DWI (0.64; 95% CI 0.55-0.73) and at rCBF <30% for delayed DWI (0.69; 95% CI 0.61-0.76). The interval between CTP and recanalization was inversely correlated with the overestimation of ischemic core volume compared with the subsequent DWI. INTERPRETATION Optimal rCBF thresholds for estimating ischemic core using CTP depend significantly on the timing of DWI post-EVT and CTP to recanalization delay. The optimal rCBF thresholds for ischemic core estimation may vary depending on the clinical setting. ANN NEUROL 2025;97:919-929.
Collapse
Affiliation(s)
- Nakhoon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Wi-Sun Ryu
- Artificial Intelligence Research Center, JLK, Seoul, South Korea
| | - Sue Young Ha
- Artificial Intelligence Research Center, JLK, Seoul, South Korea
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jun Yup Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Jihoon Kang
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Sung Hyun Baik
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Cheolkyu Jung
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Moon-Ku Han
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, South Korea
- Department of Neuroscience, Seoul National University College of Medicine, Seoul, South Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, South Korea
- Department of Neuroscience, Seoul National University College of Medicine, Seoul, South Korea
| | - Longting Lin
- Department of Neurology, South Western Sydney Clinical School, Ingham Institute of Applied Medical Research, Liverpool Hospital, University of New South Wales, Liverpool, New South Wales, Australia
| | - Mark Parsons
- Department of Neurology, South Western Sydney Clinical School, Ingham Institute of Applied Medical Research, Liverpool Hospital, University of New South Wales, Liverpool, New South Wales, Australia
| | - Beom Joon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| |
Collapse
|
2
|
Goris LC, Zaid Al-Kaylani AHA, Schuurmann RCL, Greuter MJW, Bokkers RPH, Manohar S. Development of a cerebral CT perfusion phantom: A structured approach. Phys Med 2025; 131:104944. [PMID: 39985960 DOI: 10.1016/j.ejmp.2025.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
INTRODUCTION Computed tomography perfusion (CTP) imaging is crucial in diagnosing and managing vascular diseases, e.g, stroke. Differences in scanners and protocols may lead to different results, affecting clinical decision-making. Objective validation and evaluation of CTP imaging are therefore important. Perfusion phantoms are essential test objects to facilitate the validation and evaluation of perfusion imaging. Therefore, this study aimed to develop, validate and evaluate a brain perfusion phantom for the evaluation of cerebral CTP. METHODS A cerebral perfusion phantom was developed to evaluate CTP imaging of the brain using a workflow based on the Design Science Research Methodology. The reliability and repeatability of the phantom's perfusion parameters derived from the time-density curves (TDCs) in CTP were evaluated. RESULTS A 3D-printed modular perfusion phantom was developed, filled with sodium alginate beads, and connected to a pumping system to mimic microvasculature and flow dynamics. The phantom consisted of three compartments that simulated different states of perfusion. The phantom showed reliable TDCs, with a relative standard deviation of <6.6 % for peak intensity and time-to-peak (TTP) over two sets of five repeated experiments for all compartments, and repeatable TTP and mean transit time values with a repeatability coefficient of <2.3 s compared to the mean. CONCLUSIONS The developed perfusion phantom demonstrated high reliability and could be employed for investigating CTP imaging under various flow speeds. The presented workflow promotes transparency in the development, validation, and application of CTP phantoms, and facilitates cross-study comparisons through structured iterative development and unified evaluation metrics.
Collapse
Affiliation(s)
- Liselot C Goris
- Multi-Modality Medical Imaging Group, Techmed Center, University of Twente, Enschede, the Netherlands.
| | - Abdallah H A Zaid Al-Kaylani
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Groningen, the Netherlands; Department of Surgery, Division of Vascular Surgery, University Medical Center Groningen, Groningen, the Netherlands.
| | - Richte C L Schuurmann
- Department of Surgery, Division of Vascular Surgery, University Medical Center Groningen, Groningen, the Netherlands.
| | - Marcel J W Greuter
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Groningen, the Netherlands.
| | - Reinoud P H Bokkers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Groningen, the Netherlands.
| | - Srirang Manohar
- Multi-Modality Medical Imaging Group, Techmed Center, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
3
|
Yang CC, Chen SS. Infarct core segmentation using U-Net in CT perfusion imaging: a feasibility study. Acta Radiol 2025; 66:245-255. [PMID: 39846186 DOI: 10.1177/02841851241305736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
BackgroundThe wide variability in thresholds on computed tomography (CT) perfusion parametric maps has led to controversy in the stroke imaging community about the most accurate measurement of core infarction.PurposeTo investigate the feasibility of using U-Net to perform infarct core segmentation in CT perfusion imaging.Material and MethodsCT perfusion parametric maps were the input of U-Net, while the ground truth segmentation was determined based on diffusion-weighted imaging (DWI). The dataset used in this study was from the ISLES2018 challenge, which contains 63 acute stroke patients receiving CT perfusion imaging and DWI within 8 h of stroke onset. The segmentation accuracy of model outputs was assessed by calculating Dice similarity coefficient (DSC), sensitivity, and intersection over union (IoU).ResultsThe highest DSC was observed in U-Net taking mean transit time (MTT) or time-to-maximum (Tmax) as input. Meanwhile, the highest sensitivity and IoU were observed in U-Net taking Tmax as input. A DSC in the range of 0.2-0.4 was found in U-Net taking Tmax as input when the infarct area contains < 1000 pixels. A DSC of 0.4-0.6 was found in U-Net taking Tmax as input when the infarct area contains 1000-1999 pixels. A DSC value of 0.6-0.8 was found in U-Net taking Tmax as input when the infarct area contains ≥ 2000 pixels.ConclusionOur model achieved good performance for infarct area containing ≥ 2000 pixels, so it may assist in identifying patients who are contraindicated for intravenous thrombolysis.
Collapse
Affiliation(s)
- Ching-Ching Yang
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
| | - Shih-Sheng Chen
- Department of Medical Imaging, Dalin Tzu-Chi Hospital, Chiayi, Taiwan
| |
Collapse
|
4
|
Mortimer A, Flood R, Dunkerton S, McClelland SB, Minks D, Crossley R, Wareham J, Smith A, Cox A, Bosnell R. Is there a simple and accessible solution to improve acute infarct core imaging? The utility of steady-state CT angiographic source images obtained from a delayed phase acquisition. Interv Neuroradiol 2025:15910199251315790. [PMID: 39871790 PMCID: PMC11775942 DOI: 10.1177/15910199251315790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Early identification and quantification of core infarct is of importance in stroke management for treatment selection, prognostication, and complication prediction. Non-contrast computed tomography (CT) (NCCT) remains the primary tool, but it suffers from limited sensitivity and inter-rater variability; CT perfusion is inconsistently available and commonly blighted by movement artefact. We assessed the performance of a standardised form of CT angiographic source imaging (CTASI) obtained through addition of a delayed phase at 40 seconds post-contrast injection (DP40) following fast-acquisition CT angiography. METHODS Contrast resolution between ischaemic and normal grey matter (GM) was compared qualitatively and quantitatively to NCCT. Using Alberta Stroke Program Early CT Score (ASPECTS), DP40 low density was compared to NCCT and venous phase CT perfusion source images (CTPSI) and to 24-hour NCCT ASPECTS in patients with timely endovascular recanalisation (Thrombolysis In Cerebral Infarction 2C/3). RESULTS Seventy-four patients with a proximal middle cerebral artery or terminal internal carotid artery occlusion were included. The mean attenuation difference between ischaemic and normal GM increased from 4.86+/-3.12 HU (NCCT) to 9.30+/-3.14 HU (DP40) (p < 0.0001). Subjective assessment by two raters revealed that DP40 improved ischaemic tissue conspicuity in 39 to 41 (78-82%) of cases (kappa 0.805, standard error 0.108, 95% confidence interval: 0.593-1.000). The correlation between ASPECTS on baseline imaging and eventual 24-hour ASPECTS improved from R = 0.7197 for NCCT to R = 0.9875 for DP40 (z = 7.89, p < 0.0001). The correlation between DP40 and venous phase CTPSI ASPECTS was 0.9681, p < 0.0001. CONCLUSION DP40 CTASI represent a simple technique for improving detection and estimation of extent of ischaemia over NCCT and show close correlation with surrogate measures of infarct core.
Collapse
Affiliation(s)
- Alex Mortimer
- Department on Interventional Neuroradiology, North Bristol NHS Trust, Bristol, UK
| | - Richard Flood
- Department on Interventional Neuroradiology, North Bristol NHS Trust, Bristol, UK
| | - Sophie Dunkerton
- Department on Interventional Neuroradiology, North Bristol NHS Trust, Bristol, UK
| | - Sarah Beth McClelland
- Department on Stroke Medicine and Vascular Neurology, North Bristol NHS Trust, Bristol, UK
| | - David Minks
- Department on Interventional Neuroradiology, North Bristol NHS Trust, Bristol, UK
| | - Robert Crossley
- Department on Interventional Neuroradiology, North Bristol NHS Trust, Bristol, UK
| | - James Wareham
- Department on Interventional Neuroradiology, North Bristol NHS Trust, Bristol, UK
| | - Aubrey Smith
- Department on Interventional Neuroradiology, North Bristol NHS Trust, Bristol, UK
| | - Anthony Cox
- Department on Interventional Neuroradiology, North Bristol NHS Trust, Bristol, UK
| | - Rose Bosnell
- Department on Stroke Medicine and Vascular Neurology, North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
5
|
Crouch JJF, Boutelier T, Davis A, Shiraz Bhurwani MM, Snyder KV, Papageorgakis C, Raguenes D, Ionita CN. Evaluating the effect of noise reduction strategies in CT perfusion imaging for predicting infarct core with deep learning. Neuroradiol J 2025:19714009251313517. [PMID: 39789894 PMCID: PMC11719424 DOI: 10.1177/19714009251313517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
This study evaluates the efficacy of deep learning models in identifying infarct tissue on computed tomography perfusion (CTP) scans from patients with acute ischemic stroke due to large vessel occlusion, specifically addressing the potential influence of varying noise reduction techniques implemented by different vendors. We analyzed CTP scans from 60 patients who underwent mechanical thrombectomy achieving a modified thrombolysis in cerebral infarction (mTICI) score of 2c or 3, ensuring minimal changes in the infarct core between the initial CTP and follow-up MR imaging. Noise reduction techniques, including principal component analysis (PCA), wavelet, non-local means (NLM), and a no denoising approach, were employed to create hemodynamic parameter maps. Infarct regions identified on follow-up diffusion-weighted imaging (DWI) within 48 hours were co-registered with initial CTP scans and refined with ADC maps to serve as ground truth for training a data-augmented U-Net model. The performance of this convolutional neural network (CNN) was assessed using Dice coefficients across different denoising methods and infarct sizes, visualized through box plots for each parameter map. Our findings show no significant differences in model accuracy between PCA and other denoising methods, with minimal variation in Dice scores across techniques. This study confirms that CNNs are adaptable and capable of handling diverse processing schemas, indicating their potential to streamline diagnostic processes and effectively manage CTP input data quality variations.
Collapse
Affiliation(s)
- James J. F. Crouch
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| | | | - Adam Davis
- Research and Innovation, Olea Medical, La Ciotat, France
| | | | | | | | | | - Ciprian N. Ionita
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
6
|
Marcus A, Mair G, Chen L, Hallett C, Cuervas-Mons CG, Roi D, Rueckert D, Bentley P. Deep learning biomarker of chronometric and biological ischemic stroke lesion age from unenhanced CT. NPJ Digit Med 2024; 7:338. [PMID: 39643604 PMCID: PMC11624201 DOI: 10.1038/s41746-024-01325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/03/2024] [Indexed: 12/09/2024] Open
Abstract
Estimating progression of acute ischemic brain lesions - or biological lesion age - holds huge practical importance for hyperacute stroke management. The current best method for determining lesion age from non-contrast computerised tomography (NCCT), measures Relative Intensity (RI), termed Net Water Uptake (NWU). We optimised lesion age estimation from NCCT using a convolutional neural network - radiomics (CNN-R) model trained upon chronometric lesion age (Onset Time to Scan: OTS), while validating against chronometric and biological lesion age in external datasets (N = 1945). Coefficients of determination (R2) for OTS prediction, using CNN-R, and RI models were 0.58 and 0.32 respectively; while CNN-R estimated OTS showed stronger associations with ischemic core:penumbra ratio, than RI and chronometric, OTS (ρ2 = 0.37, 0.19, 0.11); and with early lesion expansion (regression coefficients >2x for CNN-R versus others) (all comparisons: p < 0.05). Concluding, deep-learning analytics of NCCT lesions is approximately twice as accurate as NWU for estimating chronometric and biological lesion ages.
Collapse
Affiliation(s)
- Adam Marcus
- Department of Brain Sciences, Imperial College London, London, UK
| | - Grant Mair
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Liang Chen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Charles Hallett
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Dylan Roi
- Department of Brain Sciences, Imperial College London, London, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
- Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Paul Bentley
- Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
7
|
Mutimer CA, Mujanovic A, Kaesmacher J, Churilov L, Kleinig TJ, Parsons MW, Mitchell PJ, Campbell BCV, Ng F. Comparison of Perfusion Imaging Definitions of the No-Reflow Phenomenon after Thrombectomy-What Is the Best Perfusion Imaging Definition? Ann Neurol 2024; 96:1104-1114. [PMID: 39225109 DOI: 10.1002/ana.27073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The no-reflow phenomenon is a potential contributor to poor outcome despite successful thrombectomy. There are multiple proposed imaging-based definitions of no-reflow leading to wide variations in reported prevalence. We investigated the agreement between existing imaging definitions and compared the characteristics and outcomes of patients identified as having no-reflow. METHODS We performed an external validation of 4 existing published definitions of no-reflow in thrombectomy patients with extended Thrombolysis in Cerebral Infarction scale 2c to 3 (eTICI2c-3) angiographic reperfusion who underwent 24-hour perfusion imaging from 2 international randomized controlled trials (EXTEND-IA TNK part-1 and 2) and a multicenter prospective observational study. Receiver-operating-characteristic and Bayesian-information-criterion (BIC) analyses were performed with the outcome variable being dependent-or-dead at 90-days (modified Rankin Score [mRS] ≥3). RESULTS Of 131 patients analyzed, the prevalence of no-reflow significantly varied between definitions (0.8-22.1%; p < 0.001). There was poor agreement between definitions (kappa 5/6 comparisons <0.212). Among patients with no-reflow according to at least 1 definition, there were significant differences between definitions in the intralesional interside differences in cerebral blood flow (CBF) (p = 0.006), cerebral blood volume (CBV) (p < 0.001), and mean-transit-time (MTT) (p = 0.005). No-reflow defined by 3 definitions was associated with mRS ≥3 at 90 days. The definition of >15% CBV or CBF asymmetry was the only definition that improved model fit on BIC analysis (ΔBIC = -8.105) and demonstrated an association between no-reflow and clinical outcome among patients with eTICI3 reperfusion. CONCLUSIONS Existing imaging definitions of no-reflow varied significantly in prevalence and post-treatment perfusion imaging profile, potentially explaining the variable prevalence of no-reflow reported in literature. The definition of >15% CBV or CBF asymmetry best discriminated for functional outcome at 90 days, including patients with eTICI3 reperfusion. ANN NEUROL 2024;96:1104-1114.
Collapse
Affiliation(s)
- Chloe A Mutimer
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Adnan Mujanovic
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Johannes Kaesmacher
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Leonid Churilov
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Timothy J Kleinig
- Department of Neurology, Royal Adelaide Hospital, Adelaide, Australia
| | - Mark W Parsons
- University of New South Wales, Liverpool Hospital, Sydney, Australia
| | - Peter J Mitchell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
- Department of Radiology, Royal Melbourne Hospital, Parkville, Australia
| | - Bruce C V Campbell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Felix Ng
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
- Department of Neurology, Austin Health, Parkville, Australia
| |
Collapse
|
8
|
Lakatos LB, Bolognese M, Österreich M, Müller M, Karwacki GM. Pretreatment Cranial Computed Tomography Perfusion Predicts Dynamic Cerebral Autoregulation Changes in Acute Hemispheric Stroke Patients Having Undergone Recanalizing Therapy: A Retrospective Study. Neurol Int 2024; 16:1636-1652. [PMID: 39728745 DOI: 10.3390/neurolint16060119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES Blood pressure (BP) management is challenging in patients with acute ischemic supratentorial stroke undergoing recanalization therapy due to the lack of established guidelines. Assessing dynamic cerebral autoregulation (dCA) may address this need, as it is a bedside technique that evaluates the transfer function phase in the very low-frequency (VLF) range (0.02-0.07 Hz) between BP and cerebral blood flow velocity (CBFV) in the middle cerebral artery. This phase is a prognostically relevant parameter, with lower values associated with poorer outcomes. This study aimed to evaluate whether early cranial computed tomography perfusion (CTP) can predict this parameter. METHODS In this retrospective study, 165 consecutive patients with hemispheric strokes who underwent recanalizing therapy were included (median age: 73 years; interquartile range (IQR) 60-80; women: 43 (26%)). The cohort comprised 91 patients treated with intravenous thrombolysis (IV-lysis) alone (median National Institute of Health Stroke Scale (NIHSS) score: 5; IQR 3-7) and 74 patients treated with mechanical thrombectomy (median NIHSS: 15; IQR 9-18). Regression analysis was performed to assess the relationship between pretreatment CTP-derived ischemic penumbra and core stroke volumes and the dCA VLF phase, as well as CBFV assessed within the first 72 h post-stroke event. RESULTS Pretreatment penumbra volume was a significant predictor of the VLF phase (adjusted r2 = 0.040; β = -0.001, 95% confidence interval (CI): -0.0018 to -0.0002, p = 0.02). Core infarct volume was a stronger predictor of CBFV (adjusted r2 = 0.082; β = 0.205, 95% CI: 0.0968-0.3198; p = 0.0003) compared to penumbra volume (p = 0.01). Additionally, in the low-frequency range (0.07-0.20 Hz), CBFV and BP were inversely related to the gain, an index of vascular tone. CONCLUSION CTP metrics appear to correlate with the outcome-relevant VLF phase and reactive hyperemic CBFV, which interact with BP to influence vascular tone and gain. These aspects of dCA could potentially guide BP management in patients with acute stroke undergoing recanalization therapy. However, further validation is required.
Collapse
Affiliation(s)
- Lehel-Barna Lakatos
- Department of Neurology and Neurorehabilitation, Section Neuroradiology, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
| | - Manuel Bolognese
- Department of Neurology and Neurorehabilitation, Section Neuroradiology, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
| | - Mareike Österreich
- Department of Neurology and Neurorehabilitation, Section Neuroradiology, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
| | - Martin Müller
- Department of Neurology and Neurorehabilitation, Section Neuroradiology, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
| | - Grzegorz Marek Karwacki
- Department of Radiology, Section Neuroradiology, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
| |
Collapse
|
9
|
Lolli VE, Guenego A, Sadeghi N, Jodaitis L, Lubicz B, Taccone FS, Gouvea Bogossian E. CT perfusion imaging in aneurysmal subarachnoid hemorrhage. State of the art. FRONTIERS IN RADIOLOGY 2024; 4:1445676. [PMID: 39434941 PMCID: PMC11491345 DOI: 10.3389/fradi.2024.1445676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
CT perfusion (CTP) images can be easily and rapidly obtained on all modern CT scanners and have become part of the routine imaging protocol of patients with aneurysmal subarachnoid haemorrhage (aSAH). There is a growing body of evidence supporting the use of CTP imaging in these patients, however, there are significant differences in the software packages and methods of analysing CTP. In. addition, no quantitative threshold values for tissue at risk (TAR) have been validated in this patients' population. Here we discuss the contribution of the technique in the identification of patients at risk of aSAH-related delayed cerebral ischemia (DCI) and in the assessment of the response to endovascular rescue therapy (ERT). We also address the limitations and pitfalls of automated CTP postprocessing that are specific to aSAH patients as compared to acute ischemic stroke (AIS).
Collapse
Affiliation(s)
| | - Adrien Guenego
- Radiology Department, Hôpital Erasme- H.U.B., Brussels, Belgium
- Interventional Neuroradiology Department, Hôpital Erasme- H.U.B., Brussels, Belgium
| | | | - Lise Jodaitis
- Neurology Department, Hôpital Erasme- H.U.B., Brussels, Belgium
| | - Boris Lubicz
- Interventional Neuroradiology Department, Hôpital Erasme- H.U.B., Brussels, Belgium
| | | | | |
Collapse
|
10
|
Wang T, Jin X, Yang P, Li S, Zhang Q, Shao C, Lu J, Jin X, Chen L. A clinical and computed tomography-based nomogram to predict the outcome in patients with anterior circulation large vessel occlusion after endovascular mechanical thrombectomy. Jpn J Radiol 2024; 42:973-982. [PMID: 38700623 DOI: 10.1007/s11604-024-01583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 08/31/2024]
Abstract
PURPOSE To explore the positive predictors of the clinical outcome in acute ischemic stroke (AIS) patients with anterior circulation large vessel occlusion (ACLVO) after endovascular mechanical thrombectomy (EMT) at a 90-day follow-up, and to establish a nomogram model to predict the clinical outcome. MATERIALS AND METHODS AIS patients with ACLVO detected by multimodal Computed Tomography imaging who underwent EMT were collected. Patients were divided into the favorable and the unfavorable groups according to the 90-day modified Rankin Scale (mRS) score. Univariate and multivariate analyses were performed to investigate predictors of the favorable outcome (mRS of 0-2). A nomogram model for predicting the clinical outcome after EMT was drawn, and the receiver operating characteristic (ROC) curve was used to evaluate its predictive value. RESULTS Totally 105 patients including 65 patients in the favorable group and 40 in the unfavorable group were enrolled. Multivariate logistic regression analysis showed that admission National Institute of Health Stroke scale (NIHSS) score [0.858 (95% CI 0.778-0.947)], ACLVO at M2 [20.023 (95% CI 2.204-181.907)] and infarct core (IC) volume [0.943 (95% CI 0.917-0.969)] was positively correlated with favorable outcome. The accuracy of the nomogram model in predicting the outcome was 0.923 (95% CI 0.870-0.976), with a cutoff value of 119.6 points. The area under the ROC curve was 0.848 (95% CI 0.780-0.917; sensitivity, 79.7%; specificity, 90.0%). CONCLUSION A low Admission NIHSS score, ACLVO at M2, and a small IC volume were positive predictors for favorable outcome. The nomogram model may well predict the outcome in AIS patients with ACLVO after EMT.
Collapse
Affiliation(s)
- Tiegong Wang
- Department of Radiology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Xiangyu Jin
- Hainan College of Economics and Business, Haikou, 571127, Hainan, China
| | - Panpan Yang
- Department of Radiology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Shuai Li
- Department of Radiology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Qianwen Zhang
- Department of Radiology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Xianglan Jin
- Department of Intensive Care Unit, Shanghai Tenth People's Hospital, Tongji University, No. 301 Yanchang Middle Road, Shanghai, 200072, China.
| | - Luguang Chen
- Department of Radiology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
11
|
Allphin AJ, Nadkarni R, Clark DP, Gil CJ, Tomov ML, Serpooshan V, Badea CT. Turn-table micro-CT scanner for dynamic perfusion imaging in mice: design, implementation, and evaluation. Phys Med Biol 2024; 69:10.1088/1361-6560/ad6edd. [PMID: 39137802 PMCID: PMC11444210 DOI: 10.1088/1361-6560/ad6edd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective.This study introduces a novel desktop micro-CT scanner designed for dynamic perfusion imaging in mice, aimed at enhancing preclinical imaging capabilities with high resolution and low radiation doses.Approach.The micro-CT system features a custom-built rotating table capable of both circular and helical scans, enabled by a small-bore slip ring for continuous rotation. Images were reconstructed with a temporal resolution of 3.125 s and an isotropic voxel size of 65µm, with potential for higher resolution scanning. The system's static performance was validated using standard quality assurance phantoms. Dynamic performance was assessed with a custom 3D-bioprinted tissue-mimetic phantom simulating single-compartment vascular flow. Flow measurements ranged from 1.51to 9 ml min-1, with perfusion metrics such as time-to-peak, mean transit time, and blood flow index calculated.In vivoexperiments involved mice with different genetic risk factors for Alzheimer's and cardiovascular diseases to showcase the system's capabilities for perfusion imaging.Main Results.The static performance validation confirmed that the system meets standard quality metrics, such as spatial resolution and uniformity. The dynamic evaluation with the 3D-bioprinted phantom demonstrated linearity in hemodynamic flow measurements and effective quantification of perfusion metrics.In vivoexperiments highlighted the system's potential to capture detailed perfusion maps of the brain, lungs, and kidneys. The observed differences in perfusion characteristics between genotypic mice illustrated the system's capability to detect physiological variations, though the small sample size precludes definitive conclusions.Significance.The turn-table micro-CT system represents a significant advancement in preclinical imaging, providing high-resolution, low-dose dynamic imaging for a range of biological and medical research applications. Future work will focus on improving temporal resolution, expanding spectral capabilities, and integrating deep learning techniques for enhanced image reconstruction and analysis.
Collapse
Affiliation(s)
- A. J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - R. Nadkarni
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - D. P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - C. J. Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - M. L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - V. Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - C. T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
12
|
Alwood BT, Meyer DM, Ionita C, Snyder KV, Santos R, Perrotta L, Crooks R, Van Orden K, Torres D, Poynor B, Pham N, Kelly S, Meyer BC, Bolar DS. Multicenter comparison using two AI stroke CT perfusion software packages for determining thrombectomy eligibility. J Stroke Cerebrovasc Dis 2024; 33:107750. [PMID: 38703875 PMCID: PMC11366438 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Stroke AI platforms assess infarcted core and potentially salvageable tissue (penumbra) to identify patients suitable for mechanical thrombectomy. Few studies have compared outputs of these platforms, and none have been multicenter or considered NIHSS or scanner/protocol differences. Our objective was to compare volume estimates and thrombectomy eligibility from two widely used CT perfusion (CTP) packages, Viz.ai and RAPID.AI, in a large multicenter cohort. METHODS We analyzed CTP data of acute stroke patients with large vessel occlusion (LVO) from four institutions. Core and penumbra volumes were estimated by each software and DEFUSE-3 thrombectomy eligibility assessed. Results between software packages were compared and categorized by NIHSS score, scanner manufacturer/model, and institution. RESULTS Primary analysis of 362 cases found statistically significant differences in both software's volume estimations, with subgroup analysis showing these differences were driven by results from a single scanner model, the Canon Aquilion One. Viz.ai provided larger estimates with mean differences of 8cc and 18cc for core and penumbra, respectively (p<0.001). NIHSS subgroup analysis also showed systematically larger Viz.ai volumes (p<0.001). Despite volume differences, a significant difference in thrombectomy eligibility was not found. Additional subgroup analysis showed significant differences in penumbra volume for the Phillips Ingenuity scanner, and thrombectomy eligibility for the Canon Aquilion One scanner at one center (7 % increased eligibility with Viz.ai, p=0.03). CONCLUSIONS Despite systematic differences in core and penumbra volume estimates between Viz.ai and RAPID.AI, DEFUSE-3 eligibility was not statistically different in primary or NIHSS subgroup analysis. A DEFUSE-3 eligibility difference, however, was seen on one scanner at one institution, suggesting scanner model and local CTP protocols can influence performance and cause discrepancies in thrombectomy eligibility. We thus recommend centers discuss optimal scanning protocols with software vendors and scanner manufacturers to maximize CTP accuracy.
Collapse
Affiliation(s)
- Benjamin T Alwood
- Department of Vascular Neurology, University of Florida, Jacksonville, FL, United States; University of California San Diego Stroke Center, University of California San Diego, San Diego, CA, United States.
| | - Dawn M Meyer
- University of California San Diego Stroke Center, University of California San Diego, San Diego, CA, United States
| | - Chip Ionita
- Department of Biomedical Engineering and Neurosurgery, University at Buffalo, Buffalo NY, United States
| | - Kenneth V Snyder
- Department of Biomedical Engineering and Neurosurgery, University at Buffalo, Buffalo NY, United States
| | - Roberta Santos
- Department of Vascular Neurology, University of Florida, Jacksonville, FL, United States
| | - Lindsey Perrotta
- Department of Vascular Neurology, University of Florida, Jacksonville, FL, United States
| | - Ryan Crooks
- Department of Vascular Neurology, University of Florida, Jacksonville, FL, United States
| | - Kimberlee Van Orden
- University of California San Diego Stroke Center, University of California San Diego, San Diego, CA, United States
| | - Dolores Torres
- University of California San Diego Stroke Center, University of California San Diego, San Diego, CA, United States
| | - Briana Poynor
- University of California San Diego Stroke Center, University of California San Diego, San Diego, CA, United States
| | - Nhan Pham
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Sophie Kelly
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Brett C Meyer
- University of California San Diego Stroke Center, University of California San Diego, San Diego, CA, United States
| | - Divya S Bolar
- Department of Radiology, University of California San Diego, San Diego, CA, United States; Center for Functional MRI, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
13
|
Talebi S, Gai S, Sossin A, Zhu V, Tong E, Mofrad MRK. Deep Learning for Perfusion Cerebral Blood Flow (CBF) and Volume (CBV) Predictions and Diagnostics. Ann Biomed Eng 2024; 52:1568-1575. [PMID: 38402314 PMCID: PMC11082011 DOI: 10.1007/s10439-024-03471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Dynamic susceptibility contrast magnetic resonance perfusion (DSC-MRP) is a non-invasive imaging technique for hemodynamic measurements. Various perfusion parameters, such as cerebral blood volume (CBV) and cerebral blood flow (CBF), can be derived from DSC-MRP, hence this non-invasive imaging protocol is widely used clinically for the diagnosis and assessment of intracranial pathologies. Currently, most institutions use commercially available software to compute the perfusion parametric maps. However, these conventional methods often have limitations, such as being time-consuming and sensitive to user input, which can lead to inconsistent results; this highlights the need for a more robust and efficient approach like deep learning. Using the relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) perfusion maps generated by FDA-approved software, we trained a multistage deep learning model. The model, featuring a combination of a 1D convolutional neural network (CNN) and a 2D U-Net encoder-decoder network, processes each 4D MRP dataset by integrating temporal and spatial features of the brain for voxel-wise perfusion parameters prediction. An auxiliary model, with similar architecture, but trained with truncated datasets that had fewer time-points, was designed to explore the contribution of temporal features. Both qualitatively and quantitatively evaluated, deep learning-generated rCBV and rCBF maps showcased effective integration of temporal and spatial data, producing comprehensive predictions for the entire brain volume. Our deep learning model provides a robust and efficient approach for calculating perfusion parameters, demonstrating comparable performance to FDA-approved commercial software, and potentially mitigating the challenges inherent to traditional techniques.
Collapse
Affiliation(s)
- Salmonn Talebi
- Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall #1762, Berkeley, CA, 94720-1762, USA
| | - Siyu Gai
- Departments of Electrical Engineering and Computer Science, University of California, Berkeley, California, USA
| | - Aaron Sossin
- Department of Bioinformatics, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Vivian Zhu
- Department of Bioinformatics, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Elizabeth Tong
- Department of Radiology, Stanford School of Medicine, Stanford University, 725 Welch Rd Rm 1860, Palo Alto, Stanford, CA, 94304, USA.
| | - Mohammad R K Mofrad
- Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall #1762, Berkeley, CA, 94720-1762, USA.
| |
Collapse
|
14
|
Medicherla C, Pashun R, Al-Mufti F. Review of Cerebral Collateral Circulation and Insight into Cardiovascular Strategies to Limit Collateral Damage in Ischemic Stroke. Cardiol Rev 2024; 32:188-193. [PMID: 37729598 DOI: 10.1097/crd.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cerebral collateral circulation is a dynamic and adaptive process by which alternative vascular pathways supply perfusion to ischemic brain tissue in the event of an arterial occlusion. This complicated network of blood vessels that acts as a natural bypass plays a pivotal role in stroke pathophysiology and has become a key area of study given its significance in stroke treatment and patient outcomes. In this review, we will study the factors influencing the formation, recruitment, and endurance of collateral vessels; discuss imaging modalities for quantitative and qualitative assessment of this network; explore the role of collaterals in stroke management; and highlight several cardiovascular strategies to minimize damage to collaterals and optimize stroke outcomes.
Collapse
Affiliation(s)
| | - Raymond Pashun
- Department of Cardiology, New York University Langone Health, New York, NY
| | - Fawaz Al-Mufti
- Department of Neurology, Neurosurgery, and Radiology, New York Medical College, Valhalla, NY
| |
Collapse
|
15
|
Soltanpour M, Boulanger P, Buck B. CT Perfusion Map Synthesis from CTP Dynamic Images Using a Learned LSTM Generative Adversarial Network for Acute Ischemic Stroke Assessment. J Med Syst 2024; 48:37. [PMID: 38564061 DOI: 10.1007/s10916-024-02054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Computed tomography perfusion (CTP) is a dynamic 4-dimensional imaging technique (3-dimensional volumes captured over approximately 1 min) in which cerebral blood flow is quantified by tracking the passage of a bolus of intravenous contrast with serial imaging of the brain. To diagnose and assess acute ischemic stroke, the standard method relies on summarizing acquired CTPs over the time axis to create maps that show different hemodynamic parameters, such as the timing of the bolus arrival and passage (Tmax and MTT), cerebral blood flow (CBF), and cerebral blood volume (CBV). However, producing accurate CTP maps requires the selection of an arterial input function (AIF), i.e. a time-concentration curve in one of the large feeding arteries of the brain, which is a highly error-prone procedure. Moreover, during approximately one minute of CT scanning, the brain is exposed to ionizing radiation that can alter tissue composition, and create free radicals that increase the risk of cancer. This paper proposes a novel end-to-end deep neural network that synthesizes CTP images to generate CTP maps using a learned LSTM Generative Adversarial Network (LSTM-GAN). Our proposed method can improve the precision and generalizability of CTP map extraction by eliminating the error-prone and expert-dependent AIF selection step. Further, our LSTM-GAN does not require the entire CTP time series and can produce CTP maps with a reduced number of time points. By reducing the scanning sequence from about 40 to 9 time points, the proposed method has the potential to minimize scanning time thereby reducing patient exposure to CT radiation. Our evaluations using the ISLES 2018 challenge dataset consisting of 63 patients showed that our model can generate CTP maps by using only 9 snapshots, without AIF selection, with an accuracy of 84.37 % .
Collapse
Affiliation(s)
- Mohsen Soltanpour
- Computing Science Department, University of Alberta, Edmonton, Canada.
| | - Pierre Boulanger
- Computing Science Department, University of Alberta, Edmonton, Canada
| | - Brian Buck
- Medicine Deptment, University of Alberta, Edmonton, Canada
| |
Collapse
|
16
|
Chung KJ, Lee TY. To be or not to be a pervious thrombus in acute ischemic stroke: does functional outcome after mechanical thrombectomy depend on clot time-attenuation curves? Eur Radiol 2024; 34:2195-2197. [PMID: 37851123 DOI: 10.1007/s00330-023-10313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Affiliation(s)
- Kevin J Chung
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA.
| | - Ting-Yim Lee
- Robarts Research Institute and Lawson Health Research Institute, London, ON, Canada
- Department of Medical Imaging, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Rau A, Reisert M, Taschner CA, Demerath T, Elsheikh S, Frank B, Köhrmann M, Urbach H, Kellner E. Reducing False-Positives in CT Perfusion Infarct Core Segmentation Using Contralateral Local Normalization. AJNR Am J Neuroradiol 2024; 45:277-283. [PMID: 38302197 PMCID: PMC11286109 DOI: 10.3174/ajnr.a8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND AND PURPOSE The established global threshold of rCBF <30% for infarct core segmentation can lead to false-positives, as it does not account for the differences in blood flow between GM and WM and patient-individual factors, such as microangiopathy. To mitigate this problem, we suggest normalizing each voxel not only with a global reference value (ie, the median value of normally perfused tissue) but also with its local contralateral counterpart. MATERIALS AND METHODS We retrospectively enrolled 2830 CTP scans with suspected ischemic stroke, of which 335 showed obvious signs of microangiopathy. In addition to the conventional, global normalization, a local normalization was performed by dividing the rCBF maps with their mirrored and smoothed counterpart, which sets each voxel value in relation to the contralateral counterpart, intrinsically accounting for GM and WM differences and symmetric patient individual microangiopathy. Maps were visually assessed and core volumes were calculated for both methods. RESULTS Cases with obvious microangiopathy showed a strong reduction in false-positives by using local normalization (mean 14.7 mL versus mean 3.7 mL in cases with and without microangiopathy). On average, core volumes were slightly smaller, indicating an improved segmentation that was more robust against naturally low blood flow values in the deep WM. CONCLUSIONS The proposed method of local normalization can reduce overestimation of the infarct core, especially in the deep WM and in cases with obvious microangiopathy. False-positives in CTP infarct core segmentation might lead to less-than-optimal therapy decisions when not correctly interpreted. The proposed method might help mitigate this problem.
Collapse
Affiliation(s)
- Alexander Rau
- From the Department of Neuroradiology (A.R., C.A.T., T.D., S.E., H.U.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology (A.R.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Medical Physics, Department of Diagnostic and Interventional Radiology (M.R., E.K.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery (M.R.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian A Taschner
- From the Department of Neuroradiology (A.R., C.A.T., T.D., S.E., H.U.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theo Demerath
- From the Department of Neuroradiology (A.R., C.A.T., T.D., S.E., H.U.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Samer Elsheikh
- From the Department of Neuroradiology (A.R., C.A.T., T.D., S.E., H.U.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedikt Frank
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (B.F., M.K.), University Hospital Essen, Essen, Germany
| | - Martin Köhrmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (B.F., M.K.), University Hospital Essen, Essen, Germany
| | - Horst Urbach
- From the Department of Neuroradiology (A.R., C.A.T., T.D., S.E., H.U.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Medical Physics, Department of Diagnostic and Interventional Radiology (M.R., E.K.), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Abumoussa A, Flores A, Cornea CM, Thapa D, Petty A, Gelinne A, Elton S, Quinsey C, Sasaki-Adams D, Solander S, Ho J, Yap E, Lee YZ. Synthetic interpolated DSA for radiation exposure reduction via gamma variate contrast flow modeling: a retrospective cohort study. Eur Radiol Exp 2024; 8:25. [PMID: 38361025 PMCID: PMC10869670 DOI: 10.1186/s41747-023-00404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/20/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Digital subtraction angiography (DSA) yields high cumulative radiation dosages (RD) delivered to patients. We present a temporal interpolation of low frame rate angiograms as a method to reduce cumulative RDs. METHODS Patients undergoing interventional evaluation and treatment of cerebrovascular vasospasm following subarachnoid hemorrhage were retrospectively identified. DSAs containing pre- and post-intervention runs capturing the full arterial, capillary, and venous phases with at least 16 frames each were selected. Frame rate reduction (FRR) of the original DSAs was performed to 50%, 66%, and 75% of the original frame rate. Missing frames were regenerated by sampling a gamma variate model (GVM) fit to the contrast response curves to the reduced data. A formal reader study was performed to assess the diagnostic accuracy of the "synthetic" studies (sDSA) compared to the original DSA. RESULTS Thirty-eight studies met inclusion criteria (average RD 1,361.9 mGy). Seven were excluded for differing views, magnifications, or motion. GVMs fit to 50%, 66%, and 75% FRR studies demonstrated average voxel errors of 2.0 ± 2.5% (mean ± standard deviation), 6.5 ± 1.5%, and 27 ± 2%, respectively for anteroposterior projections, 2.0 ± 2.2%, 15.0 ± 3.1%, and 14.8 ± 13.0% for lateral projections, respectively. Reconstructions took 0.51 s/study. Reader studies demonstrated an average rating of 12.8 (95% CI 12.3-13.3) for 75% FRR, 12.7 (12.2-13.2) for 66% FRR and 12.0 (11.5-12.5) for 50% FRR using Subjective Image Grading Scale. Kendall's coefficient of concordance resulted in W = 0.506. CONCLUSION FRR by 75% combined with GVM reconstruction does not compromise diagnostic quality for the assessment of cerebral vasculature. RELEVANCE STATEMENT Using this novel algorithm, it is possible to reduce the frame rate of DSA by as much as 75%, with a proportional reduction in radiation exposure, without degrading imaging quality. KEY POINTS • DSA delivers some of the highest doses of radiation to patients. • Frame rate reduction (FRR) was combined with bolus tracking to interpolate intermediate frames. • This technique provided a 75% FRR with preservation of diagnostic utility as graded by a formal reader study for cerebral angiography performed for the evaluation of cerebral vasospasm. • This approach can be applied to other types of angiography studies.
Collapse
Affiliation(s)
- Andrew Abumoussa
- Department of Neurosurgery, UNC School of Medicine, Chapel Hill, NC, 27516, USA.
| | - Alex Flores
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christiana M Cornea
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Diwash Thapa
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amy Petty
- Department of Dermatology - Duke University, Durham, NC, 27710, USA
| | - Aaron Gelinne
- Department of Neurosurgery, UNC School of Medicine, Chapel Hill, NC, 27516, USA
| | - Scott Elton
- Department of Neurosurgery, UNC School of Medicine, Chapel Hill, NC, 27516, USA
| | - Carolyn Quinsey
- Department of Neurosurgery, UNC School of Medicine, Chapel Hill, NC, 27516, USA
| | - Deanna Sasaki-Adams
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sten Solander
- Department of Radiology, UNC School of Medicine, Chapel Hill, NC, 27516, USA
| | - James Ho
- Department of Neurology, UNC School of Medicine, Chapel Hill, NC, 27516, USA
| | - Edward Yap
- Department of Neurosurgery, UNC School of Medicine, Chapel Hill, NC, 27516, USA
| | - Yueh Z Lee
- Department of Radiology, UNC School of Medicine, Chapel Hill, NC, 27516, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
19
|
Wang C, Chen S, Mi D. A task-driven cerebral angiographic imaging based on CT perfusion. Front Neurol 2024; 14:1328184. [PMID: 38375352 PMCID: PMC10875991 DOI: 10.3389/fneur.2023.1328184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/29/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction Current clinical computed tomography arteriography (cCTA) and clinical computed tomography venography (cCTV) images often display restricted cerebrovascular profiles, incomplete brain tissue segmentation, and incomplete artery-vein segmentation. Especially for vessels associated with diseases, capturing their complete profiles proves challenging. Methods In this work, we developed a Task-driven Cerebral Angiographic Imaging (TDCAI) technique using computed tomography perfusion (CTP) images of stroke patients. A evaluation on intracranial hemorrhagic stroke (IHS) and acute ischemic stroke (AIS) cases was performed with CT perfusion imaging. The TDCAI technique processed the CTP images, resulting in supplementary diagnostic images, including CTA, CTV, centerline images of the vessels-of-interest [internal carotid artery (ICA) for AIS patients, Labbé vein for IHS patients], and straightened images of the vessels-of-interest. Results We conducted a comparison between the obtained CTA/CTV images and the cCTA/cCTV images in terms of overall image quality and visibility of the vessels-of-interest. By constructing a virtual vascular phantom, we extracted its centerline and compared it with the actual centerline to calculate maximum and average deviations. This allowed us to evaluate both the accuracy of the centerline extraction algorithm and its capability to resist the influence of side branches. We assessed whether vascular stenosis and dilatation could be expressed in straightened vessel images, conducting statistical analyses to establish the superiority of TDCAI technique. Discussion This study proposes a TDCAI technique to eliminate bone and soft tissue interference, effectively segregate the comprehensive cerebral venous and arterial systems, and extract centerlines and straighten the vessels-of-interest, which would aid doctors in assessing the outflow profiles of vessels after a stroke and seeking imaging biomarkers correlated with clinical outcomes.
Collapse
Affiliation(s)
- Cheng Wang
- Research Center for Medical Artificial Intelligence, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Donghua Mi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Barabino E, Nivolli A, Pittaluga G, Arnò M, Gazzo P, Tosques M, Ivaldi D. Endovascular Treatment of TASC C and D Femoropopliteal Arterial Disease With Heparin-Bonded Covered Stents: The Impact of Distal Run-Off Vessels. J Endovasc Ther 2023:15266028231219659. [PMID: 38140721 DOI: 10.1177/15266028231219659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
INTRODUCTION In the last 2 decades, several studies in the literature evaluated the possible role of covered stents in the treatment of TransAtlantic Inter-Society Consensus (TASC) C and D femoropopliteal lesions but, despite the encouraging results, the employment of these devices was never included in clinical guidelines. The aim of this study is to evaluate the role of the technical aspects in patients with TASC C or D lesions that were treated with the GORE VIABAHN endoprosthesis and to elaborate a computerized method to objectively estimate the post-stent run-off and predict stent-graft failure. MATERIALS AND METHODS In this monocentric retrospective study, we collected the patients who were treated in our department from December 2014 to May 2021. Inclusion criteria comprised: (1) patients who underwent endovascular treatment of a TASC C or D femoropopliteal lesions using one or more heparin-bonded covered stent(s) and (2) clinical follow-up >2 years. Exclusion criteria were clinical follow-up <2 years or missing. An in-house computerized analysis to estimate the post-stent run-off, CEVERO (Computerized Estimation of VEssel Run-Off), was elaborated. RESULTS Sixty-six patients were enrolled in the study. Eleven patients had a TASC type C lesion, and 55 patients presented a type D lesion. The median follow-up time was 2.6 years. Twenty-nine patients (43.9%) experienced a major adverse limb event. Primary patency after 6, 12 and 24 months was 74.2%, 60.6%, and 57.6%; primary-assisted patency was 78.8%, 65.2%, and 59.1%. The presence of <2 run-off vessels (p<0.001) was correlated with stent-graft failure. The CEVERO analysis demonstrated an accuracy of 90.0% in predicting stent-graft failure. CONCLUSIONS The treatment of TASC C and D femoropopliteal lesions remains technically challenging. Our study supported the hypothesis that run-off is the most critical factor in determining the outcome of the procedure and that concomitant angioplasty of the tibial vessels might improve the patency of the covered stent. The CEVERO analysis could permit a real-time, objective estimation of the distal run-off using conventional angiographic images, and it might be employed as a tool in the intraprocedural decision-making process, but its clinical applicability should be evaluated on external validation cohorts. CLINICAL IMPACT The endovascular treatment of TASC C and D femoropopliteal lesions is technically challenging and run-off seems to be the most critical factor in determining the outcome. Concurrent angioplasty of the tibial vessels can create adequate run-off to avoid stent failure. The CEVERO analysis is a computerized estimation of run-off that might be a useful tool in the decision-making process.
Collapse
Affiliation(s)
- Emanuele Barabino
- Interventional Angiography, Ospedale Santa Corona, Pietra Ligure, Italia
| | - Arianna Nivolli
- Interventional Angiography, Ospedale Santa Corona, Pietra Ligure, Italia
| | - Giulia Pittaluga
- Interventional Angiography, Ospedale Santa Corona, Pietra Ligure, Italia
| | - Matteo Arnò
- Interventional Angiography, Ospedale Santa Corona, Pietra Ligure, Italia
| | - Paolo Gazzo
- Interventional Angiography, Ospedale Santa Corona, Pietra Ligure, Italia
| | - Michele Tosques
- Interventional Angiography, Ospedale Santa Corona, Pietra Ligure, Italia
| | - Diego Ivaldi
- Interventional Angiography, Ospedale Santa Corona, Pietra Ligure, Italia
| |
Collapse
|
21
|
de Vries L, van Herten RLM, Hoving JW, Išgum I, Emmer BJ, Majoie CBLM, Marquering HA, Gavves E. Spatio-temporal physics-informed learning: A novel approach to CT perfusion analysis in acute ischemic stroke. Med Image Anal 2023; 90:102971. [PMID: 37778103 DOI: 10.1016/j.media.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/20/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
CT perfusion imaging is important in the imaging workup of acute ischemic stroke for evaluating affected cerebral tissue. CT perfusion analysis software produces cerebral perfusion maps from commonly noisy spatio-temporal CT perfusion data. High levels of noise can influence the results of CT perfusion analysis, necessitating software tuning. This work proposes a novel approach for CT perfusion analysis that uses physics-informed learning, an optimization framework that is robust to noise. In particular, we propose SPPINN: Spatio-temporal Perfusion Physics-Informed Neural Network and research spatio-temporal physics-informed learning. SPPINN learns implicit neural representations of contrast attenuation in CT perfusion scans using the spatio-temporal coordinates of the data and employs these representations to estimate a continuous representation of the cerebral perfusion parameters. We validate the approach on simulated data to quantify perfusion parameter estimation performance. Furthermore, we apply the method to in-house patient data and the public Ischemic Stroke Lesion Segmentation 2018 benchmark data to assess the correspondence between the perfusion maps and reference standard infarct core segmentations. Our method achieves accurate perfusion parameter estimates even with high noise levels and differentiates healthy tissue from infarcted tissue. Moreover, SPPINN perfusion maps accurately correspond with reference standard infarct core segmentations. Hence, we show that using spatio-temporal physics-informed learning for cerebral perfusion estimation is accurate, even in noisy CT perfusion data. The code for this work is available at https://github.com/lucasdevries/SPPINN.
Collapse
Affiliation(s)
- Lucas de Vries
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Rudolf L M van Herten
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jan W Hoving
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Ivana Išgum
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Bart J Emmer
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charles B L M Majoie
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Henk A Marquering
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Efstratios Gavves
- Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Ioannidis GS, Pigott LE, Iv M, Surlan-Popovic K, Wintermark M, Bisdas S, Marias K. Investigating the value of radiomics stemming from DSC quantitative biomarkers in IDH mutation prediction in gliomas. Front Neurol 2023; 14:1249452. [PMID: 38046592 PMCID: PMC10690367 DOI: 10.3389/fneur.2023.1249452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Objective This study aims to assess the value of biomarker based radiomics to predict IDH mutation in gliomas. The patient cohort consists of 160 patients histopathologicaly proven of primary glioma (WHO grades 2-4) from 3 different centers. Methods To quantify the DSC perfusion signal two different mathematical modeling methods were used (Gamma fitting, leakage correction algorithms) considering the assumptions about the compartments contributing in the blood flow between the extra- and intra vascular space. Results The Mean slope of increase (MSI) and the K1 parameter of the bidirectional exchange model exhibited the highest performance with (ACC 74.3% AUROC 74.2%) and (ACC 75% AUROC 70.5%) respectively. Conclusion The proposed framework on DSC-MRI radiogenomics in gliomas has the potential of becoming a reliable diagnostic support tool exploiting the mathematical modeling of the DSC signal to characterize IDH mutation status through a more reproducible and standardized signal analysis scheme for facilitating clinical translation.
Collapse
Affiliation(s)
- Georgios S. Ioannidis
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology—Hellas (FORTH), Heraklion, Greece
| | - Laura Elin Pigott
- Institute of Health and Social Care, London South Bank University, London, United Kingdom
- Faculty of Brain Science, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery University College London, London, United Kingdom
| | - Michael Iv
- Department of Radiology, Division of Neuroimaging and Neurointervention, Stanford University, Stanford, CA, United States
| | - Katarina Surlan-Popovic
- Department of Radiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Neuroradiology, University Medical Centre, Ljubljana, Slovenia
| | - Max Wintermark
- Department of Radiology, Division of Neuroimaging and Neurointervention, Stanford University, Stanford, CA, United States
| | - Sotirios Bisdas
- Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, UCL, London, United Kingdom
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Kostas Marias
- Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for Research and Technology—Hellas (FORTH), Heraklion, Greece
- Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Heraklion, Greece
| |
Collapse
|
23
|
Golovin DA, Rostovtseva TM, Kudryavtsev YS, Berdalin AB, Lelyuk SE, Lelyuk VG. Carotid Dolichoarteriopathy (Elongation) of the Carotid Arteries in Patients with Ischemic Stroke Anamnesis. Biomedicines 2023; 11:2751. [PMID: 37893124 PMCID: PMC10604229 DOI: 10.3390/biomedicines11102751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Carotid artery elongation (ECA) is widespread in the asymptomatic population and among people with a history of ischemic stroke (IS). There are different points of view on the ways these changes contribute to brain ischemic damage pathogenesis. Materials and Methods: From 2019 to 2021, we included 1171 people who had suffered from IS less than one year before the investigation in the study, 404 (34.5%) women aged 27 to 95 years (64 ± 13 years) and 767 men (21-90; 60 ± 11 years). All patients involved in the study underwent multimodal radiological investigation in addition to assessments of their clinical and neurological data. Results: In this study, we were unable to detect a relationship between ECA localization and acute ischemic lesions. The frequency of ECA detection in patients with IS was the same as that in carotid and vertebral-basilar arterial systems. The prevalence of ECA was the same in patients with different IS subtypes (TOAST). There was no association between the localization of ECA and ischemic lesions; moreover, there were no differences in the IS frequency between anterior and posterior circulation. There were statistically significant decreases in linear peak systolic and end diastolic velocities in the internal carotid and vertebral arteries, as well as in the intracranial arteries in patients with ECA.
Collapse
Affiliation(s)
- Denis A. Golovin
- Department of Clinical and Experimental Physiology of Circulatory System, Ultrasound and Functional Diagnostics of Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency Russian Federation, 123182 Moscow, Russia; (T.M.R.); (Y.S.K.); (V.G.L.)
| | - Tatyana M. Rostovtseva
- Department of Clinical and Experimental Physiology of Circulatory System, Ultrasound and Functional Diagnostics of Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency Russian Federation, 123182 Moscow, Russia; (T.M.R.); (Y.S.K.); (V.G.L.)
| | - Yuri S. Kudryavtsev
- Department of Clinical and Experimental Physiology of Circulatory System, Ultrasound and Functional Diagnostics of Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency Russian Federation, 123182 Moscow, Russia; (T.M.R.); (Y.S.K.); (V.G.L.)
| | - Alexander B. Berdalin
- Department of Clinical and Experimental Physiology of Circulatory System, Ultrasound and Functional Diagnostics of Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency Russian Federation, 123182 Moscow, Russia; (T.M.R.); (Y.S.K.); (V.G.L.)
| | - Svetlana E. Lelyuk
- Federal State Budgetary Educational Institution, Further Professional Education “Russian Medical Academy of Continuous Professional Education”, Ministry of Healthcare of the Russian Federation, 127051 Moscow, Russia
| | - Vladimir G. Lelyuk
- Department of Clinical and Experimental Physiology of Circulatory System, Ultrasound and Functional Diagnostics of Federal State Budgetary Institution, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency Russian Federation, 123182 Moscow, Russia; (T.M.R.); (Y.S.K.); (V.G.L.)
| |
Collapse
|
24
|
Fernández-Rodicio S, Ferro-Costas G, Sampedro-Viana A, Bazarra-Barreiros M, Ferreirós A, López-Arias E, Pérez-Mato M, Ouro A, Pumar JM, Mosqueira AJ, Alonso-Alonso ML, Castillo J, Hervella P, Iglesias-Rey R. Perfusion-weighted software written in Python for DSC-MRI analysis. Front Neuroinform 2023; 17:1202156. [PMID: 37593674 PMCID: PMC10431979 DOI: 10.3389/fninf.2023.1202156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/27/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion studies in magnetic resonance imaging (MRI) provide valuable data for studying vascular cerebral pathophysiology in different rodent models of brain diseases (stroke, tumor grading, and neurodegenerative models). The extraction of these hemodynamic parameters via DSC-MRI is based on tracer kinetic modeling, which can be solved using deconvolution-based methods, among others. Most of the post-processing software used in preclinical studies is home-built and custom-designed. Its use being, in most cases, limited to the institution responsible for the development. In this study, we designed a tool that performs the hemodynamic quantification process quickly and in a reliable way for research purposes. Methods The DSC-MRI quantification tool, developed as a Python project, performs the basic mathematical steps to generate the parametric maps: cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), signal recovery (SR), and percentage signal recovery (PSR). For the validation process, a data set composed of MRI rat brain scans was evaluated: i) healthy animals, ii) temporal blood-brain barrier (BBB) dysfunction, iii) cerebral chronic hypoperfusion (CCH), iv) ischemic stroke, and v) glioblastoma multiforme (GBM) models. The resulting perfusion parameters were then compared with data retrieved from the literature. Results A total of 30 animals were evaluated with our DSC-MRI quantification tool. In all the models, the hemodynamic parameters reported from the literature are reproduced and they are in the same range as our results. The Bland-Altman plot used to describe the agreement between our perfusion quantitative analyses and literature data regarding healthy rats, stroke, and GBM models, determined that the agreement for CBV and MTT is higher than for CBF. Conclusion An open-source, Python-based DSC post-processing software package that performs key quantitative perfusion parameters has been developed. Regarding the different animal models used, the results obtained are consistent and in good agreement with the physiological patterns and values reported in the literature. Our development has been built in a modular framework to allow code customization or the addition of alternative algorithms not yet implemented.
Collapse
Affiliation(s)
- Sabela Fernández-Rodicio
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Ana Sampedro-Viana
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Marcos Bazarra-Barreiros
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Esteban López-Arias
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Pérez-Mato
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Pumar
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antonio J. Mosqueira
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
25
|
An S, Hwang G, Noh SA, Lee HC, Hwang TS. Quantitative Analysis of Brain CT Perfusion in Healthy Beagle Dogs: A Pilot Study. Vet Sci 2023; 10:469. [PMID: 37505873 PMCID: PMC10385523 DOI: 10.3390/vetsci10070469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023] Open
Abstract
Brain computed tomography (CT) perfusion is a technique that allows for the fast evaluation of cerebral hemodynamics. However, quantitative studies of brain CT perfusion in veterinary medicine are lacking. The purpose of this study was to investigate the normal range of perfusion determined via CT in brains of healthy dogs and to compare values between white matter and gray matter, differences in aging, and each hemisphere. Nine intact male beagle dogs were prospectively examined using dynamic CT scanning and post-processing for brain perfusion. Regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), mean transit time, and time to peak were calculated. Tissue ROIs were drawn in the gray matter and white matter of the frontal, temporal, parietal, and occipital lobes; caudate nucleus; thalamus; piriform lobe; hippocampus; and cerebellum. Significant differences were observed between the white matter regions and gray matter regions for rCBV and rCBF (p < 0.05). However, no significant differences were identified between hemispheres and between young and old groups in brain regions. The findings obtained in this study involving healthy beagle dogs might serve as a reference for regional CT perfusion values in specific brain regions. These results may aid in the characterization of various brain diseases in dogs.
Collapse
Affiliation(s)
- Soyon An
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gunha Hwang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seul Ah Noh
- AniCom Medical Center, Animal Hospital, Seoul 04599, Republic of Korea
| | - Hee Chun Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Sung Hwang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
26
|
Koopman MS, Hoving JW, Tolhuisen ML, Jin P, Thiele FO, Bremer-van der Heiden L, van Voorst H, Berkhemer OA, Coutinho JM, Beenen LFM, Marquering HA, Emmer BJ, Majoie CBLM. Accuracy of Four Different CT Perfusion Thresholds for Ischemic Core Volume and Location Estimation Using IntelliSpace Portal. J Cardiovasc Dev Dis 2023; 10:239. [PMID: 37367404 PMCID: PMC10299344 DOI: 10.3390/jcdd10060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Computed tomography perfusion (CTP) is frequently used in the triage of ischemic stroke patients for endovascular thrombectomy (EVT). We aimed to quantify the volumetric and spatial agreement of the CTP ischemic core estimated with different thresholds and follow-up MRI infarct volume on diffusion-weighted imaging (DWI). Patients treated with EVT between November 2017 and September 2020 with available baseline CTP and follow-up DWI were included. Data were processed with Philips IntelliSpace Portal using four different thresholds. Follow-up infarct volume was segmented on DWI. In 55 patients, the median DWI volume was 10 mL, and median estimated CTP ischemic core volumes ranged from 10-42 mL. In patients with complete reperfusion, the intraclass correlation coefficient (ICC) showed moderate-good volumetric agreement (range 0.55-0.76). A poor agreement was found for all methods in patients with successful reperfusion (ICC range 0.36-0.45). Spatial agreement (median Dice) was low for all four methods (range 0.17-0.19). Severe core overestimation was most frequently (27%) seen in Method 3 and patients with carotid-T occlusion. Our study shows moderate-good volumetric agreement between ischemic core estimates for four different thresholds and subsequent infarct volume on DWI in EVT-treated patients with complete reperfusion. The spatial agreement was similar to other commercially available software packages.
Collapse
Affiliation(s)
- Miou S Koopman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan W Hoving
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Manon L Tolhuisen
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peng Jin
- Philips Medical Systems, Philips Healthcare, 5684 PC Best, The Netherlands
| | - Frank O Thiele
- Philips GmbH Innovative Technologies, 52074 Aachen, Germany
| | | | - Henk van Voorst
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Olvert A Berkhemer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jonathan M Coutinho
- Department of Neurology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ludo F M Beenen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Henk A Marquering
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bart J Emmer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
27
|
Elsaid N, Bigliardi G, Dell’Acqua ML, Vandelli L, Ciolli L, Picchetto L, Borzì G, Ricceri R, Pentore R, Vallone S, Meletti S, Saied A. The role of automated computed topography perfusion in prediction of hemorrhagic transformation after acute ischemic stroke. Neuroradiol J 2023; 36:182-188. [PMID: 35850570 PMCID: PMC10034700 DOI: 10.1177/19714009221111084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION The role of computed tomography perfusion (CTP) in prediction of hemorrhagic transformation (HT) has been evolving. We aimed to study the role of automated perfusion post-processing software in prediction of HT using the commercially available RAPID software. METHODS Two hundred eighty-two patients with anterior circulation ischemic stroke, who underwent CTP with RAPID automated post-processing, were retrospectively enrolled and divided into HT (n = 91) and non-HT groups (n = 191). The automated RAPID-generated perfusion maps were reviewed. Mismatch volume and ratio, time to maximum (Tmax) > 4-10s volumes, hypoperfusion index, cerebral blood flow (CBF) < 20-38% volumes, cerebral blood volume (CBV) < 34%-42% volumes, and CBV index were recorded and analyzed. RESULTS The volumes of brain tissues suffering from reduction of cerebral blood flow (CBF < 20%-38%), reduction in cerebral blood volumes (CBV < 34-42%), and delayed contrast arrival times (Tmax > 4-10s) were significantly higher in the HT group. The mismatch volumes were also higher in the HT group (p = .001). Among these parameters, the Tmax > 6s volume was the most reliable and sensitive predictor of HT (p = .001, AUC = 0.667). However, the combination of the perfusion parameters can slightly improve the diagnostic efficiency (AUC = 0.703). There was no statistically significant difference between the non-HT group and either the parenchymal or the symptomatic subtypes. CONCLUSION The RAPID automated CTP parameters can provide a reliable predictor of HT overall but not the parenchymal or the symptomatic subtypes. The infarct area involving the penumbra and core represented by the Tmax > 6s threshold is the most sensitive predictor; however, the combination of the perfusion parameters can slightly improve the diagnostic efficiency.
Collapse
Affiliation(s)
- Nada Elsaid
- Stroke Unit – Neurology Clinic,
Department of Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
- Department of Neurology, Mansoura University, Mansoura, Egypt
| | - Guido Bigliardi
- Stroke Unit – Neurology Clinic,
Department of Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
| | - Maria Luisa Dell’Acqua
- Stroke Unit – Neurology Clinic,
Department of Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
| | - Laura Vandelli
- Stroke Unit – Neurology Clinic,
Department of Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
| | - Ludovico Ciolli
- Stroke Unit – Neurology Clinic,
Department of Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
| | - Livio Picchetto
- Stroke Unit – Neurology Clinic,
Department of Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
| | - Giuseppe Borzì
- Stroke Unit – Neurology Clinic,
Department of Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
| | - Riccardo Ricceri
- Stroke Unit – Neurology Clinic,
Department of Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
| | - Roberta Pentore
- Stroke Unit – Neurology Clinic,
Department of Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
| | - Stefano Vallone
- Neuroradiology, Department of
Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
| | - Stefano Meletti
- Stroke Unit – Neurology Clinic,
Department of Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
| | - Ahmed Saied
- Stroke Unit – Neurology Clinic,
Department of Neuroscience, Ospedale Civile di
Baggiovara, AOU di Modena, Modena, Italy
- Department of Neurology, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Faropoulos K, Tsolaki V, Georgakopoulou VE, Trakas I, Tarantinos K, Papalexis P, Spandidos DA, Aravantinou-Fatorou A, Mathioudakis N, Trakas N, Lavdas E, Fotakopoulos G. Value of sildenafil treatment for the prevention of vasospasm‑related delayed ischemic neurological deficits and delayed brain infarction following aneurysmal subarachnoid hemorrhage. MEDICINE INTERNATIONAL 2023; 3:19. [PMID: 37032716 PMCID: PMC10080186 DOI: 10.3892/mi.2023.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
Cerebral vasospasm (CV) or delayed cerebral ischemia (DCI) constitutes the main reason for the unfavorable outcomes of patients with aneurysmal subarachnoid hemorrhage (aSAH). The present retrospective cohort study, through an evaluation with computed tomography (CT) perfusion (CTP), aimed to examine the utility of an intravenous or oral administration of sildenafil in preventing DCI that develops due to vasospasm in these patients. A retrospective cohort study was conducted, which included 34 patients in a tertiary care hospital. Of these patients, 18 were males (52.9%), and the median age was 54.4 years. Of these patients, 18 (52.9%) had undergone surgery, and 16 (47.1%) had an endovascular procedure. CTP was performed on the 3rd to the 6th day. The clinical outcome was documented at 30 days using a CT scan and a complete neurological evaluation, including the Glasgow Coma Scale assessment. There was a statistically significant difference in the number of patients who developed an ischemic event at 1 month between those who did not receive sildenafil compared to those who received sildenafil (P<0.05). In addition, the multivariate analysis revealed that cerebral blood flow was an independent factor for detecting an ischemic event in 1 month (P=0.001). On the whole, the findings of the present study indicate that the intravenous or oral administration of sildenafil may be beneficial for the prevention of DCI.
Collapse
Affiliation(s)
| | - Vasiliki Tsolaki
- Department of Pulmonary and Critical Care Medicine, General University Hospital of Larissa, 41221 Larissa, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases-COVID19 Unit, Laiko General Hospital, 11527 Athens, Greece
- Correspondence to: Dr Vasiliki Epameinondas Georgakopoulou, Department of Infectious Diseases-COVID19 Unit, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece
| | - Ilias Trakas
- Department of Infectious Diseases-COVID19 Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Kyriakos Tarantinos
- First Department of Pulmonology, Sismanogleio Hospital, 15126 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aikaterini Aravantinou-Fatorou
- First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Eleftherios Lavdas
- Department of Medical Radiological Technologists, Technological Education Institute of Athens, 12243 Athens, Greece
| | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece
| |
Collapse
|
29
|
One-stop patient-specific myocardial blood flow quantification technique based on allometric scaling law. J Biomech 2023; 151:111513. [PMID: 36868983 DOI: 10.1016/j.jbiomech.2023.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Establishing a patient-specific and non-invasive technique to derive blood flow as well as coronary structural information from one single cardiac CT imaging modality. 336 patients with chest pain or ST segment depression on electrocardiogram were retrospectively enrolled. All patients underwent adenosine-stressed dynamic CT myocardial perfusion imaging (CT-MPI) and coronary computed tomography angiography (CCTA) in sequence. Relationship between myocardial mass (M) and blood flow (Q), defined as log(Q) = b · log(M) + log(Q0), was explored based on the general allometric scaling law. We used 267 patients to obtain the regression results and found strong linear relationship between M (gram) and Q (mL/min) (b = 0.786, log(Q0) = 0.546, r = 0.704; p < 0.001). We Also found this correlation was applicable for patients with either normal or abnormal myocardial perfusion (p < 0.001). Datasets from the other 69 patients were used to validate this M-Q correlation and found the patient-specific blood flow could be accurately estimated from CCTA compared to that measured from CT-MPI (146.480 ± 39.607 vs 137.967 ± 36.227, r = 0.816, and 146.480 ± 39.607 vs 137.967 ± 36.227, r = 0.817, for the left ventricle region and LAD-subtended region, respectively, all unit in mL/min). In conclusion, we established a technique to provide general and patient-specific myocardial mass-blood flow correlation obeyed to allometric scaling law. Blood flow information could be directly derived from structural information acquired from CCTA.
Collapse
|
30
|
Yang M, Tang L, Hu Z, Tang X. Application of Neuroimaging for the Prediction of Hemorrhagic Transformation after Intravenous Thrombolysis in Acute Ischemic Stroke. Cerebrovasc Dis 2023; 52:1-10. [PMID: 35661647 DOI: 10.1159/000524749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ischemic stroke is a common cerebrovascular disease with high morbidity, disability, and mortality worldwide. Currently, recombinant tissue plasminogen activator is the main intravenous thrombolysis agent for the treatment of acute ischemic stroke within 4.5 h after onset. Hemorrhagic transformation (HT) is the most serious complication of intravenous thrombolysis, which can significantly aggravate clinical poor prognosis. Therefore, it is important to early predict the risk of post-thrombolysis HT in patients with acute ischemic stroke. SUMMARY Recently, several studies have reported that neuroimaging techniques have potential value in predicting HT after intravenous thrombolysis in patients with acute ischemic stroke. The corresponding neuroimaging parameters may be effective predictors of HT after intravenous thrombolysis. In this review, we summarized and discussed the application of neuroimaging techniques and related parameters in predicting HT after intravenous thrombolysis. KEY MESSAGES Recognizing and understanding the predictive performance of neuroimaging parameters for HT may help assess the risk of HT after intravenous thrombolysis in patients with acute ischemic stroke and make an appropriate treatment decision.
Collapse
Affiliation(s)
- Miaomiao Yang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China,
| | - Lisha Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Gava UA, D'Agata F, Tartaglione E, Renzulli R, Grangetto M, Bertolino F, Santonocito A, Bennink E, Vaudano G, Boghi A, Bergui M. Neural network-derived perfusion maps: A model-free approach to computed tomography perfusion in patients with acute ischemic stroke. Front Neuroinform 2023; 17:852105. [PMID: 36970658 PMCID: PMC10034033 DOI: 10.3389/fninf.2023.852105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Objective In this study, we investigate whether a Convolutional Neural Network (CNN) can generate informative parametric maps from the pre-processed CT perfusion data in patients with acute ischemic stroke in a clinical setting. Methods The CNN training was performed on a subset of 100 pre-processed perfusion CT dataset, while 15 samples were kept for testing. All the data used for the training/testing of the network and for generating ground truth (GT) maps, using a state-of-the-art deconvolution algorithm, were previously pre-processed using a pipeline for motion correction and filtering. Threefold cross validation had been used to estimate the performance of the model on unseen data, reporting Mean Squared Error (MSE). Maps accuracy had been checked through manual segmentation of infarct core and total hypo-perfused regions on both CNN-derived and GT maps. Concordance among segmented lesions was assessed using the Dice Similarity Coefficient (DSC). Correlation and agreement among different perfusion analysis methods were evaluated using mean absolute volume differences, Pearson correlation coefficients, Bland-Altman analysis, and coefficient of repeatability across lesion volumes. Results The MSE was very low for two out of three maps, and low in the remaining map, showing good generalizability. Mean Dice scores from two different raters and the GT maps ranged from 0.80 to 0.87. Inter-rater concordance was high, and a strong correlation was found between lesion volumes of CNN maps and GT maps (0.99, 0.98, respectively). Conclusion The agreement between our CNN-based perfusion maps and the state-of-the-art deconvolution-algorithm perfusion analysis maps, highlights the potential of machine learning methods applied to perfusion analysis. CNN approaches can reduce the volume of data required by deconvolution algorithms to estimate the ischemic core, and thus might allow the development of novel perfusion protocols with lower radiation dose deployed to the patient.
Collapse
Affiliation(s)
- Umberto A Gava
- Division of Neuroradiology, Molinette Hospital, Turin, Italy
- Department of Neurosciences, University of Turin, Turin, Italy
| | | | - Enzo Tartaglione
- Department of Computer Science, University of Turin, Turin, Italy
| | | | - Marco Grangetto
- Department of Computer Science, University of Turin, Turin, Italy
| | - Francesca Bertolino
- Division of Neuroradiology, Molinette Hospital, Turin, Italy
- Department of Neurosciences, University of Turin, Turin, Italy
| | | | - Edwin Bennink
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Giacomo Vaudano
- Division of Neuroradiology, San Giovanni Bosco Hospital, Turin, Italy
| | - Andrea Boghi
- Division of Neuroradiology, San Giovanni Bosco Hospital, Turin, Italy
| | - Mauro Bergui
- Division of Neuroradiology, Molinette Hospital, Turin, Italy
- Department of Neurosciences, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Nguyen TN, Castonguay AC, Siegler JE, Nagel S, Lansberg MG, de Havenon A, Sheth SA, Abdalkader M, Tsai J, Albers GW, Masoud HE, Jovin TG, Martins SO, Nogueira RG, Zaidat OO, SVIN GAPS Committee. Mechanical Thrombectomy in the Late Presentation of Anterior Circulation Large Vessel Occlusion Stroke: A Guideline From the Society of Vascular and Interventional Neurology Guidelines and Practice Standards Committee. STROKE (HOBOKEN, N.J.) 2023; 3:e000512. [PMID: 39380893 PMCID: PMC11460660 DOI: 10.1161/svin.122.000512] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/02/2022] [Indexed: 10/10/2024]
Abstract
Background and Purpose Recent clinical trials investigating endovascular therapy (EVT) in the extended time window have opened new treatment paradigms for late-presenting patients with large vessel occlusion (LVO) stroke. The aim of this guideline is to provide up to date recommendations for the diagnosis, selection, and medical or endovascular treatment of patients with LVO presenting in the extended time window. Methods The Society of Vascular & Interventional Neurology (SVIN) Guidelines and Practice Clinical Standards (GAPS) committee assembled a writing group and recruited interdisciplinary experts to review and evaluate the current literature. Recommendations were assigned by the writing group using the SVIN-GAPS Class of Recommendation/Level of Evidence algorithm and SVIN GAPS guideline format. The final guideline was approved by all members of the writing group, the GAPS committee, and the SVIN board of directors. Results Literature review yielded three high quality randomized trials and several observational studies that have been extracted to derive the enclosed summary recommendations. In patients with LVO presenting in the 6-to-24-hour window, and with clinical imaging mismatch as defined by the DAWN and DEFUSE 3 studies, EVT is recommended. Non contrast CT can be used to evaluate infarct size as sole imaging modality for patient selection, particularly when access to CT perfusion or MRI is limited, or if their performance would incur substantial delay to treatment. In addition, several clinical questions were reviewed based on the available evidence and consensus grading. Conclusion These guidelines provide practical recommendations based on recent evidence on the diagnosis, selection, and treatment of patients with LVO stroke presenting in the extended time window.
Collapse
Affiliation(s)
- Thanh N. Nguyen
- Neurology, Radiology, Boston Medical Center, Boston University School of Medicine, USA (TNN, MA)
| | | | | | - Simon Nagel
- Neurology, Klinikum Ludwigshafen, Ludwigshafen/Rhein, Germany; Neurology, Heidelberg University Hospital, Heidelberg, Germany (SN)
| | | | | | - Sunil A. Sheth
- Neurology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA (SAS)
| | - Mohamad Abdalkader
- Neurology, Radiology, Boston Medical Center, Boston University School of Medicine, USA (TNN, MA)
| | - Jenny Tsai
- Neurology, Spectrum Health and Michigan State University College of Human Medicine, Michigan, USA (JT)
| | | | | | | | - Sheila O. Martins
- Neurology, Federal University of Rio Grande do Sul, Porto Alegre; Hospital de Clínicas de Porto Alegre, Brazil (SOM)
| | - Raul G. Nogueira
- Neurology, Neurosurgery, UPMC Stroke Institute, University of Pittsburgh Medical Center, Pittsburgh, USA (RGN)
| | - Osama O. Zaidat
- Neuroscience and Stroke Program, Bon Secours Mercy Health St. Vincent Hospital, Toledo, Ohio (OOZ)
| | | |
Collapse
|
33
|
Faropoulos K, Tsolaki V, Georgakopoulou VE, Trakas I, Tarantinos K, Papalexis P, Spandidos DA, Aravantinou-Fatorou A, Mathioudakis N, Trakas N, Fotakopoulos G. Efficacy of combined intravenous plus intrathecal nimodipine administration in patients with severe cerebral vasospasm post‑aneurysmal subarachnoid hemorrhage: A retrospective cohort study. MEDICINE INTERNATIONAL 2022; 3:3. [PMID: 36699659 PMCID: PMC9829231 DOI: 10.3892/mi.2022.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) and the ensuing cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) comprise the main reasons for morbidity and mortality in affected patients. The present study aimed to evaluate the efficacy of the use of combined intravenous (IV) and intrathecal (IT) nimodipine therapy for preventing permanent neurological deterioration and DCI in patients suffering from CV post-hemorrhage. The evaluation was performed using computed tomography perfusion and transcranial doppler ultrasound. The present retrospective cohort study analyzed 14 out of 146 patients diagnosed with vasospasm due to spontaneous or aSAH. These patients were divided into two groups as follows: i) The IV group, which included patients treated with only IV nimodipine; and ii) the IV + IT group, which included patients who received IV nimodipine in combination with IT nimodipine. Of the 14 patients, 7 patients were males (50%), and the mean age was 50.9 years (SD ±19 years). In total, 6 patients [42.8%; 5 (35.7%) from group A and 1 (7.1%) from group B], who experienced clinical symptoms with severe CV, were administered intra-arterial calcium channel therapy or/and IT nimodipine following the early identification of symptomatic vasospasm. The rate of adverse ischemic events was lower with IT nimodipine management during the 1 month of follow-up (6 vs. 2 events; odds ratio, 15.00; 95% confidence interval, 1.03-218.31; P=0.031). On the whole, the findings of the present study suggest that the combined use of IT nimodipine with IV admission for patients post-aSAH who developed severe CV is a safe procedure that may prevent permanent neurological deterioration and delay unfavorable ischemic incidents.
Collapse
Affiliation(s)
| | - Vasiliki Tsolaki
- Department of Pulmonary and Critical Care Medicine, General University Hospital of Larisa, 41221 Larisa, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 11527 Athens, Greece,Correspondence to: Dr Vasiliki Epameinondas Georgakopoulou, Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece NULL
| | - Ilias Trakas
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Kyriakos Tarantinos
- First Department of Pulmonology, Sismanogleio Hospital, 15126 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece,Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aikaterini Aravantinou-Fatorou
- First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larisa, 41221 Larisa, Greece
| |
Collapse
|
34
|
Tsolaki V, Aravantinou-fatorou A, Georgakopoulou VE, Spandidos DA, Papalexis P, Mathioudakis N, Tarantinos K, Trakas N, Sklapani P, Fotakopoulos G. Early diagnosis of cerebral vasospasm associated with cerebral ischemia following subarachnoid hemorrhage: Evaluation of computed tomography perfusion and transcranial doppler as accurate methods. MEDICINE INTERNATIONAL 2022; 2:34. [PMID: 36699155 PMCID: PMC9829237 DOI: 10.3892/mi.2022.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2022] [Indexed: 01/27/2023]
Abstract
Cerebral vasospasm (CV) constitutes a major post-operative complication and source of morbidity in cases of subarachnoid hemorrhage (SAH). The early detection of CV in SAH may be difficult both clinically and radiographically. The present pilot study thus aimed to evaluate the practicability of the technique in a tertiary healthcare setting and to assess the diagnostic effectiveness of various diagnostic computed tomography (CT) perfusion (CTP) aspects in predicting the clinical outcome of patients with SAH (traumatic and aneurysmal). A retrospective study including 34 patients in a tertiary care hospital was thus conducted. The results revealed that of the 34 patients, 18 (52.9%) were males, and the mean age was 54.4±18.5 years (16-85 years old; range, 69 years). In total, 15 (44.1%) patients had traumatic SAH following traumatic brain injury (TBI), 11 (33.3%) had aneurysmal SAH, and 8 patients (23.6%) presented with TBI without SAH as controls. CTP was performed on the third to the sixth day, and 15-20 min prior to CPT, a transcranial Doppler ultrasound was performed. Clinical outcomes were documented at 30 days using a CT scan and a complete neurological evaluation, including Glasgow Coma Scale assessment. The results of a multivariate analysis revealed that cerebral blood flow (CBF) was an independent factor for detecting an ischemic event in 1 month (P=0.003). On the whole, the present study demonstrates that CTP, and consequently CBF, is a considerable index that may identify the onset of cerebral ischemia in patients with SAH.
Collapse
Affiliation(s)
- Vasiliki Tsolaki
- Department of Pulmonary and Critical Care Medicine, General University Hospital of Larisa, 41221 Larisa, Greece
| | - Aikaterini Aravantinou-fatorou
- First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,Correspondence to: Dr Vasiliki Epameinondas Georgakopoulou, Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | | | - Kyriakos Tarantinos
- First Department of Pulmonology, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Pagona Sklapani
- Department of Cytology, Mitera Hospital, 15123 Athens, Greece
| | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larisa, 41221 Larisa, Greece
| |
Collapse
|
35
|
Zeng D, Zeng C, Zeng Z, Li S, Deng Z, Chen S, Bian Z, Ma J. Basis and current state of computed tomography perfusion imaging: a review. Phys Med Biol 2022; 67. [PMID: 35926503 DOI: 10.1088/1361-6560/ac8717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
Abstract
Computed tomography perfusion (CTP) is a functional imaging that allows for providing capillary-level hemodynamics information of the desired tissue in clinics. In this paper, we aim to offer insight into CTP imaging which covers the basics and current state of CTP imaging, then summarize the technical applications in the CTP imaging as well as the future technological potential. At first, we focus on the fundamentals of CTP imaging including systematically summarized CTP image acquisition and hemodynamic parameter map estimation techniques. A short assessment is presented to outline the clinical applications with CTP imaging, and then a review of radiation dose effect of the CTP imaging on the different applications is presented. We present a categorized methodology review on known and potential solvable challenges of radiation dose reduction in CTP imaging. To evaluate the quality of CTP images, we list various standardized performance metrics. Moreover, we present a review on the determination of infarct and penumbra. Finally, we reveal the popularity and future trend of CTP imaging.
Collapse
Affiliation(s)
- Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Cuidie Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhixiong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhen Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sijin Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| |
Collapse
|
36
|
Katyal A, Bhaskar SMM. Value of pre-intervention computed tomography perfusion imaging in the assessment of tissue outcome and long-term clinical prognosis in patients with anterior circulation acute ischemic stroke receiving reperfusion therapy: a systematic review. Acta Radiol 2022; 63:1243-1254. [PMID: 34342497 DOI: 10.1177/02841851211035892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Computed tomography perfusion (CTP) imaging has emerged as an important adjunct to the current armamentarium of acute ischemic stroke (AIS) workflow. However, its adoption in routine clinical practice is far from optimal. PURPOSE To investigate the putative association of CTP imaging biomarkers in the assessment of prognosis in acute ischemic stroke. MATERIAL AND METHODS We performed a systematic review of the literature using MEDLINE, EMBASE, and Cochrane Central Register of Clinical Trials focusing on CTP biomarkers, tissue-based and clinical-based patient outcomes. We included randomized controlled trials, prospective cohort studies, and case-controlled studies published from January 2005 to 28 August 2020. Two independent reviewers conducted the study appraisal, data extraction, and quality assessment of the studies. RESULTS A total of 60 full-text studies were included in the final systematic review analysis. Increasing infarct core volume is associated with reduced odds of achieving functional independence (modified Rankin score 0-2) at 90 days and is correlated with the final infarct volume when reperfusion is achieved. CONCLUSION CTP has value in assessing tissue perfusion status in the hyperacute stroke setting and the long-term clinical prognosis of patients with AIS receiving reperfusion therapy. However, the prognostic use of CTP requires optimization and further validation.
Collapse
Affiliation(s)
- Anubhav Katyal
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, NSW, Australia.,University of New South Wales (UNSW), South West Sydney Clinical School, Sydney, NSW, Australia
| | - Sonu Menachem Maimonides Bhaskar
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, NSW, Australia.,Liverpool Hospital & South West Sydney Local Health District (SWSLHD), Department of Neurology & Neurophysiology, Sydney, NSW, Australia.,NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW, Australia.,Thrombolysis and Endovascular WorkFLOw Network (TEFLON), Sydney, NSW, Australia
| |
Collapse
|
37
|
Evaluation of radiation exposure for patients undergoing computed tomography perfusion procedure for acute ischemic stroke. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Li S, Zeng D, Bian Z, Ma J. Noise modelling of perfusion CT images for robust hemodynamic parameter estimations. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6d9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The radiation dose of cerebral perfusion computed tomography (CPCT) imaging can be reduced by lowering the milliampere-second or kilovoltage peak. However, dose reduction can decrease image quality due to excessive x-ray quanta fluctuation and reduced detector signal relative to system electronic noise, thereby influencing the accuracy of hemodynamic parameters for patients with acute stroke. Existing low-dose CPCT denoising methods, which mainly focus on specific temporal and spatial prior knowledge in low-dose CPCT images, not take the noise distribution characteristics of low-dose CPCT images into consideration. In practice, the noise of low-dose CPCT images can be much more complicated. This study first investigates the noise properties in low-dose CPCT images and proposes a perfusion deconvolution model based on the noise properties. Approach. To characterize the noise distribution in CPCT images properly, we analyze noise properties in low-dose CPCT images and find that the intra-frame noise distribution may vary in the different areas and the inter-frame noise also may vary in low-dose CPCT images. Thus, we attempt the first-ever effort to model CPCT noise with a non-independent and identical distribution (i.i.d.) mixture-of-Gaussians (MoG) model for noise assumption. Furthermore, we integrate the noise modeling strategy into a perfusion deconvolution model and present a novel perfusion deconvolution method by using self-relative structural similarity information and MoG model (named as SR-MoG) to estimate the hemodynamic parameters accurately. In the presented SR-MoG method, the self-relative structural similarity information is obtained from preprocessed low-dose CPCT images. Main results. The results show that the presented SR-MoG method can achieve promising gains over the existing deconvolution approaches. In particular, the average root-mean-square error (RMSE) of cerebral blood flow (CBF), cerebral blood volume, and mean transit time was improved by 40.3%, 69.1%, and 40.8% in the digital phantom study, and the average RMSE of CBF can be improved by 81.0% in the clinical data study, compared with tensor total variation regularization deconvolution method. Significance. The presented SR-MoG method can estimate high-accuracy hemodynamic parameters andachieve promising gains over the existing deconvolution approaches.
Collapse
|
39
|
Giammello F, De Martino SRM, Simonetti L, Agati R, Battaglia S, Cirillo L, Gentile M, Migliaccio L, Forlivesi S, Romoli M, Princiotta C, Tonon C, Stagni S, Galluzzo S, Lodi R, Trimarchi G, Toscano A, Musolino RF, Zini A. Predictive value of Tmax perfusion maps on final core in acute ischemic stroke: an observational single-center study. LA RADIOLOGIA MEDICA 2022; 127:414-425. [PMID: 35226245 DOI: 10.1007/s11547-022-01467-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/01/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To assess utility of computed tomography perfusion (CTP) protocols for selection of patients with acute ischemic stroke (AIS) for reperfusive treatments and compare the diagnostic accuracy (ACC) in predicting follow-up infarction, using time-to-maximum (Tmax) maps. METHODS We retrospectively reviewed consecutive AIS patients evaluated for reperfusive treatments at comprehensive stroke center, employing a multimodal computed tomography. To assess prognostic accuracy of CTP summary maps in predicting final infarct area (FIA) in AIS patients, we assumed the best correlation between non-viable tissue (NVT) and FIA in early and fully recanalized patients and/or in patients with favorable clinical response (FCR). On the other hand, the tissue at risk (TAR) should better correlate with FIA in untreated patients and in treatment failure. RESULTS We enrolled 158 patients, for which CTP maps with Tmax thresholds of 9.5 s and 16 s, presented sensitivity of 82.5%, specificity of 74.6%, and ACC of 75.9%. In patients selected for perfusion deficit in anterior circulation territory, CTP-Tmax > 16 s has proven relatively reliable to identify NVT in FCR patients, with a tendency to overestimate NVT. Similarly, CTP-Tmax > 9.5 s was reliable for TAR, but it was overestimated comparing to FIA, in patients with unfavorable outcomes. CONCLUSIONS In our experience, Tmax thresholds have proven sufficiently reliable to identify global hypoperfusion, with tendency to overestimate both NVT and TAR, not yielding satisfactory differentiation between true penumbra and benign oligoemia. In particular, the overestimation of NVT could have serious consequences in not selecting potential candidates for a reperfusion treatment.
Collapse
Affiliation(s)
- Fabrizio Giammello
- International PhD Translational Molecular Medicine and Surgery, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Polyclinic Hospital, Via Consolare Valeria 1, 98125, Messina, Italy.
- Stroke Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Sara Rosa Maria De Martino
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Neuroradiology Unit, Bellaria Hospital, Bologna, Italy
| | - Luigi Simonetti
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Neuroradiology Unit, Maggiore Hospital, Bologna, Italy
| | - Raffaele Agati
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Programma Neuroradiologia Con Tecniche Ad Elevata Complessità, Bellaria Hospital, Bologna, Italy
| | - Stella Battaglia
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Programma Neuroradiologia Con Tecniche Ad Elevata Complessità, Bellaria Hospital, Bologna, Italy
| | - Luigi Cirillo
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Neuroradiology Unit, Bellaria Hospital, Bologna, Italy
- DIMES, Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Mauro Gentile
- Department of Neurology and Stroke Center, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Maggiore Hospital, Bologna, Italy
| | - Ludovica Migliaccio
- Department of Neurology and Stroke Center, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Maggiore Hospital, Bologna, Italy
| | - Stefano Forlivesi
- Department of Neurology and Stroke Center, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Maggiore Hospital, Bologna, Italy
| | - Michele Romoli
- Department of Neurology and Stroke Center, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Maggiore Hospital, Bologna, Italy
| | - Ciro Princiotta
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Neuroradiology Unit, Bellaria Hospital, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Silvia Stagni
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Neuroradiology Unit, Maggiore Hospital, Bologna, Italy
| | - Simone Galluzzo
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Neuroradiology Unit, Maggiore Hospital, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | | | - Antonio Toscano
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rosa Fortunata Musolino
- Stroke Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Andrea Zini
- Department of Neurology and Stroke Center, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Maggiore Hospital, Bologna, Italy
| |
Collapse
|
40
|
Sun T, Fulton R, Hu Z, Sutiono C, Liang D, Zheng H. Inferring CT perfusion parameters and uncertainties using a Bayesian approach. Quant Imaging Med Surg 2022; 12:439-456. [PMID: 34993092 DOI: 10.21037/qims-21-338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/24/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Computed tomography perfusion imaging is commonly used for the rapid assessment of patients presenting with symptoms of acute stroke. Maps of perfusion parameters, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) derived from the perfusion scan data, provide crucial information for stroke diagnosis and treatment decisions. Most CT scanners use singular value decomposition (SVD)-based methods to calculate these parameters. However, some known problems are associated with conventional methods. METHODS In this work, we propose a Bayesian inference algorithm, which can derive both the perfusion parameters and their uncertainties. We apply the variational technique to the inference, which then becomes an expectation-maximization problem. The probability distribution (with Gaussian mean and variance) of each estimated parameter can be obtained, and the coefficient of variation is used to indicate the uncertainty. We perform evaluations using both simulations and patient studies. RESULTS In a simulation, we show that the proposed method has much less bias than conventional methods. Then, in separate simulations, we apply the proposed method to evaluate the impacts of various scan conditions, i.e., with different frame intervals, truncated measurement, or motion, on the parameter estimate. In one patient study, the method produced CBF and MTT maps indicating an ischemic lesion consistent with the radiologist's report. In a second patient study affected by patient movement, we showed the feasibility of applying the proposed method to motion corrected data. CONCLUSIONS The proposed method can be used to evaluate confidence in parameter estimation and the scan protocol design. More clinical evaluation is required to fully test the proposed method.
Collapse
Affiliation(s)
- Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Roger Fulton
- Faculty of Medicine and Health and School of Physics, University of Sydney, Sydney, Australia.,Department of Medical Physics, Westmead Hospital, Sydney, Australia
| | - Zhanli Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Christina Sutiono
- Radiology Department, Western Sydney Local Health District, Westmead Hospital, Sydney, Australia
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
41
|
Garbino N, Brancato V, Salvatore M, Cavaliere C. A Systematic Review on the Role of the Perfusion Computed Tomography in Abdominal Cancer. Dose Response 2021; 19:15593258211056199. [PMID: 34880716 PMCID: PMC8647276 DOI: 10.1177/15593258211056199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background and purpose Perfusion Computed Tomography (CTp) is an imaging technique which allows
quantitative and qualitative evaluation of tissue perfusion through dynamic
CT acquisitions. Since CTp is still considered a research tool in the field
of abdominal imaging, the aim of this work is to provide a systematic
summary of the current literature on CTp in the abdominal region to clarify
the role of this technique for abdominal cancer applications. Materials and Methods A systematic literature search of PubMed, Web of Science, and Scopus was
performed to identify original articles involving the use of CTp for
clinical applications in abdominal cancer since 2011. Studies were included
if they reported original data on CTp and investigated the clinical
applications of CTp in abdominal cancer. Results Fifty-seven studies were finally included in the study. Most of the included
articles (33/57) dealt with CTp at the level of the liver, while a low
number of studies investigated CTp for oncologic diseases involving UGI
tract (8/57), pancreas (8/57), kidneys (3/57), and colon–rectum (5/57). Conclusions Our study revealed that CTp could be a valuable functional imaging tool in
the field of abdominal oncology, particularly as a biomarker for monitoring
the response to anti-tumoral treatment.
Collapse
|
42
|
Detection of impending perfusion deficits by intraoperative computed tomography (iCT) in aneurysm surgery of the anterior circulation. Acta Neurochir (Wien) 2021; 163:3501-3514. [PMID: 34643806 PMCID: PMC8599411 DOI: 10.1007/s00701-021-05022-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/02/2021] [Indexed: 11/22/2022]
Abstract
Background The aim of our study was to evaluate the additional benefit of intraoperative computed tomography (iCT), intraoperative computed tomography angiography (iCTA), and intraoperative computed tomography perfusion (iCTP) in the intraoperative detection of impending ischemia to established methods (indocyanine green videoangiography (ICGVA), microDoppler, intraoperative neuromonitoring (IONM)) for initiating timely therapeutic measures. Methods Patients with primary aneurysms of the anterior circulation between October 2016 and December 2019 were included. Data of iCT modalities compared to other techniques (ICGVA, microDoppler, IONM) was recorded with emphasis on resulting operative conclusions leading to inspection of clip position, repositioning, or immediate initiation of conservative treatment strategies. Additional variables analyzed included patient demographics, aneurysm-specific characteristics, and clinical outcome. Results Of 194 consecutive patients, 93 patients with 100 aneurysms received iCT imaging. While IONM and ICGVA were normal, an altered vessel patency in iCTA was detected in 5 (5.4%) and a mismatch in iCTP in 7 patients (7.5%). Repositioning was considered appropriate in 2 patients (2.2%), where immediate improvement in iCTP could be documented. In a further 5 cases (5.4%), intensified conservative therapy was immediately initiated treating the reduced CBP as clip repositioning was not considered causal. In terms of clinical outcome at last FU, mRS0 was achieved in 85 (91.4%) and mRS1-2 in 7 (7.5%) and remained mRS4 in one patient with SAH (1.1%). Conclusions Especially iCTP can reveal signs of impending ischemia in selected cases and enable the surgeon to promptly initiate therapeutic measures such as clip repositioning or intraoperative onset of maximum conservative treatment, while established tools might fail to detect those intraoperative pathologic changes.
Collapse
|
43
|
Katyal A, Bhaskar SMM. Value of pre-intervention CT perfusion imaging in acute ischemic stroke prognosis. DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY (ANKARA, TURKEY) 2021; 27:774-785. [PMID: 34792033 DOI: 10.5152/dir.2021.20805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Noninvasive imaging plays an important role in acute stroke towards diagnosis and ongoing management of patients. Systemic thrombolysis and endovascular thrombectomy (EVT) are proven treatments currently used in standards of care in acute stroke settings. The role of computed tomography angiography (CTA) in selecting patients with large vessel occlusion for EVT is well established. However, the value of CT perfusion (CTP) imaging in predicting outcomes after stroke remains ambiguous. This article critically evaluates the value of multimodal CT imaging in early diagnosis and prognosis of acute ischemic stroke with a focus on the role of CTP in delineating tissue characteristics, patient selection, and outcomes after reperfusion therapy. Insights on various technical and clinical considerations relevant to CTP applications in acute ischemic stroke, recommendations for existing workflow, and future areas of research are discussed.
Collapse
Affiliation(s)
- Anubhav Katyal
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, Australia; University of New South Wales (UNSW), South Western Sydney Clinical School, NSW, Australia
| | - Sonu Menachem Maimonides Bhaskar
- Neurovascular Imaging Laboratory, Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Sydney, Australia; Department of Neurology - Neurophysiology, Liverpool Hospital - South West Sydney Local Health District (SWSLHD), Sydney, Australia;University of New South Wales (UNSW), South Western Sydney Clinical School, NSW, Australia; Ingham Institute for Applied Medical Research, Stroke - Neurology Research Group, Sydney, Australia; NSW Brain Clot Bank, NSW Health Statewide Biobank and NSW Health Pathology, Sydney, NSW, Australia;Thrombolysis and Endovascular WorkFLOw Network (TEFLON), Sydney, Australia
| |
Collapse
|
44
|
Xu M, He H, Long Y. Lung Perfusion Assessment by Bedside Electrical Impedance Tomography in Critically Ill Patients. Front Physiol 2021; 12:748724. [PMID: 34721072 PMCID: PMC8548642 DOI: 10.3389/fphys.2021.748724] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
As a portable, radiation-free imaging modality, electrical impedance tomography (EIT) technology has shown promise in the bedside visual assessment of lung perfusion distribution in critically ill patients. The two main methods of EIT for assessing lung perfusion are the pulsatility and conductivity contrast (saline) bolus method. Increasing attention is being paid to the saline bolus EIT method in the evaluation of regional pulmonary perfusion in clinical practice. This study seeks to provide an overview of experimental and clinical studies with the aim of clarifying the progress made in the use of the saline bolus EIT method. Animal studies revealed that the saline bolus EIT method presented good consistency with single-photon emission CT (SPECT) in the evaluation of lung regional perfusion changes in various pathological conditions. Moreover, the saline bolus EIT method has been applied to assess the lung perfusion in a pulmonary embolism and the effect of positive end-expiratory pressure (PEEP) on regional ventilation/perfusion ratio (V/Q) and acute respiratory distress syndrome (ARDS) in several clinical studies. The implementation of saline boluses, data analyses, precision, and cutoff values varied among different studies, and a consensus must be reached regarding the clinical application of the saline bolus EIT method. Further study is required to validate the impact of the described saline bolus EIT method on decision-making, therapeutic management, and outcomes in critically ill patients.
Collapse
Affiliation(s)
| | - Huaiwu He
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Critical Care Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | |
Collapse
|
45
|
Soltanpour M, Greiner R, Boulanger P, Buck B. Improvement of automatic ischemic stroke lesion segmentation in CT perfusion maps using a learned deep neural network. Comput Biol Med 2021; 137:104849. [PMID: 34530336 DOI: 10.1016/j.compbiomed.2021.104849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/11/2021] [Accepted: 09/04/2021] [Indexed: 10/20/2022]
Abstract
Acute ischemic stroke is one of the leading causes of death and long-term disability worldwide. It occurs when a blood clot blocks an artery that supplies blood to the brain tissue. Segmentation of acute ischemic stroke lesions plays a vital role to improve diagnosis, outcome assessment, and treatment planning. The current standard approach of ischemic stroke lesion segmentation is simply thresholding the Computed Tomography Perfusion (CTP) maps, i.e., quantitative feature maps created by summarizing CTP time sequence scans. However, this approach is not precise enough (its Dice similarity score is only around 50%) to be used in practice. Numerous machine learning-based techniques have recently been proposed to improve the accuracy of ischemic stroke lesion segmentation. Although they have achieved remarkable results, they still need to be improved before they can be used in actual practice. This paper presents a novel deep learning-based technique, MutiRes U-Net, for the segmentation of ischemic stroke lesions in CTP maps. MultiRes U-Net is a modified version of the original U-Net that is re-designed to be robust to segment the objects in different scales and unusual appearances. Additionally, in this paper, we propose to enrich the input CTP maps by using their contra-lateral and corresponding Tmax images. We evaluated the proposed method using the ISLES challenge 2018 dataset. As compared to the state-of-the-art methods, the results show an improvement in segmentation task accuracy. The dice similarity score (DSC) was 68%, the Jaccard score was 57.13%, and the mean absolute volume error was 22.62(ml).
Collapse
Affiliation(s)
| | - Russ Greiner
- Department of Computing Science, University of Alberta, Canada.
| | | | - Brian Buck
- Department of Medicine, University of Alberta, Canada.
| |
Collapse
|
46
|
Xu X, Tan Z, Fan M, Ma M, Fang W, Liang J, Xiao Z, Shi C, Luo L. Comparative Study of Multi-Delay Pseudo-Continuous Arterial Spin Labeling Perfusion MRI and CT Perfusion in Ischemic Stroke Disease. Front Neuroinform 2021; 15:719719. [PMID: 34456703 PMCID: PMC8386683 DOI: 10.3389/fninf.2021.719719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
With the aging population, stroke has gradually become the leading cause of death and disability among adults. It is necessary to verify whether multi-delay pseudo-continuous arterial spin labeling (pCASL) MRI can be used as a standard neuroimaging protocol in the patients with ischemic stroke. We aimed to investigate the clinical utility of multi-delay pCASL for evaluating cerebral perfusion in ischemic stroke disease. Twenty-one ischemic stroke patients [18 men and 3 women; median age, 62 years (age range, 37-84 years)] were enrolled in this study. All patients underwent examinations, including the multi-delay pCASL protocol (using 6 PLDs between 1,000 and 3,500 ms) and computed tomography perfusion (CTP). The cerebral blood flow (CBF) and arterial transit time (ATT) maps were obtained by the multi-delay pCASL protocol, while CBF and mean transit time (MTT) maps were derived by CTP measurements. Based on the voxel level analysis, Pearson correlation coefficients were used to estimate the associations between the two modalities in the gray matter, white matter, and whole brain of each subject. Moderate to high positive associations between ASL-CBF and CTP-CBF were acquired by voxel-level-wise analysis in the gray matter, white matter, and whole brain of the enrolled patients (all P < 0.005), and the average Pearson correlation coefficients were 0.647, 0.585, and 0.646, respectively. Highly significant positive correlations between ASL-ATT and CTP-MTT were obtained by voxel-level-wise associations in the gray matter, white matter, and whole brain (all P < 0.005), and the average Pearson correlation coefficients were 0.787, 0.707, and 0.799, respectively. In addition, significant associations between ASL and CT perfusion were obtained in the gray, white matter and whole brain, according to the subgroup analyses of patient's age and disease stage. There is a correlation between perfusion parameters from multi-delay pCASL and CT perfusion imaging in patients with ischemic stroke. Multi-delay pCASL is radiation-free and non-invasive, and could be an alternative method to CT scans for assessing perfusion in ischemic stroke disease.
Collapse
Affiliation(s)
- Xi Xu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zefeng Tan
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, Shun De Hospital of Jinan University, Foshan, China
| | - Meng Fan
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mengjie Ma
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weimin Fang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jianye Liang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zeyu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Engineering Research Center of Medical Imaging Artificial Intelligence for Precision Diagnosis and Treatment, Guangzhou, China
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Engineering Research Center of Medical Imaging Artificial Intelligence for Precision Diagnosis and Treatment, Guangzhou, China
| |
Collapse
|
47
|
de la Rosa E, Sima DM, Menze B, Kirschke JS, Robben D. AIFNet: Automatic vascular function estimation for perfusion analysis using deep learning. Med Image Anal 2021; 74:102211. [PMID: 34425318 DOI: 10.1016/j.media.2021.102211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Perfusion imaging is crucial in acute ischemic stroke for quantifying the salvageable penumbra and irreversibly damaged core lesions. As such, it helps clinicians to decide on the optimal reperfusion treatment. In perfusion CT imaging, deconvolution methods are used to obtain clinically interpretable perfusion parameters that allow identifying brain tissue abnormalities. Deconvolution methods require the selection of two reference vascular functions as inputs to the model: the arterial input function (AIF) and the venous output function, with the AIF as the most critical model input. When manually performed, the vascular function selection is time demanding, suffers from poor reproducibility and is subject to the professionals' experience. This leads to potentially unreliable quantification of the penumbra and core lesions and, hence, might harm the treatment decision process. In this work we automatize the perfusion analysis with AIFNet, a fully automatic and end-to-end trainable deep learning approach for estimating the vascular functions. Unlike previous methods using clustering or segmentation techniques to select vascular voxels, AIFNet is directly optimized at the vascular function estimation, which allows to better recognise the time-curve profiles. Validation on the public ISLES18 stroke database shows that AIFNet almost reaches inter-rater performance for the vascular function estimation and, subsequently, for the parameter maps and core lesion quantification obtained through deconvolution. We conclude that AIFNet has potential for clinical transfer and could be incorporated in perfusion deconvolution software.
Collapse
Affiliation(s)
- Ezequiel de la Rosa
- icometrix, Leuven, Belgium; Department of Computer Science, Technical University of Munich, Munich, Germany.
| | | | - Bjoern Menze
- Department of Computer Science, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - David Robben
- icometrix, Leuven, Belgium; Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium; Medical Image Computing (MIC), ESAT-PSI, Department of Electrical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Bos D, König B, Blex S, Zensen S, Opitz M, Maier S, Forsting M, Zylka W, Kühl H, Wetter A, Guberina N. Experimental examination of radiation doses from cardiac and liver CT perfusion in a phantom study as a function of organ, age and sex. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:512-525. [PMID: 34406127 DOI: 10.1088/1361-6498/abf71f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Cardiac and liver computed tomography (CT) perfusion has not been routinely implemented in the clinic and requires high radiation doses. The purpose of this study is to examine the radiation exposure and technical settings for cardiac and liver CT perfusion scans at different CT scanners. Two cardiac and three liver CT perfusion protocols were examined with the N1 LUNGMAN phantom at three multi-slice CT scanners: a single-source (I) and second- (II) and third-generation (III) dual-source CT scanners. Radiation doses were reported for the CT dose index (CTDIvol) and dose-length product (DLP) and a standardised DLP (DLP10cm) for cardiac and liver perfusion. The effective dose (ED10cm) for a standardised scan length of 10 cm was estimated using conversion factors based on the International Commission on Radiological Protection (ICRP) 110 phantoms and tissue-weighting factors from ICRP 103. The proposed total lifetime attributable risk of developing cancer was determined as a function of organ, age and sex for adults. Radiation exposure for CTDIvol, DLP/DLP10 cmand ED10 cmduring CT perfusion was distributed as follows: for cardiac perfusion (II) 144 mGy, 1036 mGy·cm/1440 mGy·cm and 39 mSv, and (III) 28 mGy, 295 mGy·cm/279 mGy·cm and 8 mSv; for liver perfusion (I) 225 mGy, 3360 mGy·cm/2249 mGy·cm and 54 mSv, (II) 94 mGy, 1451 mGy·cm/937 mGy·cm and 22 mSv, and (III) 74 mGy, 1096 mGy·cm/739 mGy·cm and 18 mSv. The third-generation dual-source CT scanner applied the lowest doses. Proposed total lifetime attributable risk increased with decreasing age. Even though CT perfusion is a high-dose examination, we observed that new-generation CT scanners could achieve lower doses. There is a strong impact of organ, age and sex on lifetime attributable risk. Further investigations of the feasibility of these perfusion scans are required for clinical implementation.
Collapse
Affiliation(s)
- Denise Bos
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Britta König
- Faculty of Physical Engineering, Westphalian University, Campus Gelsenkirchen, Neidenburger Str. 43, Gelsenkirchen 45897, Germany
| | - Sebastian Blex
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Sebastian Zensen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Marcel Opitz
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Sandra Maier
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Waldemar Zylka
- Faculty of Physical Engineering, Westphalian University, Campus Gelsenkirchen, Neidenburger Str. 43, Gelsenkirchen 45897, Germany
| | - Hilmar Kühl
- Department of Radiology, St Bernhard-Hospital Kamp-Lintfort GmbH, Bürgermeister-Schmelzing-Str. 90, Kamp-Lintfort 47475, Germany
| | - Axel Wetter
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
- Department of Diagnostic and Interventional Radiology, Neuroradiology, Asklepios Klinikum Harburg, 21075 Hamburg, Germany
| | - Nika Guberina
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
49
|
Automated Processing of Head CT Perfusion Imaging for Ischemic Stroke Triage: A Practical Guide to Quality Assurance and Interpretation. AJR Am J Roentgenol 2021; 217:1401-1416. [PMID: 34259036 DOI: 10.2214/ajr.21.26139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent successful trials of thrombectomy launched a shift to imaging-based patient selection for stroke intervention. Many centers have adopted CT perfusion imaging (CTP) as a routine part of stroke workflow, and the demand for emergent CTP interpretation is growing. Fully automated CTP postprocessing software that rapidly generates standardized color-coded CTP summary maps with minimal user input and with easy accessibility of the software output is increasingly being adopted. Such automated postprocessing greatly streamlines clinical workflow and CTP interpretation for radiologists and other frontline physicians. However, the straightforward interface overshadows the computational complexity of the underlying postprocessing workflow, which, if not carefully examined, predisposes the interpreting physician to diagnostic errors. Using case examples, this article aims to familiarize the general radiologist with interpreting automated CTP software data output in the context of contemporary stroke management, providing a discussion of CTP acquisition and postprocessing, a stepwise guide for CTP quality assurance and troubleshooting, and a framework for avoiding clinically significant CTP interpretative pitfalls in commonly encountered clinical scenarios. Interpreting radiologists should apply the outlined approach for quality assurance and develop a comprehensive search pattern for the identified pitfalls, to ensure accurate CTP interpretation and optimize patient selection for reperfusion.
Collapse
|
50
|
Gu F, O'Sullivan F, Muzi M, Mankoff DA. Quantitation of multiple injection dynamic PET scans: an investigation of the benefits of pooling data from separate scans when mapping kinetics. Phys Med Biol 2021; 66:10.1088/1361-6560/ac0683. [PMID: 34049293 PMCID: PMC8284854 DOI: 10.1088/1361-6560/ac0683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/28/2021] [Indexed: 11/11/2022]
Abstract
Multiple injection dynamic positron emission tomography (PET) scanning is used in the clinical management of certain groups of patients and in medical research. The analysis of these studies can be approached in two ways: (i) separate analysis of data from individual tracer injections, or (ii), concatenate/pool data from separate injections and carry out a combined analysis. The simplicity of separate analysis has some practical appeal but may not be statistically efficient. We use a linear model framework associated with a kinetic mapping scheme to develop a simplified theoretical understanding of separate and combined analysis. The theoretical framework is explored numerically using both 1D and 2D simulation models. These studies are motivated by the breast cancer flow-metabolism mismatch studies involving15O-water (H2O) and18F-Fluorodeoxyglucose (FDG) and repeat15O-H2O injections used in brain activation investigations. Numerical results are found to be substantially in line with the simple theoretical analysis: mean square error characteristics of alternative methods are well described by factors involving the local voxel-level resolution of the imaging data, the relative activities of the individual scans and the number of separate injections involved. While voxel-level resolution has dependence on scan dose, after adjustment for this effect, the impact of a combined analysis is understood in simple terms associated with the linear model used for kinetic mapping. This is true for both data reconstructed by direct filtered backprojection or iterative maximum likelihood. The proposed analysis has potential to be applied to the emerging long axial field-of-view PET scanners.
Collapse
Affiliation(s)
- Fengyun Gu
- Department of Statistics, University College Cork, Cork, Ireland
| | | | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|