1
|
Jin T, Wang J, Chung J, Hitchens TK, Sun D, Mettenburg J, Wang P. Amide proton transfer MRI at 9.4 T for differentiating tissue acidosis in a rodent model of ischemic stroke. Magn Reson Med 2024; 92:2140-2148. [PMID: 38923094 PMCID: PMC11433955 DOI: 10.1002/mrm.30194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Differentiating ischemic brain damage is critical for decision making in acute stroke treatment for better outcomes. We examined the sensitivity of amide proton transfer (APT) MRI, a pH-weighted imaging technique, to achieve this differentiation. METHODS In a rat stroke model, the ischemic core, oligemia, and the infarct-growth region (IGR) were identified by tracking the progression of the lesions. APT MRI signals were measured alongside ADC, T1, and T2 maps to evaluate their sensitivity in distinguishing ischemic tissues. Additionally, stroke under hyperglycemic conditions was studied. RESULTS The APT signal in the IGR decreased by about 10% shortly after stroke onset, and further decreased to 35% at 5 h, indicating a progression from mild to severe acidosis as the lesion evolved into infarction. Although ADC, T1, and T2 contrasts can only detect significant differences between the IGR and oligemia for a portion of the stroke duration, APT contrast consistently differentiates between them at all time points. However, the contrast to variation ratio at 1 h is only about 20% of the contrast to variation ratio between the core and normal tissues, indicating limited sensitivity. In the ischemic core, the APT signal decreases to about 45% and 33% of normal tissue level at 1 h for the normoglycemic and hyperglycemic groups, respectively, confirming more severe acidosis under hyperglycemia. CONCLUSION The sensitivity of APT MRI is high in detecting severe acidosis of the ischemic core but is much lower in detecting mild acidosis, which may affect the accuracy of differentiation between the IGR and oligemia.
Collapse
Affiliation(s)
- Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jicheng Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julius Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph Mettenburg
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ping Wang
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Chen Q, Zhang S, Liu W, Sun X, Luo Y, Sun X. Application of emerging technologies in ischemic stroke: from clinical study to basic research. Front Neurol 2024; 15:1400469. [PMID: 38915803 PMCID: PMC11194379 DOI: 10.3389/fneur.2024.1400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Stroke is a primary cause of noncommunicable disease-related death and disability worldwide. The most common form, ischemic stroke, is increasing in incidence resulting in a significant burden on patients and society. Urgent action is thus needed to address preventable risk factors and improve treatment methods. This review examines emerging technologies used in the management of ischemic stroke, including neuroimaging, regenerative medicine, biology, and nanomedicine, highlighting their benefits, clinical applications, and limitations. Additionally, we suggest strategies for technological development for the prevention, diagnosis, and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Vasireddi A, Schaefer PW, Rohatgi S. Metabolic Imaging of Acute Ischemic Stroke (PET, 1Hydrogen Spectroscopy, 17Oxygen Imaging, 23Sodium MRI, pH Imaging). Neuroimaging Clin N Am 2024; 34:271-280. [PMID: 38604711 DOI: 10.1016/j.nic.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Acute stroke imaging plays a vital and time-sensitive role in therapeutic decision-making. Current clinical workflows widely use computed tomography (CT) and magnetic resonance (MR) techniques including CT and MR perfusion to estimate the volume of ischemic penumbra at risk for infarction without acute intervention. The use of imaging techniques aimed toward evaluating the metabolic derangements underlying a developing infarct may provide additional information for differentiating the penumbra from benign oligemia and infarct core. The authors review several modalities of metabolic imaging including PET, hydrogen and oxygen spectroscopy, sodium MRI, and pH-weighted MRI.
Collapse
Affiliation(s)
- Anil Vasireddi
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Pamela W Schaefer
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Saurabh Rohatgi
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
4
|
Sun H, Wu Y, Liu N, Long M, Liu G, Sun PZ, Yin J. Tissue perfusion of the kurtosis/diffusion mismatch differs from the central core and peripheral regions in acute cerebral infarction patients. Acta Radiol 2023; 64:1155-1165. [PMID: 35765208 DOI: 10.1177/02841851221109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite its wide adoption in stroke imaging, the diffusion-weighted imaging (DWI) lesion is heterogeneous. The emerging diffusion kurtosis imaging (DKI) has been postulated to resolve the graded DWI lesion. PURPOSE To determine the perfusion characteristics of the central infarction core, kurtosis/diffusion mismatch, and peripheral regions. MATERIAL AND METHODS Patients with acute ischemic stroke underwent DWI, DKI, and perfusion-weighted imaging (PWI) scans. The patients were divided into mean kurtosis (MK)/mean diffusivity (MD) match and mismatch groups. Perfusion parameters were measured in the MK/MD lesion and peripheral areas in the MK/MD match group. We also analyzed perfusion status in the MK/MD lesion mismatch area for the mismatch group. RESULTS A total of 40 eligible patients (24 MK/MD match and 16 MK/MD mismatch) were enrolled in the final data analysis. The MTT and TTP progressively decreased, while the cerebral blood flow (CBF) and cerebral blood volume (CBV) increased from the central to peripheral areas. In addition, CBF in the MK/MD mismatch region was significantly higher than that in the central region (P < 0.05), but similar to the peripheral region. Furthermore, CBV in the MK/MD mismatch region did not differ significantly from that of the central region, but both were significantly lower than that of the peripheral area (P < 0.05). CONCLUSION The MK/MD mismatch region had blood flow similar to the peripheral region but with a reduced blood volume, indicating that it was less ischemic from the infarction core, albeit insufficient collateral circulation.
Collapse
Affiliation(s)
- Haizhen Sun
- Department of Radiology, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, PR China
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin, PR China
| | - Yalin Wu
- The First Central Clinical College of Tianjin Medical University, Tianjin, PR China
| | - Na Liu
- The First Central Clinical College of Tianjin Medical University, Tianjin, PR China
| | - Miaomiao Long
- Department of Radiology, 66571Tianjin First Central Hospital, Tianjin Medical Imaging Institution, Tianjin, PR China
| | - Guoping Liu
- Department of Neurology, 66571Tianjin First Central Hospital, Tianjin, PR China
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, 12239Emory University School of Medicine, Atlanta, GA, USA
| | - Jianzhong Yin
- Department of Radiology, 66571Tianjin First Central Hospital, Tianjin Medical Imaging Institution, Tianjin, PR China
| |
Collapse
|
5
|
Zhang T, Guo R, Li Y, Zhao Y, Li Y, Liang ZP. T 2 ' mapping of the brain from water-unsuppressed 1 H-MRSI and turbo spin-echo data. Magn Reson Med 2022; 88:2198-2207. [PMID: 35844075 DOI: 10.1002/mrm.29386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE To obtain high-quality T 2 ' $$ {\mathrm{T}}_2^{\prime } $$ maps of brain tissues from water-unsuppressed magnetic resonance spectroscopic imaging (MRSI) and turbo spin-echo (TSE) data. METHODS T 2 ' $$ {\mathrm{T}}_2^{\prime } $$ mapping can be achieved using T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping from water-unsuppressed MRSI data and T 2 $$ {\mathrm{T}}_2 $$ mapping from TSE data. However, T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping often suffers from signal dephasing and distortions caused by B 0 $$ {\mathrm{B}}_0 $$ field inhomogeneity; T 2 $$ {\mathrm{T}}_2 $$ measurements may be biased due to system imperfections, especially for T 2 $$ {\mathrm{T}}_2 $$ -weighted image with small number of TEs. In this work, we corrected the B 0 $$ {\mathrm{B}}_0 $$ field inhomogeneity effect on T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping using a subspace model-based method, incorporating pre-learned spectral basis functions of the water signals. T 2 $$ {\mathrm{T}}_2 $$ estimation bias was corrected using a TE-adjustment method, which modeled the deviation between measured and reference T 2 $$ {\mathrm{T}}_2 $$ decays as TE shifts. RESULTS In vivo experiments were performed to evaluate the performance of the proposed method. High-quality T 2 * $$ {\mathrm{T}}_2^{\ast } $$ maps were obtained in the presence of large field inhomogeneity in the prefrontal cortex. Bias in T 2 $$ {\mathrm{T}}_2 $$ measurements obtained from TSE data was effectively reduced. Based on the T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and T 2 $$ {\mathrm{T}}_2 $$ measurements produced by the proposed method, high-quality T 2 ' $$ {\mathrm{T}}_2^{\prime } $$ maps were obtained, along with neurometabolite maps, from MRSI and TSE data that were acquired in about 9 min. The results obtained from acute stroke and glioma patients demonstrated the feasibility of the proposed method in the clinical setting. CONCLUSIONS High-quality T 2 ' $$ {\mathrm{T}}_2^{\prime } $$ maps can be obtained from water-unsuppressed 1 H-MRSI and TSE data using the proposed method. With further development, this method may lay a foundation for simultaneously imaging oxygenation and neurometabolic alterations of brain disorders.
Collapse
Affiliation(s)
- Tianxiao Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Guo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yudu Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yibo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Pei Liang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Sun PZ. Consistent depiction of the acidic ischemic lesion with APT MRI-Dual RF power evaluation of pH-sensitive image in acute stroke. Magn Reson Med 2022; 87:850-858. [PMID: 34590730 PMCID: PMC8627494 DOI: 10.1002/mrm.29029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Amide proton transfer-weighted (APTw) MRI provides a non-invasive pH-sensitive image, complementing perfusion and diffusion imaging for refined stratification of ischemic tissue. Although the commonly used magnetization transfer (MT) asymmetry (MTRasym ) calculation reasonably corrects the direct RF saturation effect, it is susceptible to the concomitant semisolid macromolecular MT contribution. Therefore, this study aimed to compare the performance of MTRasym and magnetization transfer and relaxation-normalized APT (MRAPT) analyses under 2 representative experimental conditions. METHODS Multiparametric MRI scans were performed in a rodent model of acute stroke, including relaxation, diffusion, and Z spectral images under 2 representative RF levels of 0.75 and 1.5 µT. Both MTRasym and MRAPT values in the ischemic diffusion lesion and the contralateral normal areas were compared using correlation and Bland-Altman tests. In addition, the acidic lesion volumes were compared. RESULTS MRAPT measurements from the diffusion lesion under the 2 conditions were highly correlated (R2 = 0.97) versus MTRasym measures (R2 = 0.58). The pH lesion sizes determined from MRAPT analysis were in good agreement (178 ± 43 mm3 vs. 186 ± 55 mm3 for B1 of 0.75 and 1.5 µT, respectively). CONCLUSIONS The study demonstrated that MRAPT analysis could be generalized to moderately different RF amplitudes, providing a more consistent depiction of acidic lesions than the MTRasym analysis.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta GA,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA,Corresponding Author: Phillip Zhe Sun, Ph.D., Department of Radiology and Imaging Sciences, Emory University School of Medicine, 954 Gatewood Road NE, Atlanta, GA 30329, Phone: (404) 727-7786; (404) 712-1667,
| |
Collapse
|
7
|
Kajiwara M, Haishi T, Prananto D, Sasaki S, Kaseda R, Narita I, Terada Y. Development of an Add-on 23Na-MRI Radiofrequency Platform for a 1H-MRI System Using a Crossband Repeater: Proof-of-concept. Magn Reson Med Sci 2021; 22:103-115. [PMID: 34897148 PMCID: PMC9849411 DOI: 10.2463/mrms.tn.2021-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
23Na-MRI provides information on Na+ content, and its application in the medical field has been highly anticipated. However, for existing clinical 1H-MRI systems, its implementation requires an additional broadband RF transmitter, dedicated transceivers, and RF coils for Na+ imaging. However, a standard medical MRI system cannot often be modified to perform 23Na imaging. We have developed an add-on crossband RF repeater system that enables 23Na-MRI simply by inserting it into the magnet bore of an existing 1H MRI. The three axis gradient fields controlled by the 1H-MRI system were directly used for 23Na imaging without any deformation. A crossband repeater is a common technique used for amateur radio. This concept was proven by a saline solution phantom and in vivo mouse experiments. This add-on RF platform is applicable to medical 1H MRI systems and can enhance the application of 23Na-MRI in clinical usage.
Collapse
Affiliation(s)
- Michiru Kajiwara
- Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoyuki Haishi
- Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Narita, Chiba, Japan,MRTechnology Inc., Tsukuba, Ibaraki, Japan,Japan Agency for Medical Research and Development, AMED SENTAN, Tokyo, Japan
| | - Dwi Prananto
- Japan Agency for Medical Research and Development, AMED SENTAN, Tokyo, Japan,Faculty of Engineering, Niigata University, Niigata, Niigata, Japan
| | - Susumu Sasaki
- Japan Agency for Medical Research and Development, AMED SENTAN, Tokyo, Japan,Faculty of Engineering, Niigata University, Niigata, Niigata, Japan
| | - Ryohei Kaseda
- Japan Agency for Medical Research and Development, AMED SENTAN, Tokyo, Japan,Division of Clinical Nephrology and Rheumatology, Niigata University, Niigata, Niigata, Japan
| | - Ichiei Narita
- Japan Agency for Medical Research and Development, AMED SENTAN, Tokyo, Japan,Division of Clinical Nephrology and Rheumatology, Niigata University, Niigata, Niigata, Japan
| | - Yasuhiko Terada
- Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan,Corresponding author: Institute of Applied Physics, University of Tsukuba, 1-1-1, Tennodai, Ibaraki 305-8573, Japan. Phone: +81-29-853-5214, Fax: +81-29-853-5769,
| |
Collapse
|
8
|
Hagiwara A, Bydder M, Oughourlian TC, Yao J, Salamon N, Jahan R, Villablanca JP, Enzmann DR, Ellingson BM. Sodium MR Neuroimaging. AJNR Am J Neuroradiol 2021; 42:1920-1926. [PMID: 34446457 PMCID: PMC8583254 DOI: 10.3174/ajnr.a7261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
Sodium MR imaging has the potential to complement routine proton MR imaging examinations with the goal of improving diagnosis, disease characterization, and clinical monitoring in neurologic diseases. In the past, the utility and exploration of sodium MR imaging as a valuable clinical tool have been limited due to the extremely low MR signal, but with recent improvements in imaging techniques and hardware, sodium MR imaging is on the verge of becoming clinically realistic for conditions that include brain tumors, ischemic stroke, and epilepsy. In this review, we briefly describe the fundamental physics of sodium MR imaging tailored to the neuroradiologist, focusing on the basics necessary to understand factors that play into making sodium MR imaging feasible for clinical settings and describing current controversies in the field. We will also discuss the current state of the field and the potential future clinical uses of sodium MR imaging in the diagnosis, phenotyping, and therapeutic monitoring in neurologic diseases.
Collapse
Affiliation(s)
- A Hagiwara
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - M Bydder
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - T C Oughourlian
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Neuroscience Interdepartmental Program (T.C.O., B.M.E.)
| | - J Yao
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Bioengineering (J.Y., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - N Salamon
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - R Jahan
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - J P Villablanca
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - D R Enzmann
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - B M Ellingson
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Bioengineering (J.Y., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
- Neuroscience Interdepartmental Program (T.C.O., B.M.E.)
- Department of Psychiatry and Biobehavioral Sciences (B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
9
|
Cheung J, Doerr M, Hu R, Sun PZ. Refined Ischemic Penumbra Imaging with Tissue pH and Diffusion Kurtosis Magnetic Resonance Imaging. Transl Stroke Res 2021; 12:742-753. [PMID: 33159656 PMCID: PMC8102648 DOI: 10.1007/s12975-020-00868-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 12/19/2022]
Abstract
Imaging has played a vital role in our mechanistic understanding of acute ischemia and the management of acute stroke patients. The most recent DAWN and DEFUSE-3 trials showed that endovascular therapy could be extended to a selected group of late-presenting stroke patients with the aid of imaging. Although perfusion and diffusion MRI have been commonly used in stroke imaging, the approximation of their mismatch as the penumbra is oversimplified, particularly in the era of endovascular therapy. Briefly, the hypoperfusion lesion includes the benign oligemia that does not proceed to infarction. Also, with prompt and effective reperfusion therapy, a portion of the diffusion lesion is potentially reversible. Therefore, advanced imaging that provides improved ischemic tissue characterization may enable new experimental stroke therapeutics and eventually further individualize stroke treatment upon translation to the clinical setting. Specifically, pH imaging captures tissue of altered metabolic state that demarcates the hypoperfused lesion into ischemic penumbra and benign oligemia, which remains promising to define the ischemic penumbra's outer boundary. On the other hand, diffusion kurtosis imaging (DKI) differentiates the most severely damaged and irreversibly injured diffusion lesion from the portion of diffusion lesion that is potentially reversible, refining the inner boundary of the penumbra. Altogether, the development of advanced imaging has the potential to not only transform the experimental stroke research but also aid clinical translation and patient management.
Collapse
Affiliation(s)
- Jesse Cheung
- Emory College of Arts and Sciences, Emory University, Atlanta, GA, 30329, USA
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Madeline Doerr
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Dartmouth College, Hanover, NH, 03755, USA
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton RD NE, Atlanta, GA, 30322, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton RD NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Lu J, Mei Q, Hou X, Manaenko A, Zhou L, Liebeskind DS, Zhang JH, Li Y, Hu Q. Imaging Acute Stroke: From One-Size-Fit-All to Biomarkers. Front Neurol 2021; 12:697779. [PMID: 34630278 PMCID: PMC8497192 DOI: 10.3389/fneur.2021.697779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/30/2021] [Indexed: 12/27/2022] Open
Abstract
In acute stroke management, time window has been rigidly used as a guide for decades and the reperfusion treatment is only available in the first few limited hours. Recently, imaging-based selection of patients has successfully expanded the treatment window out to 16 and even 24 h in the DEFUSE 3 and DAWN trials, respectively. Recent guidelines recommend the use of imaging techniques to guide therapeutic decision-making and expanded eligibility in acute ischemic stroke. A tissue window is proposed to replace the time window and serve as the surrogate marker for potentially salvageable tissue. This article reviews the evolution of time window, addresses the advantage of a tissue window in precision medicine for ischemic stroke, and discusses both the established and emerging techniques of neuroimaging and their roles in defining a tissue window. We also emphasize the metabolic imaging and molecular imaging of brain pathophysiology, and highlight its potential in patient selection and treatment response prediction in ischemic stroke.
Collapse
Affiliation(s)
- Jianfei Lu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Anatol Manaenko
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Zhou
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - David S. Liebeskind
- Neurovascular Imaging Research Core and University of California Los Angeles Stroke Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - John H. Zhang
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Hampton DG, Goldman-Yassen AE, Sun PZ, Hu R. Metabolic Magnetic Resonance Imaging in Neuroimaging: Magnetic Resonance Spectroscopy, Sodium Magnetic Resonance Imaging and Chemical Exchange Saturation Transfer. Semin Ultrasound CT MR 2021; 42:452-462. [PMID: 34537114 DOI: 10.1053/j.sult.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance (MR) is a powerful and versatile technique that offers much more beyond conventional anatomic imaging and has the potential of probing in vivo metabolism. Although MR spectroscopy (MRS) predates clinical MR imaging (MRI), its clinical application has been limited by technical and practical challenges. Other MR techniques actively being developed for in vivo metabolic imaging include sodium concentration imaging and chemical exchange saturation transfer. This article will review some of the practical aspects of MRS in neuroimaging, introduce sodium MRI and chemical exchange saturation transfer MRI, and highlight some of their emerging clinical applications.
Collapse
Affiliation(s)
- Daniel G Hampton
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA.
| | - Adam E Goldman-Yassen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA; Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
12
|
Li Y, Wang T, Zhang T, Lin Z, Li Y, Guo R, Zhao Y, Meng Z, Liu J, Yu X, Liang ZP, Nachev P. Fast high-resolution metabolic imaging of acute stroke with 3D magnetic resonance spectroscopy. Brain 2020; 143:3225-3233. [PMID: 33141145 PMCID: PMC7719019 DOI: 10.1093/brain/awaa264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023] Open
Abstract
Impaired oxygen and cellular metabolism is a hallmark of ischaemic injury in acute stroke. Magnetic resonance spectroscopic imaging (MRSI) has long been recognized as a potentially powerful tool for non-invasive metabolic imaging. Nonetheless, long acquisition time, poor spatial resolution, and narrow coverage have limited its clinical application. Here we investigated the feasibility and potential clinical utility of rapid, high spatial resolution, near whole-brain 3D metabolic imaging based on a novel MRSI technology. In an 8-min scan, we simultaneously obtained 3D maps of N-acetylaspartate and lactate at a nominal spatial resolution of 2.0 × 3.0 × 3.0 mm3 with near whole-brain coverage from a cohort of 18 patients with acute ischaemic stroke. Serial structural and perfusion MRI was used to define detailed spatial maps of tissue-level outcomes against which high-resolution metabolic changes were evaluated. Within hypoperfused tissue, the lactate signal was higher in areas that ultimately infarcted compared with those that recovered (P < 0.0001). Both lactate (P < 0.0001) and N-acetylaspartate (P < 0.001) differed between infarcted and other regions. Within the areas of diffusion-weighted abnormality, lactate was lower where recovery was observed compared with elsewhere (P < 0.001). This feasibility study supports further investigation of fast high-resolution MRSI in acute stroke.
Collapse
Affiliation(s)
- Yao Li
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyao Wang
- Radiology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tianxiao Zhang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zengping Lin
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yudu Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rong Guo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yibo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ziyu Meng
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jun Liu
- Radiology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Zhi-Pei Liang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Parashkev Nachev
- High-Dimensional Neurology Group, Institute of Neurology, University College London, London, UK
| |
Collapse
|
13
|
Nakagomi T, Tanaka Y, Nakagomi N, Matsuyama T, Yoshimura S. How Long Are Reperfusion Therapies Beneficial for Patients after Stroke Onset? Lessons from Lethal Ischemia Following Early Reperfusion in a Mouse Model of Stroke. Int J Mol Sci 2020; 21:ijms21176360. [PMID: 32887241 PMCID: PMC7504064 DOI: 10.3390/ijms21176360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke caused by cerebral artery occlusion induces neurological deficits because of cell damage or death in the central nervous system. Given the recent therapeutic advances in reperfusion therapies, some patients can now recover from an ischemic stroke with no sequelae. Currently, reperfusion therapies focus on rescuing neural lineage cells that survive in spite of decreases in cerebral blood flow. However, vascular lineage cells are known to be more resistant to ischemia/hypoxia than neural lineage cells. This indicates that ischemic areas of the brain experience neural cell death but without vascular cell death. Emerging evidence suggests that if a vascular cell-mediated healing system is present within ischemic areas following reperfusion, the therapeutic time window can be extended for patients with stroke. In this review, we present our comments on this subject based upon recent findings from lethal ischemia following reperfusion in a mouse model of stroke.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Correspondence: ; Tel.: +81-798-45-6821; Fax: +81-798-45-6823
| | - Yasue Tanaka
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Shinichi Yoshimura
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| |
Collapse
|
14
|
Grist JT, Miller JJ, Zaccagna F, McLean MA, Riemer F, Matys T, Tyler DJ, Laustsen C, Coles AJ, Gallagher FA. Hyperpolarized 13C MRI: A novel approach for probing cerebral metabolism in health and neurological disease. J Cereb Blood Flow Metab 2020; 40:1137-1147. [PMID: 32153235 PMCID: PMC7238376 DOI: 10.1177/0271678x20909045] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Cerebral metabolism is tightly regulated and fundamental for healthy neurological function. There is increasing evidence that alterations in this metabolism may be a precursor and early biomarker of later stage disease processes. Proton magnetic resonance spectroscopy (1H-MRS) is a powerful tool to non-invasively assess tissue metabolites and has many applications for studying the normal and diseased brain. However, the technique has limitations including low spatial and temporal resolution, difficulties in discriminating overlapping peaks, and challenges in assessing metabolic flux rather than steady-state concentrations. Hyperpolarized carbon-13 magnetic resonance imaging is an emerging clinical technique that may overcome some of these spatial and temporal limitations, providing novel insights into neurometabolism in both health and in pathological processes such as glioma, stroke and multiple sclerosis. This review will explore the growing body of pre-clinical data that demonstrates a potential role for the technique in assessing metabolism in the central nervous system. There are now a number of clinical studies being undertaken in this area and this review will present the emerging clinical data as well as the potential future applications of hyperpolarized 13C magnetic resonance imaging in the brain, in both clinical and pre-clinical studies.
Collapse
Affiliation(s)
- James T Grist
- Institute of Cancer and Genomic Sciences, University of
Birmingham, Birmingham, UK
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Jack J Miller
- Department of Physiology, Anatomy, and Genetics, University of
Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of
Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John
Radcliffe Hospital, Oxford, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge,
UK
- CRUK Cambridge Institute, Cambridge, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Cambridge,
UK
| | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of
Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John
Radcliffe Hospital, Oxford, UK
| | | | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge,
Cambridge, UK
| | | |
Collapse
|
15
|
Alambyan V, Pace J, Sukpornchairak P, Yu X, Alnimir H, Tatton R, Chitturu G, Yarlagadda A, Ramos-Estebanez C. Imaging Guidance for Therapeutic Delivery: The Dawn of Neuroenergetics. Neurotherapeutics 2020; 17:522-538. [PMID: 32240530 PMCID: PMC7283376 DOI: 10.1007/s13311-020-00843-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Modern neurocritical care relies on ancillary diagnostic testing in the form of multimodal monitoring to address acute changes in the neurological homeostasis. Much of our armamentarium rests upon physiological and biochemical surrogates of organ or regional level metabolic activity, of which a great deal is invested at the metabolic-hemodynamic-hydrodynamic interface to rectify the traditional intermediaries of glucose consumption. Despite best efforts to detect cellular neuroenergetics, current modalities cannot appreciate the intricate coupling between astrocytes and neurons. Invasive monitoring is not without surgical complication, and noninvasive strategies do not provide an adequate spatial or temporal resolution. Without knowledge of the brain's versatile behavior in specific metabolic states (glycolytic vs oxidative), clinical practice would lag behind laboratory empiricism. Noninvasive metabolic imaging represents a new hope in delineating cellular, nigh molecular level energy exchange to guide targeted management in a diverse array of neuropathology.
Collapse
Affiliation(s)
- Vilakshan Alambyan
- Department of Neurology, Albert Einstein Medical Center, Philadelphia, Pennsylvania, USA
| | - Jonathan Pace
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Persen Sukpornchairak
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hamza Alnimir
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ryan Tatton
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gautham Chitturu
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anisha Yarlagadda
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ciro Ramos-Estebanez
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
16
|
Sun PZ. Demonstration of magnetization transfer and relaxation normalized pH-specific pulse-amide proton transfer imaging in an animal model of acute stroke. Magn Reson Med 2020; 84:1526-1533. [PMID: 32080897 DOI: 10.1002/mrm.28223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/12/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE pH-weighted amide proton transfer (APT) MRI is promising to serve as a new surrogate metabolic imaging biomarker for refined ischemic tissue demarcation. APT MRI with pulse-RF irradiation (pulse-APT) is an alternative to the routine continuous wave (CW-) APT MRI that overcomes the RF duty cycle limit. Our study aimed to generalize the recently developed pH-specific magnetization transfer and relaxation-normalized APT (MRAPT) analysis to pulse-APT MRI in acute stroke imaging. METHODS Multiparametric MRI, including CW- and pulse-APT MRI scans, were performed following middle cerebral artery occlusion in rats. We calculated pH-sensitive MTRasym and pH-specific MRAPT contrast between the ipsilateral diffusion lesion and contralateral normal area. RESULTS An inversion pulse of 10 to 15 ms maximizes the pH-sensitive MRI contrast for pulse-APT MRI. The contrast-to-noise ratio of pH-specific MRAPT effect between the contralateral normal area and ischemic lesion from both methods are comparable (3.25 ± 0.65 vs. 3.59 ± 0.40, P > .05). pH determined from both methods were in good agreement, with their difference within 0.1. CONCLUSIONS Pulse-APT MRI provides highly pH-specific mapping for acute stroke imaging.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
17
|
Marzolini S, Robertson AD, Oh P, Goodman JM, Corbett D, Du X, MacIntosh BJ. Aerobic Training and Mobilization Early Post-stroke: Cautions and Considerations. Front Neurol 2019; 10:1187. [PMID: 31803129 PMCID: PMC6872678 DOI: 10.3389/fneur.2019.01187] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
Knowledge gaps exist in how we implement aerobic exercise programs during the early phases post-stroke. Therefore, the objective of this review was to provide evidence-based guidelines for pre-participation screening, mobilization, and aerobic exercise training in the hyper-acute and acute phases post-stroke. In reviewing the literature to determine safe timelines of when to initiate exercise and mobilization we considered the following factors: arterial blood pressure dysregulation, cardiac complications, blood-brain barrier disruption, hemorrhagic stroke transformation, and ischemic penumbra viability. These stroke-related impairments could intensify with inappropriate mobilization/aerobic exercise, hence we deemed the integrity of cerebral autoregulation to be an essential physiological consideration to protect the brain when progressing exercise intensity. Pre-participation screening criteria are proposed and countermeasures to protect the brain from potentially adverse circulatory effects before, during, and following mobilization/exercise sessions are introduced. For example, prolonged periods of standing and static postures before and after mobilization/aerobic exercise may elicit blood pooling and/or trigger coagulation cascades and/or cerebral hypoperfusion. Countermeasures such as avoiding prolonged standing or incorporating periodic lower limb movement to activate the venous muscle pump could counteract blood pooling after an exercise session, minimize activation of the coagulation cascade, and mitigate potential cerebral hypoperfusion. We discuss patient safety in light of the complex nature of stroke presentations (i.e., type, severity, and etiology), medical history, comorbidities such as diabetes, cardiac manifestations, medications, and complications such as anemia and dehydration. The guidelines are easily incorporated into the care model, are low-risk, and use minimal resources. These and other strategies represent opportunities for improving the safety of the activity regimen offered to those in the early phases post-stroke. The timeline for initiating and progressing exercise/mobilization parameters are contingent on recovery stages both from neurobiological and cardiovascular perspectives, which to this point have not been specifically considered in practice. This review includes tailored exercise and mobilization prescription strategies and precautions that are not resource intensive and prioritize safety in stroke recovery.
Collapse
Affiliation(s)
- Susan Marzolini
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
| | - Andrew D. Robertson
- Schlegel-University of Waterloo Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Paul Oh
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
| | - Jack M. Goodman
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Dale Corbett
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Xiaowei Du
- KITE, Toronto Rehab-University Health Network, Toronto, ON, Canada
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Bradley J. MacIntosh
- Canadian Partnership for Stroke Recovery, Toronto, ON, Canada
- Sunnybrook Health Sciences Center, Toronto, ON, Canada
| |
Collapse
|
18
|
Hu R, Kleimaier D, Malzacher M, Hoesl MA, Paschke NK, Schad LR. X‐nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2019; 51:355-376. [DOI: 10.1002/jmri.26780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ruomin Hu
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Dennis Kleimaier
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Matthias Malzacher
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | | | - Nadia K. Paschke
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Lothar R. Schad
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| |
Collapse
|
19
|
Seiler A, Blockley NP, Deichmann R, Nöth U, Singer OC, Chappell MA, Klein JC, Wagner M. The relationship between blood flow impairment and oxygen depletion in acute ischemic stroke imaged with magnetic resonance imaging. J Cereb Blood Flow Metab 2019; 39:454-465. [PMID: 28929836 PMCID: PMC6421246 DOI: 10.1177/0271678x17732448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oxygenation-sensitive spin relaxation time T2' and relaxation rate R2' (1/T2') are presumed to be markers of the cerebral oxygen extraction fraction (OEF) in acute ischemic stroke. In this study, we investigate the relationship of T2'/R2' with dynamic susceptibility contrast-based relative cerebral blood flow (rCBF) in acute ischemic stroke to assess their plausibility as surrogate markers of the ischemic penumbra. Twenty-one consecutive patients with internal carotid artery and/or middle cerebral artery occlusion were studied at 3.0 T. A physiological model of the cerebral vasculature (VM) was used to process PWI raw data in addition to a conventional deconvolution technique. T2', R2', and rCBF values were extracted from the ischemic core and hypoperfused areas. Within hypoperfused tissue, no correlation was found between deconvolved rCBF and T2' ( r = -0.05, p = 0.788), or R2' ( r = 0.039, p = 0.836). In contrast, we found a strong positive correlation with T2' ( r = 0.444, p = 0.006) and negative correlation with R2' ( r = -0.494, p = 0.0025) for rCBFVM, indicating increasing OEF with decreasing CBF and that rCBF based on the vascular model may be more closely related to metabolic disturbances. Further research to refine and validate these techniques may enable their use as MRI-based surrogate markers of the ischemic penumbra for selecting stroke patients for interventional treatment strategies.
Collapse
Affiliation(s)
- Alexander Seiler
- 1 Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
| | - Nicholas P Blockley
- 2 Nuffield Department of Clinical Neurosciences, Oxford Center for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Ralf Deichmann
- 3 Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Ulrike Nöth
- 3 Brain Imaging Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Oliver C Singer
- 1 Department of Neurology, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael A Chappell
- 2 Nuffield Department of Clinical Neurosciences, Oxford Center for Functional MRI of the Brain, University of Oxford, Oxford, UK.,4 Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Johannes C Klein
- 5 Nuffield Department of Clinical Neurosciences, Oxford University, and Department of Neurology, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Marlies Wagner
- 6 Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
20
|
Park JE, Jung SC, Kim HS, Suh JY, Baek JH, Woo CW, Park B, Woo DC. Amide proton transfer-weighted MRI can detect tissue acidosis and monitor recovery in a transient middle cerebral artery occlusion model compared with a permanent occlusion model in rats. Eur Radiol 2019; 29:4096-4104. [PMID: 30666450 DOI: 10.1007/s00330-018-5964-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To assess whether increases in amide proton transfer (APT)-weighted signal reflect the effects of tissue recovery from acidosis using transient rat middle cerebral artery occlusion (MCAO) models, compared to permanent occlusion models. MATERIALS AND METHODS Twenty-four rats with MCAO (17 transient and seven permanent occlusions) were prepared. APT-weighted signal (APTw), apparent diffusion coefficient (ADC), cerebral blood flow (CBF), and MR spectroscopy were evaluated at three stages in each group (occlusion, reperfusion/1 h post-occlusion, and 3 h post-reperfusion/4 h post-occlusion). Deficit areas showing 30% reduction to the contralateral side were measured. Temporal changes were compared with repeated measures of analysis of variance. Relationship between APTw and lactate concentration was calculated. RESULTS Both APTw and CBF values increased and APTw deficit area reduced at reperfusion (largest p = .002) in transient occlusion models, but this was not demonstrated in permanent occlusion. No significant temporal change was demonstrated with ADC at reperfusion. APTw deficit area was between ADC and CBF deficit areas in transient occlusion model. APTw correlated with lactate concentration at occlusion (r = - 0.49, p = .04) and reperfusion (r = - 0.32, p = .02). CONCLUSIONS APTw values increased after reperfusion and correlated with lactate content, which suggests that APT-weighted MRI could become a useful imaging technique to reflect tissue acidosis and its reversal. KEY POINTS • APT-weighted signal increases in the tissue reperfusion, while remains stable in the permanent occlusion. • APTw deficit area was between ADC and CBF deficit areas in transient occlusion model, possibly demonstrating metabolic penumbra. • APTw correlated with lactate concentration during ischemia and reperfusion, indicating tissue acidosis.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea
| | - Seung Chai Jung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea.
| | - Ji-Yeon Suh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Jin Hee Baek
- University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Chul-Woong Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Bumwoo Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| |
Collapse
|
21
|
Leigh R, Knutsson L, Zhou J, van Zijl PC. Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke. J Cereb Blood Flow Metab 2018; 38:1500-1516. [PMID: 28345479 PMCID: PMC6125975 DOI: 10.1177/0271678x17700913] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We review the hemodynamic, metabolic and cellular parameters affected during early ischemia and their changes as a function of approximate cerebral blood flow ( CBF) thresholds. These parameters underlie the current practical definition of an ischemic penumbra, namely metabolically affected but still viable brain tissue. Such tissue is at risk of infarction under continuing conditions of reduced CBF, but can be rescued through timely intervention. This definition will be useful in clinical diagnosis only if imaging techniques exist that can rapidly, and with sufficient accuracy, visualize the existence of a mismatch between such a metabolically affected area and regions that have suffered cell depolarization. Unfortunately, clinical data show that defining the outer boundary of the penumbra based solely on perfusion-related thresholds may not be sufficiently accurate. Also, thresholds for CBF and cerebral blood volume ( CBV) differ for white and gray matter and evolve with time for both inner and outer penumbral boundaries. As such, practical penumbral imaging would involve parameters in which the physiology is immediately displayed in a manner independent of baseline CBF or CBF threshold, namely pH, oxygen extraction fraction ( OEF), diffusion constant and mean transit time ( MTT). Suitable imaging technologies will need to meet this requirement in a 10-20 min exam.
Collapse
Affiliation(s)
- Richard Leigh
- 1 National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA
| | - Linda Knutsson
- 2 Department of Medical Radiation Physics, Lund University, Lund, Sweden.,3 Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Jinyuan Zhou
- 3 Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.,4 F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter Cm van Zijl
- 3 Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.,4 F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
22
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
23
|
Changes in spectroscopic biomarkers after transcranial direct current stimulation in children with perinatal stroke. Brain Stimul 2017; 11:94-103. [PMID: 28958737 DOI: 10.1016/j.brs.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Perinatal stroke causes lifelong motor disability, affecting independence and quality of life. Non-invasive neuromodulation interventions such as transcranial direct current stimulation (tDCS) combined with intensive therapy may improve motor function in adult stroke hemiparesis but is under-explored in children. Measuring cortical metabolites with proton magnetic resonance spectroscopy (MRS) can inform cortical neurobiology in perinatal stroke but how these change with neuromodulation is yet to be explored. METHODS A double-blind, sham-controlled, randomized clinical trial tested whether tDCS could enhance intensive motor learning therapy in hemiparetic children. Ten days of customized, goal-directed therapy was paired with cathodal tDCS over contralesional primary motor cortex (M1, 20 min, 1.0 mA, 0.04 mA/cm2) or sham. Motor outcomes were assessed using validated measures. Neuronal metabolites in both M1s were measured before and after intervention using fMRI-guided short-echo 3T MRS. RESULTS Fifteen children [age(range) = 12.1(6.6-18.3) years] were studied. Motor performance improved in both groups and tDCS was associated with greater goal achievement. After cathodal tDCS, the non-lesioned M1 showed decreases in glutamate/glutamine and creatine while no metabolite changes occurred with sham tDCS. Lesioned M1 metabolite concentrations did not change post-intervention. Baseline function was highly correlated with lesioned M1 metabolite concentrations (N-acetyl-aspartate, choline, creatine, glutamate/glutamine). These correlations consistently increased in strength following intervention. Metabolite changes were not correlated with motor function change. Baseline lesioned M1 creatine and choline levels were associated with clinical response. CONCLUSIONS MRS metabolite levels and changes may reflect mechanisms of tDCS-related M1 plasticity and response biomarkers in hemiparetic children with perinatal stroke undergoing intensive neurorehabilitation.
Collapse
|
24
|
Precision Medicine for Ischemic Stroke, Let Us Move Beyond Time Is Brain. Transl Stroke Res 2017; 9:93-95. [PMID: 28849548 DOI: 10.1007/s12975-017-0566-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
25
|
Carlson HL, MacMaster FP, Harris AD, Kirton A. Spectroscopic biomarkers of motor cortex developmental plasticity in hemiparetic children after perinatal stroke. Hum Brain Mapp 2017; 38:1574-1587. [PMID: 27859933 PMCID: PMC6866903 DOI: 10.1002/hbm.23472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 01/26/2023] Open
Abstract
Perinatal stroke causes hemiparetic cerebral palsy and lifelong motor disability. Bilateral motor cortices are key hubs within the motor network and their neurophysiology determines clinical function. Establishing biomarkers of motor cortex function is imperative for developing and evaluating restorative interventional strategies. Proton magnetic resonance spectroscopy (MRS) quantifies metabolite concentrations indicative of underlying neuronal health and metabolism in vivo. We used functional magnetic resonance imaging (MRI)-guided MRS to investigate motor cortex metabolism in children with perinatal stroke. Children aged 6-18 years with MRI-confirmed perinatal stroke and hemiparetic cerebral palsy were recruited from a population-based cohort. Metabolite concentrations were assessed using a PRESS sequence (3T, TE = 30 ms, voxel = 4 cc). Voxel location was guided by functional MRI activations during finger tapping tasks. Spectra were analysed using LCModel. Metabolites were quantified, cerebral spinal fluid corrected and compared between groups (ANCOVA) controlling for age. Associations with clinical motor performance (Assisting Hand, Melbourne, Box-and-Blocks) were assessed. Fifty-two participants were studied (19 arterial, 14 venous, 19 control). Stroke participants demonstrated differences between lesioned and nonlesioned motor cortex N-acetyl-aspartate [NAA mean concentration = 10.8 ± 1.9 vs. 12.0 ± 1.2, P < 0.01], creatine [Cre 8.0 ± 0.9 vs. 7.4 ± 0.9, P < 0.05] and myo-Inositol [Ins 6.5 ± 0.84 vs. 5.8 ± 1.1, P < 0.01]. Lesioned motor cortex NAA and creatine were strongly correlated with motor performance in children with arterial but not venous strokes. Interrogation of motor cortex by fMRI-guided MRS is feasible in children with perinatal stroke. Metabolite differences between hemispheres, stroke types and correlations with motor performance support functional relevance. MRS may be valuable in understanding the neurophysiology of developmental neuroplasticity in cerebral palsy. Hum Brain Mapp 38:1574-1587, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Helen L. Carlson
- Calgary Pediatric Stroke ProgramAlberta Children's HospitalCalgaryABCanada
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- NeurosciencesAlberta Children's HospitalCalgaryABCanada
- Department of PediatricsUniversity of CalgaryCalgaryABCanada
| | - Frank P. MacMaster
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- Department of PediatricsUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain Institute, University of CalgaryCalgaryABCanada
- Department of PsychiatryUniversity of CalgaryABCanada
- The Mathison Centre for Mental Health Research and Education, University of CalgaryCalgaryABCanada
- Child and Adolescent Imaging Research (CAIR) Programs, Alberta Children's HospitalCalgaryABCanada
- Strategic Clinical Network for Addictions and Mental HealthAlberta Health ServicesCalgaryABCanada
| | - Ashley D. Harris
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- Hotchkiss Brain Institute, University of CalgaryCalgaryABCanada
- Child and Adolescent Imaging Research (CAIR) Programs, Alberta Children's HospitalCalgaryABCanada
- Department of RadiologyUniversity of CalgaryCalgaryABCanada
| | - Adam Kirton
- Calgary Pediatric Stroke ProgramAlberta Children's HospitalCalgaryABCanada
- Alberta Children's Hospital Research Institute (ACHRI)ABCanadaCalgary
- NeurosciencesAlberta Children's HospitalCalgaryABCanada
- Department of PediatricsUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain Institute, University of CalgaryCalgaryABCanada
| |
Collapse
|
26
|
Sanganalmath SK, Gopal P, Parker JR, Downs RK, Parker JC, Dawn B. Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities. Mol Cell Biochem 2016; 426:111-127. [PMID: 27896594 DOI: 10.1007/s11010-016-2885-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023]
Abstract
Circulatory arrest (CA) remains a major unresolved public health problem in the United States; the annual incidence of which is ~0.50 to 0.55 per 1000 population. Despite seminal advances in therapeutic approaches over the past several decades, brain injury continues to be the leading cause of morbidity and mortality after CA. In brief, CA typically results in global cerebral ischemia leading to delayed neuronal death in the hippocampal pyramidal cells as well as in the cortical layers. The dynamic changes occurring in neurons after CA are still unclear, and predicting these neurological changes in the brain still remains a difficult issue. It is hypothesized that the "no-flow" period produces a cytotoxic cascade of membrane depolarization, Ca2+ ion influx, glutamate release, acidosis, and resultant activation of lipases, nucleases, and proteases. Furthermore, during reperfusion injury, neuronal death occurs due to the generation of free radicals by interfering with the mitochondrial respiratory chain. The efficacy of many pharmacological agents for CA patients has often been disappointing, reflecting our incomplete understanding of this enigmatic disease. The primary obstacles to the development of a neuroprotective therapy in CA include uncertainties with regard to the precise cause(s) of neuronal dysfunction and what to target. In this review, we summarize our knowledge of the pathophysiology as well as specific cellular changes in brain after CA and revisit the most important neurofunctional, neuroimaging techniques, and serum biomarkers as potent predictors of neurologic outcome in CA patients.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Division of Cardiovascular Diseases, Department of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Purva Gopal
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - John R Parker
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Richard K Downs
- Division of Neuroradiology, Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Joseph C Parker
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| |
Collapse
|
27
|
Carlson HL, Jadavji Z, Mineyko A, Damji O, Hodge J, Saunders J, Hererro M, Nowak M, Patzelt R, Mazur-Mosiewicz A, MacMaster FP, Kirton A. Treatment of dysphasia with rTMS and language therapy after childhood stroke: Multimodal imaging of plastic change. BRAIN AND LANGUAGE 2016; 159:23-34. [PMID: 27262774 DOI: 10.1016/j.bandl.2016.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 02/18/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Expressive dysphasia accompanies left inferior frontal gyrus (IFG/Broca) injury. Recovery may relate to interhemispheric balance with homologous, contralesional IFG but is unexplored in children. We evaluated effects of inhibitory rTMS to contralesional IFG combined with intensive speech therapy (SLT). A 15year-old, right-handed male incurred a left middle cerebral artery stroke. After 30months, severe non-fluent dysphasia impacted quality of life. Language networks, neuronal metabolism and white matter pathways were explored using MRI. Language function was measured longitudinally. An intensive SLT program was combined with contralesional inhibitory rTMS of right pars triangularis. Procedures were well tolerated. Language function improved persisting to four months. Post-treatment fMRI demonstrated increased left perilesional IFG activations and connectivity at rest. Bilateral changes in inositol and glutamate metabolism were observed. Contralesional, inhibitory rTMS appears safe in childhood stroke-induced dysphasia. We observed clinically significant improvements after SLT coupled with rTMS. Advanced neuroimaging can evaluate intervention-induced plasticity.
Collapse
Affiliation(s)
- Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada.
| | - Zeanna Jadavji
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Aleksandra Mineyko
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Omar Damji
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Jacquie Hodge
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Jenny Saunders
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Mia Hererro
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Michele Nowak
- Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Rebecca Patzelt
- Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada
| | - Anya Mazur-Mosiewicz
- Department of Clinical Psychology, Chicago School of Professional Psychology, Chicago, IL, USA
| | - Frank P MacMaster
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, University of Calgary, AB, Canada; The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research (CAIR) Programs, Alberta Children's Hospital, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Neurosciences, Alberta Children's Hospital, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
28
|
Lu D, Xu AD. Mini Review: Circular RNAs as Potential Clinical Biomarkers for Disorders in the Central Nervous System. Front Genet 2016; 7:53. [PMID: 27092176 PMCID: PMC4821851 DOI: 10.3389/fgene.2016.00053] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNAs (ncRNAs), produced in eukaryotic cells during post-transcriptional processes. They are more stable than linear RNAs, and possess spatio-temporal properties. CircRNAs do not distribute equally in the neuronal compartments in the brain, but largely enriched in the synapses. These ncRNA species can be used as potential clinical biomarkers in complex disorders of the central nervous system (CNS), which is supported by recent findings. For example, ciRS-7 was found to be a natural microRNAs sponge for miRNA-7 and regulate Parkinson's disease/Alzheimer's disease-related genes; circPAIP2 is an intron-retaining circRNA which upregulates memory-related parental genes PAIP2 to affect memory development through PABP reactivation. The quantity of circRNAs carry important messages, either when they are inside the cells, or in circulation, or in exosomes released from synaptoneurosomes and endothelial. In addition, small molecules such as microRNAs and microvesicles can pass through the blood-brain barrier (BBB) and get into blood. For clinical applications, the study population needs to be phenotypically well-defined. CircRNAs may be combined with other biomarkers and imaging tools to improve the diagnostic power.
Collapse
Affiliation(s)
- Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University Guangzhou Guangdong, China
| | - An-Ding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University Guangzhou Guangdong, China
| |
Collapse
|
29
|
MR Spectroscopy evaluation of white matter signal abnormalities of different non-neoplastic brain lesions. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2016. [DOI: 10.1016/j.ejrnm.2015.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|