1
|
Arti L, Gnirs K, Papageorgiou S, Ruel Y, Agoulon A, Boddaert N, Gaillot H. Exploring brain perfusion in dogs with meningoencephalitis of unknown origin: A promising role for arterial spin labeling imaging. J Vet Intern Med 2025; 39:e17259. [PMID: 39655753 PMCID: PMC11629257 DOI: 10.1111/jvim.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Arterial spin labeling (ASL) is a noninvasive brain perfusion magnetic resonance imaging (MRI) technique that has not been assessed in dogs with meningoencephalitis of unknown origin (MUO). HYPOTHESIS/OBJECTIVES Assess brain perfusion changes characteristics before and after medical treatment, and investigate the role of ASL perfusion in the diagnosis and prognosis of MUO in dogs. ANIMALS Thirty-one dogs with presumed MUO. METHODS Prospective study. Each animal had brain MRI including standard and ASL perfusion sequences at presentation and after treatment of 3 months or longer. Brain perfusion characteristics were assessed visually and by cerebral blood flow (CBF) measurements. Perfusion characteristics were compared pre- and post-treatment. RESULTS Dogs with MUO had preferential localization of lesions in optic nerves (ONs) and brainstem. At presentation, one third of the dogs with MUO had focal brain perfusion alterations and two-thirds had global brain hypoperfusion. Both focal and global brain perfusion changes resolved after treatment in all surviving dogs. Arterial spin labeling failed to predict prognosis. CONCLUSIONS AND CLINICAL IMPORTANCE Brain ASL perfusion in dogs with MUO demonstrated the value of ASL in the diagnosis and follow-up of the condition, suggesting the value of adding ASL to the clinical evaluation in dogs with suspected MUO. Preferential lesion localization in ON and brainstem resembled findings in the central nervous system of human patients with inflammatory demyelinating diseases. Future studies with histopathological confirmation are needed to better characterize the benefits of ASL in the different subtypes of non-infectious encephalomyelitis in dogs.
Collapse
Affiliation(s)
- Léa Arti
- Unit of NeurologyCentre Hospitalier Vétérinaire ADVETIAVélizy‐VillacoublayFrance
| | - Kirsten Gnirs
- Unit of NeurologyCentre Hospitalier Vétérinaire ADVETIAVélizy‐VillacoublayFrance
| | - Stella Papageorgiou
- Unit of NeurologyCentre Hospitalier Vétérinaire ADVETIAVélizy‐VillacoublayFrance
| | - Yannick Ruel
- Unit of Diagnostic ImagingCentre Hospitalier Vétérinaire ADVETIAVélizy‐VillacoublayFrance
| | | | - Nathalie Boddaert
- Paediatric Radiology DepartmentAP‐HP, Hôpital Necker Enfants Malades, Université de ParisParis F‐75105France
- Institut Imagine INSERM U1163, Universié de ParisParis F‐75015France
| | - Hugues Gaillot
- Unit of Diagnostic ImagingCentre Hospitalier Vétérinaire ADVETIAVélizy‐VillacoublayFrance
| |
Collapse
|
2
|
Iacoban CG, Ramaglia A, Severino M, Tortora D, Resaz M, Parodi C, Piccardo A, Rossi A. Advanced imaging techniques and non-invasive biomarkers in pediatric brain tumors: state of the art. Neuroradiology 2024; 66:2093-2116. [PMID: 39382639 DOI: 10.1007/s00234-024-03476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
In the pediatric age group, brain neoplasms are the second most common tumor category after leukemia, with an annual incidence of 6.13 per 100,000. Conventional MRI sequences, complemented by CT whenever necessary, are fundamental for the initial diagnosis and surgical planning as well as for post-operative evaluations, assessment of response to treatment, and surveillance; however, they have limitations, especially concerning histopathologic or biomolecular phenotyping and grading. In recent years, several advanced MRI sequences, including diffusion-weighted imaging, diffusion tensor imaging, arterial spin labelling (ASL) perfusion, and MR spectroscopy, have emerged as a powerful aid to diagnosis as well as prognostication; furthermore, other techniques such as diffusion kurtosis, amide proton transfer imaging, and MR elastography are being translated from the research environment to clinical practice. Molecular imaging, especially PET with amino-acid tracers, complement MRI in several aspects, including biopsy targeting and outcome prediction. Finally, radiomics with radiogenomics are opening entirely new perspectives for a quantitative approach aiming at identifying biomarkers that can be used for personalized, precision management strategies.
Collapse
Affiliation(s)
| | - Antonia Ramaglia
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Martina Resaz
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Costanza Parodi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| |
Collapse
|
3
|
Gosangi B, Dixe de Oliveira Santo I, Keraliya A, Wang Y, Irugu D, Thomas R, Khandelwal A, Rubinowitz AN, Bader AS. Li-Fraumeni Syndrome: Imaging Features and Guidelines. Radiographics 2024; 44:e230202. [PMID: 39024172 DOI: 10.1148/rg.230202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Li-Fraumeni syndrome (LFS) is a rare autosomal dominant familial cancer syndrome caused by germline mutations of the tumor protein p53 gene (TP53), which encodes the p53 transcription factor, also known as the "guardian of the genome." The most common types of cancer found in families with LFS include sarcomas, leukemia, breast malignancies, brain tumors, and adrenocortical cancers. Osteosarcoma and rhabdomyosarcoma are the most common sarcomas. Patients with LFS are at increased risk of developing early-onset gastric and colon cancers. They are also at increased risk for several other cancers involving the thyroid, lungs, ovaries, and skin. The lifetime risk of cancer in individuals with LFS is greater than 70% in males and greater than 90% in females. Some patients with LFS develop multiple primary cancers during their lifetime, and guidelines have been established for screening these patients. Whole-body MRI is the preferred modality for annual screening of these patients. The management guidelines for patients with LFS vary, as these individuals are more susceptible to developing radiation-induced cancers-for example, women with LFS and breast cancer are treated with total mastectomy instead of lumpectomy with radiation to the breast. The authors review the role of imaging, imaging guidelines, and imaging features of tumors in the setting of LFS. ©RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Babina Gosangi
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Irene Dixe de Oliveira Santo
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Abhishek Keraliya
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Yifan Wang
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - David Irugu
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Richard Thomas
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Ashish Khandelwal
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Ami N Rubinowitz
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| | - Anna S Bader
- From the Department of Radiology and Biomedical Imaging (B.G., I.D.d.O.S., A.N.R., A.S.B.), Section of Interventional Radiology (Y.W.), Yale School of Medicine, 333 Cedar Street, PO Box 208042, Rm TE-2, New Haven, CT 06520; Department of Radiology, Brigham and Women's Hospital, Boston, Mass (A. Keraliya); Magnus Hospital, Hyderabad, India (D.I.); Department of Radiology, Lahey Hospital and Medical Care Center, Burlington, Mass (R.T.); and Department of Radiology, Mayo University, Rochester, Minn (A. Khandelwal)
| |
Collapse
|
4
|
Andour H, Ben El Hend S, Mandour C, Allaoui M, Fikri A. Atypical choroid plexus papilloma: Diagnosis and differentials: A case report. SAGE Open Med Case Rep 2024; 12:2050313X241254000. [PMID: 38764919 PMCID: PMC11102693 DOI: 10.1177/2050313x241254000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/24/2024] [Indexed: 05/21/2024] Open
Abstract
Atypical choroid plexus papilloma is a rare World Health Organization grade 2 intraventricular tumor arising from the epithelium of the plexus choroid with intermediate clinical-pathological features between the benign choroid plexus papilloma and the malignant choroid plexus carcinoma. The main criteria for differentiation are histopathologic, with difficulties in distinguishing it from choroid plexus papilloma based on imaging features. We report the case of a 4-year-old female presenting with headaches and altered mental status. Brain magnetic resonance imaging revealed a right lateral ventricular mass with some atypical characteristics, which were confirmed on pathological examination as an atypical choroid plexus papilloma.
Collapse
Affiliation(s)
- H. Andour
- Radiology Department, Military Hospital Mohammed V-Rabat, Rabat, Morocco
| | - S. Ben El Hend
- Radiology Department, Military Hospital Avicennes, Marrakech, Morocco
| | - C. Mandour
- Neurosurgery Department, Military Hospital Mohammed V-Rabat, Rabat, Morocco
| | - M. Allaoui
- Anatomopathology Department, Military Hospital Mohammed V-Rabat, Rabat, Morocco
| | - A. Fikri
- Radiology Department, Military Hospital Avicennes, Marrakech, Morocco
| |
Collapse
|
5
|
Gonçalves FG, Mahecha-Carvajal ME, Desa A, Yildiz H, Talbeya JK, Moreno LA, Viaene AN, Vossough A. Imaging of supratentorial intraventricular masses in children:a pictorial review- part 1. Neuroradiology 2024; 66:677-698. [PMID: 38466393 PMCID: PMC11031501 DOI: 10.1007/s00234-024-03314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE This article is the first in a two-part series designed to provide a comprehensive overview of the range of supratentorial intraventricular masses observed in children. Our primary objective is to discuss the diverse types of intraventricular masses that originate not only from cells within the choroid plexus but also from other sources. METHODS In this article, we review relevant epidemiological data, the current genetics/molecular classification as outlined in the fifth edition of the World Health Organization's Classification of tumours of the Central Nervous System and noteworthy imaging findings. We conduct an exhaustive analysis of primary choroid plexus tumours as well as other conditions such as choroid plexus hyperplasia, choroid plexus cyst, choroid plexus xanthogranuloma, atypical teratoid rhabdoid tumour, meningioma, arteriovenous malformation and metastasis. RESULTS We comprehensively evaluated each supratentorial intraventricular mass, providing an in-depth analysis of their unique clinical and histological characteristics. The fifth edition of the World Health Organization Classification of Tumours of the Central Nervous System introduces major modifications. These important changes could potentially have a profound impact on the management strategies and subsequent outcomes of these tumours. CONCLUSION Intraventricular masses in children can arise from various sources. Surgical intervention is key for certain supratentorial intraventricular masses in paediatric patients, with preoperative neuroimaging essential to decide the best treatment approach, surgical or otherwise, as some cases may not require surgery.
Collapse
Affiliation(s)
| | | | - Aishwary Desa
- Drexel University College of Medicine Philadelphia, Philadelphia, PA, USA
| | - Harun Yildiz
- Department of Radiology, Dortcelik Children's Hospital, Bursa, Turkey
| | | | - Luz Angela Moreno
- Pediatric Imaging, Department of Radiology, Fundación Hospital La Misericordia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Angela N Viaene
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Pathology Department, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Arastoo Vossough
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
6
|
Adamski J, Langford V, Finlay JL. Approaches to Minimise the Neurodevelopmental Impact of Choroid Plexus Carcinoma and Its Treatment. Life (Basel) 2023; 13:1855. [PMID: 37763259 PMCID: PMC10533047 DOI: 10.3390/life13091855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
Choroid plexus carcinomas (CPC) are rare aggressive tumours that primarily affect very young children. Treatment for CPC typically involves a combination of surgery, chemotherapy, and radiation therapy. Whilst considered necessary for a cure, these therapies have significant neurocognitive consequences for patients, negatively impacting cognitive function including memory, attention, executive functioning, and full-scale intelligence quotients (FSIQ). These challenges significantly impact the quality of life and ultimately socioeconomic parameters such as the level of educational attainment, marital status, and socioeconomic status. This review looks at the tumour- and treatment-related causes of neurocognitive damage in CPC patients and the progress made in finding strategies to reduce these. Opportunities to mitigate the neurodevelopmental consequences of surgery, chemotherapy, and radiation therapy are explored in the context of CPC treatment. Evaluation of the pathological and biological mechanisms of injury has identified innovative approaches to neurocognitive protection and neurorehabilitation, which aim to limit the neurocognitive damage. This review aims to highlight multiple approaches physicians can use when treating young children with CPC, to focus on neurocognitive outcomes as a measure of success.
Collapse
Affiliation(s)
- Jenny Adamski
- Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham B4 6NH, UK;
| | - Vikki Langford
- Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham B4 6NH, UK;
| | - Jonathan L. Finlay
- Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
7
|
Mohamed AA, Caussat T, Kelly S, Johansen PM, Lucke-Wold B. Choroid plexus tumors: A spectrum from benign to malignant. TUMOR DISCOVERY 2023; 2:1057. [PMID: 37799733 PMCID: PMC10552314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Choroid plexus tumors (CPT) are believed to originate from outgrowths of the choroid plexus. Despite their broad spectrum of symptoms, invasive nature, and prognosis, most CPTs typically exhibit similar presentations due to their relationship with the cerebral ventricles, as well as the mechanical obstruction and mass effect associated with their growth. In addition, these tumors mainly affect the pediatric population, further complicating the differentiation between benign and malignant subtypes. The World Health Organization classifies CPTs into three grades, namely, grades I, II, or III, based on their mitotic activity, which determine the benign or malignant nature of the tumors. CPTs classified by the World Health Organization (WHO) include choroid plexus papillomas (CPP), atypical CPPs (aCPP), and malignant choroid plexus carcinomas (CPC). Choroid plexus adenomas represent an additional category of benign CPTs not officially classified by the WHO. Despite the variations in histology, immunohistochemistry, imaging, treatment, and prognosis, CPTs cannot be reliably distinguished based solely on clinical presentation. Therefore, in this review, we aim to provide a comprehensive overview of each tumor subtype, along with the current management approach and emerging treatments.
Collapse
Affiliation(s)
- Ali A. Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Thomas Caussat
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Sophie Kelly
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Phillip M. Johansen
- Department of Neurosurgery, University of South Florida, Orlando, Florida, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Huang J, Sarma A, Little S, Pruthi S. Systematic Approach to Pediatric Macrocephaly. Radiographics 2023; 43:e220159. [PMID: 37104125 DOI: 10.1148/rg.220159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Macrocephaly, defined as a head circumference greater than 2 standard deviations above the mean, is a relatively common presenting symptom in the pediatric population at routine well-child examinations and a common indication for neuroimaging. Multiple imaging modalities are complementary in evaluating macrocephaly, including US, CT, and MRI. The differential diagnosis for macrocephaly is broad, and many disease processes lead to macrocephaly only when the sutures are open. In patients with closed sutures, these entities instead lead to increased intracranial pressure, according to the Monroe-Kellie hypothesis, which states that there is an equilibrium between intracranial constituents due to the fixed intracranial volume. The authors describe a useful paradigm for classifying macrocephaly by identifying which of the four components of the cranium (ie, cerebrospinal fluid, blood and vasculature, brain parenchyma, or calvarium) has an increased volume. Patient age, additional imaging findings, and clinical symptoms are also useful features. Most cases in the pediatric population are due to increased cerebrospinal fluid spaces, such as benign enlargement of the subarachnoid space, which must be carefully distinguished from subdural fluid collections in patients with accidental or nonaccidental trauma. Other common causes of macrocephaly are discussed, including hydrocephalus secondary to an aqueductal web, hemorrhage, or a neoplasm. The authors also provide information on some of the rarer diseases for which imaging may provide the impetus for genetic testing (eg, overgrowth syndromes and metabolic disorders). ©RSNA, 2023 Quiz questions for this article are available through the Online Learning Center.
Collapse
Affiliation(s)
- Jennifer Huang
- From the Department of Radiology, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232 (J.H., A.S., S.P.); and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga (S.L.)
| | - Asha Sarma
- From the Department of Radiology, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232 (J.H., A.S., S.P.); and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga (S.L.)
| | - Stephen Little
- From the Department of Radiology, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232 (J.H., A.S., S.P.); and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga (S.L.)
| | - Sumit Pruthi
- From the Department of Radiology, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232 (J.H., A.S., S.P.); and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga (S.L.)
| |
Collapse
|
9
|
Kitajima M, Uetani H. Arterial Spin Labeling for Pediatric Central Nervous System Diseases: Techniques and Clinical Applications. Magn Reson Med Sci 2023; 22:27-43. [PMID: 35321984 PMCID: PMC9849418 DOI: 10.2463/mrms.rev.2021-0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/12/2022] [Indexed: 01/28/2023] Open
Abstract
Dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) are techniques used to evaluate brain perfusion using MRI. DSC requires dynamic image acquisition with a rapid administration of gadolinium-based contrast agent. In contrast, ASL obtains brain perfusion information using magnetically labeled blood water as an endogenous tracer. For the evaluation of brain perfusion in pediatric neurological diseases, ASL has a significant advantage compared to DSC, CT, and single-photon emission CT/positron emission tomography because of the lack of radiation exposure and contrast agent administration. However, in ASL, optimization of several parameters, including the type of labeling, image acquisition, background suppression, and postlabeling delay, is required, because they have a significant effect on the quantification of cerebral blood flow (CBF).In this article, we first review recent technical developments of ASL and age-dependent physiological characteristics in pediatric brain perfusion. We then review the clinical implementation of ASL in pediatric neurological diseases, including vascular diseases, brain tumors, acute encephalopathy with biphasic seizure and late reduced diffusion (AESD), and migraine. In moyamoya disease, ASL can be used for brain perfusion and vessel assessment in pre- and post-treatment. In arteriovenous malformations, ASL is sensitive to detect small degrees of shunt. Furthermore, in vascular diseases, the implementation of ASL-based time-resolved MR angiography is described. In neoplasms, ASL-derived CBF has a high diagnostic accuracy for differentiation between low- and high-grade pediatric brain tumors. In AESD and migraine, ASL may allow for accurate early diagnosis and provide pathophysiological information.
Collapse
Affiliation(s)
- Mika Kitajima
- Department of Medical Imaging Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Hiroyuki Uetani
- Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| |
Collapse
|
10
|
Spennato P, De Martino L, Russo C, Errico ME, Imperato A, Mazio F, Miccoli G, Quaglietta L, Abate M, Covelli E, Donofrio V, Cinalli G. Tumors of Choroid Plexus and Other Ventricular Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:175-223. [PMID: 37452939 DOI: 10.1007/978-3-031-23705-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Tumors arising inside the ventricular system are rare but represent a difficult diagnostic and therapeutic challenge. They usually are diagnosed when reaching a big volume and tend to affect young children. There is a wide broad of differential diagnoses with significant variability in anatomical aspects and tumor type. Differential diagnosis in tumor type includes choroid plexus tumors (papillomas and carcinomas), ependymomas, subependymomas, subependymal giant cell astrocytomas (SEGAs), central neurocytomas, meningiomas, and metastases. Choroid plexus tumors, ependymomas of the posterior fossa, and SEGAs are more likely to appear in childhood, whereas subependymomas, central neurocytomas, intraventricular meningiomas, and metastases are more frequent in adults. This chapter is predominantly focused on choroid plexus tumors and radiological and histological differential diagnosis. Treatment is discussed in the light of the modern acquisition in genetics and epigenetics of brain tumors.
Collapse
Affiliation(s)
- Pietro Spennato
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy.
| | - Lucia De Martino
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Carmela Russo
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Maria Elena Errico
- Department of Pathology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Alessia Imperato
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Federica Mazio
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Giovanni Miccoli
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| | - Lucia Quaglietta
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Massimo Abate
- Department of Pediatric Oncology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Eugenio Covelli
- Department of Neuroradiology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Vittoria Donofrio
- Department of Pathology, Santobono-Pausilipon Pediatric Hospital, Naples, Italy
| | - Giuseppe Cinalli
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children's Hospital, Via Mario Fiore 6, 80121, Naples, Italy
| |
Collapse
|
11
|
Advanced Neuroimaging Approaches to Pediatric Brain Tumors. Cancers (Basel) 2022; 14:cancers14143401. [PMID: 35884462 PMCID: PMC9318188 DOI: 10.3390/cancers14143401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary After leukemias, brain tumors are the most common cancers in children, and early, accurate diagnosis is critical to improve patient outcomes. Beyond the conventional imaging methods of computed tomography (CT) and magnetic resonance imaging (MRI), advanced neuroimaging techniques capable of both structural and functional imaging are moving to the forefront to improve the early detection and differential diagnosis of tumors of the central nervous system. Here, we review recent developments in neuroimaging techniques for pediatric brain tumors. Abstract Central nervous system tumors are the most common pediatric solid tumors; they are also the most lethal. Unlike adults, childhood brain tumors are mostly primary in origin and differ in type, location and molecular signature. Tumor characteristics (incidence, location, and type) vary with age. Children present with a variety of symptoms, making early accurate diagnosis challenging. Neuroimaging is key in the initial diagnosis and monitoring of pediatric brain tumors. Conventional anatomic imaging approaches (computed tomography (CT) and magnetic resonance imaging (MRI)) are useful for tumor detection but have limited utility differentiating tumor types and grades. Advanced MRI techniques (diffusion-weighed imaging, diffusion tensor imaging, functional MRI, arterial spin labeling perfusion imaging, MR spectroscopy, and MR elastography) provide additional and improved structural and functional information. Combined with positron emission tomography (PET) and single-photon emission CT (SPECT), advanced techniques provide functional information on tumor metabolism and physiology through the use of radiotracer probes. Radiomics and radiogenomics offer promising insight into the prediction of tumor subtype, post-treatment response to treatment, and prognostication. In this paper, a brief review of pediatric brain cancers, by type, is provided with a comprehensive description of advanced imaging techniques including clinical applications that are currently utilized for the assessment and evaluation of pediatric brain tumors.
Collapse
|
12
|
Demir MK, Özdamarlar U, Yılmaz B, Akakın A, Kılıc T. Magnetic Resonance Imaging of Unusual Neoplasms Related to Foramen of Luschka: A Review for Differential Diagnosis. Indian J Radiol Imaging 2022; 32:71-80. [PMID: 35722640 PMCID: PMC9200490 DOI: 10.1055/s-0042-1743113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
There are many types of neoplasms in or around the foramen of Luschka (FL), and definitive diagnosis in some cases requires knowledge of imaging findings. The uncommon and challenging neoplasms with FL involvement considered in this study are exophytic brainstem glioma, primary glioblastoma of the cerebellopontine angle (CPA), primary anaplastic ependymoma of the CPA, choroid plexus papilloma of the FL, solitary FL choroid plexus metastasis, extraskeletal myxoid chondrosarcoma of the jugular foramen, paraganglioma of the jugular foramen, exostosis of the jugular foramen, psammomatous meningioma in the lateral cerebellar medullary cistern, epidermoid tumor of the fourth ventricle, and a hypoglossal schwannoma. These neoplasms may have overlapping clinical and imaging features, but some have relatively distinct imaging features. Knowledge of the key clinical and magnetic resonance imaging features of these unusual lesions with FL involvement is important for radiologists to improve diagnostic ability and to assist the referring physician in the appropriate management of the patient.
Collapse
Affiliation(s)
- Mustafa Kemal Demir
- Department of Radiology, Bahçeşehir University School of Medicine, Göztepe Medical Park Training and Education Hospital, Istanbul, Turkey
| | - Umut Özdamarlar
- Department of Radiology, Bahçeşehir University School of Medicine, Göztepe Medical Park Training and Education Hospital, Istanbul, Turkey
| | - Baran Yılmaz
- Department of Neurosurgery, Bahçeşehir University School of Medicine, Göztepe Medical Park Training and Education Hospital, Istanbul, Turkey
| | - Akın Akakın
- Department of Neurosurgery, Bahçeşehir University School of Medicine, Göztepe Medical Park Training and Education Hospital, Istanbul, Turkey
| | - Turker Kılıc
- Department of Neurosurgery, Bahçeşehir University School of Medicine, Göztepe Medical Park Training and Education Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Watal P, Patel RP, Chandra T. Pearls and Pitfalls of Imaging in Pediatric Brain Tumors. Semin Ultrasound CT MR 2022; 43:31-46. [PMID: 35164908 DOI: 10.1053/j.sult.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The central nervous system (CNS) tumors constitute the most common type of solid tumors in the pediatric population. The cerebral and cerebellar parenchyma are the most common site of pediatric CNS neoplasms. Imaging plays an important role in detection, characterization, staging and prognostication of brain tumors. The focus of the current article is pediatric brain tumor imaging with emphasis on pearls and pitfalls of conventional and advanced imaging in various pediatric brain tumor subtypes. The article also elucidates changes in brain tumor terms and entities as applicable to pediatric patients, updated as per World Health Organization (WHO) 2016 classification of primary CNS tumors. This classification introduced the genetic and/or molecular information of primary CNS neoplasms as part of comprehensive tumor pathology report in the routine clinical workflow. The concepts from 2016 classification have been further refined based on current research, by the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) group and published in the form of updates. The updates serve as guidelines in the time interval between WHO updates and expect to be broadly adopted in the subsequent WHO classification. The current review covers most pediatric brain tumors except pituitary tumors, meningeal origin tumors, nerve sheath tumors and CNS lymphoma/leukemia.
Collapse
Affiliation(s)
- Pankaj Watal
- University of Central Florida College of Medicine and Nemours Children's Hospital, Orlando, FL.
| | - Rajan P Patel
- Section of Neuroradiology, Department of Diagnostic and Interventional Imaging The University of Texas Health Sciences Center at Houston, TX
| | - Tushar Chandra
- University of Central Florida College of Medicine and Nemours Children's Hospital, Orlando, FL
| |
Collapse
|
14
|
Gonçalves FG, Viaene AN, Vossough A. Advanced Magnetic Resonance Imaging in Pediatric Glioblastomas. Front Neurol 2021; 12:733323. [PMID: 34858308 PMCID: PMC8631300 DOI: 10.3389/fneur.2021.733323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
The shortly upcoming 5th edition of the World Health Organization Classification of Tumors of the Central Nervous System is bringing extensive changes in the terminology of diffuse high-grade gliomas (DHGGs). Previously "glioblastoma," as a descriptive entity, could have been applied to classify some tumors from the family of pediatric or adult DHGGs. However, now the term "glioblastoma" has been divested and is no longer applied to tumors in the family of pediatric types of DHGGs. As an entity, glioblastoma remains, however, in the family of adult types of diffuse gliomas under the insignia of "glioblastoma, IDH-wildtype." Of note, glioblastomas still can be detected in children when glioblastoma, IDH-wildtype is found in this population, despite being much more common in adults. Despite the separation from the family of pediatric types of DHGGs, what was previously labeled as "pediatric glioblastomas" still remains with novel labels and as new entities. As a result of advances in molecular biology, most of the previously called "pediatric glioblastomas" are now classified in one of the four family members of pediatric types of DHGGs. In this review, the term glioblastoma is still apocryphally employed mainly due to its historical relevance and the paucity of recent literature dealing with the recently described new entities. Therefore, "glioblastoma" is used here as an umbrella term in the attempt to encompass multiple entities such as astrocytoma, IDH-mutant (grade 4); glioblastoma, IDH-wildtype; diffuse hemispheric glioma, H3 G34-mutant; diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype; and high grade infant-type hemispheric glioma. Glioblastomas are highly aggressive neoplasms. They may arise anywhere in the developing central nervous system, including the spinal cord. Signs and symptoms are non-specific, typically of short duration, and usually derived from increased intracranial pressure or seizure. Localized symptoms may also occur. The standard of care of "pediatric glioblastomas" is not well-established, typically composed of surgery with maximal safe tumor resection. Subsequent chemoradiation is recommended if the patient is older than 3 years. If younger than 3 years, surgery is followed by chemotherapy. In general, "pediatric glioblastomas" also have a poor prognosis despite surgery and adjuvant therapy. Magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of glioblastomas. In addition to the typical conventional MRI features, i.e., highly heterogeneous invasive masses with indistinct borders, mass effect on surrounding structures, and a variable degree of enhancement, the lesions may show restricted diffusion in the solid components, hemorrhage, and increased perfusion, reflecting increased vascularity and angiogenesis. In addition, magnetic resonance spectroscopy has proven helpful in pre- and postsurgical evaluation. Lastly, we will refer to new MRI techniques, which have already been applied in evaluating adult glioblastomas, with promising results, yet not widely utilized in children.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arastoo Vossough
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Hoffmann AC, Ruel Y, Gnirs K, Papageorgiou S, Zilberstein L, Nahmani S, Boddaert N, Gaillot H. Brain perfusion magnetic resonance imaging using pseudocontinuous arterial spin labeling in 314 dogs and cats. J Vet Intern Med 2021; 35:2327-2341. [PMID: 34291497 PMCID: PMC8478041 DOI: 10.1111/jvim.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022] Open
Abstract
Background Arterial spin labeling (ASL) is a noninvasive brain perfusion magnetic resonance imaging (MRI) technique that has not been assessed in clinical veterinary medicine. Hypothesis/Objectives To test the feasibility of ASL using a 1.5 Tesla scanner and provide recommendations for optimal quantification of cerebral blood flow (CBF) in dogs and cats. Animals Three hundred fourteen prospectively selected client‐owned dogs and cats. Methods Each animal underwent brain MRI including morphological sequences and ≥1 ASL sequences using different sites of blood labeling and postlabeling delays (PLD). Calculated ASL success rates were compared. The CBF was quantified in animals that had morphologically normal brain MRI results and parameters of ASL optimization were investigated. Results Arterial spin labeling was easily implemented with an overall success rate of 95% in animals with normal brain MRI. Technical recommendations included (a) positioning of the imaging slab at the foramen magnum and (b) selected PLD of 1025 ms in cats and dogs <7 kg, 1525 ms in dogs 7 to 38 kg, and 2025 ms in dogs >38 kg. In 37 dogs, median optimal CBF in the cortex and thalamic nuclei were 114 and 95 mL/100 g/min, respectively. In 28 cats, median CBF in the cortex and thalamic nuclei were 113 and 114 mL/100 g/min, respectively. Conclusions and Clinical Importance Our survey of brain perfusion ASL‐MRI demonstrated the feasibility of ASL at 1.5 Tesla, suggested technical recommendations and provided CBF values that should be helpful in the characterization of various brain diseases in dogs and cats.
Collapse
Affiliation(s)
- Anne-Cécile Hoffmann
- Unit of Diagnostic Imaging, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Yannick Ruel
- Unit of Diagnostic Imaging, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Kirsten Gnirs
- Unit of Neurology, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Stella Papageorgiou
- Unit of Neurology, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Luca Zilberstein
- Unit of Anesthesiology-Analgesia, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Sarah Nahmani
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Nathalie Boddaert
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France.,Universié de Paris, Institut Imagine INSERM U1163, Paris, France
| | - Hugues Gaillot
- Unit of Diagnostic Imaging, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| |
Collapse
|
16
|
Calmon R, Dangouloff-Ros V, Varlet P, Deroulers C, Philippe C, Debily MA, Castel D, Beccaria K, Blauwblomme T, Grevent D, Levy R, Roux CJ, Purcell Y, Saitovitch A, Zilbovicius M, Dufour C, Puget S, Grill J, Boddaert N. Radiogenomics of diffuse intrinsic pontine gliomas (DIPGs): correlation of histological and biological characteristics with multimodal MRI features. Eur Radiol 2021; 31:8913-8924. [PMID: 34003354 DOI: 10.1007/s00330-021-07991-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/10/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The diffuse intrinsic pontine gliomas (DIPGs) are now defined by the type of histone H3 mutated at lysine 27. We aimed to correlate the multimodal MRI features of DIPGs, H3K27M mutant, with their histological and molecular characteristics. METHODS Twenty-seven treatment-naïve children with histopathologically confirmed DIPG H3K27M mutant were prospectively included. MRI performed prior to biopsy included multi-b-value diffusion-weighted imaging, ASL, and dynamic susceptibility contrast (DSC) perfusion imaging. The ADC and cerebral blood flow (CBF) and blood volume (CBV) were measured at the biopsy site. We assessed quantitative histological data, including microvascular density, nuclear density, and H3K27M-positive nuclear density. Gene expression profiling was also assessed in the samples. We compared imaging and histopathological data according to histone subgroup. We correlated MRI quantitative data with histological data and gene expression. RESULTS H3.1K27M mutated tumors showed higher ADC values (median 3151 μm2/s vs 1741 μm2/s, p = 0.003), and lower perfusion values (DSC-rCBF median 0.71 vs 1.43, p = 0.002, and DSC-rCBV median 1.00 vs 1.71, p = 0.02) than H3.3K27M ones. They had similar microvascular and nuclear density, but lower H3K27M-positive nuclear density (p = 0.007). The DSC-rCBV was positively correlated to the H3K27M-positive nuclear density (rho = 0.74, p = 0.02). ADC values were not correlated with nuclear density nor perfusion values with microvascular density. The expression of gated channel activity-related genes tended to be inversely correlated with ADC values and positively correlated with DSC perfusion. CONCLUSIONS H3.1K27M mutated tumors have higher ADC and lower perfusion values than H3.3K27M ones, without direct correlation with microvascular or nuclear density. This may be due to tissular edema possibly related to gated channel activity-related gene expression. KEY POINTS • H3.1K27M mutant DIPG had higher apparent diffusion coefficient (p = 0.003), lower α (p = 0.048), and lower relative cerebral blood volume (p = 0.02) than H3.3K27M mutant DIPG at their biopsy sites. • Biopsy samples obtained within the tumor's enhancing portion showed higher microvascular density (p = 0.03) than samples obtained outside the tumor's enhancing portion, but similar H3K27M-positive nuclear density (p = 0.84). • Relative cerebral blood volume measured at the biopsy site was significantly correlated with H3K27M-positive nuclear density (rho = 0.74, p = 0.02).
Collapse
Affiliation(s)
- Raphaël Calmon
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, F-75015, Paris, France.,Université de Paris, INSERM ERL UA10, F-75015, Paris, France.,Université de Paris, UMR 1163, Institut Imagine, F-75015, Paris, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, F-75015, Paris, France. .,Université de Paris, INSERM ERL UA10, F-75015, Paris, France. .,Université de Paris, UMR 1163, Institut Imagine, F-75015, Paris, France.
| | - Pascale Varlet
- Neuropathology Department, Sainte-Anne Hospital, F-75014, Paris, France.,Université de Paris, INSERM U894, IMA BRAIN, F-75014, Paris, France
| | | | - Cathy Philippe
- Université Paris-Saclay, Neurospin, Institut Joliot, CEA, Gif-sur-Yvette, France
| | | | - David Castel
- Université Paris-Saclay, UMR8203, CNRS, F-94805, Villejuif, France
| | - Kevin Beccaria
- Pediatric Neurosurgery Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France.,Université de Paris, F-75015, Paris, France
| | - Thomas Blauwblomme
- Pediatric Neurosurgery Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France.,Université de Paris, F-75015, Paris, France
| | - David Grevent
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, F-75015, Paris, France.,Université de Paris, INSERM ERL UA10, F-75015, Paris, France.,Université de Paris, UMR 1163, Institut Imagine, F-75015, Paris, France
| | - Raphael Levy
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, F-75015, Paris, France.,Université de Paris, INSERM ERL UA10, F-75015, Paris, France.,Université de Paris, UMR 1163, Institut Imagine, F-75015, Paris, France
| | - Charles-Joris Roux
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, F-75015, Paris, France.,Université de Paris, INSERM ERL UA10, F-75015, Paris, France.,Université de Paris, UMR 1163, Institut Imagine, F-75015, Paris, France
| | - Yvonne Purcell
- Radiology Department, Fondation Rothschild, F-75019, Paris, France
| | - Ana Saitovitch
- Université de Paris, INSERM ERL UA10, F-75015, Paris, France.,Université de Paris, UMR 1163, Institut Imagine, F-75015, Paris, France
| | - Monica Zilbovicius
- Université de Paris, INSERM ERL UA10, F-75015, Paris, France.,Université de Paris, UMR 1163, Institut Imagine, F-75015, Paris, France
| | - Christelle Dufour
- Université Paris-Saclay, UMR8203, CNRS, F-94805, Villejuif, France.,Department of Pediatric and Adolescent Oncology, Institut Gustave Roussy, F-94805, Villejuif, France
| | - Stéphanie Puget
- Pediatric Neurosurgery Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France.,Université de Paris, F-75015, Paris, France
| | - Jacques Grill
- Université Paris-Saclay, UMR8203, CNRS, F-94805, Villejuif, France.,Department of Pediatric and Adolescent Oncology, Institut Gustave Roussy, F-94805, Villejuif, France
| | - Nathalie Boddaert
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, F-75015, Paris, France.,Université de Paris, INSERM ERL UA10, F-75015, Paris, France.,Université de Paris, UMR 1163, Institut Imagine, F-75015, Paris, France
| |
Collapse
|
17
|
Narayanan S, Schmithorst V, Panigrahy A. Arterial Spin Labeling in Pediatric Neuroimaging. Semin Pediatr Neurol 2020; 33:100799. [PMID: 32331614 DOI: 10.1016/j.spen.2020.100799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Perfusion imaging using arterial spin labeling noninvasively evaluates cerebral blood flow utilizing arterial blood water as endogenous tracer. It does not require the need of radiotracer or intravenous contrast and offers unique complimentary information in the imaging of pediatric brain. Common clinical applications include neonatal hypoxic ischemic encephalopathy, pediatric stroke and vascular malformations, epilepsy and brain tumors. Future applications may include evaluation of silent ischemia in sickle cell patients, monitor changes in intracranial pressure in hydrocephalus, provide additional insights in nonaccidental trauma and chronic traumatic brain injury (TBI) and in functional Magnetic resonance imaging (MRI). The purpose of this review article is to evaluate the technical considerations including pitfalls, physiological variations, clinical applications and future directions of arterial spin labeling imaging.
Collapse
Affiliation(s)
- Srikala Narayanan
- Children's Hospital of Pittsburgh of UPMC, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA.
| | - Vincent Schmithorst
- Children's Hospital of Pittsburgh of UPMC, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ashok Panigrahy
- John F. Caffey Endowed Chair in Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
18
|
De Benedictis A, Rossi-Espagnet MC, Diomedi-Camassei F, Rossi S, Fontana E, Randi F, Ponzo V, Nucci C, Esposito G, Paternò G, Brunetti C, Savioli A, Carai A, Marras CE. Intraventricular Ectopic Cerebellum. World Neurosurg 2020; 137:158-163. [PMID: 31996339 DOI: 10.1016/j.wneu.2020.01.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cerebellar ectopy is a rare finding, with few cases previously reported. Intraventricular localized cerebellar ectopy was described in only 1 case within the fourth ventricle. CASE DESCRIPTION A 9-year-old girl suffered for 2 years from bilateral frontoparietal headaches, sometimes accompanied by vomiting and photophobia. Magnetic resonance imaging demonstrated an oval-shaped lesion within the left lateral ventricle, characterized by well-defined margins without a clear cleavage plane from the adjacent choroid plexus. The mass presented an intermediate signal on T1- and T2-weighted sequences, similar to gray matter, and reduced ADC values on ADC maps compared with white matter, with no enhancement after gadolinium-based contrast injection. After resection, macroscopic examination revealed an organoid structure with leptomeningeal lining and a clear-cut cortex and white matter components. Histology demonstrated normal cerebellum with a double-layered cortex and normal underlying white matter. The cerebellar ectopy was focally covered by bundles of capillary vascular structures covered by a monostratified ependymal cell lining, consistent with choroid plexus. CONCLUSIONS We describe, for the first time to our knowledge, the case of a child with ectopic cerebellar tissue harboring the supratentorial ventricular system. Plausible etiologic mechanism consists in the herniation of the cerebellar germinal tissue into the ventricular system through the ependyma, allowing cell migration to the supratentorial compartment, followed by maturation into the normal cerebellum.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Department of Radiology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Neuroradiology Unit, NESMOS Department, Sapienza University, Rome, Italy
| | | | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Fontana
- Neuroradiology Unit, Department of Radiology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Randi
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Ponzo
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlotta Nucci
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giacomo Esposito
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanni Paternò
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carolina Brunetti
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Savioli
- Intensive Care Unit, Department of Emergency, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
19
|
Tadayon E, Pascual-Leone A, Press D, Santarnecchi E. Choroid plexus volume is associated with levels of CSF proteins: relevance for Alzheimer's and Parkinson's disease. Neurobiol Aging 2020; 89:108-117. [PMID: 32107064 DOI: 10.1016/j.neurobiolaging.2020.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
The choroid plexus (ChP) is a major source of cerebrospinal fluid (CSF) production, with a direct and indirect role in protein clearance, and pathogenesis of Alzheimer's disease (AD). Here, we tested the link between the ChP volume and levels of CSF proteins in 2 data sets of (i) healthy controls, mild cognitive impairment (MCI), and AD patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 509), and (ii) healthy controls and Parkinson's disease (PD) patients from the Parkinson's Progression Markers Initiative (N = 302). All patients had baseline CSF proteins (amyloid-β, total and phosphorylated-tau and α-synuclein (only in Parkinson's Progression Markers Initiative)). ChP was automatically segmented on 3T structural T1-weighted MRIs. We found negative associations between ChP volume and CSF proteins, which were stronger in healthy controls, early-MCI patients, and PD patients compared with late-MCI and AD patients. Further grouping of patients of ADNI dataset into amyloid-positive and amyloid-negative based on their florbetapir (AV45) PET imaging showed that the association between ChP volume and CSF proteins (t/p-tau) was lower in amyloid-positive group. Our findings support the possible role of ChP in the clearance of CSF proteins, provide evidence for ChP dysfunction in AD, and suggest the need to account for the ChP volume in future studies of CSF-based biomarkers.
Collapse
Affiliation(s)
- Ehsan Tadayon
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Guttmann Institut, Universitat Autonoma, Barcelona, Spain
| | - Daniel Press
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
20
|
Lin H, Leng X, Qin CH, Du YX, Wang WS, Qiu SJ. Choroid plexus tumours on MRI: similarities and distinctions in different grades. Cancer Imaging 2019; 19:17. [PMID: 30894223 PMCID: PMC6427869 DOI: 10.1186/s40644-019-0200-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/06/2019] [Indexed: 11/16/2022] Open
Abstract
Background The therapeutic planning varies for different grades of choroid plexus tumours (CPTs). The aim of this study was to define the similarities and distinctions among MRIs for different grades of CPTs, providing more guidance for clinical decisions. Methods We reviewed the MRI findings in 35 patients with CPT verified by surgical pathology, including 18 choroid plexus papillomas (CPPs, grade I), 11 atypical choroid plexus papillomas (aCPPs, grade II), and 6 choroid plexus carcinomas (CPCs, grade III). Nonparametric testing based on ranks was performed to evaluate the association of pathological grade with MRI findings. Results Among the 35 CPTs, 29 were located in the ventricular system. The tumours were generally slightly hypo- or isointense on T1WI, slightly hyper- or isointense on T2WI, and moderately or strongly enhanced in post-contrast imaging. Twenty cases were accompanied by hydrocephalus. The median tumour longest diameters of CPPs, aCPPs, and CPCs were 28.6, 44.6, and 60.6 mm, respectively. Four cases were purely cystic, 6 were papillary, 10 were lobulated, and 2 were irregular. Three cases had necrosis. The median oedema diameters of CPPs, aCPPs, and CPCs were 0, 0, and 24.1 mm, respectively. The grades of CPTs were statistically associated with tumour longest diameter (rs = 0.68, P < 0.001), internal morphology (χ2 = 10.32, P = 0.016), necrosis (Z = 2.27, P = 0.023), and oedema diameter (rs = 0.72, P < 0.001). Conclusion CPTs typically appeared as intraventricular papillary or lobulated lesions, often accompanied by hydrocephalus. Larger tumour, irregular or fuzzy internal morphology, presentation of necrosis and wide-ranging peritumoural oedema might increase the likelihood of malignancy.
Collapse
Affiliation(s)
- Huan Lin
- Department of Radiology, Zhujiang Hospital of Southern Medical University, No. 253, Gong Ye Da Dao Zhong, Guangzhou, 510280, People's Republic of China
| | - Xi Leng
- Medical Imaging Center, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, No. 16, Ji Chang Lu, Guangzhou, 510405, People's Republic of China
| | - Chun-Hong Qin
- Medical Imaging Center, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, No. 16, Ji Chang Lu, Guangzhou, 510405, People's Republic of China
| | - Yong-Xing Du
- Department of Radiology, Shunde Hospital of Southern Medical University, Foshan, People's Republic of China
| | - Wen-Sheng Wang
- Medical Imaging Center, Guangdong 999 Brain Hospital, Guangzhou, People's Republic of China
| | - Shi-Jun Qiu
- Medical Imaging Center, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, No. 16, Ji Chang Lu, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
21
|
Hales PW, d'Arco F, Cooper J, Pfeuffer J, Hargrave D, Mankad K, Clark C. Arterial spin labelling and diffusion-weighted imaging in paediatric brain tumours. NEUROIMAGE-CLINICAL 2019; 22:101696. [PMID: 30735859 PMCID: PMC6365981 DOI: 10.1016/j.nicl.2019.101696] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Diffusion- and perfusion-weighted MRI are valuable tools for measuring the cellular and vascular properties of brain tumours. This has been well studied in adult patients, however, the biological features of childhood brain tumours are unique, and paediatric-focused studies are less common. We aimed to assess the diagnostic utility of apparent diffusion coefficient (ADC) values derived from diffusion-weighted imaging (DWI) and cerebral blood flow (CBF) values derived from arterial spin labelling (ASL) in paediatric brain tumours. METHODS We performed a meta-analysis of published studies reporting ADC and ASL-derived CBF values in paediatric brain tumours. Data were combined using a random effects model in order to define typical parameter ranges for different histological tumour subtypes and WHO grades. New data were also acquired in a 'validation cohort' at our institution, in which ADC and CBF values in treatment naïve paediatric brain tumour patients were measured, in order to test the validity of the findings from the literature in an un-seen cohort. ADC and CBF quantification was performed by two radiologists via manual placement of tumour regions of interest (ROIs), in addition to an automated approach to tumour ROI placement. RESULTS A total of 14 studies met the inclusion criteria for the meta-analysis, constituting data acquired in 542 paediatric patients. Parameters of interest were based on measurements from ROIs placed within the tumour, including mean and minimum ADC values (ADCROI-mean, ADCROI-min) and the maximum CBF value normalised to grey matter (nCBFROI-max). After combination of the literature data, a number of histological tumour subtype groups showed significant differences in ADC values, which were confirmed, where possible, in our validation cohort of 32 patients. In both the meta-analysis and our cohort, diffuse midline glioma was found to be an outlier among high-grade tumour subtypes, with ADC and CBF values more similar to the low-grade tumours. After grouping patients by WHO grade, significant differences in grade groups were found in ADCROI-mean, ADCROI-min, and nCBFROI-max, in both the meta-analysis and our validation cohort. After excluding diffuse midline glioma, optimum thresholds (derived from ROC analysis) for separating low/high-grade tumours were 0.95 × 10-3 mm2/s (ADCROI-mean), 0.82 × 10-3 mm2/s (ADCROI-min) and 1.45 (nCBFROI-max). These thresholds were able to identify low/high-grade tumours with 96%, 83%, and 83% accuracy respectively in our validation cohort, and agreed well with the results from the meta-analysis. Diagnostic power was improved by combining ADC and CBF measurements from the same tumour, after which 100% of tumours in our cohort were correctly classified as either low- or high-grade (excluding diffuse midline glioma). CONCLUSION ADC and CBF values are useful for differentiating certain histological subtypes, and separating low- and high-grade paediatric brain tumours. The threshold values presented here are in agreement with previously published studies, as well as a new patient cohort. If ADC and CBF values acquired in the same tumour are combined, the diagnostic accuracy is optimised.
Collapse
Affiliation(s)
- Patrick W Hales
- Developmental Imaging & Biophysics Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom.
| | - Felice d'Arco
- Great Ormond Street Children's Hospital, Great Ormond St, London WC1N 3JH, United Kingdom
| | - Jessica Cooper
- Great Ormond Street Children's Hospital, Great Ormond St, London WC1N 3JH, United Kingdom
| | - Josef Pfeuffer
- Siemens Healthcare GmbH, MR Application Development, Erlangen, Germany
| | - Darren Hargrave
- Great Ormond Street Children's Hospital, Great Ormond St, London WC1N 3JH, United Kingdom
| | - Kshitij Mankad
- Great Ormond Street Children's Hospital, Great Ormond St, London WC1N 3JH, United Kingdom
| | - Chris Clark
- Developmental Imaging & Biophysics Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom
| |
Collapse
|
22
|
Delgado AF, De Luca F, Hanagandi P, van Westen D, Delgado AF. Arterial Spin-Labeling in Children with Brain Tumor: A Meta-Analysis. AJNR Am J Neuroradiol 2018; 39:1536-1542. [PMID: 30072368 PMCID: PMC7410530 DOI: 10.3174/ajnr.a5727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The value of arterial spin-labeling in a pediatric population has not been assessed in a meta-analysis. PURPOSE Our aim was to assess the diagnostic accuracy of arterial spin-labeling-derived cerebral blood flow to discriminate low- and high-grade tumors. DATA SOURCES MEDLINE, EMBASE, the Web of Science Core Collection, and the Cochrane Library were used. STUDY SELECTION Pediatric patients with arterial spin-labeling MR imaging with verified neuropathologic diagnoses were included. DATA ANALYSIS Relative CBF and absolute CBF and tumor grade were extracted, including sequence-specific information. Mean differences in CBF between low- and high-grade tumors were calculated. Study quality was assessed. DATA SYNTHESIS Data were aggregated using the bivariate summary receiver operating characteristic curve model. Heterogeneity was explored with meta-regression and subgroup analyses. The study protocol was published at PROSPERO (CRD42017075055). Eight studies encompassing 286 pediatric patients were included. The mean differences in absolute CBF were 29.62 mL/min/100 g (95% CI, 10.43-48.82 mL/min/100 g), I2 = 74, P = .002, and 1.34 mL/min/100 g (95% CI, 0.95-1.74 mL/min/100 g), P < .001, I2 = 38 for relative CBF. Pooled sensitivity for relative CBF ranged from 0.75 to 0.90, and specificity, from 0.77 to 0.92 with an area under curve = 0.92. Meta-regression showed no moderating effect of sequence parameters TE, TR, acquisition time, or ROI method. LIMITATIONS Included tumor types, analysis method, and original data varied among included studies. CONCLUSIONS Arterial spin-labeling-derived CBF measures showed high diagnostic accuracy for discriminating low- and high-grade tumors in pediatric patients with brain tumors. The relative CBF showed less variation among studies than the absolute CBF.
Collapse
Affiliation(s)
- A F Delgado
- From the Departments of Clinical Neuroscience (Anna F.D.)
| | - F De Luca
- Faculty of Medicine and Surgery (F.D.L.), School of Medicine and Health Sciences, University "G. d'Annunzio," Chieti, Italy
| | - P Hanagandi
- Neuroradiology (P.H.), Karolinska Institute, Stockholm, Sweden
| | - D van Westen
- Faculty of Medicine (D.v.W.), Clinical Sciences, Lund University, Sweden
| | - A F Delgado
- Department of Surgical Sciences (Alberto F.D.), Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Grading and outcome prediction of pediatric diffuse astrocytic tumors with diffusion and arterial spin labeling perfusion MRI in comparison with 18F-DOPA PET. Eur J Nucl Med Mol Imaging 2017; 44:2084-2093. [PMID: 28752225 DOI: 10.1007/s00259-017-3777-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/10/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE The aim of this study was to investigate MRI-derived diffusion weighted imaging (DWI) and arterial spin labeling (ASL) perfusion imaging in comparison with 18F-dihydroxyphenylalanine (DOPA) PET with respect to diagnostic performance in tumor grading and outcome prediction in pediatric patients with diffuse astrocytic tumors (DAT). METHODS We retrospectively analyzed 26 children with histologically proven treatment naïve low and high grade DAT who underwent ASL and DWI performed within 2 weeks of 18F-DOPA PET. Relative ASL-derived cerebral blood flow max (rCBF max) and DWI-derived minimum apparent diffusion coefficient (rADC min) were compared with 18F-DOPA uptake tumor/normal tissue (T/N) and tumor/striatum (T/S) ratios, and correlated with World Health Organization (WHO) tumor grade and progression-free survival (PFS). Statistics included Pearson's chi-square and Mann-Whitney U tests, Spearman's rank correlation, receiver operating characteristic (ROC) analysis, discriminant function analysis (DFA), Kaplan-Meier survival curve, and Cox analysis. RESULTS A significant correlation was demonstrated between rCBF max, rADC min, and 18F-DOPA PET data (p < 0.001). Significant differences in terms of rCBF max, rADC min, and 18F-DOPA uptake were found between low- and high-grade DAT (p ≤ 0.001). ROC analysis and DFA demonstrated that T/S and T/N values were the best parameters for predicting tumor progression (AUC 0.93, p < 0.001). On univariate analysis, all diagnostic tools correlated with PFS (p ≤ 0.001); however, on multivariate analysis, only 18F-DOPA uptake remained significantly associated with outcome (p ≤ 0.03), while a trend emerged for rCBF max (p = 0.09) and rADC min (p = 0.08). The combination of MRI and PET data increased the predictive power for prognosticating tumor progression (AUC 0.97, p < 0.001). CONCLUSIONS DWI, ASL and 18F-DOPA PET provide useful complementary information for pediatric DAT grading. 18F-DOPA uptake better correlates with PFS prediction. Combining MRI and PET data provides the highest predictive power for prognosticating tumor progression suggesting a synergistic role of these diagnostic tools.
Collapse
|
24
|
Utility of Arterial Spin Labeling MRI in Pediatric Neuroimaging: A Pictorial Essay. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0232-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Manias KA, Gill SK, MacPherson L, Foster K, Oates A, Peet AC. Magnetic resonance imaging based functional imaging in paediatric oncology. Eur J Cancer 2016; 72:251-265. [PMID: 28011138 DOI: 10.1016/j.ejca.2016.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/26/2016] [Accepted: 10/30/2016] [Indexed: 12/16/2022]
Abstract
Imaging is central to management of solid tumours in children. Conventional magnetic resonance imaging (MRI) is the standard imaging modality for tumours of the central nervous system (CNS) and limbs and is increasingly used in the abdomen. It provides excellent structural detail, but imparts limited information about tumour type, aggressiveness, metastatic potential or early treatment response. MRI based functional imaging techniques, such as magnetic resonance spectroscopy, diffusion and perfusion weighted imaging, probe tissue properties to provide clinically important information about metabolites, structure and blood flow. This review describes the role of and evidence behind these functional imaging techniques in paediatric oncology and implications for integrating them into routine clinical practice.
Collapse
Affiliation(s)
- Karen A Manias
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Department of Paediatric Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Simrandip K Gill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Department of Paediatric Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Lesley MacPherson
- Department of Radiology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Katharine Foster
- Department of Radiology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Adam Oates
- Department of Radiology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Andrew C Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Department of Paediatric Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| |
Collapse
|
26
|
Dangouloff-Ros V, Deroulers C, Foissac F, Badoual M, Shotar E, Grévent D, Calmon R, Pagès M, Grill J, Dufour C, Blauwblomme T, Puget S, Zerah M, Sainte-Rose C, Brunelle F, Varlet P, Boddaert N. Arterial Spin Labeling to Predict Brain Tumor Grading in Children: Correlations between Histopathologic Vascular Density and Perfusion MR Imaging. Radiology 2016; 281:553-566. [DOI: 10.1148/radiol.2016152228] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
|
28
|
Proisy M, Bruneau B, Rozel C, Tréguier C, Chouklati K, Riffaud L, Darnault P, Ferré JC. Arterial spin labeling in clinical pediatric imaging. Diagn Interv Imaging 2015; 97:151-8. [PMID: 26456912 DOI: 10.1016/j.diii.2015.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 10/22/2022]
Abstract
Arterial spin labeling (ASL) perfusion-weighted magnetic resonance imaging is the only approach that enables direct and non-invasive quantitative measurement of cerebral blood flow in the brain regions without administration of contrast material and without radiation. ASL is thus a promising perfusion imaging method for assessing cerebral blood flow in the pediatric population. Concerning newborns, there are current limitations because of their smaller brain size and lower brain perfusion. This article reviews and illustrates the use of ASL in pediatric clinical practice and discusses emerging cerebral perfusion imaging applications for children due to the highly convenient implementation of the ASL sequence.
Collapse
Affiliation(s)
- M Proisy
- Department of Radiology, hôpital Sud, CHU de Rennes, 16, boulevard de Bulgarie, BP 90347, 35203 Rennes cedex 2, France; Inserm VisAGeS unité/projet U746, UMR 6074, Irisa, université Rennes 1, 35043 Rennes cedex, France.
| | - B Bruneau
- Department of Radiology, hôpital Sud, CHU de Rennes, 16, boulevard de Bulgarie, BP 90347, 35203 Rennes cedex 2, France
| | - C Rozel
- Department of Radiology, hôpital Sud, CHU de Rennes, 16, boulevard de Bulgarie, BP 90347, 35203 Rennes cedex 2, France
| | - C Tréguier
- Department of Radiology, hôpital Sud, CHU de Rennes, 16, boulevard de Bulgarie, BP 90347, 35203 Rennes cedex 2, France
| | - K Chouklati
- Department of Radiology, hôpital Sud, CHU de Rennes, 16, boulevard de Bulgarie, BP 90347, 35203 Rennes cedex 2, France
| | - L Riffaud
- Department of Pediatric Neurosurgery, CHU de Rennes, 2, rue Henri-Le-Guillou, 35033 Rennes cedex 9, France
| | - P Darnault
- Department of Radiology, hôpital Sud, CHU de Rennes, 16, boulevard de Bulgarie, BP 90347, 35203 Rennes cedex 2, France
| | - J-C Ferré
- Inserm VisAGeS unité/projet U746, UMR 6074, Irisa, université Rennes 1, 35043 Rennes cedex, France; Department of Radiology, hôpital Pontchaillou, CHU de Rennes, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France
| |
Collapse
|