1
|
Calvo‐Imirizaldu M, Solis‐Barquero S, Aramendía‐Vidaurreta V, García de Eulate R, Domínguez P, Vidorreta M, Echeveste J, Argueta A, Cacho‐Asenjo E, Martinez‐Simon A, Bejarano B, Fernández‐Seara M. Cerebrovascular Reactivity Mapping in Brain Tumors Based on a Breath-Hold Task Using Arterial Spin Labeling. NMR IN BIOMEDICINE 2025; 38:e5317. [PMID: 39844376 PMCID: PMC11754703 DOI: 10.1002/nbm.5317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types. To that end, 27 patients with brain tumor were studied. Baseline CBF and CVR were measured in tumor, edema, and gray matter (GM) volumes-of-interest (VOIs). Peritumoral ipsilateral ring-shaped VOIs were also generated and mirrored to the contralateral hemisphere. Differences in baseline CBF and CVR were evaluated between contralateral and ipsilateral GM, contralateral and ipsilateral peritumoral rings, and among VOIs and tumor types. CBF in the tumor was higher in grade 4 gliomas than metastases. In grade 4 gliomas, edema had lower CBF than the tumor and contralateral GM. CVR values were different between grade 3 and grade 4 gliomas, and between grade 4 and metastases. CVR values in the tumor were lower compared to the contralateral GM. Differences in CVR between contralateral and ipsilateral-ring VOIs were also found in grade 4 gliomas, presumably suggesting tumor infiltration within the peritumoral tissue. A cut-off value for CVR of 27.9%-signal-change is suggested to differentiate between grade 3 and grade 4 gliomas (specificity = 83.3%, sensitivity = 70.6%). In conclusion, CBF and CVR mapping with ASL offered insights into the perilesional environment that could help to detect infiltrative disease, particularly in grade 4 gliomas. CVR emerged as a potential biomarker to differentiate between grade 3 and grade 4 gliomas.
Collapse
Affiliation(s)
| | - Sergio M. Solis‐Barquero
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Verónica Aramendía‐Vidaurreta
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Reyes García de Eulate
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Pablo Domínguez
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | | | | | - Allan Argueta
- Department of PathologyClínica Universidad de NavarraPamplonaSpain
| | - Elena Cacho‐Asenjo
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Department of Anesthesia and Intensive CareClínica Universidad de NavarraPamplonaSpain
| | - Antonio Martinez‐Simon
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Department of Anesthesia and Intensive CareClínica Universidad de NavarraPamplonaSpain
| | | | - María A. Fernández‐Seara
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| |
Collapse
|
2
|
Woods JG, Achten E, Asllani I, Bolar DS, Dai W, Detre JA, Fan AP, Fernández-Seara M, Golay X, Günther M, Guo J, Hernandez-Garcia L, Ho ML, Juttukonda MR, Lu H, MacIntosh BJ, Madhuranthakam AJ, Mutsaerts HJ, Okell TW, Parkes LM, Pinter N, Pinto J, Qin Q, Smits M, Suzuki Y, Thomas DL, Van Osch MJ, Wang DJJ, Warnert EA, Zaharchuk G, Zelaya F, Zhao M, Chappell MA. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications. Magn Reson Med 2024; 92:469-495. [PMID: 38594906 PMCID: PMC11142882 DOI: 10.1002/mrm.30091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.
Collapse
Affiliation(s)
- Joseph G. Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Eric Achten
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Iris Asllani
- Department of Neuroscience, University of Sussex, UK and Department of Biomedical Engineering, Rochester Institute of Technology, USA
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA, 13902
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, 3 Dulles Building, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Audrey P. Fan
- Department of Biomedical Engineering, Department of Neurology, University of California Davis, Davis, CA, USA
| | - Maria Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Xavier Golay
- UCL Queen Square Institute of Neurology, University College London, London, UK; Gold Standard Phantoms, UK
| | - Matthias Günther
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- Departments of Physics and Electrical Engineering, University of Bremen, Bremen, Germany
| | - Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | | | - Mai-Lan Ho
- Department of Radiology, University of Missouri, Columbia, MO, USA. ORCID: 0000-0002-9455-1350
| | - Meher R. Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences Program, Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Computational Radiology & Artificial Intelligence unit, Oslo University Hospital, Oslo, Norway
| | - Ananth J. Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Henk-Jan Mutsaerts
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, UK
| | - Nandor Pinter
- Dent Neurologic Institute, Buffalo, New York, USA; University at Buffalo Neurosurgery, Buffalo, New York, USA
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David L. Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthias J.P. Van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Esther A.H. Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Moss Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
- Maternal & Child Health Research Institute, Stanford University, Stanford, CA, USA
| | - Michael A. Chappell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Kambe A, Kitao S, Ochiai R, Hosoya T, Fujii S, Kurosaki M. The utility of arterial spin labeling imaging for predicting prognosis after a recurrence of high-grade glioma in patients under bevacizumab treatment. J Neurooncol 2024; 166:175-183. [PMID: 38165552 DOI: 10.1007/s11060-023-04550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND AND PURPOSE Currently, the antiangiogenic agent bevacizumab (BVZ) is used as a treatment option for high-grade glioma (HGG) patients. However, BVZ restores disruptions of the blood-brain barrier, which leads to the disappearance of contrast enhancement during radiological examinations and therefore complicates evaluations of treatment efficacy. This study aimed to investigate the radio-morphological features of recurrent lesions that newly appeared under BVZ therapy, as well as the utility of arterial spin labeling (ASL) perfusion imaging for evaluating treatment response and prognosis in HGG patients receiving BVZ. METHODS Thirty-two patients (20 males, 12 females; age range, 35-84 years) with HGG who experienced a recurrence under BVZ therapy were enrolled. We measured the relative cerebral blood flow (rCBF) values of each recurrent lesion using ASL, and retrospectively investigated the correlation between rCBF values and prognosis. RESULTS The optimal rCBF cut-off value for predicting prognosis was defined as 1.67 using receiver operating characteristic curve analysis. The patients in the rCBF < 1.67 group had significantly longer overall survival (OS) and post-progression survival (PPS) than those in the rCBF ≥ 1.67 group (OS: 34.0 months vs. 13.0 months, p = 0.03 and PPS: 13.0 months vs. 6.0 months, p < 0.001, respectively). CONCLUSION The ASL-derived rCBF values of recurrent lesions may serve as an effective imaging biomarker for prognosis in HGG patients undergoing BVZ therapy. Low rCBF values may indicate that BVZ efficacy is sustainable, which will influence BVZ treatment strategies in HGG patients.
Collapse
Affiliation(s)
- Atsushi Kambe
- Department of Brain and Neurosciences, Division of Neurosurgery, Faculty of Medicine, Tottori University, Tottori, Japan.
| | - Shinichiro Kitao
- Department of Multidisciplinary Internal Medicine, Division of Radiology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Ryoya Ochiai
- Department of Multidisciplinary Internal Medicine, Division of Radiology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Tomohiro Hosoya
- Department of Brain and Neurosciences, Division of Neurosurgery, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Shinya Fujii
- Department of Multidisciplinary Internal Medicine, Division of Radiology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Masamichi Kurosaki
- Department of Brain and Neurosciences, Division of Neurosurgery, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
4
|
Hirschler L, Sollmann N, Schmitz‐Abecassis B, Pinto J, Arzanforoosh F, Barkhof F, Booth T, Calvo‐Imirizaldu M, Cassia G, Chmelik M, Clement P, Ercan E, Fernández‐Seara MA, Furtner J, Fuster‐Garcia E, Grech‐Sollars M, Guven NT, Hatay GH, Karami G, Keil VC, Kim M, Koekkoek JAF, Kukran S, Mancini L, Nechifor RE, Özcan A, Ozturk‐Isik E, Piskin S, Schmainda K, Svensson SF, Tseng C, Unnikrishnan S, Vos F, Warnert E, Zhao MY, Jancalek R, Nunes T, Emblem KE, Smits M, Petr J, Hangel G. Advanced MR Techniques for Preoperative Glioma Characterization: Part 1. J Magn Reson Imaging 2023; 57:1655-1675. [PMID: 36866773 PMCID: PMC10946498 DOI: 10.1002/jmri.28662] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.
Collapse
Affiliation(s)
- Lydiane Hirschler
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Nico Sollmann
- Department of Diagnostic and Interventional RadiologyUniversity Hospital UlmUlmGermany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Bárbara Schmitz‐Abecassis
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Medical Delta FoundationDelftThe Netherlands
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | | | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Thomas Booth
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of NeuroradiologyKing's College Hospital NHS Foundation TrustLondonUK
| | | | | | - Marek Chmelik
- Department of Technical Disciplines in Medicine, Faculty of Health CareUniversity of PrešovPrešovSlovakia
| | - Patricia Clement
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Medical ImagingGhent University HospitalGhentBelgium
| | - Ece Ercan
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Maria A. Fernández‐Seara
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Instituto de Investigación Sanitaria de NavarraPamplonaSpain
| | - Julia Furtner
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Research Center of Medical Image Analysis and Artificial IntelligenceDanube Private UniversityKrems an der DonauAustria
| | - Elies Fuster‐Garcia
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y ComunicacionesUniversitat Politècnica de ValènciaValenciaSpain
| | - Matthew Grech‐Sollars
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Nazmiye Tugay Guven
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Gokce Hale Hatay
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Golestan Karami
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Vera C. Keil
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdamThe Netherlands
| | - Mina Kim
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of NeuroinflammationUniversity College LondonLondonUK
| | - Johan A. F. Koekkoek
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Department of NeurologyHaaglanden Medical CenterThe HagueThe Netherlands
| | - Simran Kukran
- Department of BioengineeringImperial College LondonLondonUK
- Department of Radiotherapy and ImagingInstitute of Cancer ResearchLondonUK
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Brain Repair and Rehabilitation, Institute of NeurologyUniversity College LondonLondonUK
| | - Ruben Emanuel Nechifor
- Department of Clinical Psychology and PsychotherapyInternational Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Babes‐Bolyai UniversityCluj‐NapocaRomania
| | - Alpay Özcan
- Electrical and Electronics Engineering DepartmentBogazici University IstanbulIstanbulTurkey
| | - Esin Ozturk‐Isik
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Senol Piskin
- Department of Mechanical Engineering, Faculty of Natural Sciences and EngineeringIstinye University IstanbulIstanbulTurkey
| | - Kathleen Schmainda
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Siri F. Svensson
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
- Department of PhysicsUniversity of OsloOsloNorway
| | - Chih‐Hsien Tseng
- Medical Delta FoundationDelftThe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Saritha Unnikrishnan
- Faculty of Engineering and DesignAtlantic Technological University (ATU) SligoSligoIreland
- Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), ATU SligoSligoIreland
| | - Frans Vos
- Medical Delta FoundationDelftThe Netherlands
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Esther Warnert
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
| | - Radim Jancalek
- Department of NeurosurgerySt. Anne's University Hospital, BrnoBrnoCzech Republic
- Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
| | - Teresa Nunes
- Department of NeuroradiologyHospital Garcia de OrtaAlmadaPortugal
| | - Kyrre E. Emblem
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
| | - Marion Smits
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
- Brain Tumour CentreErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Gilbert Hangel
- Department of NeurosurgeryMedical University of ViennaViennaAustria
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for MR Imaging BiomarkersViennaAustria
- Medical Imaging ClusterMedical University of ViennaViennaAustria
| |
Collapse
|
5
|
Lindner T, Bolar DS, Achten E, Barkhof F, Bastos-Leite AJ, Detre JA, Golay X, Günther M, Wang DJJ, Haller S, Ingala S, Jäger HR, Jahng GH, Juttukonda MR, Keil VC, Kimura H, Ho ML, Lequin M, Lou X, Petr J, Pinter N, Pizzini FB, Smits M, Sokolska M, Zaharchuk G, Mutsaerts HJMM. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging. Magn Reson Med 2023; 89:2024-2047. [PMID: 36695294 PMCID: PMC10914350 DOI: 10.1002/mrm.29572] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
This article focuses on clinical applications of arterial spin labeling (ASL) and is part of a wider effort from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group to update and expand on the recommendations provided in the 2015 ASL consensus paper. Although the 2015 consensus paper provided general guidelines for clinical applications of ASL MRI, there was a lack of guidance on disease-specific parameters. Since that time, the clinical availability and clinical demand for ASL MRI has increased. This position paper provides guidance on using ASL in specific clinical scenarios, including acute ischemic stroke and steno-occlusive disease, arteriovenous malformations and fistulas, brain tumors, neurodegenerative disease, seizures/epilepsy, and pediatric neuroradiology applications, focusing on disease-specific considerations for sequence optimization and interpretation. We present several neuroradiological applications in which ASL provides unique information essential for making the diagnosis. This guidance is intended for anyone interested in using ASL in a routine clinical setting (i.e., on a single-subject basis rather than in cohort studies) building on the previous ASL consensus review.
Collapse
Affiliation(s)
- Thomas Lindner
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Eric Achten
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, UK
| | | | - John A. Detre
- Department of Neurology, University of Pennsylvania, Philadelphia PA USA
| | - Xavier Golay
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthias Günther
- (1) University Bremen, Germany; (2) Fraunhofer MEVIS, Bremen, Germany; (3) mediri GmbH, Heidelberg, Germany
| | - Danny JJ Wang
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles CA USA
| | - Sven Haller
- (1) CIMC - Centre d’Imagerie Médicale de Cornavin, Place de Cornavin 18, 1201 Genève 1201 Genève (2) Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (3) Faculty of Medicine of the University of Geneva, Switzerland. Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, P. R. China
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hans R Jäger
- UCL Queen Square Institute of Neuroradiology, University College London, London, UK
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Meher R. Juttukonda
- (1) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown MA USA (2) Department of Radiology, Harvard Medical School, Boston MA USA
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical sciences, University of Fukui, Fukui, JAPAN
| | - Mai-Lan Ho
- Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Maarten Lequin
- Division Imaging & Oncology, Department of Radiology & Nuclear Medicine | University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jan Petr
- (1) Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany (2) Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nandor Pinter
- Dent Neurologic Institute, Buffalo, NY, USA. University at Buffalo Neurosurgery, Buffalo, NY, USA
| | - Francesca B. Pizzini
- Radiology Institute, Dept. of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Marion Smits
- (1) Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands (2) The Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Magdalena Sokolska
- Department of Medical Physics and Biomedical Engineering University College London Hospitals NHS Foundation Trust, UK
| | | | - Henk JMM Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Laudicella R, Mantarro C, Catalfamo B, Alongi P, Gaeta M, Minutoli F, Baldari S, Bisdas S. PET Imaging in Gliomas. RADIOLOGY‐NUCLEAR MEDICINE DIAGNOSTIC IMAGING 2023:194-218. [DOI: 10.1002/9781119603627.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Iutaka T, de Freitas MB, Omar SS, Scortegagna FA, Nael K, Nunes RH, Pacheco FT, Maia Júnior ACM, do Amaral LLF, da Rocha AJ. Arterial Spin Labeling: Techniques, Clinical Applications, and Interpretation. Radiographics 2023; 43:e220088. [DOI: 10.1148/rg.220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Wang J, Zhang H, Dang X, Rui W, Cheng H, Wang J, Zhang Y, Qiu T, Yao Z, Liu H, Pang H, Ren Y. Multi-b-value diffusion stretched-exponential model parameters correlate with MIB-1 and CD34 expression in Glioma patients, an intraoperative MR-navigated, biopsy-based histopathologic study. Front Oncol 2023; 13:1104610. [PMID: 37182187 PMCID: PMC10171458 DOI: 10.3389/fonc.2023.1104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Background To understand the pathological correlations of multi-b-value diffusion-weighted imaging (MDWI) stretched-exponential model (SEM) parameters of α and diffusion distribution index (DDC) in patients with glioma. SEM parameters, as promising biomarkers, played an important role in histologically grading gliomas. Methods Biopsy specimens were grouped as high-grade glioma (HGG) or low-grade glioma (LGG). MDWI-SEM parametric mapping of DDC1500, α1500 fitted by 15 b-values (0-1,500 sec/mm2)and DDC5000 and α5000 fitted by 22 b-values (0-5,000 sec/mm2) were matched with pathological samples (stained by MIB-1 and CD34) by coregistered localized biopsies, and all SEM parameters were correlated with these pathological indices pMIB-1(percentage of MIB-1 expression positive rate) and CD34-MVD (CD34 expression positive microvascular density for each specimen). The two-tailed Spearman's correlation was calculated for pathological indexes and SEM parameters, as well as WHO grades and SEM parameters. Results MDWI-derived α1500 negatively correlated with CD34-MVD in both LGG (6 specimens) and HGG (26 specimens) (r=-0.437, P =0.012). MDWI-derived DDC1500 and DDC5000 negatively correlated with MIB-1 expression in all glioma patients (P<0.05). WHO grades negatively correlated with α1500(r=-0.485; P=0.005) and α5000(r=-0.395; P=0.025). Conclusions SEM-derived DDC and α are significant in histologically grading gliomas, DDC may indicate the proliferative ability, and CD34 stained microvascular perfusion may be an important determinant of water diffusion inhomogeneity α in glioma.
Collapse
Affiliation(s)
- Junlong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua Zhang
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xuefei Dang
- Department of Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of Magnetic Resonance Research, General Electric Healthcare, Shanghai, China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hanqiu Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hanqiu Liu, ; Haopeng Pang, ; Yan Ren,
| | - Haopeng Pang
- Minimally Invasive Therapy Center, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hanqiu Liu, ; Haopeng Pang, ; Yan Ren,
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hanqiu Liu, ; Haopeng Pang, ; Yan Ren,
| |
Collapse
|
9
|
Golay X, Ho ML. Multidelay ASL of the pediatric brain. Br J Radiol 2022; 95:20220034. [PMID: 35451851 PMCID: PMC10996417 DOI: 10.1259/bjr.20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast MRI technique for evaluation of cerebral blood flow (CBF). A key parameter in single-delay ASL is the choice of postlabel delay (PLD), which refers to the timing between the labeling of arterial free water and measurement of flow into the brain. Multidelay ASL (MDASL) utilizes several PLDs to improve the accuracy of CBF calculations using arterial transit time (ATT) correction. This approach is particularly helpful in situations where ATT is unknown, including young subjects and slow-flow conditions. In this article, we discuss the technical considerations for MDASL, including labeling techniques, quantitative metrics, and technical artefacts. We then provide a practical summary of key clinical applications with real-life imaging examples in the pediatric brain, including stroke, vasculopathy, hypoxic-ischemic injury, epilepsy, migraine, tumor, infection, and metabolic disease.
Collapse
Affiliation(s)
- Xavier Golay
- MR Neurophysics and Translational Neuroscience, UCL Queen
Square Institute of Neurology London, London,
England, UK
| | - Mai-Lan Ho
- Radiology, Nationwide Children’s Hospital and The Ohio
State University, Columbus, OH,
USA
| |
Collapse
|
10
|
Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading. Cancers (Basel) 2022; 14:cancers14061432. [PMID: 35326580 PMCID: PMC8946242 DOI: 10.3390/cancers14061432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers.
Collapse
|
11
|
Alsaedi AF, Thomas DL, De Vita E, Panovska-Griffiths J, Bisdas S, Golay X. Repeatability of perfusion measurements in adult gliomas using pulsed and pseudo-continuous arterial spin labelling MRI. MAGMA (NEW YORK, N.Y.) 2022; 35:113-125. [PMID: 34817780 DOI: 10.1007/s10334-021-00975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To investigate the repeatability of perfusion measures in gliomas using pulsed- and pseudo-continuous-arterial spin labelling (PASL, PCASL) techniques, and evaluate different regions-of-interest (ROIs) for relative tumour blood flow (rTBF) normalisation. MATERIALS AND METHODS Repeatability of cerebral blood flow (CBF) was measured in the Contralateral Normal Appearing Hemisphere (CNAH) and in brain tumours (aTBF). rTBF was normalised using both large/small ROIs from the CNAH. Repeatability was evaluated with intra-class-correlation-coefficient (ICC), Within-Coefficient-of-Variation (WCoV) and Coefficient-of-Repeatability (CR). RESULTS PASL and PCASL demonstrated high reliability (ICC > 0.9) for CNAH-CBF, aTBF and rTBF. PCASL demonstrated a more stable signal-to-noise ratio (SNR) with a lower WCoV of the SNR than that of PASL (10.9-42.5% vs. 12.3-29.2%). PASL and PCASL showed higher WCoV in aTBF and rTBF than in CNAH CBF in WM and GM but not in the caudate, and higher WCoV for rTBF than for aTBF when normalised using a small ROI (PASL 8.1% vs. 4.7%, PCASL 10.9% vs. 7.9%, respectively). The lowest CR was observed for rTBF normalised with a large ROI. DISCUSSION PASL and PCASL showed similar repeatability for the assessment of perfusion parameters in patients with primary brain tumours as previous studies based on volunteers. Both methods displayed reasonable WCoV in the tumour area and CNAH. PCASL's more stable SNR in small areas (caudate) is likely to be due to the longer post-labelling delays.
Collapse
Affiliation(s)
- Amirah Faisal Alsaedi
- Department of Radiology Technology, Taibah University, Medina, Kingdom of Saudi Arabia.
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - David Lee Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Leonard Wolfson Experimental Neurology Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Enrico De Vita
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK
| | - Jasmina Panovska-Griffiths
- Nuffield Department of Medicine, The Big Data Institute, University of Oxford, Oxford, UK
- The Queen's College, University of Oxford, Oxford, UK
| | - Sotirios Bisdas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK
| |
Collapse
|
12
|
Doig D, Kachramanoglou C, Dumba M, Tona F, Gontsarova A, Limbäck C, Jan W. Characterisation of isocitrate dehydrogenase gene mutant WHO grade 2 and 3 gliomas: MRI predictors of 1p/19q co-deletion and tumour grade. Clin Radiol 2021; 76:785.e9-785.e16. [PMID: 34289936 DOI: 10.1016/j.crad.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022]
Abstract
AIM To identify imaging predictors of molecular subtype and tumour grade in patients with isocitrate dehydrogenase (IDH) gene mutant (IDHmut) World Health Organization (WHO) grade 2 or 3 gliomas. MATERIALS AND METHODS Patients with histologically confirmed WHO grade 2 or 3 IDHmut gliomas between 2016 and 2019 were included in the study. Magnetic resonance imaging (MRI) images were evaluated for the presence or absence of potential imaging predictors of tumour subtype, such as T2/fluid attenuated inversion recovery (FLAIR) signal match, and these factors were examined using regression analysis. On perfusion imaging, the maximum relative cerebral blood volume (rCBVmax) was evaluated as a potential predictor of tumour grade. The performance of two experienced neuroradiologists in correctly predicting tumour type on MRI was evaluated. RESULTS Eighty-five patients were included in the study. The presence of T2/FLAIR signal match >50% of tumour volume (p<0.01) and intratumoural susceptibility (p=0.02) were independent predictors of 1p/19q co-deletion. Mean rCBV max was significantly higher in WHO grade 3 astrocytomas (p=0.04) than WHO grade 2 astrocytomas. The consensus prediction of 1p/19q co-deletion status by two neuroradiologists of tumour was 95% sensitive and 86% specific. CONCLUSION The presence of matched T2/FLAIR signal could be used to identify tumour subtype when biopsy is inconclusive or genetic analysis is unavailable. rCBVmax predicted astrocytoma grade. Experienced neuroradiologists predict tumour subtype with good sensitivity and specificity.
Collapse
Affiliation(s)
- D Doig
- Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
| | - C Kachramanoglou
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - M Dumba
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK; Imperial College Faculty of Medicine, London, UK
| | - F Tona
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - A Gontsarova
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - C Limbäck
- Department of Cellular Pathology, Imperial College Healthcare NHS Trust, London, UK; Imperial College Faculty of Medicine, London, UK
| | - W Jan
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
13
|
Waqar M, Lewis D, Agushi E, Gittins M, Jackson A, Coope D. Cerebral and tumoral blood flow in adult gliomas: a systematic review of results from magnetic resonance imaging. Br J Radiol 2021; 94:20201450. [PMID: 34106749 PMCID: PMC9327770 DOI: 10.1259/bjr.20201450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objective: Blood flow is the rate of blood movement and relevant to numerous processes, though understudied in gliomas. The aim of this review was to pool blood flow metrics obtained from MRI modalities in adult supratentorial gliomas. Methods: MEDLINE, EMBASE and the Cochrane database were queried 01/01/2000–31/12/2019. Studies measuring blood flow in adult Grade II–IV supratentorial gliomas using dynamic susceptibility contrast (DSC) MRI, dynamic contrast enhanced MRI (DCE-MRI) or arterial spin labelling (ASL) were included. Absolute and relative cerebral blood flow (CBF), peritumoral blood flow and tumoral blood flow (TBF) were reported. Results: 34 studies were included with 1415 patients and 1460 scans. The mean age was 52.4 ± 7.3 years. Most patients had glioblastoma (n = 880, 64.6%). The most common imaging modality was ASL (n = 765, 52.4%) followed by DSC (n = 538, 36.8%). Most studies were performed pre-operatively (n = 1268, 86.8%). With increasing glioma grade (II vs IV), TBF increased (70.8 vs 145.5 ml/100 g/min, p < 0.001) and CBF decreased (85.3 vs 49.6 ml/100 g/min, p < 0.001). In Grade IV gliomas, following treatment, CBF increased in ipsilateral (24.9 ± 1.2 vs 26.1 ± 0.0 ml/100 g/min, p < 0.001) and contralateral white matter (25.6 ± 0.2 vs 26.0± 0.0 ml/100 g/min, p < 0.001). Conclusion: Our findings demonstrate that increased mass effect from high-grade gliomas impairs blood flow within the surrounding brain that can improve with surgery. Advances in knowledge: This systematic review demonstrates how mass effect from brain tumours impairs blood flow in the surrounding brain parenchyma that can improve with treatment.
Collapse
Affiliation(s)
- Mueez Waqar
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Daniel Lewis
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Erjon Agushi
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Matthew Gittins
- Department of Biostatistics, Division of Population Health, Health Services Research& Primary Care, The University of Manchester, Manchester, UK
| | - Alan Jackson
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neuroradiology, Salford Royal NHS Foundation Trust, Salford, UK
| | - David Coope
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, Manchester, UK
| |
Collapse
|
14
|
Luan J, Wu M, Wang X, Qiao L, Guo G, Zhang C. The diagnostic value of quantitative analysis of ASL, DSC-MRI and DKI in the grading of cerebral gliomas: a meta-analysis. Radiat Oncol 2020; 15:204. [PMID: 32831106 PMCID: PMC7444047 DOI: 10.1186/s13014-020-01643-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To perform quantitative analysis on the efficacy of using relative cerebral blood flow (rCBF) in arterial spin labeling (ASL), relative cerebral blood volume (rCBV) in dynamic magnetic sensitivity contrast-enhanced magnetic resonance imaging (DSC-MRI), and mean kurtosis (MK) in diffusion kurtosis imaging (DKI) to grade cerebral gliomas. METHODS Literature regarding ASL, DSC-MRI, or DKI in cerebral gliomas grading in both English and Chinese were searched from PubMed, Embase, Web of Science, CBM, China National Knowledge Infrastructure (CNKI), and Wanfang Database as of 2019. A meta-analysis was performed to evaluate the efficacy of ASL, DSC-MRI, and DKI in the grading of cerebral gliomas. RESULT A total of 54 articles (11 in Chinese and 43 in English) were included. Three quantitative parameters in the grading of cerebral gliomas, rCBF in ASL, rCBV in DSC-MRI, and MK in DKI had the pooled sensitivity of 0.88 [95% CI (0.83,0.92)], 0.92 [95% CI (0.83,0.96)], 0.88 [95% CI (0.82,0.92)], and the pooled specificity of 0.91 [95% CI (0.84,0.94)], 0.81 [95% CI (0.73,0.88)], 0.86 [95% CI (0.78,0.91)] respectively. The pooled area under the curve (AUC) were 0.95 [95% CI (0.93,0.97)], 0.91 [95% CI (0.89,0.94)], 0.93 [95% CI (0.91,0.95)] respectively. CONCLUSION Quantitative parameters rCBF, rCBV and MK have high diagnostic accuracy for preoperative grading of cerebral gliomas.
Collapse
Affiliation(s)
- Jixin Luan
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 67, Dongchang West Road, Liaocheng District, 252000, Shandong Province, China
| | - Mingzhen Wu
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 67, Dongchang West Road, Liaocheng District, 252000, Shandong Province, China
| | - Xiaohui Wang
- Department of Science and Education, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 67, Dongchang West Road, Liaocheng District, 252000, Shandong Province, China
| | - Lishan Qiao
- School of Mathematics, Liaocheng University, Liaocheng District, 252000, Shandong Province, China
| | - Guifang Guo
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 67, Dongchang West Road, Liaocheng District, 252000, Shandong Province, China
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 67, Dongchang West Road, Liaocheng District, 252000, Shandong Province, China.
| |
Collapse
|
15
|
Multi-parametric arterial spin labelling and diffusion-weighted magnetic resonance imaging in differentiation of grade II and grade III gliomas. Pol J Radiol 2020; 85:e110-e117. [PMID: 32467745 PMCID: PMC7247019 DOI: 10.5114/pjr.2020.93397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To assess arterial spin labelling (ASL) perfusion and diffusion MR imaging (DWI) in the differentiation of grade II from grade III gliomas. Material and methods A prospective cohort study was done on 36 patients (20 male and 16 female) with diffuse gliomas, who underwent ASL and DWI. Diffuse gliomas were classified into grade II and grade III. Calculation of tumoural blood flow (TBF) and apparent diffusion coefficient (ADC) of the tumoral and peritumoural regions was made. The ROC curve was drawn to differentiate grade II from grade III gliomas. Results There was a significant difference in TBF of tumoural and peritumoural regions of grade II and III gliomas (p = 0.02 and p =0.001, respectively). Selection of 26.1 and 14.8 ml/100 g/min as the cut-off for TBF of tumoural and peritumoural regions differentiated between both groups with area under curve (AUC) of 0.69 and 0.957, and accuracy of 77.8% and 88.9%, respectively. There was small but significant difference in the ADC of tumoural and peritumoural regions between grade II and III gliomas (p = 0.02 for both). The selection of 1.06 and 1.36 × 10-3 mm2/s as the cut-off of ADC of tumoural and peritumoural regions was made, to differentiate grade II from III with AUC of 0.701 and 0.748, and accuracy of 80.6% and 80.6%, respectively. Combined TBF and ADC of tumoural regions revealed an AUC of 0.808 and accuracy of 72.7%. Combined TBF and ADC for peritumoural regions revealed an AUC of 0.96 and accuracy of 94.4%. Conclusion TBF and ADC of tumoural and peritumoural regions are accurate non-invasive methods of differentiation of grade II from grade III gliomas.
Collapse
|
16
|
Alsaedi A, Doniselli F, Jäger HR, Panovska-Griffiths J, Rojas-Garcia A, Golay X, Bisdas S. The value of arterial spin labelling in adults glioma grading: systematic review and meta-analysis. Oncotarget 2019; 10:1589-1601. [PMID: 30899427 PMCID: PMC6422184 DOI: 10.18632/oncotarget.26674] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to evaluate the diagnostic performance of arterial spin labelling (ASL) in grading of adult gliomas. Eighteen studies matched the inclusion criteria and were included after systematic searches through EMBASE and MEDLINE databases. The quality of the included studies was assessed utilizing Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). The quantitative values were extracted and a meta-analysis was subsequently based on a random-effect model with forest plot and joint sensitivity and specificity modelling. Hierarchical summary receiver operating characteristic (HROC) curve analysis was also conducted. The absolute tumour blood flow (TBF) values can differentiate high-grade gliomas (HGGs) from low-grade gliomas (LGGs) and grade II from grade IV tumours. However, it lacked the capacity to differentiate grade II from grade III tumours and grade III from grade IV tumours. In contrast, the relative TBF (rTBF) is effective in differentiating HGG from LGG and in glioma grading. The maximum rTBF (rTBFmax) demonstrated the best results in glioma grading. These results were also reflected in the sensitivity/specificity analysis in which the rTBFmax showed the highest discrimination performance in glioma grading. The estimated effect size for the rTBF was approximately similar between HGGs and LGGs, and grade II and grade III tumours, (-1.46 (-2.00, -0.91), p-value < 0.001), (-1.39 (-1.89, -0.89), p-value < 0.001), respectively; while it exhibited smaller effect size between grade III and grade IV (-1.05 (-1.82, -0.27)), p < 0.05). Sensitivity and specificity analysis replicate these results as well. This meta-analysis suggests that ASL is useful for glioma grading, especially when considering the rTBFmax parameter.
Collapse
Affiliation(s)
- Amirah Alsaedi
- Department of Radiology Technology, Taibah University, Medina, KSA.,Department of Brain Repair & Rehabilitation, Queen Square Institute of Neurology, University College London, London, UK
| | - Fabio Doniselli
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy.,PhD Course in Clinical Research, Università degli Studi di Milano, Milan, Italy
| | - Hans Rolf Jäger
- Department of Brain Repair & Rehabilitation, Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK
| | | | | | - Xavier Golay
- Department of Brain Repair & Rehabilitation, Queen Square Institute of Neurology, University College London, London, UK
| | - Sotirios Bisdas
- Department of Brain Repair & Rehabilitation, Queen Square Institute of Neurology, University College London, London, UK.,Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Trust, London, UK
| |
Collapse
|
17
|
Pang H, Dang X, Ren Y, Zhuang D, Qiu T, Chen H, Zhang J, Ma N, Li G, Zhang J, Wu J, Feng X. 3D-ASL perfusion correlates with VEGF expression and overall survival in glioma patients: Comparison of quantitative perfusion and pathology on accurate spatial location-matched basis. J Magn Reson Imaging 2019; 50:209-220. [PMID: 30652410 DOI: 10.1002/jmri.26562] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND There is a need for an imaging-based tool for measuring vascular endothelial growth factor (VEGF) expression and overall survival (OS) in patients with glioma. PURPOSE To assess the correlation between cerebral blood flow (CBF), measured by 3D pseudo-continuous arterial spin-labeling (3D-ASL), and VEGF expression in gliomas on the basis of coregistered localized biopsy, and investigate whether CBF correlated with survival month (SM) in glioma patients. STUDY TYPE Prospective cohort. SUBJECTS Thirty-seven patients with gliomas from whom 63 biopsy specimens were obtained. SEQUENCE 3D-ASL acquired with a 3.0T MR unit. ASSESSMENT Biopsy specimens were grouped as high-grade (HGG) or low-grade glioma (LGG). CBF measurements were spatially matched with VEGF expression by coregistered localized biopsies, and the CBF value was correlated with quantitative VEGF expression for each specimen. Patients' survival information was derived and connected with CBF. STATISTICAL TESTS Patients' OS was analyzed by Kaplan-Meier and Cox-regression methods. VEGF expression and CBF were compared in both LGG and HGG. The Spearman rank correlation was calculated for CBF and VEGF expression, SM. Significance level, P < 0.05. RESULTS CBF-derived 3D-ASL positively correlated significantly with VEGF expression in both LGG (31 specimens) and HGG (32 specimens), r = 0.604 (P < 0.001) and r = 0.665 (P < 0.001), respectively. LGG and HGG together gave a correlation coefficient r = 0.728 (P < 0.001). Median survival for LGG and HGG patients was 34.19 and 17.17 months, respectively (P = 0.037); CBF value negatively correlated significantly with SM with r = -0.714 (P < 0.001) regardless of glioma grade. CBF was an independent risk factor for OS with HR = 1.027 (P = 0.044), 1.028 (P = 0.010) for univariate/multivariate regression analysis. DATA CONCLUSION CBF determined by 3D-ASL correlates with VEGF expression in glioma and is an independent risk factor for OS in these patients. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:209-220.
Collapse
Affiliation(s)
- Haopeng Pang
- Department of Interventional Radiology, Affiliated Ruijin Hospital to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.,Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Xuefei Dang
- Department of Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Yan Ren
- Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Tianming Qiu
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Hong Chen
- Department of Pathology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Jie Zhang
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Ningning Ma
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, P.R. China
| | - Gang Li
- Department of Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Junhai Zhang
- Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Jinsong Wu
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| | - Xiaoyuan Feng
- Department of Radiology, Affiliated Huashan Hospital of Fudan University, Shanghai, P.R. China
| |
Collapse
|
18
|
|
19
|
Falk Delgado A, De Luca F, van Westen D, Falk Delgado A. Arterial spin labeling MR imaging for differentiation between high- and low-grade glioma-a meta-analysis. Neuro Oncol 2018; 20:1450-1461. [PMID: 29868920 PMCID: PMC6176798 DOI: 10.1093/neuonc/noy095] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Arterial spin labeling is an MR imaging technique that measures cerebral blood flow (CBF) non-invasively. The aim of the study is to assess the diagnostic performance of arterial spin labeling (ASL) MR imaging for differentiation between high-grade glioma and low-grade glioma. Methods Cochrane Library, Embase, Medline, and Web of Science Core Collection were searched. Study selection ended November 2017. This study was prospectively registered in PROSPERO (CRD42017080885). Two authors screened all titles and abstracts for possible inclusion. Data were extracted independently by 2 authors. Bivariate random effects meta-analysis was used to describe summary receiver operating characteristics. Trial sequential analysis (TSA) was performed. Results In total, 15 studies with 505 patients were included. The diagnostic performance of ASL CBF for glioma grading was 0.90 with summary sensitivity 0.89 (0.79-0.90) and specificity 0.80 (0.72-0.89). The diagnostic performance was similar between pulsed ASL (AUC 0.90) with a sensitivity 0.85 (0.71-0.91) and specificity 0.83 (0.69-0.92) and pseudocontinuous ASL (AUC 0.88) with a sensitivity 0.86 (0.79-0.91) and specificity 0.80 (0.65-0.87). In astrocytomas, the diagnostic performance was 0.89 with sensitivity 0.86 (0.79 to 0.91) and specificity 0.79 (0.63 to 0.89). Sensitivity analysis confirmed the robustness of the findings. TSA revealed that the meta-analysis was adequately powered. Conclusion Arterial spin labeling MR imaging had an excellent diagnostic accuracy for differentiation between high-grade and low-grade glioma. Given its low cost, non-invasiveness, and efficacy, ASL MR imaging should be considered for implementation in the routine workup of patients with glioma.
Collapse
Affiliation(s)
| | - Francesca De Luca
- Faculty of Medicine and Surgery, School of Medicine and Health Sciences, University “G. d′Ánnunzio,” Chieti, Italy
| | - Danielle van Westen
- Image and Function, Skane University Hospital, Lund, Sweden, and Institution for Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| | - Anna Falk Delgado
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
20
|
Batalov AI, Zakharova NE, Pogosbekyan EL, Fadeeva LM, Goryaynov SA, Baev AA, Shul'ts EI, Chelushkin DM, Potapov AA, Pronin IN. [Non-contrast ASL perfusion in preoperative diagnosis of supratentorial gliomas]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2018; 82:15-22. [PMID: 30721213 DOI: 10.17116/neiro20188206115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to investigate the potential of pseudocontinuous arterial spin labeling perfusion (pCASL) in assessing the degree of malignancy of brain gliomas at the preoperative stage. MATERIAL AND METHODS: The study included 126 patients aged 12-75 years with supratentorial gliomas of different malignancy (35 low-grade gliomas and 91 high-grade gliomas). The maximum tumor blood flow (TBF) was measured, and the normalized tumor blood flow (nTBF) was calculated relative to the intact semiovale white matter of the contralateral hemisphere. The TBF and nTBF indicators differed significantly between low-grade and high-grade glioma groups (p<0.001). When using TBF and nTBF in the differential diagnosis of low-grade and high-grade gliomas, the area under the ROC curve was 0.96 in both cases. Our findings suggest that 3D pCASL perfusion is an effective technique for preoperative differential diagnosis of low-grade and high-grade gliomas. The study was supported by the Russian Foundation for Basic Research (grant #18-315-00384).
Collapse
Affiliation(s)
- A I Batalov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - L M Fadeeva
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - A A Baev
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - E I Shul'ts
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|