1
|
Schouten SM, Lewis D, Cornelissen S, Li KL, Zhu X, Maas MC, Pegge S, Jansen TTG, Mulder JJS, Waterval JJ, Postma AA, Pathmanaban O, Coope DJ, Derks JMM, Langenhuizen PPJH, King AT, Verheul JB, Kunst HPM. Dynamic contrast-enhanced and diffusion-weighted MR imaging for predicting tumor growth of sporadic vestibular schwannomas: A prospective study. Neuro Oncol 2025; 27:1116-1127. [PMID: 39579371 PMCID: PMC12083238 DOI: 10.1093/neuonc/noae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Advanced MR imaging, such as diffusion-weighted (DWI) and dynamic contrast-enhanced (DCE) imaging, may provide valuable noninvasive information on intrinsic tumor biology. This study aims to evaluate apparent diffusion coefficient (ADC) and DCE-MRI-derived microvascular parameter values (Ktrans, ve, and vp) as potential imaging predictors for future sporadic vestibular schwannoma (VS) growth. METHODS In this prospective cohort study, patients with newly diagnosed unilateral sporadic VS and an initial wait-and-scan strategy were enrolled between January 2021 and January 2023. Patients underwent a single timepoint comprehensive MRI protocol, including DWI and DCE-MRI sequences. The estimated values of ADC, Ktrans, ve, and vp were calculated using established pipelines on a voxelwise basis within the delineated tumor region of interest. Associations of the estimated parameter values with volumetric growth were evaluated in uni- and multivariable logistic regression and survival analyses. RESULTS Of the 110 analyzed patients, 70 (64%) exhibited growth during follow-up. A significant correlation was primarily observed between the DCE-MRI-derived parameters and VS growth. The combination of mean Ktrans (P < .001) and ve (P < .001) tumor values provided an internally validated model with an AUC of 0.85 for growth, yielding a sensitivity of 89% and specificity of 73% at the optimized cutoff value. Only the mean ADC values were found to be significantly higher in shrinking tumors (P = .04). CONCLUSIONS The strongly significant correlation observed between VS growth and Ktrans and ve tumor values indicate the great potential of the noninvasive DCE-MRI for individualized VS management in clinical practice. External validation is needed to further substantiate these findings.
Collapse
Affiliation(s)
- Sammy M Schouten
- Mental Health & Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
- Gamma Knife Center, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
- Dutch Academic Alliance Skull Base Pathology Radboudumc/MUMC+, Nijmegen, the Netherlands
- Maastricht University Medical Center+, Maastricht, the Netherlands
- Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daniel Lewis
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Stefan Cornelissen
- The Video Coding and Architecture Group, Eindhoven University of Technology, Eindhoven, the Netherlands
- Gamma Knife Center, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - Ka-Loh Li
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Xiaoping Zhu
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Marnix C Maas
- Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sjoert Pegge
- Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thijs T G Jansen
- Dutch Academic Alliance Skull Base Pathology Radboudumc/MUMC+, Nijmegen, the Netherlands
- Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jef J S Mulder
- Dutch Academic Alliance Skull Base Pathology Radboudumc/MUMC+, Nijmegen, the Netherlands
- Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jérôme J Waterval
- Mental Health & Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
- Dutch Academic Alliance Skull Base Pathology Radboudumc/MUMC+, Nijmegen, the Netherlands
- Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Alida A Postma
- Mental Health & Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
- Dutch Academic Alliance Skull Base Pathology Radboudumc/MUMC+, Nijmegen, the Netherlands
- Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Omar Pathmanaban
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - David J Coope
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | | | - Patrick P J H Langenhuizen
- The Video Coding and Architecture Group, Eindhoven University of Technology, Eindhoven, the Netherlands
- Gamma Knife Center, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - Andrew T King
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Jeroen B Verheul
- Gamma Knife Center, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - Henricus P M Kunst
- Mental Health & Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
- Dutch Academic Alliance Skull Base Pathology Radboudumc/MUMC+, Nijmegen, the Netherlands
- Maastricht University Medical Center+, Maastricht, the Netherlands
- Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Lewis D, Li KL, Djoukhadar I, Hannan CJ, Pathmanaban ON, Coope DJ, King AT. Emerging strategies for the prediction of behaviour, growth, and treatment response in vestibular schwannoma. Acta Neurochir (Wien) 2025; 167:116. [PMID: 40261443 PMCID: PMC12014738 DOI: 10.1007/s00701-025-06522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/06/2025] [Indexed: 04/24/2025]
Abstract
Vestibular schwannoma (VS) can present several management challenges for the clinician. Their unpredictable potential for growth creates uncertainty regarding when active treatment should be initiated, and once growth is confirmed which treatment option should be adopted, notably surgery or radiotherapy, and in particular stereotactic radiosurgery (SRS). The obvious benefits of SRS would ideally come with the ability to reliably predict long-term radiosurgery response/failure. Differentiation from temporary post-treatment phenomena such as transient tumour expansion or reactive swelling remains an unmet need. More powerful again would be the pre-treatment identification of which tumours will respond to radiosurgery and which will not. Over the past decade, there has been emerging interest in the development of non-invasive biomarkers, including imaging, for predicting growth and treatment response in VS. Alongside clinical radiographic predictors for VS growth such as extracanalicular tumour location and growth in the first year, studies have shown potential promise for advanced MRI and blood-based biomarkers that capture pathophysiological mechanism behind VS growth. Emerging interest in radiomics-based analyses of routinely acquired MRI, and the use of physiological imaging techniques such as dynamic-contrast enhanced MRI for pre- and post-treatment evaluation of tumour microvasculature and microstructure holds promise for revolutionizing this area. This article explores the current state of identifying VS growth at initial presentation, predicting treatment response to SRS and detecting early treatment failure, and finally the potential for developing more personalized patient selection for drug therapies, including bevacizumab, as well as emerging novel therapeutics for these tumours.
Collapse
Affiliation(s)
- Daniel Lewis
- Division of Cancer Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK.
- Department of Neurosurgery, Salford Royal Hospital, Nothern Care Alliance NHS Foundation Trust, Manchester, M6 8HD, UK.
| | - Ka-Loh Li
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ibrahim Djoukhadar
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cathal J Hannan
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - David J Coope
- Division of Cancer Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Andrew T King
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Balossier A, Olteanu M, Delsanti C, Troude L, Thomassin JM, Roche PH, Chavent M, Régis J. Dynamics of tumor evolution after Gamma Knife radiosurgery for sporadic vestibular schwannoma: Defining volumetric patterns characterizing individual trajectory. Neuro Oncol 2025; 27:545-556. [PMID: 39283980 PMCID: PMC11812029 DOI: 10.1093/neuonc/noae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND The definition of tumor control and treatment failure after Gamma Knife radiosurgery (GKRS) for vestibular schwannoma (VS) is still debated. The lack of knowledge on the dynamics of tumor evolution can lead to misinterpretation and subsequent inappropriate second treatment. The aim of this study was to evaluate the post-GKRS dynamics of the evolution of tumor volume and characterize volumetric patterns. METHODS We included patients with sporadic VS treated by GKRS with an MRI follow-up of a minimum of 3 years. A clustering was performed in 2 steps: Definition of the patterns of evolution based on a subset of patients with the most comprehensive follow-up, and then the assignment of the remaining patients on a best-fit basis. The minimum length of follow-up was assessed by measuring the consistency of the clusters over time (adjusted rand index and normalized mutual information). An analysis of the discriminant variables was finally performed. RESULTS A total of 1607 patients were included (median follow-up: 67 months). Five patterns were defined with 1 pattern gathering almost all cases of treatment failure. The clustering at 5 years afforded the highest consistency with long-term follow-up. Discriminant variables for clusters were as follows: sex, initial symptoms, delay of diagnosis, Koos grading, fundus invasion, and number of isocenters. CONCLUSIONS The definition of these robust distinct patterns is likely to help the physicians tremendously to distinguish tumor control from potential failure. We advocate for no retreatment decision before 5 years post-GKRS. Further investigations are required to decide if the dynamics of evolution can be predicted at GKRS on an individual basis.
Collapse
Affiliation(s)
- Anne Balossier
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
- Functional and Stereotactic Neurosurgery, AP-HM, Timone Hospital, Marseille, France
| | - Madalina Olteanu
- CEREMADE, UMR 7534, Université Paris Dauphine PSL, Paris, France
| | - Christine Delsanti
- Functional and Stereotactic Neurosurgery, AP-HM, Timone Hospital, Marseille, France
| | - Lucas Troude
- Department of Neurosurgery, AP-HM, North University Hospital, Marseille, France
| | - Jean-Marc Thomassin
- Department of Head and Neck Surgery, AP-HM, Timone Hospital, Marseille, France
| | - Pierre-Hugues Roche
- Department of Neurosurgery, AP-HM, North University Hospital, Marseille, France
| | - Marie Chavent
- UMR5251, INRIA, Université de Bordeaux, Talence, France
| | - Jean Régis
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
- Functional and Stereotactic Neurosurgery, AP-HM, Timone Hospital, Marseille, France
| |
Collapse
|
4
|
Pitukkitronnagorn N, Chakkabat C, Jittapiromsak N. Apparent diffusion coefficient and magnetic resonance imaging characteristics in predicting response to radiosurgery in patients with vestibular schwannomas. Neuroradiol J 2025:19714009251313509. [PMID: 39764625 PMCID: PMC11705299 DOI: 10.1177/19714009251313509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Predicting treatment response in patients with vestibular schwannomas (VSs) remains challenging. This study aimed to evaluate the use of pre-treatment normalized apparent diffusion coefficient (nADC) values and magnetic resonance (MR) imaging characteristics in predicting treatment outcomes in patients with VSs undergoing radiosurgery. METHODS The MR images of 44 patients with VSs who underwent radiosurgery at our institution were retrospectively reviewed, and the patients were categorized into tumor control (n = 28) and progression (n = 16) groups based on treatment response after treatment initiation, with a median follow-up duration of 29.5 (13-115) months. Pre-treatment nADC values for the whole tumor and solid portion of the tumor were assessed for predictive significance. MRI characteristics were analyzed, including hemorrhage status, tumor morphology, and post-treatment loss of central enhancement. Interobserver reliability was also evaluated. RESULTS Early post-treatment enlargement was associated with tumor progression (p = .024). The mean pre-treatment nADC values for the solid part of the tumor were significantly higher in the tumor control group than in tumor progression group (1.32 vs 1.05, p = .005). The receiver operating characteristic curve analysis revealed a mean nADC of 1.18 as an optimal cutoff, with sensitivity and specificity of 76.2% and 86.7%, respectively, in predicting treatment response. CONCLUSION The mean nADC values for the solid part of the tumor demonstrated predictive value for treatment response, with implications for treatment planning. Notably, early post-treatment enlargement was correlated with tumor progression. Incorporating these findings into clinical practice may refine treatment strategies for patients with VSs undergoing radiosurgery.
Collapse
Affiliation(s)
- Nattapon Pitukkitronnagorn
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Chakkapong Chakkabat
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Nutchawan Jittapiromsak
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
5
|
Tayal A, Gupta N, Pahwa B. Letter: Association Between Pseudoprogression of Vestibular Schwannoma After Radiosurgery and Radiological Features of Solid and Cystic Components. Neurosurgery 2024:00006123-990000000-01105. [PMID: 38529998 DOI: 10.1227/neu.0000000000002932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/07/2024] [Indexed: 03/27/2024] Open
Affiliation(s)
- Anish Tayal
- University College of Medical Sciences and G.T.B. Hospital, Delhi, India
| | - Namrata Gupta
- Kasturba Medical College Manipal, Udupi, Karnataka, India
| | - Bhavya Pahwa
- University College of Medical Sciences and G.T.B. Hospital, Delhi, India
| |
Collapse
|
6
|
Speckter H, Palque-Santos S, Mota-Gonzalez R, Bido J, Hernandez G, Rivera D, Suazo L, Valenzuela S, Gonzalez-Curi M, Stoeter P. Can Apparent Diffusion Coefficient (ADC) maps replace Diffusion Tensor Imaging (DTI) maps to predict the volumetric response of meningiomas to Gamma Knife Radiosurgery? J Neurooncol 2023; 161:547-554. [PMID: 36745271 DOI: 10.1007/s11060-023-04243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE Noninvasive methods are desired to predict the treatment response to Stereotactic Radiosurgery (SRS) to improve individual tumor management. In a previous study, we demonstrated that Diffusion Tensor Imaging (DTI)-derived parameter maps significantly correlate to SRS response. This study aimed to analyze and compare the predictive value of intratumoral ADC and DTI parameters in patients with meningiomas undergoing radiosurgery. METHODS MR images of 70 patients treated with Gamma Knife SRS for WHO grade I meningiomas were retrospectively reviewed. MR acquisition included pre- and post-treatment DWI and DTI sequences, and subtractions were calculated to assess for radiation-induced changes in the parameter values. RESULTS After a mean follow-up period (FUP) of 52.7 months, 69 of 70 meningiomas were controlled, with a mean volume reduction of 34.9%. Whereas fractional anisotropy (FA) values of the initial exam showed the highest correlation to tumor volume change at the last FU (CC = - 0.607), followed by the differences between first and second FU values of FA (CC = - 0.404) and the first longitudinal diffusivity (LD) value (CC = - 0.375), the correlation coefficients of all ADC values were comparably low. Nevertheless, all these correlations, except for ADC measured at the first follow-up, reached significance. CONCLUSION For the first time, the prognostic value of ADC maps measured in meningiomas before and at first follow-up after Gamma Knife SRS, was compared to simultaneously acquired DTI parameter maps. Quantities assessed from ADC maps present significant correlations to the volumetric meningioma response but are less effective than correlations with DTI parameters.
Collapse
Affiliation(s)
- Herwin Speckter
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic. .,Department of Radiology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic.
| | - Sarai Palque-Santos
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Ruben Mota-Gonzalez
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Jose Bido
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Giancarlo Hernandez
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Diones Rivera
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Luis Suazo
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Santiago Valenzuela
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Maria Gonzalez-Curi
- Department of Radiology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Peter Stoeter
- Centro Gamma Knife Dominicano, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic.,Department of Radiology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| |
Collapse
|
7
|
Romano A, Palizzi S, Romano A, Moltoni G, Di Napoli A, Maccioni F, Bozzao A. Diffusion Weighted Imaging in Neuro-Oncology: Diagnosis, Post-Treatment Changes, and Advanced Sequences-An Updated Review. Cancers (Basel) 2023; 15:cancers15030618. [PMID: 36765575 PMCID: PMC9913305 DOI: 10.3390/cancers15030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
DWI is an imaging technique commonly used for the assessment of acute ischemia, inflammatory disorders, and CNS neoplasia. It has several benefits since it is a quick, easily replicable sequence that is widely used on many standard scanners. In addition to its normal clinical purpose, DWI offers crucial functional and physiological information regarding brain neoplasia and the surrounding milieu. A narrative review of the literature was conducted based on the PubMed database with the purpose of investigating the potential role of DWI in the neuro-oncology field. A total of 179 articles were included in the study.
Collapse
Affiliation(s)
- Andrea Romano
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
| | - Serena Palizzi
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
| | - Allegra Romano
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
| | - Giulia Moltoni
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
- Correspondence: ; Tel.: +39-3347906958
| | - Alberto Di Napoli
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Francesca Maccioni
- Department of Radiology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Alessandro Bozzao
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
| |
Collapse
|
8
|
Hwang I, Choi SH, Kim JW, Yeon EK, Lee JY, Yoo RE, Kang KM, Yun TJ, Kim JH, Sohn CH. Response prediction of vestibular schwannoma after gamma-knife radiosurgery using pretreatment dynamic contrast-enhanced MRI: a prospective study. Eur Radiol 2022; 32:3734-3743. [PMID: 35084518 DOI: 10.1007/s00330-021-08517-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES There are few known predictive factors for response to gamma-knife radiosurgery (GKRS) in vestibular schwannoma (VS). We investigated the predictive role of pretreatment dynamic contrast-enhanced (DCE)-MRI parameters regarding the tumor response after GKRS in sporadic VS. METHODS This single-center prospective study enrolled participants between April 2017 and February 2019. We performed a volumetric measurement of DCE-MRI-derived parameters before GKRS. The tumor volume was measured in a follow-up MRI. The pharmacokinetic parameters were compared between responders and nonresponders according to 20% or more tumor volume reduction. Stepwise multivariable logistic regression analyses were performed, and the diagnostic performance of DCE-MRI parameters for the prediction of tumor response was evaluated by receiver operating characteristic curve analysis. RESULTS Ultimately, 35 participants (21 women, 52 ± 12 years) were included. There were 22 (62.9%) responders with a mean follow-up interval of 30.2 ± 5.7 months. Ktrans (0.036 min-1 vs. 0.057 min-1, p = .008) and initial area under the time-concentration curve within 90 s (IAUC90) (84.4 vs. 143.6, p = .003) showed significant differences between responders and nonresponders. Ktrans (OR = 0.96, p = .021) and IAUC90 (OR = 0.97, p = .004) were significant differentiating variables in each multivariable model with clinical variables for tumor response prediction. Ktrans showed a sensitivity of 81.8% and a specificity of 69.2%, and IAUC90 showed a sensitivity of 100% and a specificity of 53.8% for tumor response prediction. CONCLUSION DCE-MRI (particularly Ktrans and IAUC90) has the potential to be a predictive factor for tumor response in VS after GKRS. KEY POINTS •Pretreatment prediction of gamma-knife radiosurgery response in vestibular schwannoma is still challenging. •Dynamic contrast-enhanced MRI could have predictive value for the response of vestibular schwannoma after gamma-knife radiosurgery.
Collapse
Affiliation(s)
- Inpyeong Hwang
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
| | - Jin Wook Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eung Koo Yeon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ji Ye Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Jin Yun
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
9
|
Harry VN, Persad S, Bassaw B, Parkin D. Diffusion-weighted MRI to detect early response to chemoradiation in cervical cancer: A systematic review and meta-analysis. Gynecol Oncol Rep 2021; 38:100883. [PMID: 34926764 PMCID: PMC8651768 DOI: 10.1016/j.gore.2021.100883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/26/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Diffusion-weighted magnetic resonance imaging (DWI) has shown promise in predicting response to therapy in several malignancies. This systematic review and meta-analysis aimed to evaluate DWI in the prediction of response to treatment in patients with cervical cancer. METHODS A systematic search was conducted on PubMed, Web of Science, Cochrane and Google Scholar databases Studies that evaluated DWI and apparent diffusion coefficient (ADC) for response evaluation before, during and after treatment with a correlation to conventional response criteria were included. The primary endpoint was the mean ADC values of cervical cancer at these timepoints. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) was used to assess the quality of the studies. RESULTS Nine studies, comprising 270 patients, were included. Pre-treatment ADC values showed no correlation with eventual response. However, in our meta-analysis, there was a significant correlation with early treatment ADC values obtained within the first 3 weeks of therapy and response, as well as a significant correlation with the percentage change in ADC (ΔADC) and response. In addition, the pooled mean ΔADC percentage was also significantly higher in responders than in non-responders (49.7% vs 19.7%, respectively, p = 0.016). CONCLUSION DWI shows potential as a biomarker of early treatment response in patients with cervical carcinoma. Use of the change in ADC particularly within the first 3 weeks of therapy seems to be predictive of response and may serve as a suitable marker in the determination of early response.
Collapse
Affiliation(s)
- Vanessa N Harry
- Faculty of Medical Sciences, University of the West Indies, St Augustine, Trinidad and Tobago
| | - Sunil Persad
- Faculty of Medical Sciences, University of the West Indies, St Augustine, Trinidad and Tobago
| | - Bharat Bassaw
- Faculty of Medical Sciences, University of the West Indies, St Augustine, Trinidad and Tobago
| | - David Parkin
- Department of Gynecological Oncology, NHS Grampian, UK
| |
Collapse
|
10
|
Connor SEJ. Imaging of the Vestibular Schwannoma: Diagnosis, Monitoring, and Treatment Planning. Neuroimaging Clin N Am 2021; 31:451-471. [PMID: 34689927 DOI: 10.1016/j.nic.2021.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Appropriate imaging strategies for the detection, treatment planning, and posttreatment monitoring of vestibular schwannomas will be discussed. The typical and variant imaging appearances of vestibular schwannomas, as well as the imaging features that should prompt consideration of differential diagnoses, will be illustrated. Understanding the natural history of vestibular schwannomas, optimal measurement and definition of tumour growth helps the radiologist evaluate for the failure of conservative management and requirement for surgery or radiotherapy. In order to determine the success of conservative management, the radiologist is required to understand the natural history of vestibular schwannomas and how tumour growth is defined. Finally, the imaging features which help guide appropriate treatment with surgery or radiotherapy will be highlighted, and the expected posttreatment imaging changes will be described.
Collapse
Affiliation(s)
- Steve E J Connor
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Neuroradiology Department, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK.
| |
Collapse
|
11
|
Song D, Zhai Y, Tao X, Zhao C, Wang M, Wei X. Prediction of blood supply in vestibular schwannomas using radiomics machine learning classifiers. Sci Rep 2021; 11:18872. [PMID: 34556732 PMCID: PMC8460834 DOI: 10.1038/s41598-021-97865-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
This study attempts to explore the radiomics-based features of multi-parametric magnetic resonance imaging (MRI) and construct a machine-learning model to predict the blood supply in vestibular schwannoma preoperatively. By retrospectively collecting the preoperative MRI data of patients with vestibular schwannoma, patients were divided into poor and rich blood supply groups according to the intraoperative recording. Patients were divided into training and test cohorts (2:1), randomly. Stable features were retained by intra-group correlation coefficients (ICCs). Four feature selection methods and four classification methods were evaluated to construct favorable radiomics classifiers. The mean area under the curve (AUC) obtained in the test set for different combinations of feature selecting methods and classifiers was calculated separately to compare the performance of the models. Obtain and compare the best combination results with the performance of differentiation through visual observation in clinical diagnosis. 191 patients were included in this study. 3918 stable features were extracted from each patient. Least absolute shrinkage and selection operator (LASSO) and logistic regression model was selected as the optimal combinations after comparing the AUC calculated by models, which predicted the blood supply of vestibular schwannoma by K-Fold cross-validation method with a mean AUC = 0.88 and F1-score = 0.83. Radiomics machine-learning classifiers can accurately predict the blood supply of vestibular schwannoma by preoperative MRI data.
Collapse
Affiliation(s)
- Dixiang Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yixuan Zhai
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiaogang Tao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chao Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xinting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
12
|
Predict Treatment Response by Magnetic Resonance Diffusion Weighted Imaging: A Preliminary Study on 46 Meningiomas Treated with Proton-Therapy. Diagnostics (Basel) 2021; 11:diagnostics11091684. [PMID: 34574025 PMCID: PMC8469991 DOI: 10.3390/diagnostics11091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: a considerable subgroup of meningiomas (MN) exhibit indolent and insidious growth. Strategies to detect earlier treatment responses based on tumour biology rather than on size can be useful. We aimed to characterize therapy-induced changes in the apparent diffusion coefficient (ADC) of MN treated with proton-therapy (PT), determining whether the pre- and early post-treatment ADC values may predict tumour response. Methods: Forty-four subjects with MN treated with PT were retrospectively enrolled. All patients underwent conventional magnetic resonance imaging (MRI) including diffusion-weighted imaging (DWI) at baseline and each 3 months for a follow-up period up to 36 months after the beginning of PT. Mean relative ADC (rADCm) values of 46 MN were measured at each exam. The volume variation percentage (VV) for each MN was calculated. The Wilcoxon test was used to assess the differences in rADCm values between pre-treatment and post-treatment exams. Patients were grouped in terms of VV (threshold −20%). A p < 0.05 was considered statistically significant for all the tests. Results: A significant progressive increase of rADCm values was detected at each time point when compared to baseline rADCm (p < 0.05). Subjects that showed higher pre-treatment rADCm values had no significant volume changes or showed volume increase, while subjects that showed a VV < −20% had significantly lower pre-treatment rADCm values. Higher and earlier rADCm increases (3 months) are related to greater volume reduction. Conclusion: In MN treated with PT, pre-treatment rADCm values and longitudinal rADCm changes may predict treatment response.
Collapse
|
13
|
Cesme DH, Alkan A, Sari L, Kaya A, Yurtsever I, Alkan G, Seyithanoglu MH, Hatiboglu MA. The Effectiveness of Diffusion Tensor Imaging in Determining Radiological Response after Radiosurgery in Patients with Vestibular Schwannoma. Curr Med Imaging 2021; 17:602-607. [PMID: 33504315 DOI: 10.2174/1573405617666210127160848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effectiveness of Diffusion Tensor Imaging (DTI) in demonstrating functional changes in the tumor in determining the response to treatment after radiosurgery in patients with vestibular schwannoma (VS) is not clear yet. OBJECTIVE The study aimed to determine the change in total tumor volume (TTV) in terms of radiological response in patients who had VS and were treated with radiosurgery and investigated the relationship between the TTV, follow-up times and DTI parameters. METHODS Thirty-one patients were assessed using DTI and MRI. TTV, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated. Patients were divided into three groups: those who responded to the treatment (group 1) (n=11), those who did not (group 0) (n=9) and those who remained stable (group 2) (n=11). RESULTS The mean duration of follow-up was 28.81±14 months. ADC values increased in patients with VS after radiosurgery (p=0.004). There was no statistical difference in the FA values. A significant reduction in TTV after radiosurgery was detected in group 1 (p=0.003). ADC values increased significantly after radiosurgery in group 2 (p=0.04). Although there were no significant differences, ADC values after radiosurgery increased in group 1 and group 0. CONCLUSIONS ADC values continuously increase due to radiation damage in the period before the tumor volume shrinks after radiosurgery. We think that it is not appropriate to diagnose inadequate treatment or progression only when TTV is evaluated in terms of response to treatment in the early period after radiosurgery.
Collapse
Affiliation(s)
- Dilek Hacer Cesme
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Lutfullah Sari
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ahmet Kaya
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ismail Yurtsever
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Gokberk Alkan
- Department of Otorhinolaryngology Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, Turkey
| | | | - Mustafa Aziz Hatiboglu
- Department of Neurosurgery, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
14
|
Cesme DH, Alkan A, Gultekin MA, Sari L, Alkan G, Seyithanoglu MH, Hatiboglu MA. Evaluation of Brainstem Subcortical Auditory Pathways with Diffusion Tensor Imaging After Gamma Knife Radiosurgery in Intracanalicular Vestibular Schwannoma. Medeni Med J 2021; 36:7-13. [PMID: 33828884 PMCID: PMC8020186 DOI: 10.5222/mmj.2021.15564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/04/2021] [Indexed: 12/05/2022] Open
Abstract
Objective To investigate changes in DTI (Diffusion Tensor Imaging) parameters in brainstem subcortical auditory pathways after Gamma Knife Radiosurgery (GKR) in patients with intracanalicular vestibular schwannoma (ICVS) and to analyze the relationship between tumor volume and ADC (apparent diffusion coefficient) and FA (fractional anisotropy) values. Method Seventeen patients with ICVS were evaluated before and after GKR. ADC and FA values of the lateral lemniscus (LL) and inferior colliculus (IC) and tumor volume were calculated. Patients who responded to GKR were classified as Group 1 and those who did not respond adequately as Group 2. The relationship between ADC and FA values and changes in tumor volume were analyzed. Results Tumor volume significantly decreased after GKR. ADC values obtained from the tumor increased after GKR (p:0.002). There was no significant difference in LL and IC before and after GKR in terms of FA and ADC values (n:17). There was a positive correlation between response to treatment and contralateral LL ADC values after GKR (p=0.005, r:0.652). There was a negative correlation between contralateral IC FA values after GKR and response to treatment (p=0.017, r: -0.568). There was a significant difference between Groups 1 and 2 in regards to contralateral LL ADC (p=0.03) and IC FA values (p=0.017). Conclusion Since the cochlear nerve and subcortical auditory pathways have low regeneration potential after nerve damage, ADC and FA changes in LL and IC may be explained with the presence of intracanalicular tumors prior to GKR. Since GKR does not cause additional damage to the subcortical auditory pathways at the brainstem level, we think that GKR is a noninvasive treatment method that can be used safely in patients with ICVS.
Collapse
Affiliation(s)
- Dilek Hacer Cesme
- Bezmialem Vakif University, Faculty of Medicine, Department of Radiology, Istanbul, Turkey
| | - Alpay Alkan
- Bezmialem Vakif University, Faculty of Medicine, Department of Radiology, Istanbul, Turkey
| | - Mehmet Ali Gultekin
- Bezmialem Vakif University, Faculty of Medicine, Department of Radiology, Istanbul, Turkey
| | - Lutfullah Sari
- Bezmialem Vakif University, Faculty of Medicine, Department of Radiology, Istanbul, Turkey
| | - Gokberk Alkan
- Abdurrahman Yurtaslan Oncology Training and Research Hospital, Department of Otorhinolaryngology, Ankara, Turkey
| | | | - Mustafa Aziz Hatiboglu
- Bezmialem Vakif University, Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| |
Collapse
|
15
|
Pretreatment ADC predicts tumor control after Gamma Knife radiosurgery in solid vestibular schwannomas. Acta Neurochir (Wien) 2021; 163:1013-1019. [PMID: 33532869 DOI: 10.1007/s00701-021-04738-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Radiosurgery is a well-established treatment for vestibular schwannomas (VSs), but it is often difficult to identify which tumors will respond to treatment. We sought to determine whether pretreatment or posttreatment tumor apparent diffusion coefficient (ADC) values could predict tumor control in patients undergoing Gamma Knife radiosurgery (GKRS) and whether these values could differentiate between cases of pseudoprogression and cases of true progression in the early posttreatment period. METHODS We retrospectively identified patients who underwent GKRS for solid VSs between June 2008 and November 2016 and who had a minimum follow-up of 36 months. Pretreatment and posttreatment minimum, mean, and maximum ADC values were measured for the whole tumor volume and were compared between patients with tumor control and those with tumor progression. In patients with early posttreatment tumor enlargement, ADC values were compared between patients with pseudoprogression and those with true progression. RESULTS Of the 44 study patients, 34 (77.3%) demonstrated tumor control at final follow-up. Patients with tumor control had higher pretreatment minimum (1.35 vs 1.09; p = 0.008), mean (1.80 vs 1.45; p = 0.004), and maximum (2.41 vs 1.91; p = 0.011) ADC values than patients with tumor progression. ADC values did not differ between patients with pseudoprogression and those with true progression at early posttreatment follow-up. CONCLUSIONS ADC values may be helpful in predicting response to GKRS in patients with solid VSs but cannot predict which tumors will undergo pseudoprogression. Patients with higher pretreatment ADC values may be more likely to demonstrate posttreatment tumor control.
Collapse
|
16
|
Massaad E, Hamidi N, Goetz J, Padmanaban V, Mau C, Tsang D, de Moraes FY, Chung C, Zacharia BE, Mansouri A. Equivalent Efficacy and Safety of Radiosurgery for Cystic and Solid Vestibular Schwannomas: A Systematic Review. World Neurosurg 2021; 146:322-331.e1. [PMID: 33212274 DOI: 10.1016/j.wneu.2020.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cystic vestibular schwannomas (VS) are associated with unpredictable growth behavior and potentially worse surgical outcomes compared with their solid counterparts. Growth control and potential adverse effects of radiosurgery for cystic VS have created concerns surrounding this modality. We sought to compare the treatment efficacy and safety profile of radiosurgery between cystic and solid VS through a systematic review. METHODS PubMed, EMBASE, Web of Science, and Cochrane were searched for related terms and studies reporting radiosurgical outcomes of cystic and solid VS. A meta-analysis was performed to compare the rates of tumor control. Random-effect models with generic inverse variance method was used to calculate overall pooled estimates. Study quality was assessed with the Newcastle Ottawa Criteria. RESULTS In total, 2989 studies were retrieved, and 6 including 1358 VS (79.89% solid; 20.11% cystic, median follow-up range 31.8-150 months) were selected. The median maximal dose was 25 Gy (range, 13-36 Gy) and the median marginal tumor dose was 12 Gy (10-18 Gy). There was no difference between cystic and solid VS (risk ratio, 1.02; 95% confidence interval 0.94-1.10; P = 0.69; I2 = 78%). Transient enlargement of cystic tumors may be associated with trigeminal or facial neuropathy. CONCLUSIONS The evidence collected by this study suggests that radiosurgery for cystic VS exhibits effective tumor control probabilities similar to solid VS. Consensus definitions and standard criteria are needed in the future to better understand the patterns of tumor growth and response to treatment following radiosurgery for cystic VS, as well as long-term neurological and functional outcomes.
Collapse
Affiliation(s)
- Elie Massaad
- Clinical Investigation Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Nima Hamidi
- Doctor of Osteopathic Medicine Program, Arizona College of Osteopathic Medicine, Glendale, Arizona, USA
| | - Jacalynn Goetz
- Doctor of Osteopathic Medicine Program, Arizona College of Osteopathic Medicine, Glendale, Arizona, USA
| | - Varun Padmanaban
- Penn State Department of Neurosurgery, Hershey, Pennsylvania, USA
| | - Christine Mau
- Penn State Department of Neurosurgery, Hershey, Pennsylvania, USA
| | - Derek Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fabio Y de Moraes
- Department of Oncology, Division of Radiation Oncology Queen's University, Kingston, Ontario, Canada
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Brad E Zacharia
- Penn State Department of Neurosurgery, Hershey, Pennsylvania, USA; Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Alireza Mansouri
- Penn State Department of Neurosurgery, Hershey, Pennsylvania, USA; Penn State Cancer Institute, Hershey, Pennsylvania, USA.
| |
Collapse
|
17
|
Cancer Detection and Quantification of Treatment Response Using Diffusion-Weighted MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Yang HC, Wu CC, Lee CC, Huang HE, Lee WK, Chung WY, Wu HM, Guo WY, Wu YT, Lu CF. Prediction of pseudoprogression and long-term outcome of vestibular schwannoma after Gamma Knife radiosurgery based on preradiosurgical MR radiomics. Radiother Oncol 2020; 155:123-130. [PMID: 33161011 DOI: 10.1016/j.radonc.2020.10.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE Gamma Knife radiosurgery (GKRS) is a safe and effective treatment modality with a long-term tumor control rate over 90% for vestibular schwannoma (VS). However, numerous tumors may undergo a transient pseudoprogression during 6-18 months after GKRS followed by a long-term volume reduction. The aim of this study is to determine whether the radiomics analysis based on preradiosurgical MRI data could predict the pseudoprogression and long-term outcome of VS after GKRS. MATERIALS AND METHODS A longitudinal dataset of patients with VS treated by single GKRS were retrospectively collected. Overall 336 patients with no previous craniotomy for tumor removal and a median of 65-month follow-up period after radiosurgery were finally included in this study. In total 1763 radiomic features were extracted from the multiparameteric MRI data before GKRS followed by the machine-learning classification. RESULTS We constructed a two-level machine-learning model to predict the long-term outcome and the occurrence of transient pseudoprogression after GKRS separately. The prediction of long-term outcome achieved an accuracy of 88.4% based on five radiomic features describing the variation of T2-weighted intensity and inhomogeneity of contrast enhancement in tumor. The prediction of transient pseudoprogression achieved an accuracy of 85.0% based on another five radiomic features associated with the inhomogeneous hypointensity pattern of contrast enhancement and the variation of T2-weighted intensity. CONCLUSION The proposed machine-learning model based on the preradiosurgical MR radiomics provides a potential to predict the pseudoprogression and long-term outcome of VS after GKRS, which can benefit the treatment strategy in clinical practice.
Collapse
Affiliation(s)
- Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chun Wu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taiwan
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Huai-En Huang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Department of Medical Imaging, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Wei-Kai Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Yuh Chung
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiu-Mei Wu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taiwan
| | - Wan-Yuo Guo
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taiwan
| | - Yu-Te Wu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
19
|
Theruvath AJ, Siedek F, Muehe AM, Garcia-Diaz J, Kirchner J, Martin O, Link MP, Spunt S, Pribnow A, Rosenberg J, Herrmann K, Gatidis S, Schäfer JF, Moseley M, Umutlu L, Daldrup-Link HE. Therapy Response Assessment of Pediatric Tumors with Whole-Body Diffusion-weighted MRI and FDG PET/MRI. Radiology 2020; 296:143-151. [PMID: 32368961 PMCID: PMC7325702 DOI: 10.1148/radiol.2020192508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/26/2022]
Abstract
Background Whole-body diffusion-weighted (DW) MRI can help detect cancer with high sensitivity. However, the assessment of therapy response often requires information about tumor metabolism, which is measured with fluorine 18 fluorodeoxyglucose (FDG) PET. Purpose To compare tumor therapy response with whole-body DW MRI and FDG PET/MRI in children and young adults. Materials and Methods In this prospective, nonrandomized multicenter study, 56 children and young adults (31 male and 25 female participants; mean age, 15 years ± 4 [standard deviation]; age range, 6-22 years) with lymphoma or sarcoma underwent 112 simultaneous whole-body DW MRI and FDG PET/MRI between June 2015 and December 2018 before and after induction chemotherapy (ClinicalTrials.gov identifier: NCT01542879). The authors measured minimum tumor apparent diffusion coefficients (ADCs) and maximum standardized uptake value (SUV) of up to six target lesions and assessed therapy response after induction chemotherapy according to the Lugano classification or PET Response Criteria in Solid Tumors. The authors evaluated agreements between whole-body DW MRI- and FDG PET/MRI-based response classifications with Krippendorff α statistics. Differences in minimum ADC and maximum SUV between responders and nonresponders and comparison of timing for discordant and concordant response assessments after induction chemotherapy were evaluated with the Wilcoxon test. Results Good agreement existed between treatment response assessments after induction chemotherapy with whole-body DW MRI and FDG PET/MRI (α = 0.88). Clinical response prediction according to maximum SUV (area under the receiver operating characteristic curve = 100%; 95% confidence interval [CI]: 99%, 100%) and minimum ADC (area under the receiver operating characteristic curve = 98%; 95% CI: 94%, 100%) were similar (P = .37). Sensitivity and specificity were 96% (54 of 56 participants; 95% CI: 86%, 99%) and 100% (56 of 56 participants; 95% CI: 54%, 100%), respectively, for DW MRI and 100% (56 of 56 participants; 95% CI: 93%, 100%) and 100% (56 of 56 participants; 95% CI: 54%, 100%) for FDG PET/MRI. In eight of 56 patients who underwent imaging after induction chemotherapy in the early posttreatment phase, chemotherapy-induced changes in tumor metabolism preceded changes in proton diffusion (P = .002). Conclusion Whole-body diffusion-weighted MRI showed significant agreement with fluorine 18 fluorodeoxyglucose PET/MRI for treatment response assessment in children and young adults. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ashok J. Theruvath
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Florian Siedek
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Anne M. Muehe
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Jordi Garcia-Diaz
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Julian Kirchner
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Ole Martin
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Michael P. Link
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Sheri Spunt
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Allison Pribnow
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Jarrett Rosenberg
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Ken Herrmann
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Sergios Gatidis
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Jürgen F. Schäfer
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Michael Moseley
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Lale Umutlu
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| | - Heike E. Daldrup-Link
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Stanford, CA 94304 (A.J.T., F.S., A.M.M., J.G.D., J.R., M.M., H.E.D.L.); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); Institute of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany (F.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany (J.K., O.M.); Department of Pediatrics, Pediatric Oncology, Lucile Packard Children’s Hospital, Stanford University, Stanford, Calif (M.P.L., S.S., A.P., H.E.D.L.); Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.H.); Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany (S.G., J.F.S.); Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (L.U.)
| |
Collapse
|
20
|
Borghei-Razavi H, Sharma M, Emch T, Krivosheya D, Lee B, Muhsen B, Prayson R, Obuchowski N, Barnett GH, Vogelbaum MA, Chao ST, Suh JH, Mohammadi AM, Angelov L. Pathologic Correlation of Cellular Imaging Using Apparent Diffusion Coefficient Quantification in Patients with Brain Metastases After Gamma Knife Radiosurgery. World Neurosurg 2019; 134:e903-e912. [PMID: 31733389 DOI: 10.1016/j.wneu.2019.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To evaluate the role of apparent diffusion coefficient (ADC) in differentiating radiation necrosis (RN) from recurrent tumor after Gamma Knife radiosurgery (GKRS) for brain metastases (BMs). METHODS Forty-one patients with BM who underwent surgical intervention after GKRS at Cleveland Clinic (2006-2017) were included in this retrospective study. The ADC values of the growing lesions and the contralateral hemisphere were calculated using picture archiving and communication system. These values were correlated to the percentage of RN identified on pathologic evaluation of the surgical specimen. RESULTS The median age of the patients was 59 years (range, 25-86 years), and lung cancer (63.4%) was the most common malignancy. Median initial (pre-GKRS) target volume of the lesions was 5.4 cc (range, 0.135-45.6 cc), and median GKRS dose was 18.0 Gy. Surgical resection or biopsy was performed at a median of 176 days after GKRS. Two variables were statistically significant predictors of predominate RN (75%-100%) in the surgical specimen: 1) ADC of the lesion on the preresection magnetic resonance imaging (MRI) and 2) initial pre-GKRS target volume. ADC >1.5 × 10-3 mm2/s within the lesion on MRI predicted significant RN on pathologic evaluation of the lesion (P < 0.05). Similarly, when the target volume before GKRS was large (>10 cc), the risk of identifying significant necrosis in the pathologic specimen was elevated (P < 0.05). CONCLUSIONS Our data suggest that the combination of lesion ADC on MRI prior to surgical intervention and the initial target volume can predict RN with reasonable accuracy.
Collapse
Affiliation(s)
- Hamid Borghei-Razavi
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhart Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mayur Sharma
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhart Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Todd Emch
- Department of Neuroradiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daria Krivosheya
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhart Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bryan Lee
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhart Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Baha'eddin Muhsen
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhart Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard Prayson
- Department of Neuropathology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nancy Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gene H Barnett
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael A Vogelbaum
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhart Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhart Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhart Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alireza M Mohammadi
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhart Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lilyana Angelov
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA; Rose Ella Burkhart Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
21
|
Comparing Linear and Volumetric Vestibular Schwannoma Measurements Between T1 and T2 Magnetic Resonance Imaging Sequences. Otol Neurotol 2019; 40:S67-S71. [DOI: 10.1097/mao.0000000000002208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
|