1
|
Loizzo SK, Prah MA, Kong MJ, Phung D, Urcuyo JC, Ye J, Attenello FJ, Mendoza J, Zhou Y, Shiroishi MS, Hu LS, Schmainda KM. Multisite Benchmark Study for Standardized Relative CBV in Untreated Brain Metastases Using the DSC-MRI Consensus Acquisition Protocol. AJNR Am J Neuroradiol 2025; 46:529-535. [PMID: 39389776 PMCID: PMC11979803 DOI: 10.3174/ajnr.a8531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND PURPOSE A national consensus recommendation for the collection of DSC-MRI perfusion data, used to create maps of relative CBV (rCBV), has been recently established for primary and metastatic brain tumors. The goal was to reduce intersite variability and improve ease of comparison across time and sites, fostering widespread use of this informative measure. To translate this goal into practice, the prospective collection of consensus DSC-MRI data and characterization of derived rCBV maps in brain metastases is needed. The purpose of this multisite study was to determine rCBV in untreated brain metastases in comparison to glioblastoma (GBM) and normal-appearing brain by using the national consensus protocol. MATERIALS AND METHODS Subjects from 3 sites with untreated enhancing brain metastases underwent DSC-MRI according to a recommended option that uses a midrange flip angle, GRE-EPI acquisition, and the administration of both a preload and second DSC-MRI dose of 0.1 mmol/kg gadolinium-based contrast agent. Quantitative maps of standardized relative CBV (srCBV) were generated and enhancing lesion ROIs determined from postcontrast T1-weighted images alone or calibrated difference maps, termed Δ T1 (dT1) maps. Mean srCBV for metastases were compared with normal-appearing white matter (NAWM) and GBM from a previous study. Comparisons were performed by using either the Wilcoxon signed-rank test for paired comparisons or the Mann-Whitney U nonparametric test for unpaired comparisons. RESULTS Forty-nine patients with a primary histology of lung (n = 25), breast (n = 6), squamous cell carcinoma (n = 1), melanoma (n = 5), gastrointestinal (GI) (n = 3), and genitourinary (GU) (n = 9) were included in comparison to GBM (n = 31). The mean srCBV of all metastases (1.83±1.05) were significantly lower (P = .0009) than mean srCBV for GBM (2.67 ± 1.34) with both statistically greater (P < .0001) than NAWM (0.68 ± 0.18). Histologically distinct metastases are each statistically greater than NAWM (P < .0001) with lung (P = .0002) and GU (P = .02) srCBV being significantly different from GBM srCBV. CONCLUSIONS Using the consensus DSC-MRI protocol, mean srCBV values were determined for treatment-naïve brain metastases in comparison to normal-appearing white matter and GBM thus setting the benchmark for all subsequent studies adherent to the national consensus recommendation.
Collapse
Affiliation(s)
- Sarah Kohn Loizzo
- From the Department of Radiation Oncology (S.K.L.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Melissa A Prah
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Min J Kong
- Department of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
| | - Daniel Phung
- Department of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Javier C Urcuyo
- Mathematical Neuro-Oncology Lab (J.C.U.), Mayo Clinic Arizona, Scottsdale, Arizona
| | - Jason Ye
- Department of Radiation Oncology (J.Y.), Keck School of Medicine of USC, Los Angeles, California
| | - Frank J Attenello
- Department of Neurological Surgery (F.J.A.), Keck School of Medicine of USC, Los Angeles, California
| | - Jesse Mendoza
- Department of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Yuxiang Zhou
- Department of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
| | - Mark S Shiroishi
- Department of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
- Imaging Genetics Center (M.S.S.), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Marina del Rey, California
- Department of Population and Public Health Sciences (M.S.S.), Keck School of Medicine of USC, Los Angeles, California
| | - Leland S Hu
- Department of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
- Department of Cancer Biology (L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
- Department of Neurological Surgery (L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
| | - Kathleen M Schmainda
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
2
|
Hu LS, Smits M, Kaufmann TJ, Knutsson L, Rapalino O, Galldiks N, Sundgren PC, Cha S. Advanced Imaging in the Diagnosis and Response Assessment of High-Grade Glioma: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2025; 224:e2330612. [PMID: 38477525 DOI: 10.2214/ajr.23.30612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
This AJR Expert Panel Narrative Review explores the current status of advanced MRI and PET techniques for the posttherapeutic response assessment of high-grade adult-type gliomas, focusing on ongoing clinical controversies in current practice. Discussed techniques that complement conventional MRI and aid the differentiation of recurrent tumor from posttreatment effects include DWI and diffusion-tensor imaging; perfusion MRI techniques including dynamic susceptibility contrast (DSC), dynamic contrast-enhanced, and arterial spin labeling MRI; MR spectroscopy (MRS) including assessment of 2-hydroxyglutarate (2HG) concentration; glucose- and amino acid (AA)-based PET; and amide proton transfer imaging. Updated criteria for the Response Assessment in Neuro-Oncology are presented. Given the abundant supporting clinical evidence, the panel supports a recommendation that routine response assessment after high-grade glioma treatment should include perfusion MRI, particularly given the development of a consensus recommended DSC-MRI protocol. Although published studies support 2HG MRS and AA PET, these techniques' widespread adoption will likely require increased availability (for 2HG MRS) or increased insurance funding in the United States (for AA PET). The review concludes with a series of consensus opinions from the author panel, centered on the clinical integration of the advanced imaging techniques into posttreatment surveillance protocols.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ
- Department of Neurological Surgery, Mayo Clinic, Phoenix, AZ
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | | | - Linda Knutsson
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
- Department of Neurology, Johns Hopkins University, Baltimore, MD
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Otto Rapalino
- Department of Radiology, Massachusetts General Hospital, Boston, MA
- Department of Radiology, Harvard Medical School, Boston, MA
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Pia C Sundgren
- Institution of Clinical Sciences Lund/Radiology, Lund University, Lund, Sweden
- Lund Bioimaging Center, Lund University, Lund, Sweden
- Department of Medical Imaging and Function, Skane University Hospital, Lund, Sweden
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, CA
| |
Collapse
|
3
|
Abbad Andaloussi M, Maser R, Hertel F, Lamoline F, Husch AD. Exploring adult glioma through MRI: A review of publicly available datasets to guide efficient image analysis. Neurooncol Adv 2025; 7:vdae197. [PMID: 39877749 PMCID: PMC11773385 DOI: 10.1093/noajnl/vdae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Background Publicly available data are essential for the progress of medical image analysis, in particular for crafting machine learning models. Glioma is the most common group of primary brain tumors, and magnetic resonance imaging (MRI) is a widely used modality in their diagnosis and treatment. However, the availability and quality of public datasets for glioma MRI are not well known. Methods In this review, we searched for public datasets of glioma MRI using Google Dataset Search, The Cancer Imaging Archive, and Synapse. Results A total of 28 datasets published between 2005 and May 2024 were found, containing 62 019 images from 5515 patients. We analyzed the characteristics of these datasets, such as the origin, size, format, annotation, and accessibility. Additionally, we examined the distribution of tumor types, grades, and stages among the datasets. The implications of the evolution of the World Health Organization (WHO) classification on tumors of the brain are discussed, in particular the 2021 update that significantly changed the definition of glioblastoma. Conclusions Potential research questions that could be explored using these datasets were highlighted, such as tumor evolution through malignant transformation, MRI normalization, and tumor segmentation. Interestingly, only 2 datasets among the 28 studied reflect the current WHO classification. This review provides a comprehensive overview of the publicly available datasets for glioma MRI currently at our disposal, providing aid to medical image analysis researchers in their decision-making on efficient dataset choice.
Collapse
Affiliation(s)
- Meryem Abbad Andaloussi
- Faculty of Science, Technology and Medicine, University of Luxembourg, University of Luxembourg, Belvaux, Luxembourg
- Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Raphael Maser
- Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Frank Hertel
- National Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - François Lamoline
- Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Andreas Dominik Husch
- Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
4
|
Bakas S, Vollmuth P, Galldiks N, Booth TC, Aerts HJWL, Bi WL, Wiestler B, Tiwari P, Pati S, Baid U, Calabrese E, Lohmann P, Nowosielski M, Jain R, Colen R, Ismail M, Rasool G, Lupo JM, Akbari H, Tonn JC, Macdonald D, Vogelbaum M, Chang SM, Davatzikos C, Villanueva-Meyer JE, Huang RY. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice. Lancet Oncol 2024; 25:e589-e601. [PMID: 39481415 PMCID: PMC12007431 DOI: 10.1016/s1470-2045(24)00315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.
Collapse
Affiliation(s)
- Spyridon Bakas
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Neurological Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA.
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany; Faculty of Medicine, University of Bonn, Bonn, Germany; Division for Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Hugo J W L Aerts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, Maastricht University, Maastricht, Netherlands
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Pallavi Tiwari
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sarthak Pati
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA
| | - Ujjwal Baid
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA
| | - Evan Calabrese
- Department of Radiology, School of Medicine, Duke University, Durham, NC, USA
| | - Philipp Lohmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rivka Colen
- Department of Radiology, Neuroradiology Division, Center for Artificial Intelligence Innovation in Medical Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marwa Ismail
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Michael Vogelbaum
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, Division of Neuro-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Artificial Intelligence for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Anil A, Stokes AM, Karis JP, Bell LC, Eschbacher J, Jennings K, Prah MA, Hu LS, Boxerman JL, Schmainda KM, Quarles CC. Identification of a Single-Dose, Low-Flip-Angle-Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma. AJNR Am J Neuroradiol 2024; 45:1545-1551. [PMID: 38782593 PMCID: PMC11448978 DOI: 10.3174/ajnr.a8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND PURPOSE DSC-MR imaging can be used to generate fractional tumor burden (FTB) maps via application of relative CBV thresholds to spatially differentiate glioblastoma recurrence from posttreatment radiation effects (PTRE). Image-localized histopathology was previously used to validate FTB maps derived from a reference DSC-MR imaging protocol by using preload, a moderate flip angle (MFA, 60°), and postprocessing leakage correction. Recently, a DSC-MR imaging protocol with a low flip angle (LFA, 30°) with no preload was shown to provide leakage-corrected relative CBV (rCBV) equivalent to the reference protocol. This study aimed to identify the rCBV thresholds for the LFA protocol that generate the most accurate FTB maps, concordant with those obtained from the reference MFA protocol. MATERIALS AND METHODS Fifty-two patients with grade-IV glioblastoma who had prior surgical resection and received chemotherapy and radiation therapy were included in the study. Two sets of DSC-MR imaging data were collected sequentially first by using LFA protocol with no preload, which served as the preload for the subsequent MFA protocol. Standardized relative CBV maps (sRCBV) were obtained for each patient and coregistered with the anatomic postcontrast T1-weighted images. The reference MFA-based FTB maps were computed by using previously published sRCBV thresholds (1.0 and 1.56). A receiver operating characteristics (ROC) analysis was conducted to identify the optimal, voxelwise LFA sRCBV thresholds, and the sensitivity, specificity, and accuracy of the LFA-based FTB maps were computed with respect to the MFA-based reference. RESULTS The mean sRCBV values of tumors across patients exhibited strong agreement (concordance correlation coefficient = 0.99) between the 2 protocols. Using the ROC analysis, the optimal lower LFA threshold that accurately distinguishes PTRE from tumor recurrence was found to be 1.0 (sensitivity: 87.77%; specificity: 90.22%), equivalent to the ground truth. To identify aggressive tumor regions, the ROC analysis identified an upper LFA threshold of 1.37 (sensitivity: 90.87%; specificity: 91.10%) for the reference MFA threshold of 1.56. CONCLUSIONS For LFA-based FTB maps, an sRCBV threshold of 1.0 and 1.37 can differentiate PTRE from recurrent tumors. FTB maps aid in surgical planning, guiding pathologic diagnosis and treatment strategies in the recurrent setting. This study further confirms the reliability of single-dose LFA-based DSC-MR imaging.
Collapse
Affiliation(s)
- Aliya Anil
- From the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ashley M Stokes
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - John P Karis
- Department of Neuroradiology (J.P.K.), Barrow Neurological Institute, Phoenix, Arizona
| | - Laura C Bell
- Clinical Imaging Group (L.C.B.), Genentech Inc., San Francisco, California
| | - Jennifer Eschbacher
- Department of Neuropathology (J.E.), Barrow Neurological Institute, Phoenix, Arizona
| | - Kristofer Jennings
- Department of Biostatistics (K.J.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa A Prah
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Leland S Hu
- Department of Radiology (L.S.H.), Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Jerrold L Boxerman
- Department of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
| | - Kathleen M Schmainda
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - C Chad Quarles
- From the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Noble DJ, Ramaesh R, Brothwell M, Elumalai T, Barrett T, Stillie A, Paterson C, Ajithkumar T. The Evolving Role of Novel Imaging Techniques for Radiotherapy Planning. Clin Oncol (R Coll Radiol) 2024; 36:514-526. [PMID: 38937188 DOI: 10.1016/j.clon.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024]
Abstract
The ability to visualise cancer with imaging has been crucial to the evolution of modern radiotherapy (RT) planning and delivery. And as evolving RT technologies deliver increasingly precise treatment, the importance of accurate identification and delineation of disease assumes ever greater significance. However, innovation in imaging technology has matched that seen with RT delivery platforms, and novel imaging techniques are a focus of much research activity. How these imaging modalities may alter and improve the diagnosis and staging of cancer is an important question, but already well served by the literature. What is less clear is how novel imaging techniques may influence and improve practical and technical aspects of RT planning and delivery. In this review, current gold standard approaches to integration of imaging, and potential future applications of bleeding-edge imaging technology into RT planning pathways are explored.
Collapse
Affiliation(s)
- D J Noble
- Department of Clinical Oncology, Edinburgh Cancer Centre, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.
| | - R Ramaesh
- Department of Radiology, Western General Hospital, Edinburgh, UK
| | - M Brothwell
- Department of Clinical Oncology, University College London Hospitals, London, UK
| | - T Elumalai
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - T Barrett
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - A Stillie
- Department of Clinical Oncology, Edinburgh Cancer Centre, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - C Paterson
- Beatson West of Scotland Cancer Centre, Great Western Road, Glasgow G12 0YN, UK
| | - T Ajithkumar
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
7
|
Basha NK, Ananth C, Muthukumaran K, Sudhamsu G, Mittal V, Gared F. Mask region-based convolutional neural network and VGG-16 inspired brain tumor segmentation. Sci Rep 2024; 14:17615. [PMID: 39080324 PMCID: PMC11289405 DOI: 10.1038/s41598-024-66554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
The process of brain tumour segmentation entails locating the tumour precisely in images. Magnetic Resonance Imaging (MRI) is typically used by doctors to find any brain tumours or tissue abnormalities. With the use of region-based Convolutional Neural Network (R-CNN) masks, Grad-CAM and transfer learning, this work offers an effective method for the detection of brain tumours. Helping doctors make extremely accurate diagnoses is the goal. A transfer learning-based model has been suggested that offers high sensitivity and accuracy scores for brain tumour detection when segmentation is done using R-CNN masks. To train the model, the Inception V3, VGG-16, and ResNet-50 architectures were utilised. The Brain MRI Images for Brain Tumour Detection dataset was utilised to develop this method. This work's performance is evaluated and reported in terms of recall, specificity, sensitivity, accuracy, precision, and F1 score. A thorough analysis has been done comparing the proposed model operating with three distinct architectures: VGG-16, Inception V3, and Resnet-50. Comparing the proposed model, which was influenced by the VGG-16, to related works also revealed its performance. Achieving high sensitivity and accuracy percentages was the main goal. Using this approach, an accuracy and sensitivity of around 99% were obtained, which was much greater than current efforts.
Collapse
Affiliation(s)
- Niha Kamal Basha
- School of Computer Science and Engineering, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Christo Ananth
- Samarkand State University, Samarkand, Uzbekistan
- Samarkand branch, Tashkent State University of Economics, Samarkand, Uzbekistan
| | - K Muthukumaran
- Department of BioMedical Engineering, Dhanalakshmi Srinivasan College of Engineering and Technology, Anna University, Chennai, Tamilnadu, India
| | - Gadug Sudhamsu
- Department of Computer Science and Engineering, School of Engineering and Technology, JAIN University, Bangalore, Karnataka, India
| | - Vikas Mittal
- Department of Electronics and Communication Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | - Fikreselam Gared
- Faculty of Electrical and Computer Engineering, Bahir Dar University, Bahir Dar, Ethiopia.
| |
Collapse
|
8
|
Yamin G, Tranvinh E, Lanzman BA, Tong E, Hashmi SS, Patel CB, Iv M. Arterial Spin-Labeling and DSC Perfusion Metrics Improve Agreement in Neuroradiologists' Clinical Interpretations of Posttreatment High-Grade Glioma Surveillance MR Imaging-An Institutional Experience. AJNR Am J Neuroradiol 2024; 45:453-460. [PMID: 38453410 PMCID: PMC11288557 DOI: 10.3174/ajnr.a8190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/16/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE MR perfusion has shown value in the evaluation of posttreatment high-grade gliomas, but few studies have shown its impact on the consistency and confidence of neuroradiologists' interpretation in routine clinical practice. We evaluated the impact of adding MR perfusion metrics to conventional contrast-enhanced MR imaging in posttreatment high-grade glioma surveillance imaging. MATERIALS AND METHODS This retrospective study included 45 adults with high-grade gliomas who had posttreatment perfusion MR imaging. Four neuroradiologists assigned Brain Tumor Reporting and Data System scores for each examination on the basis of the interpretation of contrast-enhanced MR imaging and then after the addition of arterial spin-labeling-CBF, DSC-relative CBV, and DSC-fractional tumor burden. Interrater agreement and rater agreement with a multidisciplinary consensus group were assessed with κ statistics. Raters used a 5-point Likert scale to report confidence scores. The frequency of clinically meaningful score changes resulting from the addition of each perfusion metric was determined. RESULTS Interrater agreement was moderate for contrast-enhanced MR imaging alone (κ = 0.63) and higher with perfusion metrics (arterial spin-labeling-CBF, κ = 0.67; DSC-relative CBV, κ = 0.66; DSC-fractional tumor burden, κ = 0.70). Agreement between raters and consensus was highest with DSC-fractional tumor burden (κ = 0.66-0.80). Confidence scores were highest with DSC-fractional tumor burden. Across all raters, the addition of perfusion resulted in clinically meaningful interpretation changes in 2%-20% of patients compared with contrast-enhanced MR imaging alone. CONCLUSIONS Adding perfusion to contrast-enhanced MR imaging improved interrater agreement, rater agreement with consensus, and rater confidence in the interpretation of posttreatment high-grade glioma MR imaging, with the highest agreement and confidence scores seen with DSC-fractional tumor burden. Perfusion MR imaging also resulted in interpretation changes that could change therapeutic management in up to 20% of patients.
Collapse
Affiliation(s)
- Ghiam Yamin
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| | - Eric Tranvinh
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| | - Bryan A Lanzman
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| | - Elizabeth Tong
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| | - Syed S Hashmi
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| | - Chirag B Patel
- Department of Neuro-Oncology (C.B.P.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Iv
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| |
Collapse
|
9
|
Tang L, Wu T, Hu R, Gu Q, Yang X, Mao H. Hemodynamic property incorporated brain tumor segmentation by deep learning and density-based analysis of dynamic susceptibility contrast-enhanced magnetic resonance imaging (MRI). Quant Imaging Med Surg 2024; 14:2774-2787. [PMID: 38617153 PMCID: PMC11007532 DOI: 10.21037/qims-23-1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/04/2024] [Indexed: 04/16/2024]
Abstract
Background Magnetic resonance imaging (MRI) is a primary non-invasive imaging modality for tumor segmentation, leveraging its exceptional soft tissue contrast and high resolution. Current segmentation methods typically focus on structural MRI, such as T1-weighted post-contrast-enhanced or fluid-attenuated inversion recovery (FLAIR) sequences. However, these methods overlook the blood perfusion and hemodynamic properties of tumors, readily derived from dynamic susceptibility contrast (DSC) enhanced MRI. This study introduces a novel hybrid method combining density-based analysis of hemodynamic properties in time-dependent perfusion imaging with deep learning spatial segmentation techniques to enhance tumor segmentation. Methods First, a U-Net convolutional neural network (CNN) is employed on structural images to delineate a region of interest (ROI). Subsequently, Hierarchical Density-Based Scans (HDBScan) are employed within the ROI to augment segmentation by exploring intratumoral hemodynamic heterogeneity through the investigation of tumor time course profiles unveiled in DSC MRI. Results The approach was tested and evaluated using a cohort of 513 patients from the open-source University of Pennsylvania glioblastoma database (UPENN-GBM) dataset, achieving a 74.83% Intersection over Union (IoU) score when compared to structural-only segmentation. The algorithm also exhibited increased precision and localized predictions of heightened segmentation boundary complexity, resulting in a 146.92% increase in contour complexity (ICC) compared to the reference standard provided by the UPENN-GBM dataset. Importantly, segmenting tumors with the developed new approach uncovered a negative correlation of the tumor volume with the scores in the Karnofsky Performance Scale (KPS) clinically used for assessing the functional status of patients (-0.309), which is not observed with the prevailing segmentation standard. Conclusions This work demonstrated that including hemodynamic properties of tissues from DSC MRI can improve existing structural or morphological feature-based tumor segmentation techniques with additional information on tumor biology and physiology. This approach can also be applied to other clinical indications that use perfusion MRI for diagnosis or treatment monitoring.
Collapse
Affiliation(s)
- Leonardo Tang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Tianhe Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Quanquan Gu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
10
|
Sollmann N, Zhang H, Kloth C, Zimmer C, Wiestler B, Rosskopf J, Kreiser K, Schmitz B, Beer M, Krieg SM. Modern preoperative imaging and functional mapping in patients with intracranial glioma. ROFO-FORTSCHR RONTG 2023; 195:989-1000. [PMID: 37224867 DOI: 10.1055/a-2083-8717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Magnetic resonance imaging (MRI) in therapy-naïve intracranial glioma is paramount for neuro-oncological diagnostics, and it provides images that are helpful for surgery planning and intraoperative guidance during tumor resection, including assessment of the involvement of functionally eloquent brain structures. This study reviews emerging MRI techniques to depict structural information, diffusion characteristics, perfusion alterations, and metabolism changes for advanced neuro-oncological imaging. In addition, it reflects current methods to map brain function close to a tumor, including functional MRI and navigated transcranial magnetic stimulation with derived function-based tractography of subcortical white matter pathways. We conclude that modern preoperative MRI in neuro-oncology offers a multitude of possibilities tailored to clinical needs, and advancements in scanner technology (e. g., parallel imaging for acceleration of acquisitions) make multi-sequence protocols increasingly feasible. Specifically, advanced MRI using a multi-sequence protocol enables noninvasive, image-based tumor grading and phenotyping in patients with glioma. Furthermore, the add-on use of preoperatively acquired MRI data in combination with functional mapping and tractography facilitates risk stratification and helps to avoid perioperative functional decline by providing individual information about the spatial location of functionally eloquent tissue in relation to the tumor mass. KEY POINTS:: · Advanced preoperative MRI allows for image-based tumor grading and phenotyping in glioma.. · Multi-sequence MRI protocols nowadays make it possible to assess various tumor characteristics (incl. perfusion, diffusion, and metabolism).. · Presurgical MRI in glioma is increasingly combined with functional mapping to identify and enclose individual functional areas.. · Advancements in scanner technology (e. g., parallel imaging) facilitate increasing application of dedicated multi-sequence imaging protocols.. CITATION FORMAT: · Sollmann N, Zhang H, Kloth C et al. Modern preoperative imaging and functional mapping in patients with intracranial glioma. Fortschr Röntgenstr 2023; 195: 989 - 1000.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, United States
| | - Haosu Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Johannes Rosskopf
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Kornelia Kreiser
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Neuroradiology, Universitäts- und Rehabilitationskliniken Ulm, Ulm, Germany
| | - Bernd Schmitz
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| |
Collapse
|
11
|
Yearley AG, Goedmakers CMW, Panahi A, Doucette J, Rana A, Ranganathan K, Smith TR. FDA-approved machine learning algorithms in neuroradiology: A systematic review of the current evidence for approval. Artif Intell Med 2023; 143:102607. [PMID: 37673576 DOI: 10.1016/j.artmed.2023.102607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Over the past decade, machine learning (ML) and artificial intelligence (AI) have become increasingly prevalent in the medical field. In the United States, the Food and Drug Administration (FDA) is responsible for regulating AI algorithms as "medical devices" to ensure patient safety. However, recent work has shown that the FDA approval process may be deficient. In this study, we evaluate the evidence supporting FDA-approved neuroalgorithms, the subset of machine learning algorithms with applications in the central nervous system (CNS), through a systematic review of the primary literature. Articles covering the 53 FDA-approved algorithms with applications in the CNS published in PubMed, EMBASE, Google Scholar and Scopus between database inception and January 25, 2022 were queried. Initial searches identified 1505 studies, of which 92 articles met the criteria for extraction and inclusion. Studies were identified for 26 of the 53 neuroalgorithms, of which 10 algorithms had only a single peer-reviewed publication. Performance metrics were available for 15 algorithms, external validation studies were available for 24 algorithms, and studies exploring the use of algorithms in clinical practice were available for 7 algorithms. Papers studying the clinical utility of these algorithms focused on three domains: workflow efficiency, cost savings, and clinical outcomes. Our analysis suggests that there is a meaningful gap between the FDA approval of machine learning algorithms and their clinical utilization. There appears to be room for process improvement by implementation of the following recommendations: the provision of compelling evidence that algorithms perform as intended, mandating minimum sample sizes, reporting of a predefined set of performance metrics for all algorithms and clinical application of algorithms prior to widespread use. This work will serve as a baseline for future research into the ideal regulatory framework for AI applications worldwide.
Collapse
Affiliation(s)
- Alexander G Yearley
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Caroline M W Goedmakers
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Armon Panahi
- The George Washington University School of Medicine and Health Sciences, 2300 I St NW, Washington, DC 20052, USA
| | - Joanne Doucette
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA 02115, USA
| | - Aakanksha Rana
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Kavitha Ranganathan
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Timothy R Smith
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|
12
|
Berkley A, Saueressig C, Shukla U, Chowdhury I, Munoz-Gauna A, Shehu O, Singh R, Munbodh R. Clinical capability of modern brain tumor segmentation models. Med Phys 2023; 50:4943-4959. [PMID: 36847185 DOI: 10.1002/mp.16321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 03/01/2023] Open
Abstract
PURPOSE State-of-the-art automated segmentation methods achieve exceptionally high performance on the Brain Tumor Segmentation (BraTS) challenge, a dataset of uniformly processed and standardized magnetic resonance generated images (MRIs) of gliomas. However, a reasonable concern is that these models may not fare well on clinical MRIs that do not belong to the specially curated BraTS dataset. Research using the previous generation of deep learning models indicates significant performance loss on cross-institutional predictions. Here, we evaluate the cross-institutional applicability and generalzsability of state-of-the-art deep learning models on new clinical data. METHODS We train a state-of-the-art 3D U-Net model on the conventional BraTS dataset comprising low- and high-grade gliomas. We then evaluate the performance of this model for automatic tumor segmentation of brain tumors on in-house clinical data. This dataset contains MRIs of different tumor types, resolutions, and standardization than those found in the BraTS dataset. Ground truth segmentations to validate the automated segmentation for in-house clinical data were obtained from expert radiation oncologists. RESULTS We report average Dice scores of 0.764, 0.648, and 0.61 for the whole tumor, tumor core, and enhancing tumor, respectively, in the clinical MRIs. These means are higher than numbers reported previously on same institution and cross-institution datasets of different origin using different methods. There is no statistically significant difference when comparing the dice scores to the inter-annotation variability between two expert clinical radiation oncologists. Although performance on the clinical data is lower than on the BraTS data, these numbers indicate that models trained on the BraTS dataset have impressive segmentation performance on previously unseen images obtained at a separate clinical institution. These images differ in the imaging resolutions, standardization pipelines, and tumor types from the BraTS data. CONCLUSIONS State-of-the-art deep learning models demonstrate promising performance on cross-institutional predictions. They considerably improve on previous models and can transfer knowledge to new types of brain tumors without additional modeling.
Collapse
Affiliation(s)
- Adam Berkley
- Department of Computer Science, Brown University, Providence, Rhode Island, USA
| | - Camillo Saueressig
- Department of Computer Science, Brown University, Providence, Rhode Island, USA
| | - Utkarsh Shukla
- Department of Radiation Oncology, Rhode Island Hospital, Providence, Rhode Island, USA
- The Department of Radiation Oncology at Tufts Medical Center, Boston, Massachusetts, USA
- Department of Radiation Oncology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Imran Chowdhury
- Department of Radiation Oncology, Rhode Island Hospital, Providence, Rhode Island, USA
- The Department of Radiation Oncology at Tufts Medical Center, Boston, Massachusetts, USA
- Department of Radiation Oncology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Anthony Munoz-Gauna
- Department of Radiation Oncology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Olalekan Shehu
- Department of Physics, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Reshma Munbodh
- Department of Radiation Oncology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
13
|
Hirschler L, Sollmann N, Schmitz‐Abecassis B, Pinto J, Arzanforoosh F, Barkhof F, Booth T, Calvo‐Imirizaldu M, Cassia G, Chmelik M, Clement P, Ercan E, Fernández‐Seara MA, Furtner J, Fuster‐Garcia E, Grech‐Sollars M, Guven NT, Hatay GH, Karami G, Keil VC, Kim M, Koekkoek JAF, Kukran S, Mancini L, Nechifor RE, Özcan A, Ozturk‐Isik E, Piskin S, Schmainda K, Svensson SF, Tseng C, Unnikrishnan S, Vos F, Warnert E, Zhao MY, Jancalek R, Nunes T, Emblem KE, Smits M, Petr J, Hangel G. Advanced MR Techniques for Preoperative Glioma Characterization: Part 1. J Magn Reson Imaging 2023; 57:1655-1675. [PMID: 36866773 PMCID: PMC10946498 DOI: 10.1002/jmri.28662] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.
Collapse
Affiliation(s)
- Lydiane Hirschler
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Nico Sollmann
- Department of Diagnostic and Interventional RadiologyUniversity Hospital UlmUlmGermany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Bárbara Schmitz‐Abecassis
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Medical Delta FoundationDelftThe Netherlands
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | | | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Thomas Booth
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of NeuroradiologyKing's College Hospital NHS Foundation TrustLondonUK
| | | | | | - Marek Chmelik
- Department of Technical Disciplines in Medicine, Faculty of Health CareUniversity of PrešovPrešovSlovakia
| | - Patricia Clement
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Medical ImagingGhent University HospitalGhentBelgium
| | - Ece Ercan
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Maria A. Fernández‐Seara
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Instituto de Investigación Sanitaria de NavarraPamplonaSpain
| | - Julia Furtner
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Research Center of Medical Image Analysis and Artificial IntelligenceDanube Private UniversityKrems an der DonauAustria
| | - Elies Fuster‐Garcia
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y ComunicacionesUniversitat Politècnica de ValènciaValenciaSpain
| | - Matthew Grech‐Sollars
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Nazmiye Tugay Guven
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Gokce Hale Hatay
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Golestan Karami
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Vera C. Keil
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdamThe Netherlands
| | - Mina Kim
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of NeuroinflammationUniversity College LondonLondonUK
| | - Johan A. F. Koekkoek
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Department of NeurologyHaaglanden Medical CenterThe HagueThe Netherlands
| | - Simran Kukran
- Department of BioengineeringImperial College LondonLondonUK
- Department of Radiotherapy and ImagingInstitute of Cancer ResearchLondonUK
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Brain Repair and Rehabilitation, Institute of NeurologyUniversity College LondonLondonUK
| | - Ruben Emanuel Nechifor
- Department of Clinical Psychology and PsychotherapyInternational Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Babes‐Bolyai UniversityCluj‐NapocaRomania
| | - Alpay Özcan
- Electrical and Electronics Engineering DepartmentBogazici University IstanbulIstanbulTurkey
| | - Esin Ozturk‐Isik
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Senol Piskin
- Department of Mechanical Engineering, Faculty of Natural Sciences and EngineeringIstinye University IstanbulIstanbulTurkey
| | - Kathleen Schmainda
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Siri F. Svensson
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
- Department of PhysicsUniversity of OsloOsloNorway
| | - Chih‐Hsien Tseng
- Medical Delta FoundationDelftThe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Saritha Unnikrishnan
- Faculty of Engineering and DesignAtlantic Technological University (ATU) SligoSligoIreland
- Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), ATU SligoSligoIreland
| | - Frans Vos
- Medical Delta FoundationDelftThe Netherlands
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Esther Warnert
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
| | - Radim Jancalek
- Department of NeurosurgerySt. Anne's University Hospital, BrnoBrnoCzech Republic
- Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
| | - Teresa Nunes
- Department of NeuroradiologyHospital Garcia de OrtaAlmadaPortugal
| | - Kyrre E. Emblem
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
| | - Marion Smits
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
- Brain Tumour CentreErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Gilbert Hangel
- Department of NeurosurgeryMedical University of ViennaViennaAustria
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for MR Imaging BiomarkersViennaAustria
- Medical Imaging ClusterMedical University of ViennaViennaAustria
| |
Collapse
|
14
|
Starck L, Skeie BS, Bartsch H, Grüner R. Arterial input functions in dynamic susceptibility contrast MRI (DSC-MRI) in longitudinal evaluation of brain metastases. Acta Radiol 2023; 64:1166-1174. [PMID: 35786055 DOI: 10.1177/02841851221109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) could be helpful to separate true disease progression from pseudo-progression in brain metastases when assessing the need for retreatment. However, the selection of arterial input functions (AIFs) is not standardized for analysis, limiting its use for this application. PURPOSE To compare population-based AIFs, AIFs specific to each patient, and AIFs specific to every visit in the longitudinal follow-up of brain metastases. MATERIAL AND METHODS Longitudinal data were collected from eight patients before treatment (6 of 8 patients) and after treatment (6-17 visits). Imaging was performed using a 1.5-T MRI system. Lesions were segmented by subtracting precontrast images from postcontrast images. Cerebral blood volume (rCBV) and cerebral blood flow (rCBF) were computed, and Pearson's product moment correlation coefficients were calculated to evaluate similarity of DSC parameters dependent on various AIF choices across time. AIF shape characteristics were compared. Parameter differences between white matter (WM) and gray matter (GM) were obtained to determine which AIF choice maximizes tissue differentiation. RESULTS Although DSC parameters follow similar patterns in time, the various AIF selections cause large parameter variations with relative standard deviations of up to ±60%. AIFs sampled in one patient across sessions more similar in shape than AIFs sampled across patients. Estimates of rCBV based on scan-specific AIFs differentiated better between perfusion in WM and GM than patient-specific or population-based AIFs (P ≤ 0.02). CONCLUSION Results indicate that scan-specific AIFs are the best choice for DSC-MRI parameter estimations in the longitudinal follow-up of brain metastases.
Collapse
Affiliation(s)
- Lea Starck
- Department of Physics and Technology, 1658University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Bente Sandvei Skeie
- Department of Neurosurgery, 60498Haukeland University Hospital, Bergen, Norway
| | - Hauke Bartsch
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
- Department of Radiology, 60498Haukeland University Hospital, Bergen, Norway
| | - Renate Grüner
- Department of Physics and Technology, 1658University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
- Department of Radiology, 60498Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
15
|
Martucci M, Russo R, Schimperna F, D’Apolito G, Panfili M, Grimaldi A, Perna A, Ferranti AM, Varcasia G, Giordano C, Gaudino S. Magnetic Resonance Imaging of Primary Adult Brain Tumors: State of the Art and Future Perspectives. Biomedicines 2023; 11:364. [PMID: 36830900 PMCID: PMC9953338 DOI: 10.3390/biomedicines11020364] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
MRI is undoubtedly the cornerstone of brain tumor imaging, playing a key role in all phases of patient management, starting from diagnosis, through therapy planning, to treatment response and/or recurrence assessment. Currently, neuroimaging can describe morphologic and non-morphologic (functional, hemodynamic, metabolic, cellular, microstructural, and sometimes even genetic) characteristics of brain tumors, greatly contributing to diagnosis and follow-up. Knowing the technical aspects, strength and limits of each MR technique is crucial to correctly interpret MR brain studies and to address clinicians to the best treatment strategy. This article aimed to provide an overview of neuroimaging in the assessment of adult primary brain tumors. We started from the basilar role of conventional/morphological MR sequences, then analyzed, one by one, the non-morphological techniques, and finally highlighted future perspectives, such as radiomics and artificial intelligence.
Collapse
Affiliation(s)
- Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Rosellina Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | | | - Gabriella D’Apolito
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco Panfili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessandro Grimaldi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandro Perna
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Giuseppe Varcasia
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
16
|
Anil A, Stokes AM, Chao R, Hu LS, Alhilali L, Karis JP, Bell LC, Quarles CC. Identification of single-dose, dual-echo based CBV threshold for fractional tumor burden mapping in recurrent glioblastoma. Front Oncol 2023; 13:1046629. [PMID: 36733305 PMCID: PMC9887158 DOI: 10.3389/fonc.2023.1046629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Background Relative cerebral blood volume (rCBV) obtained from dynamic susceptibility contrast (DSC) MRI is widely used to distinguish high grade glioma recurrence from post treatment radiation effects (PTRE). Application of rCBV thresholds yield maps to distinguish between regional tumor burden and PTRE, a biomarker termed the fractional tumor burden (FTB). FTB is generally measured using conventional double-dose, single-echo DSC-MRI protocols; recently, a single-dose, dual-echo DSC-MRI protocol was clinically validated by direct comparison to the conventional double-dose, single-echo protocol. As the single-dose, dual-echo acquisition enables reduction in the contrast agent dose and provides greater pulse sequence parameter flexibility, there is a compelling need to establish dual-echo DSC-MRI based FTB mapping. In this study, we determine the optimum standardized rCBV threshold for the single-dose, dual-echo protocol to generate FTB maps that best match those derived from the reference standard, double-dose, single-echo protocol. Methods The study consisted of 23 high grade glioma patients undergoing perfusion scans to confirm suspected tumor recurrence. We sequentially acquired single dose, dual-echo and double dose, single-echo DSC-MRI data. For both protocols, we generated leakage-corrected standardized rCBV maps. Standardized rCBV (sRCBV) thresholds of 1.0 and 1.75 were used to compute single-echo FTB maps as the reference for delineating PTRE (sRCBV < 1.0), tumor with moderate angiogenesis (1.0 < sRCBV < 1.75), and tumor with high angiogenesis (sRCBV > 1.75) regions. To assess the sRCBV agreement between acquisition protocols, the concordance correlation coefficient (CCC) was computed between the mean tumor sRCBV values across the patients. A receiver operating characteristics (ROC) analysis was performed to determine the optimum dual-echo sRCBV threshold. The sensitivity, specificity, and accuracy were compared between the obtained optimized threshold (1.64) and the standard reference threshold (1.75) for the dual-echo sRCBV threshold. Results The mean tumor sRCBV values across the patients showed a strong correlation (CCC = 0.96) between the two protocols. The ROC analysis showed maximum accuracy at thresholds of 1.0 (delineate PTRE from tumor) and 1.64 (differentiate aggressive tumors). The reference threshold (1.75) and the obtained optimized threshold (1.64) yielded similar accuracy, with slight differences in sensitivity and specificity which were not statistically significant (1.75 threshold: Sensitivity = 81.94%; Specificity: 87.23%; Accuracy: 84.58% and 1.64 threshold: Sensitivity = 84.48%; Specificity: 84.97%; Accuracy: 84.73%). Conclusions The optimal sRCBV threshold for single-dose, dual-echo protocol was found to be 1.0 and 1.64 for distinguishing tumor recurrence from PTRE; however, minimal differences were observed when using the standard threshold (1.75) as the upper threshold, suggesting that the standard threshold could be used for both protocols. While the prior study validated the agreement of the mean sRCBV values between the protocols, this study confirmed that their voxel-wise agreement is suitable for reliable FTB mapping. Dual-echo DSC-MRI acquisitions enable robust single-dose sRCBV and FTB mapping, provide pulse sequence parameter flexibility and should improve reproducibility by mitigating variations in preload dose and incubation time.
Collapse
Affiliation(s)
- Aliya Anil
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neuroimaging Institute, Phoenix, AZ, United States
| | - Ashley M. Stokes
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neuroimaging Institute, Phoenix, AZ, United States
| | - Renee Chao
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neuroimaging Institute, Phoenix, AZ, United States
| | - Leland S. Hu
- Department of Radiology, Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Lea Alhilali
- Neuroradiology, Southwest Neuroimaging at Barrow Neurological Institute, Phoenix, AZ, United States
| | - John P. Karis
- Neuroradiology, Southwest Neuroimaging at Barrow Neurological Institute, Phoenix, AZ, United States
| | - Laura C. Bell
- Early Clinical Development, Genentech, San Francisco, CA, United States
| | - C. Chad Quarles
- Cancer System Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,*Correspondence: C. Chad Quarles,
| |
Collapse
|
17
|
Li AY, Iv M. Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging. FRONTIERS IN RADIOLOGY 2022; 2:883293. [PMID: 37492665 PMCID: PMC10365131 DOI: 10.3389/fradi.2022.883293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 07/27/2023]
Abstract
Despite decades of advancement in the diagnosis and therapy of gliomas, the most malignant primary brain tumors, the overall survival rate is still dismal, and their post-treatment imaging appearance remains very challenging to interpret. Since the limitations of conventional magnetic resonance imaging (MRI) in the distinction between recurrence and treatment effect have been recognized, a variety of advanced MR and functional imaging techniques including diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), MR spectroscopy (MRS), as well as a variety of radiotracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) have been investigated for this indication along with voxel-based and more quantitative analytical methods in recent years. Machine learning and radiomics approaches in recent years have shown promise in distinguishing between recurrence and treatment effect as well as improving prognostication in a malignancy with a very short life expectancy. This review provides a comprehensive overview of the conventional and advanced imaging techniques with the potential to differentiate recurrence from treatment effect and includes updates in the state-of-the-art in advanced imaging with a brief overview of emerging experimental techniques. A series of representative cases are provided to illustrate the synthesis of conventional and advanced imaging with the clinical context which informs the radiologic evaluation of gliomas in the post-treatment setting.
Collapse
Affiliation(s)
- Anna Y. Li
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Iv
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
18
|
Ota Y, Liao E, Capizzano AA, Baba A, Kurokawa R, Kurokawa M, Srinivasan A. Intracranial paragangliomas versus schwannomas: Role of dynamic susceptibility contrast perfusion and diffusion MRI. J Neuroimaging 2022; 32:875-883. [PMID: 35562184 PMCID: PMC9546409 DOI: 10.1111/jon.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/09/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Differentiating paragangliomas from schwannomas and distinguishing sporadic from neurofibromatosis type 2 (NF 2)-related schwannomas is challenging but clinically important. This study aimed to assess the utility of dynamic susceptibility contrast perfusion MRI (DSC-MRI) and diffusion-weighted imaging (DWI) in discriminating infratentorial extra-axial schwannomas from paragangliomas and NF2-related schwannomas. METHODS This retrospective study included 41 patients diagnosed with paragangliomas, sporadic schwannomas, and NF2-related schwannomas in the infratentorial extra-axial space between April 2013 and August 2021. All cases had pretreatment DSC-MRI and DWI. Normalized mean apparent diffusion coefficient (nADCmean), normalized relative cerebral blood volume (nrCBV), and normalized relative cerebral blood flow (nrCBF) were compared between paragangliomas and schwannomas and between sporadic and NF2-related schwannomas as appropriate. RESULTS nrCBV and nrCBF were significantly higher in paragangliomas than in sporadic/NF2-related schwannomas (nrCBV: median 11.5 vs. 1.14/3.74; p < .001 and .004, nrCBF: median 7.43 vs. 1.13/2.85; p < .001 and .007, respectively), while nADCmean were not. The corresponding diagnostic performances were area under the curves (AUCs) of .99/.92 and 1.0/.90 with cutoffs of 2.56/4.22 and 1.94/3.36, respectively. nADCmean were lower, and nrCBV and nrCBF were higher in NF2-related than in sporadic schwannomas (nADCmean: median 1.23 vs. 1.58, nrCBV: median 3.74 vs. 1.14, nrCBF: median 2.85 vs. 1.13; all p < .001), and the corresponding diagnostic performances were AUCs of .93, .91, and .95 with cutoffs of 1.37, 2.63, and 2.48, respectively. CONCLUSIONS DSC-MRI and DWI both can aid in differentiating paragangliomas from schwannomas and sporadic from NF2-related schwannomas.
Collapse
Affiliation(s)
- Yoshiaki Ota
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric Liao
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Aristides A Capizzano
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Akira Baba
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ryo Kurokawa
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mariko Kurokawa
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashok Srinivasan
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Malik DG, Rath TJ, Urcuyo Acevedo JC, Canoll PD, Swanson KR, Boxerman JL, Quarles CC, Schmainda KM, Burns TC, Hu LS. Advanced MRI Protocols to Discriminate Glioma From Treatment Effects: State of the Art and Future Directions. FRONTIERS IN RADIOLOGY 2022; 2:809373. [PMID: 37492687 PMCID: PMC10365126 DOI: 10.3389/fradi.2022.809373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 07/27/2023]
Abstract
In the follow-up treatment of high-grade gliomas (HGGs), differentiating true tumor progression from treatment-related effects, such as pseudoprogression and radiation necrosis, presents an ongoing clinical challenge. Conventional MRI with and without intravenous contrast serves as the clinical benchmark for the posttreatment surveillance imaging of HGG. However, many advanced imaging techniques have shown promise in helping better delineate the findings in indeterminate scenarios, as posttreatment effects can often mimic true tumor progression on conventional imaging. These challenges are further confounded by the histologic admixture that can commonly occur between tumor growth and treatment-related effects within the posttreatment bed. This review discusses the current practices in the surveillance imaging of HGG and the role of advanced imaging techniques, including perfusion MRI and metabolic MRI.
Collapse
Affiliation(s)
- Dania G. Malik
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
| | - Tanya J. Rath
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
| | - Javier C. Urcuyo Acevedo
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| | - Peter D. Canoll
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Kristin R. Swanson
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| | - Jerrold L. Boxerman
- Department of Diagnostic Imaging, Brown University, Providence, RI, United States
| | - C. Chad Quarles
- Department of Neuroimaging Research & Barrow Neuroimaging Innovation Center, Barrow Neurologic Institute, Phoenix, AZ, United States
| | - Kathleen M. Schmainda
- Department of Biophysics & Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Terry C. Burns
- Departments of Neurologic Surgery and Neuroscience, Mayo Clinic, Rochester, MN, United States
| | - Leland S. Hu
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
20
|
Henriksen OM, del Mar Álvarez-Torres M, Figueiredo P, Hangel G, Keil VC, Nechifor RE, Riemer F, Schmainda KM, Warnert EAH, Wiegers EC, Booth TC. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques. Front Oncol 2022; 12:810263. [PMID: 35359414 PMCID: PMC8961422 DOI: 10.3389/fonc.2022.810263] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Objective Summarize evidence for use of advanced MRI techniques as monitoring biomarkers in the clinic, and highlight the latest bench-to-bedside developments. Methods Experts in advanced MRI techniques applied to high-grade glioma treatment response assessment convened through a European framework. Current evidence regarding the potential for monitoring biomarkers in adult high-grade glioma is reviewed, and individual modalities of perfusion, permeability, and microstructure imaging are discussed (in Part 1 of two). In Part 2, we discuss modalities related to metabolism and/or chemical composition, appraise the clinic readiness of the individual modalities, and consider post-processing methodologies involving the combination of MRI approaches (multiparametric imaging) or machine learning (radiomics). Results High-grade glioma vasculature exhibits increased perfusion, blood volume, and permeability compared with normal brain tissue. Measures of cerebral blood volume derived from dynamic susceptibility contrast-enhanced MRI have consistently provided information about brain tumor growth and response to treatment; it is the most clinically validated advanced technique. Clinical studies have proven the potential of dynamic contrast-enhanced MRI for distinguishing post-treatment related effects from recurrence, but the optimal acquisition protocol, mode of analysis, parameter of highest diagnostic value, and optimal cut-off points remain to be established. Arterial spin labeling techniques do not require the injection of a contrast agent, and repeated measurements of cerebral blood flow can be performed. The absence of potential gadolinium deposition effects allows widespread use in pediatric patients and those with impaired renal function. More data are necessary to establish clinical validity as monitoring biomarkers. Diffusion-weighted imaging, apparent diffusion coefficient analysis, diffusion tensor or kurtosis imaging, intravoxel incoherent motion, and other microstructural modeling approaches also allow treatment response assessment; more robust data are required to validate these alone or when applied to post-processing methodologies. Conclusion Considerable progress has been made in the development of these monitoring biomarkers. Many techniques are in their infancy, whereas others have generated a larger body of evidence for clinical application.
Collapse
Affiliation(s)
- Otto M. Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Patricia Figueiredo
- Department of Bioengineering and Institute for Systems and Robotics-Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gilbert Hangel
- Department of Neurosurgery, Medical University, Vienna, Austria
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University, Vienna, Austria
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Ruben E. Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Evita C. Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas C. Booth
-
School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, King’s College London, London, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
21
|
Stokes AM, Bergamino M, Alhilali L, Hu LS, Karis JP, Baxter LC, Bell LC, Quarles CC. Evaluation of single bolus, dual-echo dynamic susceptibility contrast MRI protocols in brain tumor patients. J Cereb Blood Flow Metab 2021; 41:3378-3390. [PMID: 34415211 PMCID: PMC8669280 DOI: 10.1177/0271678x211039597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Relative cerebral blood volume (rCBV) obtained from dynamic susceptibility contrast (DSC) MRI is adversely impacted by contrast agent leakage in brain tumors. Using simulations, we previously demonstrated that multi-echo DSC-MRI protocols provide improvements in contrast agent dosing, pulse sequence flexibility, and rCBV accuracy. The purpose of this study is to assess the in-vivo performance of dual-echo acquisitions in patients with brain tumors (n = 59). To verify pulse sequence flexibility, four single-dose dual-echo acquisitions were tested with variations in contrast agent dose, flip angle, and repetition time, and the resulting dual-echo rCBV was compared to standard single-echo rCBV obtained with preload (double-dose). Dual-echo rCBV was comparable to standard double-dose single-echo protocols (mean (standard deviation) tumor rCBV 2.17 (1.28) vs. 2.06 (1.20), respectively). High rCBV similarity was observed (CCC = 0.96), which was maintained across both flip angle (CCC = 0.98) and repetition time (CCC = 0.96) permutations, demonstrating that dual-echo acquisitions provide flexibility in acquisition parameters. Furthermore, a single dual-echo acquisition was shown to enable quantification of both perfusion and permeability metrics. In conclusion, single-dose dual-echo acquisitions provide similar rCBV to standard double-dose single-echo acquisitions, suggesting contrast agent dose can be reduced while providing significant pulse sequence flexibility and complementary tumor perfusion and permeability metrics.
Collapse
Affiliation(s)
- Ashley M Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Maurizio Bergamino
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Lea Alhilali
- Neuroradiology, Southwest Neuroimaging at Barrow Neurological Institute, Phoenix, AZ, USA
| | - Leland S Hu
- Department of Radiology, Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - John P Karis
- Neuroradiology, Southwest Neuroimaging at Barrow Neurological Institute, Phoenix, AZ, USA
| | - Leslie C Baxter
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA.,Department of Radiology, Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Laura C Bell
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - C Chad Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
22
|
Hormuth DA, Phillips CM, Wu C, Lima EABF, Lorenzo G, Jha PK, Jarrett AM, Oden JT, Yankeelov TE. Biologically-Based Mathematical Modeling of Tumor Vasculature and Angiogenesis via Time-Resolved Imaging Data. Cancers (Basel) 2021; 13:3008. [PMID: 34208448 PMCID: PMC8234316 DOI: 10.3390/cancers13123008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 01/03/2023] Open
Abstract
Tumor-associated vasculature is responsible for the delivery of nutrients, removal of waste, and allowing growth beyond 2-3 mm3. Additionally, the vascular network, which is changing in both space and time, fundamentally influences tumor response to both systemic and radiation therapy. Thus, a robust understanding of vascular dynamics is necessary to accurately predict tumor growth, as well as establish optimal treatment protocols to achieve optimal tumor control. Such a goal requires the intimate integration of both theory and experiment. Quantitative and time-resolved imaging methods have emerged as technologies able to visualize and characterize tumor vascular properties before and during therapy at the tissue and cell scale. Parallel to, but separate from those developments, mathematical modeling techniques have been developed to enable in silico investigations into theoretical tumor and vascular dynamics. In particular, recent efforts have sought to integrate both theory and experiment to enable data-driven mathematical modeling. Such mathematical models are calibrated by data obtained from individual tumor-vascular systems to predict future vascular growth, delivery of systemic agents, and response to radiotherapy. In this review, we discuss experimental techniques for visualizing and quantifying vascular dynamics including magnetic resonance imaging, microfluidic devices, and confocal microscopy. We then focus on the integration of these experimental measures with biologically based mathematical models to generate testable predictions.
Collapse
Affiliation(s)
- David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Caleb M. Phillips
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78758, USA
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Prashant K. Jha
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
| | - Angela M. Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
| | - J. Tinsley Oden
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Arzanforoosh F, Croal PL, van Garderen KA, Smits M, Chappell MA, Warnert EAH. Effect of Applying Leakage Correction on rCBV Measurement Derived From DSC-MRI in Enhancing and Nonenhancing Glioma. Front Oncol 2021; 11:648528. [PMID: 33869047 PMCID: PMC8044812 DOI: 10.3389/fonc.2021.648528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose Relative cerebral blood volume (rCBV) is the most widely used parameter derived from DSC perfusion MR imaging for predicting brain tumor aggressiveness. However, accurate rCBV estimation is challenging in enhancing glioma, because of contrast agent extravasation through a disrupted blood-brain barrier (BBB), and even for nonenhancing glioma with an intact BBB, due to an elevated steady-state contrast agent concentration in the vasculature after first passage. In this study a thorough investigation of the effects of two different leakage correction algorithms on rCBV estimation for enhancing and nonenhancing tumors was conducted. Methods Two datasets were used retrospectively in this study: 1. A publicly available TCIA dataset (49 patients with 35 enhancing and 14 nonenhancing glioma); 2. A dataset acquired clinically at Erasmus MC (EMC, Rotterdam, NL) (47 patients with 20 enhancing and 27 nonenhancing glial brain lesions). The leakage correction algorithms investigated in this study were: a unidirectional model-based algorithm with flux of contrast agent from the intra- to the extravascular extracellular space (EES); and a bidirectional model-based algorithm additionally including flow from EES to the intravascular space. Results In enhancing glioma, the estimated average contrast-enhanced tumor rCBV significantly (Bonferroni corrected Wilcoxon Signed Rank Test, p < 0.05) decreased across the patients when applying unidirectional and bidirectional correction: 4.00 ± 2.11 (uncorrected), 3.19 ± 1.65 (unidirectional), and 2.91 ± 1.55 (bidirectional) in TCIA dataset and 2.51 ± 1.3 (uncorrected), 1.72 ± 0.84 (unidirectional), and 1.59 ± 0.9 (bidirectional) in EMC dataset. In nonenhancing glioma, a significant but smaller difference in observed rCBV was found after application of both correction methods used in this study: 1.42 ± 0.60 (uncorrected), 1.28 ± 0.46 (unidirectional), and 1.24 ± 0.37 (bidirectional) in TCIA dataset and 0.91 ± 0.49 (uncorrected), 0.77 ± 0.37 (unidirectional), and 0.67 ± 0.34 (bidirectional) in EMC dataset. Conclusion Both leakage correction algorithms were found to change rCBV estimation with BBB disruption in enhancing glioma, and to a lesser degree in nonenhancing glioma. Stronger effects were found for bidirectional leakage correction than for unidirectional leakage correction.
Collapse
Affiliation(s)
- Fatemeh Arzanforoosh
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Paula L Croal
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Karin A van Garderen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Michael A Chappell
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
24
|
Manfrini E, Smits M, Thust S, Geiger S, Bendella Z, Petr J, Solymosi L, Keil VC. From research to clinical practice: a European neuroradiological survey on quantitative advanced MRI implementation. Eur Radiol 2021; 31:6334-6341. [PMID: 33481098 PMCID: PMC8270851 DOI: 10.1007/s00330-020-07582-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/22/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Objective Quantitative MRI (qMRI) methods provide versatile neuroradiological applications and are a hot topic in research. The degree of their clinical implementation is however barely known. This survey was created to illuminate which and how qMRI techniques are currently applied across Europe. Methods In total, 4753 neuroradiologists from 27 countries received an online questionnaire. Demographic and professional data, experience with qMRI techniques in the brain and head and neck, usage, reasons for/against application, and knowledge of the QIBA and EIBALL initiatives were assessed. Results Two hundred seventy-two responders in 23 countries used the following techniques clinically (mean values in %): DWI (82.0%, n = 223), DSC (67.3%, n = 183), MRS (64.3%, n = 175), DCE (43.4%, n = 118), BOLD-fMRI (42.6%, n = 116), ASL (37.5%, n = 102), fat quantification (25.0%, n = 68), T2 mapping (16.9%, n = 46), T1 mapping (15.1%, n = 41), PET-MRI (11.8%, n = 32), IVIM (5.5%, n = 15), APT-CEST (4.8%, n = 13), and DKI (3.3%, n = 9). The most frequent usage indications for any qMRI technique were tissue differentiation (82.4%, n = 224) and oncological monitoring (72.8%, n = 198). Usage differed between countries, e.g. ASL: Germany (n = 13/63; 20.6%) vs. France (n = 31/40; 77.5%). Neuroradiologists endorsed the use of qMRI because of an improved diagnostic accuracy (89.3%, n = 243), but 50.0% (n = 136) are in need of better technology, 34.9% (n = 95) wish for more communication, and 31.3% need help with result interpretation/generation (n = 85). QIBA and EIBALL were not well known (12.5%, n = 34, and 11.0%, n = 30). Conclusions The clinical implementation of qMRI methods is highly variable. Beyond the aspect of readiness for clinical use, better availability of support and a wider dissemination of guidelines could catalyse a broader implementation. Key Points • Neuroradiologists endorse the use of qMRI techniques as they subjectively improve diagnostic accuracy. • Clinical implementation is highly variable between countries, techniques, and indications. • The use of advanced imaging could be promoted through an increase in technical support and training of both doctors and technicians. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-020-07582-2.
Collapse
Affiliation(s)
- Elia Manfrini
- Department of Neuroradiology, Bonn University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany.,Facoltà di Medicina e Chirurgia, Università Politecnica delle Marche, Via Tronto 10, 60126, Ancona, Italy
| | - Marion Smits
- Department of Radiology and Nuclear Medicine (Ne-515), Erasmus MC, PO Box 2040, 3000, CA, Rotterdam, The Netherlands.,National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | - Steffi Thust
- National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK.,Department of Brain Rehabilitation and Repair, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sergej Geiger
- Department of Neuroradiology, Bonn University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Zeynep Bendella
- Department of Neuroradiology, Bonn University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Laszlo Solymosi
- Department of Neuroradiology, Bonn University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Vera C Keil
- Department of Neuroradiology, Bonn University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany. .,Department of Radiology, Section Neuroradiology, Amsterdam University Medical Center, VUmc, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
MRI brain tumor medical images analysis using deep learning techniques: a systematic review. HEALTH AND TECHNOLOGY 2021. [DOI: 10.1007/s12553-020-00514-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Precise enhancement quantification in post-operative MRI as an indicator of residual tumor impact is associated with survival in patients with glioblastoma. Sci Rep 2021; 11:695. [PMID: 33436737 PMCID: PMC7804103 DOI: 10.1038/s41598-020-79829-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor. Standard therapy consists of maximum safe resection combined with adjuvant radiochemotherapy followed by chemotherapy with temozolomide, however prognosis is extremely poor. Assessment of the residual tumor after surgery and patient stratification into prognostic groups (i.e., by tumor volume) is currently hindered by the subjective evaluation of residual enhancement in medical images (magnetic resonance imaging [MRI]). Furthermore, objective evidence defining the optimal time to acquire the images is lacking. We analyzed 144 patients with glioblastoma, objectively quantified the enhancing residual tumor through computational image analysis and assessed the correlation with survival. Pathological enhancement thickness on post-surgical MRI correlated with survival (hazard ratio: 1.98, p < 0.001). The prognostic value of several imaging and clinical variables was analyzed individually and combined (radiomics AUC 0.71, p = 0.07; combined AUC 0.72, p < 0.001). Residual enhancement thickness and radiomics complemented clinical data for prognosis stratification in patients with glioblastoma. Significant results were only obtained for scans performed between 24 and 72 h after surgery, raising the possibility of confounding non-tumor enhancement in very early post-surgery MRI. Regarding the extent of resection, and in agreement with recent studies, the association between the measured tumor remnant and survival supports maximal safe resection whenever possible.
Collapse
|
27
|
Boxerman JL, Quarles CC, Hu LS, Erickson BJ, Gerstner ER, Smits M, Kaufmann TJ, Barboriak DP, Huang RH, Wick W, Weller M, Galanis E, Kalpathy-Cramer J, Shankar L, Jacobs P, Chung C, van den Bent MJ, Chang S, Al Yung WK, Cloughesy TF, Wen PY, Gilbert MR, Rosen BR, Ellingson BM, Schmainda KM. Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 2020; 22:1262-1275. [PMID: 32516388 PMCID: PMC7523451 DOI: 10.1093/neuonc/noaa141] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the widespread clinical use of dynamic susceptibility contrast (DSC) MRI, DSC-MRI methodology has not been standardized, hindering its utilization for response assessment in multicenter trials. Recently, the DSC-MRI Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition issued an updated consensus DSC-MRI protocol compatible with the standardized brain tumor imaging protocol (BTIP) for high-grade gliomas that is increasingly used in the clinical setting and is the default MRI protocol for the National Clinical Trials Network. After reviewing the basis for controversy over DSC-MRI protocols, this paper provides evidence-based best practices for clinical DSC-MRI as determined by the Committee, including pulse sequence (gradient echo vs spin echo), BTIP-compliant contrast agent dosing (preload and bolus), flip angle (FA), echo time (TE), and post-processing leakage correction. In summary, full-dose preload, full-dose bolus dosing using intermediate (60°) FA and field strength-dependent TE (40-50 ms at 1.5 T, 20-35 ms at 3 T) provides overall best accuracy and precision for cerebral blood volume estimates. When single-dose contrast agent usage is desired, no-preload, full-dose bolus dosing using low FA (30°) and field strength-dependent TE provides excellent performance, with reduced contrast agent usage and elimination of potential systematic errors introduced by variations in preload dose and incubation time.
Collapse
Affiliation(s)
- Jerrold L Boxerman
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the American Society of Neuroradiology (ASNR)
- Representative of the American Society of Functional Neuroradiology (ASFNR)
| | - Chad C Quarles
- Department of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Leland S Hu
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, USA
- Representative of the Alliance for Clinical Trials in Oncology
- Representative of the American Society of Neuroradiology (ASNR)
| | - Bradley J Erickson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC–University Medical Center Rotterdam, Rotterdam, Netherlands
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Timothy J Kaufmann
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Daniel P Barboriak
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Raymond H Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang Wick
- Department of Neurooncology, National Center of Tumor Disease, University Clinic Heidelberg, Heidelberg, Germany
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Evanthia Galanis
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Jayashree Kalpathy-Cramer
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lalitha Shankar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Paula Jacobs
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Martin J van den Bent
- Department of Neuro-Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - W K Al Yung
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program and UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute (NCI), Bethesda, Maryland, USA
- Representative of the Radiation Therapy Oncology Group (RTOG)
| | - Bruce R Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin M Ellingson
- UCLA Neuro-Oncology Program and UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Departments of Radiological Sciences, Psychiatry, and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
- Representative of the Ivy Consortium for Early Phase Clinical Trials
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Kathleen M Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
| |
Collapse
|
28
|
Dolgorsuren EA, Harada M, Kanazawa Y, Abe T, Otomo M, Matsumoto Y, Mizobuchi Y, Nakajima K. Correlation and Characteristics of Intravoxel Incoherent Motion and Arterial Spin Labeling Techniques Versus Multiple Parameters Obtained on Dynamic Susceptibility Contrast Perfusion MRI for Brain Tumors. THE JOURNAL OF MEDICAL INVESTIGATION 2020; 66:308-313. [PMID: 31656295 DOI: 10.2152/jmi.66.308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Purpose : To compare data on brain tumors derived from intravoxel incoherent motion (IVIM) and arterial spin labeling (ASL) imaging with multiple parameters obtained on dynamic susceptibility contrast (DSC) perfusion MRI and to clarify the characteristics of IVIM and ASL perfusion data from the viewpoint of cerebral blood flow (CBF) analysis. Methods : ASL-CBF and IVIM techniques as well as DSC examination were performed in 24 patients with brain tumors. The IVIM data were analyzed with the two models. The relative blood flow (rBF), relative blood volume (rBV) corrected relative blood volume (crBV), mean transit time (MTT), and leakage coefficient (K2) were obtained from the DSC MRI data. Results : The ASL-CBF had the same tendency as the perfusion parameters derived from the DSC data, but the permeability from the vessels had less of an effect on the ASL-CBF. The diffusion coefficient of the fast component on IVIM contained more information on permeability than the f value. Conclusion : ASL-CBF is more suitable for the evaluation of perfusion in brain tumors than IVIM parameters. ASL-CBF and IVIM techniques should be carefully selected and the biological significance of each parameter should be understood for the correct comprehension of the pathological status of brain tumors. J. Med. Invest. 66 : 308-313, August, 2019.
Collapse
Affiliation(s)
| | - Masafumi Harada
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Yuki Kanazawa
- Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Abe
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Maki Otomo
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Yuki Matsumoto
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | | | - Kohhei Nakajima
- Department of Neurosurgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
29
|
Bell LC, Semmineh N, An H, Eldeniz C, Wahl R, Schmainda KM, Prah MA, Erickson BJ, Korfiatis P, Wu C, Sorace AG, Yankeelov TE, Rutledge N, Chenevert TL, Malyarenko D, Liu Y, Brenner A, Hu LS, Zhou Y, Boxerman JL, Yen YF, Kalpathy-Cramer J, Beers AL, Muzi M, Madhuranthakam AJ, Pinho M, Johnson B, Quarles CC. Evaluating the Use of rCBV as a Tumor Grade and Treatment Response Classifier Across NCI Quantitative Imaging Network Sites: Part II of the DSC-MRI Digital Reference Object (DRO) Challenge. Tomography 2020; 6:203-208. [PMID: 32548297 PMCID: PMC7289259 DOI: 10.18383/j.tom.2020.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously characterized the reproducibility of brain tumor relative cerebral blood volume (rCBV) using a dynamic susceptibility contrast magnetic resonance imaging digital reference object across 12 sites using a range of imaging protocols and software platforms. As expected, reproducibility was highest when imaging protocols and software were consistent, but decreased when they were variable. Our goal in this study was to determine the impact of rCBV reproducibility for tumor grade and treatment response classification. We found that varying imaging protocols and software platforms produced a range of optimal thresholds for both tumor grading and treatment response, but the performance of these thresholds was similar. These findings further underscore the importance of standardizing acquisition and analysis protocols across sites and software benchmarking.
Collapse
Affiliation(s)
- Laura C. Bell
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ
| | - Natenael Semmineh
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Richard Wahl
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Kathleen M. Schmainda
- Departments of Radiology; and
- Biophysics, Medical College of Wisconsin, Milwaukee, WI
| | | | | | | | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, Departments of Biomedical Engineering, Diagnostic Medicine, and Oncology, Livestrong Cancer Institutes, University of Texas at Austin, Austin, TX
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, Departments of Biomedical Engineering, Diagnostic Medicine, and Oncology, Livestrong Cancer Institutes, University of Texas at Austin, Austin, TX
| | - Neal Rutledge
- Oden Institute for Computational Engineering and Sciences, Departments of Biomedical Engineering, Diagnostic Medicine, and Oncology, Livestrong Cancer Institutes, University of Texas at Austin, Austin, TX
| | | | | | - Yichu Liu
- UT Health San Antonio, San Antonio, TX
| | | | - Leland S. Hu
- Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Yuxiang Zhou
- Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Jerrold L. Boxerman
- Department of Diagnostic Imaging, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI
| | - Yi-Fen Yen
- Department of Radiology, MGH—Martinos Center for Biomedical Imaging, Boston, MA
| | | | - Andrew L. Beers
- Department of Radiology, MGH—Martinos Center for Biomedical Imaging, Boston, MA
| | - Mark Muzi
- Radiology, University of Washington, Seattle, WA
| | | | - Marco Pinho
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX; and
| | - Brian Johnson
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX; and
- Philips Healthcare, Gainesville, FL
| | - C. Chad Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ
| |
Collapse
|
30
|
Towards Personalized Diagnosis of Glioblastoma in Fluid-Attenuated Inversion Recovery (FLAIR) by Topological Interpretable Machine Learning. MATHEMATICS 2020. [DOI: 10.3390/math8050770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is a fast-growing and highly invasive brain tumor, which tends to occur in adults between the ages of 45 and 70 and it accounts for 52 percent of all primary brain tumors. Usually, GBMs are detected by magnetic resonance images (MRI). Among MRI, a fluid-attenuated inversion recovery (FLAIR) sequence produces high quality digital tumor representation. Fast computer-aided detection and segmentation techniques are needed for overcoming subjective medical doctors (MDs) judgment. This study has three main novelties for demonstrating the role of topological features as new set of radiomics features which can be used as pillars of a personalized diagnostic systems of GBM analysis from FLAIR. For the first time topological data analysis is used for analyzing GBM from three complementary perspectives—tumor growth at cell level, temporal evolution of GBM in follow-up period and eventually GBM detection. The second novelty is represented by the definition of a new Shannon-like topological entropy, the so-called Generator Entropy. The third novelty is the combination of topological and textural features for training automatic interpretable machine learning. These novelties are demonstrated by three numerical experiments. Topological Data Analysis of a simplified 2D tumor growth mathematical model had allowed to understand the bio-chemical conditions that facilitate tumor growth—the higher the concentration of chemical nutrients the more virulent the process. Topological data analysis was used for evaluating GBM temporal progression on FLAIR recorded within 90 days following treatment completion and at progression. The experiment had confirmed that persistent entropy is a viable statistics for monitoring GBM evolution during the follow-up period. In the third experiment we developed a novel methodology based on topological and textural features and automatic interpretable machine learning for automatic GBM classification on FLAIR. The algorithm reached a classification accuracy up to 97%.
Collapse
|
31
|
Fedorov A, Beichel R, Kalpathy-Cramer J, Clunie D, Onken M, Riesmeier J, Herz C, Bauer C, Beers A, Fillion-Robin JC, Lasso A, Pinter C, Pieper S, Nolden M, Maier-Hein K, Herrmann MD, Saltz J, Prior F, Fennessy F, Buatti J, Kikinis R. Quantitative Imaging Informatics for Cancer Research. JCO Clin Cancer Inform 2020; 4:444-453. [PMID: 32392097 PMCID: PMC7265794 DOI: 10.1200/cci.19.00165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE We summarize Quantitative Imaging Informatics for Cancer Research (QIICR; U24 CA180918), one of the first projects funded by the National Cancer Institute (NCI) Informatics Technology for Cancer Research program. METHODS QIICR was motivated by the 3 use cases from the NCI Quantitative Imaging Network. 3D Slicer was selected as the platform for implementation of open-source quantitative imaging (QI) tools. Digital Imaging and Communications in Medicine (DICOM) was chosen for standardization of QI analysis outputs. Support of improved integration with community repositories focused on The Cancer Imaging Archive (TCIA). Priorities included improved capabilities of the standard, toolkits and tools, reference datasets, collaborations, and training and outreach. RESULTS Fourteen new tools to support head and neck cancer, glioblastoma, and prostate cancer QI research were introduced and downloaded over 100,000 times. DICOM was amended, with over 40 correction proposals addressing QI needs. Reference implementations of the standard in a popular toolkit and standalone tools were introduced. Eight datasets exemplifying the application of the standard and tools were contributed. An open demonstration/connectathon was organized, attracting the participation of academic groups and commercial vendors. Integration of tools with TCIA was improved by implementing programmatic communication interface and by refining best practices for QI analysis results curation. CONCLUSION Tools, capabilities of the DICOM standard, and datasets we introduced found adoption and utility within the cancer imaging community. A collaborative approach is critical to addressing challenges in imaging informatics at the national and international levels. Numerous challenges remain in establishing and maintaining the infrastructure of analysis tools and standardized datasets for the imaging community. Ideas and technology developed by the QIICR project are contributing to the NCI Imaging Data Commons currently being developed.
Collapse
Affiliation(s)
- Andrey Fedorov
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | - Christian Herz
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | - Marco Nolden
- German Cancer Research Center, Heidelberg, Germany
| | | | - Markus D. Herrmann
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Fred Prior
- University of Arkansas for Medical Sciences, Little Rock, AR
| | - Fiona Fennessy
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | - Ron Kikinis
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Perfusion and diffusion in meningioma tumors: a preliminary multiparametric analysis with Dynamic Susceptibility Contrast and IntraVoxel Incoherent Motion MRI. Magn Reson Imaging 2020; 67:69-78. [DOI: 10.1016/j.mri.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
|
33
|
Iv M, Liu X, Lavezo J, Gentles AJ, Ghanem R, Lummus S, Born DE, Soltys SG, Nagpal S, Thomas R, Recht L, Fischbein N. Perfusion MRI-Based Fractional Tumor Burden Differentiates between Tumor and Treatment Effect in Recurrent Glioblastomas and Informs Clinical Decision-Making. AJNR Am J Neuroradiol 2019; 40:1649-1657. [PMID: 31515215 DOI: 10.3174/ajnr.a6211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Fractional tumor burden better correlates with histologic tumor volume fraction in treated glioblastoma than other perfusion metrics such as relative CBV. We defined fractional tumor burden classes with low and high blood volume to distinguish tumor from treatment effect and to determine whether fractional tumor burden can inform treatment-related decision-making. MATERIALS AND METHODS Forty-seven patients with high-grade gliomas (primarily glioblastoma) with recurrent contrast-enhancing lesions on DSC-MR imaging were retrospectively evaluated after surgical sampling. Histopathologic examination defined treatment effect versus tumor. Normalized relative CBV thresholds of 1.0 and 1.75 were used to define low, intermediate, and high fractional tumor burden classes in each histopathologically defined group. Performance was assessed with an area under the receiver operating characteristic curve. Consensus agreement among physician raters reporting hypothetic changes in treatment-related decisions based on fractional tumor burden was compared with actual real-time treatment decisions. RESULTS Mean lower fractional tumor burden, high fractional tumor burden, and relative CBV of the contrast-enhancing volume were significantly different between treatment effect and tumor (P = .002, P < .001, and P < .001), with tumor having significantly higher fractional tumor burden and relative CBV and lower fractional tumor burden. No significance was found with intermediate fractional tumor burden. Performance of the area under the receiver operating characteristic curve was the following: high fractional tumor burden, 0.85; low fractional tumor burden, 0.7; and relative CBV, 0.81. In comparing treatment decisions, there were disagreements in 7% of tumor and 44% of treatment effect cases; in the latter, all disagreements were in cases with scattered atypical cells. CONCLUSIONS High fractional tumor burden and low fractional tumor burden define fractions of the contrast-enhancing lesion volume with high and low blood volume, respectively, and can differentiate treatment effect from tumor in recurrent glioblastomas. Fractional tumor burden maps can also help to inform clinical decision-making.
Collapse
Affiliation(s)
- M Iv
- From the Departments of Neuroimaging and Neurointervention (M.I., N.F.)
| | - X Liu
- Department of Neurosurgery (X.L.), Shengjing Hospital of China Medical University, Shenyang, China
| | - J Lavezo
- Pathology (J.L., R.G., S.L., D.E.B.)
| | - A J Gentles
- Medicine (Biomedical Informatics Research) (A.J.G.)
| | - R Ghanem
- Pathology (J.L., R.G., S.L., D.E.B.)
| | - S Lummus
- Pathology (J.L., R.G., S.L., D.E.B.)
| | - D E Born
- Pathology (J.L., R.G., S.L., D.E.B.)
| | | | - S Nagpal
- Neurology (Neuro-Oncology) (S.N., R.T., L.R.), Stanford University, Stanford, California
| | - R Thomas
- Neurology (Neuro-Oncology) (S.N., R.T., L.R.), Stanford University, Stanford, California
| | - L Recht
- Neurology (Neuro-Oncology) (S.N., R.T., L.R.), Stanford University, Stanford, California
| | - N Fischbein
- From the Departments of Neuroimaging and Neurointervention (M.I., N.F.)
| |
Collapse
|
34
|
Steidl E, Müller M, Müller A, Herrlinger U, Hattingen E. Longitudinal, leakage corrected and uncorrected rCBV during the first-line treatment of glioblastoma: a prospective study. J Neurooncol 2019; 144:409-417. [PMID: 31321614 DOI: 10.1007/s11060-019-03244-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Dynamic susceptibility contrast (DSC) MR-perfusion is becoming a standard of care for the monitoring of glioblastoma. Yet, technical standards are lacking and measurements without leakage correction are still common. Also, data on leakage corrected measurements during stable disease is scarce. In this study we hypothesized that basic leakage correction would significantly enhance data quality during stable disease and improve progress detection. We furthermore investigated whether longitudinal data could increase diagnostic performance. METHODS Patients with histologically proven glioblastoma undergoing first-line therapy were prospectively recruited. We conducted DSC perfusion measurements without prebolus administration in 6-week intervals from the end of radiotherapy until progression. Maximum relative cerebral volume values (rCBVmax) with and without leakage correction were calculated using Philips IntelliSpace®. RESULTS We recruited 16 patients and conducted 82 MRI scans with a mean follow up of 7.2 month. During stable disease, corrected rCBVmax was significantly more stable than uncorrected rCBVmax. Detection of progression with a rCBVmax cutoff was better for corrected (specificity 86%) than for uncorrected rCBVmax (specificity 41%). Interestingly, the increase of corrected rCBVmax upon progression also had a good diagnostic performance with a combination of both cutoffs delivering the best result (sensitivity/specificity 89%/93%). CONCLUSION Corrected rCBVmax supports the imaging finding of a stable disease and large increases during longitudinal observation support the diagnosis of tumor progression. rCBV values without prebolus or leakage correction are not reliable to monitor glioblastomas. Further studies to investigate the value of longitudinal rCBV dynamics for the differentiation of real tumor progression from pseudoprogression are warranted.
Collapse
Affiliation(s)
- Eike Steidl
- Institute of Neuroradiology, University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany.
- Department of Radiology, Neuroradiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mathias Müller
- Department of Radiology, Neuroradiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Andreas Müller
- Department of Radiology, Neuroradiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
- Department of Radiology, Neuroradiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Bell LC, Stokes AM, Quarles CC. Analysis of postprocessing steps for residue function dependent dynamic susceptibility contrast (DSC)-MRI biomarkers and their clinical impact on glioma grading for both 1.5 and 3T. J Magn Reson Imaging 2019; 51:547-553. [PMID: 31206948 DOI: 10.1002/jmri.26837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dynamic susceptibility contrast (DSC)-MRI analysis pipelines differ across studies and sites, potentially confounding the clinical value and use of the derived biomarkers. PURPOSE/HYPOTHESIS To investigate how postprocessing steps for computation of cerebral blood volume (CBV) and residue function dependent parameters (cerebral blood flow [CBF], mean transit time [MTT], capillary transit heterogeneity [CTH]) impact glioma grading. STUDY TYPE Retrospective study from The Cancer Imaging Archive (TCIA). POPULATION Forty-nine subjects with low- and high-grade gliomas. FIELD STRENGTH/SEQUENCE 1.5 and 3.0T clinical systems using a single-echo echo planar imaging (EPI) acquisition. ASSESSMENT Manual regions of interest (ROIs) were provided by TCIA and automatically segmented ROIs were generated by k-means clustering. CBV was calculated based on conventional equations. Residue function dependent biomarkers (CBF, MTT, CTH) were found by two deconvolution methods: circular discretization followed by a signal-to-noise ratio (SNR)-adapted eigenvalue thresholding (Method 1) and Volterra discretization with L-curve-based Tikhonov regularization (Method 2). STATISTICAL TESTS Analysis of variance, receiver operating characteristics (ROC), and logistic regression tests. RESULTS MTT alone was unable to statistically differentiate glioma grade (P > 0.139). When normalized, tumor CBF, CTH, and CBV did not differ across field strengths (P > 0.141). Biomarkers normalized to automatically segmented regions performed equally (rCTH AUROC is 0.73 compared with 0.74) or better (rCBF AUROC increases from 0.74-0.84; rCBV AUROC increases 0.78-0.86) than manually drawn ROIs. By updating the current deconvolution steps (Method 2), rCTH can act as a classifier for glioma grade (P < 0.007), but not if processed by current conventional DSC methods (Method 1) (P > 0.577). Lastly, higher-order biomarkers (eg, rCBF and rCTH) along with rCBV increases AUROC to 0.92 for differentiating tumor grade as compared with 0.78 and 0.86 (manual and automatic reference regions, respectively) for rCBV alone. DATA CONCLUSION With optimized analysis pipelines, higher-order perfusion biomarkers (rCBF and rCTH) improve glioma grading as compared with CBV alone. Additionally, postprocessing steps impact thresholds needed for glioma grading. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:547-553.
Collapse
Affiliation(s)
- Laura C Bell
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Ashley M Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - C Chad Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
36
|
Abstract
The global population is ageing at an accelerating speed. The ability to perform working memory tasks together with rapid processing becomes increasingly difficult with increases in age. With increasing national average life spans and a rise in the prevalence of age-related disease, it is pertinent to discuss the unique perspectives that can be gained from imaging the aged brain. Differences in structure, function, blood flow, and neurovascular coupling are present in both healthy aged brains and in diseased brains and have not yet been explored to their full depth in contemporary imaging studies. Imaging methods ranging from optical imaging to magnetic resonance imaging (MRI) to newer technologies such as photoacoustic tomography each offer unique advantages and challenges in imaging the aged brain. This paper will summarize first the importance and challenges of imaging the aged brain and then offer analysis of potential imaging modalities and their representative applications. The potential breakthroughs in brain imaging are also envisioned.
Collapse
Affiliation(s)
- Hannah Humayun
- Photoacoustic Imaging Laboratory, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Junjie Yao
- Photoacoustic Imaging Laboratory, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
37
|
Schmainda KM, Prah MA, Hu LS, Quarles CC, Semmineh N, Rand SD, Connelly JM, Anderies B, Zhou Y, Liu Y, Logan B, Stokes A, Baird G, Boxerman JL. Moving Toward a Consensus DSC-MRI Protocol: Validation of a Low-Flip Angle Single-Dose Option as a Reference Standard for Brain Tumors. AJNR Am J Neuroradiol 2019; 40:626-633. [PMID: 30923088 DOI: 10.3174/ajnr.a6015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE DSC-MR imaging using preload, intermediate (60°) flip angle and postprocessing leakage correction has gained traction as a standard methodology. Simulations suggest that DSC-MR imaging with flip angle = 30° and no preload yields relative CBV practically equivalent to the reference standard. This study tested this hypothesis in vivo. MATERIALS AND METHODS Eighty-four patients with brain lesions were enrolled in this 3-institution study. Forty-three patients satisfied the inclusion criteria. DSC-MR imaging (3T, single-dose gadobutrol, gradient recalled-echo-EPI, TE = 20-35 ms, TR = 1.2-1.63 seconds) was performed twice for each patient, with flip angle = 30°-35° and no preload (P-), which provided preload (P+) for the subsequent intermediate flip angle = 60°. Normalized relative CBV and standardized relative CBV maps were generated, including postprocessing with contrast agent leakage correction (C+) and without (C-) contrast agent leakage correction. Contrast-enhancing lesion volume, mean relative CBV, and contrast-to-noise ratio obtained with 30°/P-/C-, 30°/P-/C+, and 60°/P+/C- were compared with 60°/P+/C+ using the Lin concordance correlation coefficient and Bland-Altman analysis. Equivalence between the 30°/P-/C+ and 60°/P+/C+ protocols and the temporal SNR for the 30°/P- and 60°/P+ DSC-MR imaging data was also determined. RESULTS Compared with 60°/P+/C+, 30°/P-/C+ had closest mean standardized relative CBV (P = .61), highest Lin concordance correlation coefficient (0.96), and lowest Bland-Altman bias (μ = 1.89), compared with 30°/P-/C- (P = .02, Lin concordance correlation coefficient = 0.59, μ = 14.6) and 60°/P+/C- (P = .03, Lin concordance correlation coefficient = 0.88, μ = -10.1) with no statistical difference in contrast-to-noise ratios across protocols. The normalized relative CBV and standardized relative CBV were statistically equivalent at the 10% level using either the 30°/P-/C+ or 60°/P+/C+ protocols. Temporal SNR was not significantly different for 30°/P- and 60°/P+ (P = .06). CONCLUSIONS Tumor relative CBV derived from low-flip angle, no-preload DSC-MR imaging with leakage correction is an attractive single-dose alternative to the higher dose reference standard.
Collapse
Affiliation(s)
- K M Schmainda
- From the Departments of Biophysics (K.M.S., M.A.P.) .,Radiology (K.M.S., S.D.R.)
| | - M A Prah
- From the Departments of Biophysics (K.M.S., M.A.P.)
| | - L S Hu
- Departments of Radiology (L.S.H., Y.Z.)
| | - C C Quarles
- Division of Imaging Research (C.C.Q., N.S., A.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - N Semmineh
- Division of Imaging Research (C.C.Q., N.S., A.S.), Barrow Neurological Institute, Phoenix, Arizona
| | | | | | - B Anderies
- Neurosurgery (B.A.), Mayo Clinic, Scottsdale, Arizona
| | - Y Zhou
- Departments of Radiology (L.S.H., Y.Z.)
| | - Y Liu
- Division of Biostatistics, Institute for Health and Society (Y.L., B.L.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - B Logan
- Division of Biostatistics, Institute for Health and Society (Y.L., B.L.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - A Stokes
- Division of Imaging Research (C.C.Q., N.S., A.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - G Baird
- Department of Diagnostic Imaging (J.L.B., G.B.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - J L Boxerman
- Department of Diagnostic Imaging (J.L.B., G.B.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
38
|
Bell LC, Semmineh N, An H, Eldeniz C, Wahl R, Schmainda KM, Prah MA, Erickson BJ, Korfiatis P, Wu C, Sorace AG, Yankeelov TE, Rutledge N, Chenevert TL, Malyarenko D, Liu Y, Brenner A, Hu LS, Zhou Y, Boxerman JL, Yen YF, Kalpathy-Cramer J, Beers AL, Muzi M, Madhuranthakam AJ, Pinho M, Johnson B, Quarles CC. Evaluating Multisite rCBV Consistency from DSC-MRI Imaging Protocols and Postprocessing Software Across the NCI Quantitative Imaging Network Sites Using a Digital Reference Object (DRO). Tomography 2019; 5:110-117. [PMID: 30854448 PMCID: PMC6403027 DOI: 10.18383/j.tom.2018.00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Relative cerebral blood volume (rCBV) cannot be used as a response metric in clinical trials, in part, because of variations in biomarker consistency and associated interpretation across sites, stemming from differences in image acquisition and postprocessing methods (PMs). This study leveraged a dynamic susceptibility contrast magnetic resonance imaging digital reference object to characterize rCBV consistency across 12 sites participating in the Quantitative Imaging Network (QIN), specifically focusing on differences in site-specific imaging protocols (IPs; n = 17), and PMs (n = 19) and differences due to site-specific IPs and PMs (n = 25). Thus, high agreement across sites occurs when 1 managing center processes rCBV despite slight variations in the IP. This result is most likely supported by current initiatives to standardize IPs. However, marked intersite disagreement was observed when site-specific software was applied for rCBV measurements. This study's results have important implications for comparing rCBV values across sites and trials, where variability in PMs could confound the comparison of therapeutic effectiveness and/or any attempts to establish thresholds for categorical response to therapy. To overcome these challenges and ensure the successful use of rCBV as a clinical trial biomarker, we recommend the establishment of qualifying and validating site- and trial-specific criteria for scanners and acquisition methods (eg, using a validated phantom) and the software tools used for dynamic susceptibility contrast magnetic resonance imaging analysis (eg, using a digital reference object where the ground truth is known).
Collapse
Affiliation(s)
- Laura C. Bell
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ
| | - Natenael Semmineh
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Richard Wahl
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Kathleen M. Schmainda
- Departments of Radiology and Biophysics, Medical College of Wisconsin, Wauwatosa, WI
| | - Melissa A. Prah
- Departments of Radiology and Biophysics, Medical College of Wisconsin, Wauwatosa, WI
| | | | | | - Chengyue Wu
- Department of Diagnostic Medicine, University of Texas at Austin, Austin, TX
| | - Anna G. Sorace
- Department of Diagnostic Medicine, University of Texas at Austin, Austin, TX
| | - Thomas E. Yankeelov
- Department of Diagnostic Medicine, University of Texas at Austin, Austin, TX
| | - Neal Rutledge
- Department of Diagnostic Medicine, University of Texas at Austin, Austin, TX
| | | | | | - Yichu Liu
- UT Health San Antonio, San Antonio, TX
| | | | - Leland S. Hu
- Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Yuxiang Zhou
- Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Jerrold L. Boxerman
- Department of Diagnostic Imaging, Rhode Island Hospital, Providence, RI;,Alpert Medical School of Brown University, Providence, RI
| | - Yi-Fen Yen
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | | | - Andrew L. Beers
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, Washington
| | | | - Marco Pinho
- UT Southwestern Medical Center, Dallas, TX; and
| | - Brian Johnson
- UT Southwestern Medical Center, Dallas, TX; and,Philips Healthcare, Gainesville, FL
| | - C. Chad Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ
| |
Collapse
|
39
|
Abstract
The Quantitative Imaging Network of the National Cancer Institute is in its 10th year of operation, and research teams within the network are developing and validating clinical decision support software tools to measure or predict the response of cancers to various therapies. As projects progress from development activities to validation of quantitative imaging tools and methods, it is important to evaluate the performance and clinical readiness of the tools before committing them to prospective clinical trials. A variety of tests, including special challenges and tool benchmarking, have been instituted within the network to prepare the quantitative imaging tools for service in clinical trials. This article highlights the benchmarking process and provides a current evaluation of several tools in their transition from development to validation.
Collapse
Affiliation(s)
- Keyvan Farahani
- Cancer Imaging Program, National Cancer Institute of NIH, Bethesda, MD
| | - Darrell Tata
- Cancer Imaging Program, National Cancer Institute of NIH, Bethesda, MD
| | | |
Collapse
|
40
|
Pipe JG. High‐Value MRI. J Magn Reson Imaging 2018; 49:e12-e13. [DOI: 10.1002/jmri.26200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/03/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- James G. Pipe
- Imaging ResearchBarrow Neurological Institute Mayo ClinicRochester MinnesotaUSA
| |
Collapse
|
41
|
Quarles CC, Bell LC, Stokes AM. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI. Neuroimage 2018; 187:32-55. [PMID: 29729392 DOI: 10.1016/j.neuroimage.2018.04.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
In the context of neurologic disorders, dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) MRI provide valuable insights into cerebral vascular function, integrity, and architecture. Even after two decades of use, these modalities continue to evolve as their biophysical and kinetic basis is better understood, with improvements in pulse sequences and accelerated imaging techniques and through application of more robust and automated data analysis strategies. Here, we systematically review each of these elements, with a focus on how their integration improves kinetic parameter accuracy and the development of new hemodynamic biomarkers that provide sub-voxel sensitivity (e.g., capillary transit time and flow heterogeneity). Regarding contrast mechanisms, we discuss the dipole-dipole interactions and susceptibility effects that give rise to simultaneous T1, T2 and T2∗ relaxation effects, including their quantification, influence on pulse sequence parameter optimization, and use in methods such as vessel size and vessel architectural imaging. The application of technologic advancements, such as parallel imaging, simultaneous multi-slice, undersampled k-space acquisitions, and sliding window strategies, enables improved spatial and/or temporal resolution of DSC and DCE acquisitions. Such acceleration techniques have also enabled the implementation of, clinically feasible, simultaneous multi-echo spin- and gradient echo acquisitions, providing more comprehensive and quantitative interrogation of T1, T2 and T2∗ changes. Characterizing these relaxation rate changes through different post-processing options allows for the quantification of hemodynamics and vascular permeability. The application of different biophysical models provides insight into traditional hemodynamic parameters (e.g., cerebral blood volume) and more advanced parameters (e.g., capillary transit time heterogeneity). We provide insight into the appropriate selection of biophysical models and the necessary post-processing steps to ensure reliable measurements while minimizing potential sources of error. We show representative examples of advanced DSC- and DCE-MRI methods applied to pathologic conditions affecting the cerebral microcirculation, including brain tumors, stroke, aging, and multiple sclerosis. The maturation and standardization of conventional DSC- and DCE-MRI techniques has enabled their increased integration into clinical practice and use in clinical trials, which has, in turn, spurred renewed interest in their technological and biophysical development, paving the way towards a more comprehensive assessment of cerebral hemodynamics.
Collapse
Affiliation(s)
- C Chad Quarles
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA.
| | - Laura C Bell
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| | - Ashley M Stokes
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| |
Collapse
|