1
|
Sharma S, Sundaram S, Kesavadas C, Thomas B. An Algorithmic Approach to MR Imaging of Hypomyelinating Leukodystrophies. J Magn Reson Imaging 2025; 61:1531-1551. [PMID: 39165110 DOI: 10.1002/jmri.29558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) are a heterogeneous group of white matter diseases characterized by permanent deficiency of myelin deposition in brain. MRI is instrumental in the diagnosis and recommending genetic analysis, and is especially useful as many patients have a considerable clinical overlap, with the primary presenting complains being global developmental delay with psychomotor regression. Hypomyelination is defined as deficient myelination on two successive MR scans, taken at least 6 months apart, one of which should have been obtained after 1 year of age. Due to subtle differences in MRI features, the need for a systematic imaging approach to diagnose and classify hypomyelinating disorders is reiterated. The presented article provides an explicit review of imaging features of a myriad of primary and secondary HLDs, using state of the art genetically proven MR cases. A systematic pattern-based approach using MR features and specific clinical clues is illustrated for a quick yet optimal diagnosis of common as well as rare hypomyelinating disorders. The major MR features helping to narrow the differential diagnosis include extent of involvement like diffuse or patchy hypomyelination with selective involvement or sparing of certain white matter structures like optic radiations, median lemniscus, posterior limb of internal capsule and periventricular white matter; cerebellar atrophy; brainstem, corpus callosal or basal ganglia involvement; T2 hypointense signal of the thalami; and presence of calcifications. The authors also discuss the genetic and pathophysiologic basis of HLDs and recent methods to quantify myelin in vivo using advanced neuroradiology tools. The proposed algorithmic approach provides an improved understanding of these rare yet important disorders, enhancing diagnostic precision and improving patient outcomes. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Smily Sharma
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Soumya Sundaram
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
2
|
Lopriore P, Vista M, Maritato P, Caldarazzo Ienco E, Bassani L, Natale G, Tessa A, Santorelli FM, Orsucci D. Deep neurological phenotyping in oculo-dento-digital syndrome. Neurol Sci 2024; 45:2853-2857. [PMID: 38253744 DOI: 10.1007/s10072-024-07331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVES Oculodentodigital dysplasia (ODDD) is a rare autosomal dominant congenital malformation syndrome characterized by high penetrance and great phenotypic heterogeneity. Neurological manifestations are thought to occur in about one third of cases, but systematic studies are not available. We performed deep neurological phenotyping of 10 patients in one ODDD pedigree. METHODS Retrospective case series. We analyzed in depth the neurological phenotype of a three-generation family segregating the heterozygous c.416 T > C, p.(Ile139Thr) in GJA1. Clinical and neuroradiological features were retrospectively evaluated. Brain MRI and visual evoked potentials were performed in 8 and 6 cases, respectively. RESULTS Central nervous system manifestations occurred in 5 patients, the most common being isolated ataxia either in isolation or combined with spasticity. Furthermore, sphincteric disturbances (neurogenic bladder and fecal incontinence) were recognized as the first manifestation in most of the patients. Subclinical electrophysiological alteration of the optic pathway occurred in all the examined patients. Neuroimaging was significant for supratentorial hypomyelination pattern and hyperintense superior cerebellar peduncle in all examined patients. CONCLUSION The neurological involvement in ODDD carriers is often missed but peculiar clinical and radiological patterns can be recognized. Deep neurological phenotyping is needed to help untangle ODDD syndrome complexity and find genotype-phenotype correlations.
Collapse
Affiliation(s)
- P Lopriore
- Unit of Neurology, San Luca Hospital, Lucca, Italy
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - M Vista
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | - P Maritato
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | | | - L Bassani
- Unit of Radiology, San Luca Hospital, Lucca, Italy
| | - G Natale
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - A Tessa
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - F M Santorelli
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - D Orsucci
- Unit of Neurology, San Luca Hospital, Lucca, Italy.
| |
Collapse
|
3
|
Iwata E, Sah SK, Chen IP, Reichenberger E. Dental abnormalities in rare genetic bone diseases: Literature review. Clin Anat 2024; 37:304-320. [PMID: 37737444 PMCID: PMC11068025 DOI: 10.1002/ca.24117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Currently, over 500 rare genetic bone disorders are identified. These diseases are often accompanied by dental abnormalities, which are sometimes the first clue for an early diagnosis. However, not many dentists are sufficiently familiar with phenotypic abnormalities and treatment approaches when they encounter patients with rare diseases. Such patients often need dental treatment but have difficulties in finding a dentist who can treat them appropriately. Herein we focus on major dental phenotypes and summarize their potential causes and mechanisms, if known. We discuss representative diseases, dental treatments, and their effect on the oral health of patients and on oral health-related quality of life. This review can serve as a starting point for dentists to contribute to early diagnosis and further investigate the best treatment options for patients with rare disorders, with the goal of optimizing treatment outcomes.
Collapse
Affiliation(s)
- Eiji Iwata
- Department of Oral and Maxillofacial Surgery, Kakogawa Central City Hospital, Kakogawa, Japan
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shyam Kishor Sah
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Ernst Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Shimomura R, Yanagishita T, Ishiguro K, Shichiji M, Sato T, Shimojima Yamamoto K, Nagata M, Ishihara Y, Miyashita Y, Ishigaki K, Nagata S, Asano Y, Yamamoto T. Rare mosaic variant of GJA1 in a patient with a neurodevelopmental disorder. Hum Genome Var 2024; 11:2. [PMID: 38221519 PMCID: PMC10788341 DOI: 10.1038/s41439-023-00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
GJA1 is the causative gene for oculodentodigital dysplasia (ODDD). A novel de novo GJA1 variant, NM 000165:c263C > T [p.P88L], was identified in a mosaic state in a patient with short stature, seizures, delayed myelination, mild hearing loss, and tooth enamel hypoplasia. Although the patient exhibited severe neurodevelopmental delay, other clinical features of ODDD, including limb anomalies, were mild. This may be due to differences in the mosaic ratios in different organs.
Collapse
Affiliation(s)
- Rina Shimomura
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoe Yanagishita
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kumiko Ishiguro
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Minobu Shichiji
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Takatoshi Sato
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuki Ishihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
5
|
Sharifian-Dorche M, La Piana R. General approach to treatment of genetic leukoencephalopathies in children and adults. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:335-354. [PMID: 39322388 DOI: 10.1016/b978-0-323-99209-1.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Despite the enormous advancements seen in recent years, curative therapies for patients with genetic leukoencephalopathies are available for only a relatively small number of disorders. Therefore, symptomatic treatment and preventive management of the multiple clinical manifestations of patients with genetic leukoencephalopathies are critical in their care. The goals of the symptomatic treatment are to improve patients' quality of life, increase their survival, and reduce the impact on medical resources and related expenses. The coordinated work of a multidisciplinary team, including all specialists involved in the care of these patients, is the gold standard approach to manage and treat their complex and evolving clinical picture. Along with a multidisciplinary team, the relationship and close collaboration with the patient and their caregivers are essential. Their insight into the disease manifestations and management of the different issues should be integrated with the assessments of the multidisciplinary team to prevent clinical complications and preserve the quality of life of patients and their caregivers. Genetic leukoencephalopathies are very heterogeneous in terms of age of onset, clinical features, and disease course. However, many clinical features and problems are shared by most forms. Consequently, common therapeutic strategies apply to the majority of these diseases. This chapter presents the symptomatic approach for shared core clinical features presented by patients with genetic leukoencephalopathies divided by systems and, for each system, the specificities of some genetic leukoencephalopathies.
Collapse
Affiliation(s)
- Maryam Sharifian-Dorche
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Roberta La Piana
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Baracaldo-Santamaría D, Corrales-Hernández MG, Ortiz-Vergara MC, Cormane-Alfaro V, Luque-Bernal RM, Calderon-Ospina CA, Cediel-Becerra JF. Connexins and Pannexins: Important Players in Neurodevelopment, Neurological Diseases, and Potential Therapeutics. Biomedicines 2022; 10:2237. [PMID: 36140338 PMCID: PMC9496069 DOI: 10.3390/biomedicines10092237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cell-to-cell communication is essential for proper embryonic development and its dysfunction may lead to disease. Recent research has drawn attention to a new group of molecules called connexins (Cxs) and pannexins (Panxs). Cxs have been described for more than forty years as pivotal regulators of embryogenesis; however, the exact mechanism by which they provide this regulation has not been clearly elucidated. Consequently, Cxs and Panxs have been linked to congenital neurodegenerative diseases such as Charcot-Marie-Tooth disease and, more recently, chronic hemichannel opening has been associated with adult neurodegenerative diseases (e.g., Alzheimer's disease). Cell-to-cell communication via gap junctions formed by hexameric assemblies of Cxs, known as connexons, is believed to be a crucial component in developmental regulation. As for Panxs, despite being topologically similar to Cxs, they predominantly seem to form channels connecting the cytoplasm to the extracellular space and, despite recent research into Panx1 (Pannexin 1) expression in different regions of the brain during the embryonic phase, it has been studied to a lesser degree. When it comes to the nervous system, Cxs and Panxs play an important role in early stages of neuronal development with a wide span of action ranging from cellular migration during early stages to neuronal differentiation and system circuitry formation. In this review, we describe the most recent available evidence regarding the molecular and structural aspects of Cx and Panx channels, their role in neurodevelopment, congenital and adult neurological diseases, and finally propose how pharmacological modulation of these channels could modify the pathogenesis of some diseases.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - María Gabriela Corrales-Hernández
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Maria Camila Ortiz-Vergara
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Valeria Cormane-Alfaro
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Ricardo-Miguel Luque-Bernal
- Anatomy and Embriology Units, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos-Alberto Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Juan-Fernando Cediel-Becerra
- Histology and Embryology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
7
|
Yan H, Yang S, Hou Y, Ali S, Escobar A, Gao K, Duan R, Kubisiak T, Wang J, Zhang Y, Xiao J, Jiang Y, Zhang T, Wu Y, Burmeister M, Wang Q, Cuajungco MP, Wang J. Functional Study of TMEM163 Gene Variants Associated with Hypomyelination Leukodystrophy. Cells 2022; 11:cells11081285. [PMID: 35455965 PMCID: PMC9031525 DOI: 10.3390/cells11081285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/19/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) are a rare group of heterogeneously genetic disorders characterized by persistent deficit of myelin observed on magnetic resonance imaging (MRI). To identify a new disease-associated gene of HLD, trio-based whole exome sequencing was performed for unexplained patients with HLD. Functional studies were performed to confirm the phenotypic effect of candidate protein variants. Two de novo heterozygous variants, c.227T>G p.(L76R) or c.227T>C p.(L76P) in TMEM163 were identified in two unrelated HLD patients. TMEM163 protein is a zinc efflux transporter localized within the plasma membrane, lysosomes, early endosomes, and other vesicular compartments. It has not been associated with hypomyelination. Functional zinc flux assays in HeLa cells stably-expressing TMEM163 protein variants, L76R and L76P, revealed distinct attenuation or enhancement of zinc efflux, respectively. Experiments using a zebrafish model with knockdown of tmem163a and tmem163b (morphants) showed that loss of tmem163 causes dysplasia of the larvae, locomotor disability and myelin deficit. Expression of human wild type TMEM163 mRNAs in morphants rescues the phenotype, while the TMEM163 L76P and L76R mutants aggravated the condition. Moreover, poor proliferation, elevated apoptosis of oligodendrocytes, and reduced oligodendrocytes and neurons were also observed in zebrafish morphants. Our findings suggest an unappreciated role for TMEM163 protein in myelin development and add TMEM163 to a growing list of genes associated with hypomyelination leukodystrophy.
Collapse
Affiliation(s)
- Huifang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
- Joint International Research Center of Translational and Clinical Research, Beijing 100191, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing 100034, China
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (T.K.); (M.B.)
| | - Shuyan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China; (S.Y.); (T.Z.)
| | - Yiming Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; (Y.H.); (Q.W.)
| | - Saima Ali
- Department of Biological Science, California State University, Fullerton, CA 92831, USA; (S.A.); (A.E.)
| | - Adrian Escobar
- Department of Biological Science, California State University, Fullerton, CA 92831, USA; (S.A.); (A.E.)
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
| | - Ruoyu Duan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
| | - Thomas Kubisiak
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (T.K.); (M.B.)
| | - Junyu Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
| | - Yu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing 100034, China;
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China; (S.Y.); (T.Z.)
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing 100034, China
| | - Margit Burmeister
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (T.K.); (M.B.)
- Departments of Computational Medicine & Bioinformatics, Psychiatry and Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; (Y.H.); (Q.W.)
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Math P. Cuajungco
- Department of Biological Science, California State University, Fullerton, CA 92831, USA; (S.A.); (A.E.)
- Center for Applied Biotechnology Studies, California State University, Fullerton, CA 92831, USA
- Correspondence: (M.P.C.); (J.W.)
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
- Joint International Research Center of Translational and Clinical Research, Beijing 100191, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
- Correspondence: (M.P.C.); (J.W.)
| |
Collapse
|
8
|
Michell-Robinson MA, Perrier S, Lucia C, Tran LT, Thiffault I, Köhler W, Bernard G. Oculo-dento-digital Dysplasia: A Cause of Hypomyelinating Leukodystrophy in Adults. Neurology 2022; 98:675-677. [PMID: 35190466 PMCID: PMC9052568 DOI: 10.1212/wnl.0000000000200228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mackenzie A Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Cassandra Lucia
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Luan T Tran
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA.,Faculty of Medicine, University of Missouri Kansas City, Kansas City, MO, USA.,Department of Pathology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Wolfgang Köhler
- Department of Neurology, Leukodystrophy Center, University of Leipzig Medical Center, Leipzig, Germany
| | - Genevieve Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada. .,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Department of Pediatrics, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, Montréal, QC, Canada.,Department of Specialized Medicine, Division of Medical Genetics, Montreal Children's Hospital and McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
9
|
Craniofacial and Neurological Phenotype in a Case of Oculodentodigital Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1339:325-329. [DOI: 10.1007/978-3-030-78787-5_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Abstract
Hypomyelinating leukodystrophies constitute a subset of genetic white matter disorders characterized by a primary lack of myelin deposition. Most patients with severe hypomyelination present in infancy or early childhood and develop severe neurological deficits, but the clinical presentation can also be mild with onset of symptoms in adolescence or adulthood. MRI can be used to visualize the process of myelination in detail, and MRI pattern recognition can provide a clinical diagnosis in many patients. Next-generation sequencing provides a definitive diagnosis in 80-90% of patients. Genes associated with hypomyelination include those that encode structural myelin proteins but also many that encode proteins involved in RNA translation and some lysosomal proteins. The precise pathomechanisms remain to be elucidated. Improved understanding of the process of myelination, the metabolic axonal support functions of myelin and the proposed contribution of myelin to CNS plasticity provide possible explanations as to why almost all patients with hypomyelination experience slow clinical decline after a long phase of stability. In this Review, we provide an overview of the hypomyelinating leukodystrophies, the advances in our understanding of myelin biology and of the genes involved in these disorders, and the insights these advances have provided into their clinical presentations and evolution.
Collapse
|
11
|
Di Bella D, Magri S, Benzoni C, Farina L, Maccagnano C, Sarto E, Moscatelli M, Baratta S, Ciano C, Piacentini SHMJ, Draghi L, Mauro E, Pareyson D, Gellera C, Taroni F, Salsano E. Hypomyelinating leukodystrophies in adults: Clinical and genetic features. Eur J Neurol 2020; 28:934-944. [PMID: 33190326 DOI: 10.1111/ene.14646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Little is known about hypomyelinating leukodystrophies (HLDs) in adults. The aim of this study was to investigate HLD occurrence, clinical features, and etiology among undefined leukoencephalopathies in adulthood. METHODS We recruited the patients with cerebral hypomyelinating magnetic resonance imaging pattern (mild T2 hyperintensity with normal or near-normal T1 signal) from our cohort of 62 adult index cases with undefined leukoencephalopathies, reviewed their clinical features, and used a leukoencephalopathy-targeted next generation sequencing panel. RESULTS We identified 25/62 patients (~40%) with hypomyelination. Cardinal manifestations were spastic gait and varying degree of cognitive impairment. Etiology was determined in 44% (definite, 10/25; likely, 1/25). Specifically, we found pathogenic variants in the POLR3A (n = 2), POLR1C (n = 1), RARS1 (n = 1), and TUBB4A (n = 1) genes, which are typically associated with severe early-onset HLDs, and in the GJA1 gene (n = 1), which is associated with oculodentodigital dysplasia. Duplication of a large chromosome X region encompassing PLP1 and a pathogenic GJC2 variant were found in two patients, both females, with early-onset HLDs persisting into adulthood. Finally, we found likely pathogenic variants in PEX3 (n = 1) and PEX13 (n = 1) and potentially relevant variants of unknown significance in TBCD (n = 1), which are genes associated with severe, early-onset diseases with central hypomyelination/dysmyelination. CONCLUSIONS A hypomyelinating pattern characterizes a relevant number of undefined leukoencephalopathies in adulthood. A comprehensive genetic screening allows definite diagnosis in about half of patients, and demonstrates the involvement of many disease-causing genes, including genes associated with severe early-onset HLDs, and genes causing peroxisome biogenesis disorders.
Collapse
Affiliation(s)
- Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Benzoni
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Farina
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Carmelo Maccagnano
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Sarto
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Moscatelli
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Baratta
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ciano
- Unit of Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Lara Draghi
- Unit of Neuropsychology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Mauro
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ettore Salsano
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Neuroscience PhD Program, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
12
|
Chai N, Lang Z, Wang M, Chu Y. Oculodentodigital dysplasia: plastic treatments and self-esteem estimation. EUROPEAN JOURNAL OF PLASTIC SURGERY 2020. [DOI: 10.1007/s00238-019-01594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Constantinides VC, Paraskevas GP, Kalogera S, Yapijakis C, Kapaki E. Hot cross bun sign and prominent cerebellar peduncle involvement in a patient with oculodentodigital dysplasia. Neurol Sci 2020; 42:343-345. [PMID: 32676758 DOI: 10.1007/s10072-020-04569-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Vasilios C Constantinides
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave., 11528, Athens, Greece.
| | - George P Paraskevas
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave., 11528, Athens, Greece
| | - Stefania Kalogera
- Department of Molecular Genetics, Cephalogenetics Diagnostic Center, Athens, Greece
| | - Christos Yapijakis
- Department of Molecular Genetics, Cephalogenetics Diagnostic Center, Athens, Greece.,1st Department of Pediatrics, National and Kapodistrian University of Athens, School of Medicine, Aghia Sophia Hospital, Athens, Greece.,Department of Oral & Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Elisabeth Kapaki
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas. Sophias Ave., 11528, Athens, Greece
| |
Collapse
|
14
|
Yan H, Helman G, Murthy SE, Ji H, Crawford J, Kubisiak T, Bent SJ, Xiao J, Taft RJ, Coombs A, Wu Y, Pop A, Li D, de Vries LS, Jiang Y, Salomons GS, van der Knaap MS, Patapoutian A, Simons C, Burmeister M, Wang J, Wolf NI. Heterozygous Variants in the Mechanosensitive Ion Channel TMEM63A Result in Transient Hypomyelination during Infancy. Am J Hum Genet 2019; 105:996-1004. [PMID: 31587869 DOI: 10.1016/j.ajhg.2019.09.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/09/2019] [Indexed: 01/05/2023] Open
Abstract
Mechanically activated (MA) ion channels convert physical forces into electrical signals. Despite the importance of this function, the involvement of mechanosensitive ion channels in human disease is poorly understood. Here we report heterozygous missense mutations in the gene encoding the MA ion channel TMEM63A that result in an infantile disorder resembling a hypomyelinating leukodystrophy. Four unrelated individuals presented with congenital nystagmus, motor delay, and deficient myelination on serial scans in infancy, prompting the diagnosis of Pelizaeus-Merzbacher (like) disease. Genomic sequencing revealed that all four individuals carry heterozygous missense variants in the pore-forming domain of TMEM63A. These variants were confirmed to have arisen de novo in three of the four individuals. While the physiological role of TMEM63A is incompletely understood, it is highly expressed in oligodendrocytes and it has recently been shown to be a MA ion channel. Using patch clamp electrophysiology, we demonstrated that each of the modeled variants result in strongly attenuated stretch-activated currents when expressed in naive cells. Unexpectedly, the clinical evolution of all four individuals has been surprisingly favorable, with substantial improvements in neurological signs and developmental progression. In the three individuals with follow-up scans after 4 years of age, the myelin deficit had almost completely resolved. Our results suggest a previously unappreciated role for mechanosensitive ion channels in myelin development.
Collapse
Affiliation(s)
- Huifang Yan
- Department of Pediatrics, Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing 100871, China; Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Joint International Research Center of Translational and Clinical Research, Beijing 100871, China
| | - Guy Helman
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, VIC 3052, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Swetha E Murthy
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037 USA
| | - Haoran Ji
- Department of Pediatrics, Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing 100871, China; Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Joanna Crawford
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Kubisiak
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen J Bent
- Data61, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD 4067, Australia
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing 100871, China
| | | | - Adam Coombs
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037 USA
| | - Ye Wu
- Department of Pediatrics, Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing 100871, China
| | - Ana Pop
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam 1081 HV, the Netherlands; Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam 1081 HV, the Netherlands
| | - Dongxiao Li
- Department of Pediatrics, Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing 100871, China; Henan Provincial Key Laboratory of Children's Genetic and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands; UMC Utrecht Brain Center, Utrecht 3584 CG, the Netherlands
| | - Yuwu Jiang
- Department of Pediatrics, Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing 100871, China; Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100871, China
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam 1081 HV, the Netherlands; Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam 1081 HV, the Netherlands; Department of Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands; Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam 1081 HV, the Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam 1081 HV, the Netherlands; Department of Functional Genomics, Amsterdam Neuroscience, VU University, Amsterdam 1081 HV, the Netherlands
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037 USA
| | - Cas Simons
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, VIC 3052, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Departments of Computational Medicine & Bioinformatics, Psychiatry and Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jingmin Wang
- Department of Pediatrics, Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Peking University First Hospital, Beijing 100871, China; Joint International Research Center of Translational and Clinical Research, Beijing 100871, China; Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100871, China
| | - Nicole I Wolf
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|