1
|
Gule-Monroe M, Chasen N, Long JP, Kumar VA, Shah K, Chen M, Stafford J, Chung C, Wintermark M, Hou P, Sura E, Wang C, Weinberg J, Liu HL. Diagnostic Confidence of Contrast-Enhanced T1-Weighted MRI for the Detection of Brain Metastases: 3D FSE versus 3D GRE-Based Sequences. AJNR Am J Neuroradiol 2025:ajnr.A8590. [PMID: 39572196 DOI: 10.3174/ajnr.a8590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/18/2024] [Indexed: 05/10/2025]
Abstract
BACKGROUND AND PURPOSE This retrospective study evaluated the utility of contrast-enhanced T1-weighted 3D fast spin-echo-based sampling perfection with application-optimized contrasts by using different flip angle evolutions (SPACE) sequences for brain metastasis detection on 3T MRI compared with a gradient-recalled echo-based 3D FLASH sequence. MATERIALS AND METHODS We identified all patients at a single institution who underwent SPACE and 3D FLASH sequences as part of a practice quality-improvement project. Their medical records were retrospectively reviewed. Five certified neuroradiologists reviewed the images, with at least 2 weeks' separation between scoring sequences for the same patient. We evaluated the following parameters: number of metastatic lesions, number of indeterminate lesions, lesion margin, contrast-to-noise ratio (CNR), extent of image artifacts, and overall image quality. The CNR was also quantified for solidly enhancing lesions of >1 cm. RESULTS We identified 220 patients who underwent SPACE and 3D FLASH sequences (the order of the sequences was equally distributed). Of these, 79 had brain metastases on imaging, and 7 were excluded; thus, 72 patients were included in the study. Twenty patients were scored by 2 radiologists. Of the 92 evaluations, SPACE detected more lesions than 3D FLASH in 35, while 3D FLASH detected more lesions in 10. More indeterminate lesions were seen on 3D FLASH (n = 27) than on SPACE (n = 9). For the lesion margin, CNR, and overall image quality on a Likert scale, SPACE performed significantly better than 3D FLASH, with fewer image artifacts (P < .00001). Higher quantitative CNRs were found on SPACE than on 3D FLASH images, though this result was not statistically significant (median = 22.9 versus 15.5, respectively, P = .134). There was a high interreader lesion detection concordance with the Krippendorf α ordinals at 0.962 for SPACE, 0.870 for 3D FLASH, and 0.918 for the 2 sequences combined. CONCLUSIONS Compared with 3D FLASH, the SPACE sequence detected more metastatic lesions and was rated higher for image quality, lesion margin, and CNR, with fewer artifacts. Importantly, the SPACE sequence resulted in increased reader confidence, with fewer indeterminate lesions detected.
Collapse
Affiliation(s)
- Maria Gule-Monroe
- From the Department of Neuroradiology (M.G.-M., N.C., V.A.K., K.S., M.C., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nathan Chasen
- From the Department of Neuroradiology (M.G.-M., N.C., V.A.K., K.S., M.C., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James P Long
- Department of Biostatistics (J.P.L.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vinodh A Kumar
- From the Department of Neuroradiology (M.G.-M., N.C., V.A.K., K.S., M.C., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Komal Shah
- From the Department of Neuroradiology (M.G.-M., N.C., V.A.K., K.S., M.C., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa Chen
- From the Department of Neuroradiology (M.G.-M., N.C., V.A.K., K.S., M.C., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Stafford
- Department of Imaging Physics (J.S., P.H., H.-L.L.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caroline Chung
- Department of Radiation Oncology (C.C., C.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Max Wintermark
- From the Department of Neuroradiology (M.G.-M., N.C., V.A.K., K.S., M.C., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ping Hou
- Department of Imaging Physics (J.S., P.H., H.-L.L.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ekta Sura
- Division of Diagnostic Imaging (E.S.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chenyang Wang
- Department of Radiation Oncology (C.C., C.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Weinberg
- Department of Neurosurgery (J.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ho-Ling Liu
- Department of Imaging Physics (J.S., P.H., H.-L.L.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Cohen-Nowak AJ, Hill VB, Kumthekar P. Diagnostics and Screening in Breast Cancer with Brain and Leptomeningeal Metastasis: A Review of the Literature. Cancers (Basel) 2024; 16:3686. [PMID: 39518124 PMCID: PMC11545036 DOI: 10.3390/cancers16213686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Brain and leptomeningeal metastases are complications of breast cancer with high rates of morbidity and mortality and have an estimated incidence of up to 30%. While National Comprehensive Cancer Network (NCCN) guidelines recommend screening for central nervous system metastasis in other neurotropic cancers such as non-small cell lung cancer, there are no such recommendations for asymptomatic breast cancer patients at any stage of disease. This review highlights ongoing studies into screening and diagnostics for breast cancer with brain and leptomeningeal metastasis (BCBLM) as they relate to patient outcomes and prognostication. These include imaging methods such as MRI with novel contrast agents with or without PET/CT, as well as 'liquid biopsy' testing of the cerebrospinal fluid and serum to analyze circulating tumor cells, genomic material, proteins, and metabolites. Given recent advances in radiation, neurosurgery, and systemic treatments for BCBLM, screening for CNS involvement should be considered in patients with advanced breast cancer as it may impact treatment decisions and overall survival.
Collapse
Affiliation(s)
- Adam J. Cohen-Nowak
- Department of Internal Medicine, McGaw Medical Center of Northwestern University, Chicago, IL 60611, USA;
| | - Virginia B. Hill
- Neuroradiology Section, Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Priya Kumthekar
- Department of Neurology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Shimada A, Suda K, Nakano E, Tagawa M, Miyata M, Kashii S, Hinoda T, Fushimi Y, Kimura K, Nishigori R, Ahn S, Grinstead J, Tsujikawa A. Accuracy of Diagnosing Optic Neuritis Using DANTE T1-SPACE Imaging. Eye Brain 2024; 16:65-73. [PMID: 39493624 PMCID: PMC11531292 DOI: 10.2147/eb.s474100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose To evaluate the use of delay alternating with nutation for tailored excitation-prepared T1-weighted turbo spin echo (DANTE T1-SPACE) imaging for diagnosing optic neuritis and to analyze its correlation with clinical findings before and after treatment. Patients and Methods Patients diagnosed with optic neuritis or non-arteritic anterior ischemic optic neuropathy (NA-AION) were evaluated at the Ophthalmology Department of Kyoto University Hospital. All patients underwent magnetic resonance (MR) studies before treatment initiation and ophthalmic examinations before and after treatment. Three ophthalmologists independently reviewed the MR scans for abnormalities. The magnetic resonance imaging (MRI) assessments included post-contrast DANTE T1-SPACE, post-contrast volumetric interpolated breath-hold examination (VIBE), and short T1 inversion recovery (STIR) scans. The presence of abnormalities in each sequence was determined. Results Of 36 eyes from 30 patients, 21 eyes from 17 patients were diagnosed with optic neuritis, and 15 eyes from 13 patients were diagnosed with NA-AION. DANTE T1-SPACE sequences showed better sensitivity for detecting optic neuritis than STIR sequences (100% vs 67%, p = 0.009). VIBE images did not confirm enhancement of lesions in some cases with optic neuritis. No differences were observed among the sequences for NA-AION. Lesion length evaluated by DANTE T1-SPACE sequences was associated with circumpapillary retinal nerve fiber layer thickness at the initial visit, eye pain, and the time interval from symptom onset to MRI scan. Conclusion Contrast-enhanced DANTE T1-SPACE was better than other sequences of MRI for diagnosing optic neuritis.
Collapse
Affiliation(s)
- Ayaka Shimada
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Kenji Suda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eri Nakano
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miho Tagawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Miyata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Kashii
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kimitoshi Kimura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusei Nishigori
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sinyeob Ahn
- MR Research and Development, Siemens Healthineers, San Francisco, CA, USA
| | - John Grinstead
- MR Research and Development, Siemens Healthineers, Portland, OR, USA
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Wang M, Ma Y, Li L, Pan X, Wen Y, Qiu Y, Guo D, Zhu Y, Lian J, Tong D. Compressed Sensitivity Encoding Artificial Intelligence Accelerates Brain Metastasis Imaging by Optimizing Image Quality and Reducing Scan Time. AJNR Am J Neuroradiol 2024; 45:444-452. [PMID: 38485196 PMCID: PMC11288577 DOI: 10.3174/ajnr.a8161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/25/2023] [Indexed: 04/10/2024]
Abstract
BACKGROUND AND PURPOSE Accelerating the image acquisition speed of MR imaging without compromising the image quality is challenging. This study aimed to evaluate the feasibility of contrast-enhanced (CE) 3D T1WI and CE 3D-FLAIR sequences reconstructed with compressed sensitivity encoding artificial intelligence (CS-AI) for detecting brain metastases (BM) and explore the optimal acceleration factor (AF) for clinical BM imaging. MATERIALS AND METHODS Fifty-one patients with cancer with suspected BM were included. Fifty participants underwent different customized CE 3D-T1WI or CE 3D-FLAIR sequence scans. Compressed SENSE encoding acceleration 6 (CS6), a commercially available standard sequence, was used as the reference standard. Quantitative and qualitative methods were used to evaluate image quality. The SNR and contrast-to-noise ratio (CNR) were calculated, and qualitative evaluations were independently conducted by 2 neuroradiologists. After exploring the optimal AF, sample images were obtained from 1 patient by using both optimized sequences. RESULTS Quantitatively, the CNR of the CS-AI protocol for CE 3D-T1WI and CE 3D-FLAIR sequences was superior to that of the CS protocol under the same AF (P < .05). Compared with reference CS6, the CS-AI groups had higher CNR values (all P < .05), with the CS-AI10 scan having the highest value. The SNR of the CS-AI group was better than that of the reference for both CE 3D-T1WI and CE 3D-FLAIR sequences (all P < .05). Qualitatively, the CS-AI protocol produced higher image quality scores than did the CS protocol with the same AF (all P < .05). In contrast to the reference CS6, the CS-AI group showed good image quality scores until an AF of up to 10 (all P < .05). The CS-AI10 scan provided the optimal images, improving the delineation of normal gray-white matter boundaries and lesion areas (P < .05). Compared with the reference, CS-AI10 showed reductions in scan time of 39.25% and 39.93% for CE 3D-T1WI and CE 3D-FLAIR sequences, respectively. CONCLUSIONS CE 3D-T1WI and CE 3D-FLAIR sequences reconstructed with CS-AI for the detection of BM may provide a more effective alternative reconstruction approach than CS. CS-AI10 is suitable for clinical applications, providing optimal image quality and a shortened scan time.
Collapse
Affiliation(s)
- Mengmeng Wang
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Yue Ma
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Linna Li
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Xingchen Pan
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Yafei Wen
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Ying Qiu
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Dandan Guo
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Yi Zhu
- Philips Healthcare (Y.Z., J.L., D.T.), Beijing, China
| | - Jianxiu Lian
- Philips Healthcare (Y.Z., J.L., D.T.), Beijing, China
| | - Dan Tong
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Park YW, Park JE, Ahn SS, Han K, Kim N, Oh JY, Lee DH, Won SY, Shin I, Kim HS, Lee SK. Deep learning-based metastasis detection in patients with lung cancer to enhance reproducibility and reduce workload in brain metastasis screening with MRI: a multi-center study. Cancer Imaging 2024; 24:32. [PMID: 38429843 PMCID: PMC10905821 DOI: 10.1186/s40644-024-00669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVES To assess whether a deep learning-based system (DLS) with black-blood imaging for brain metastasis (BM) improves the diagnostic workflow in a multi-center setting. MATERIALS AND METHODS In this retrospective study, a DLS was developed in 101 patients and validated on 264 consecutive patients (with lung cancer) having newly developed BM from two tertiary university hospitals, which performed black-blood imaging between January 2020 and April 2021. Four neuroradiologists independently evaluated BM either with segmented masks and BM counts provided (with DLS) or not provided (without DLS) on a clinical trial imaging management system (CTIMS). To assess reading reproducibility, BM count agreement between the readers and the reference standard were calculated using limits of agreement (LoA). Readers' workload was assessed with reading time, which was automatically measured on CTIMS, and were compared between with and without DLS using linear mixed models considering the imaging center. RESULTS In the validation cohort, the detection sensitivity and positive predictive value of the DLS were 90.2% (95% confidence interval [CI]: 88.1-92.2) and 88.2% (95% CI: 85.7-90.4), respectively. The difference between the readers and the reference counts was larger without DLS (LoA: -0.281, 95% CI: -2.888, 2.325) than with DLS (LoA: -0.163, 95% CI: -2.692, 2.367). The reading time was reduced from mean 66.9 s (interquartile range: 43.2-90.6) to 57.3 s (interquartile range: 33.6-81.0) (P <.001) in the with DLS group, regardless of the imaging center. CONCLUSION Deep learning-based BM detection and counting with black-blood imaging improved reproducibility and reduced reading time, on multi-center validation.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, 05505, Seoul, Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea.
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea
| | | | - Joo Young Oh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, 05505, Seoul, Korea
| | - Da Hyun Lee
- Department of Radiology, Ajou University Medical Center, Suwon, Korea
| | - So Yeon Won
- Department of Radiology, Samsung Seoul Hospital, Seoul, Korea
| | - Ilah Shin
- Department of Radiology, The Catholic University of Korea, Seoul St. Mary's hospital, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, 05505, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea
| |
Collapse
|
6
|
Chkili S, Lefebvre Y, Chao SL, Bali MA, Lemort M, Coquelet N. Optimization of workflow for detection of brain metastases at 3T: is a black-blood MTC prepared 3D T1 used alone robust enough to replace the combination of conventional 3D T1 and the black-blood 3D T1 MTC? Neuroradiology 2023:10.1007/s00234-023-03143-8. [PMID: 36995375 DOI: 10.1007/s00234-023-03143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE Sampling perfection with application-optimized contrasts by using different flip angle evolutions (SPACE) is a black-blood 3D T1-weighted (T1w) magnetic resonance imaging (MRI) sequence that has shown robust performance for brain metastases detection. However, this could generate false positive results due to suboptimal blood signal suppression. For that reason, SPACE is used in our institution alongside a non-black-blood T1w sequence: volumetric interpolated breath-hold examination (VIBE). Our study aims to (i) evaluate the diagnostic accuracy of SPACE compared to its use in combination with VIBE, (ii) investigate the effect of radiologist's experience in the sequence's performance, and (iii) analyze causes of discordants results. METHODS Four hundred seventy-three 3T MRI scans were retrospectively analyzed following a monocentric study design. Two studies were formed: one including SPACE alone and one combining both sequences (SPACE + VIBE, the reference). An experienced neuroradiologist and a radiology trainee independently reviewed the images of each study and reported the number of brain metastases. The sensitivity (Se) and specificity (Sp) of SPACE compared to SPACE + VIBE in metastases detection were reported. Diagnostic accuracy of SPACE compared to SPACE + VIBE was assessed by using McNemar's test. Significance was set at p < 0.05. Cohen's kappa was used for inter-method and inter-observer variability. RESULTS No significant difference was found between the two methods, with SPACE having a Se > 93% and a Sp > 87%. No effect of readers' experience was disclosed. CONCLUSION Independently of radiologist's experience, SPACE alone is robust enough to replace SPACE + VIBE for brain metastases detection.
Collapse
Affiliation(s)
- Sophia Chkili
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium.
| | - Yolène Lefebvre
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Shih-Li Chao
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Maria Antonietta Bali
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Marc Lemort
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Nicolas Coquelet
- Department of Radiology, Institut Jules Bordet, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| |
Collapse
|
7
|
Abstract
Vessel wall MR imaging (VW-MRI) has been introduced into clinical practice and applied to a variety of diseases, and its usefulness has been reported. High-resolution VW-MRI is essential in the diagnostic workup and provides more information than other routine MR imaging protocols. VW-MRI is useful in assessing lesion location, morphology, and severity. Additional information, such as vessel wall enhancement, which is useful in the differential diagnosis of atherosclerotic disease and vasculitis could be assessed by this special imaging technique. This review describes the VW-MRI technique and its clinical applications in arterial disease, venous disease, vasculitis, and leptomeningeal disease.
Collapse
|
8
|
Baek HJ, Heo YJ, Kim D, Yun SY, Baek JW, Jeong HW, Choo HJ, Lee JY, Oh SI. Usefulness of Wave-CAIPI for Postcontrast 3D T1-SPACE in the Evaluation of Brain Metastases. AJNR Am J Neuroradiol 2022; 43:857-863. [PMID: 35618423 DOI: 10.3174/ajnr.a7520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE High-resolution postcontrast 3D T1WI is a widely used sequence for evaluating brain metastasis, despite the long scan time. This study aimed to compare highly accelerated postcontrast 3D T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolution by using wave-controlled aliasing in parallel imaging (wave-T1-SPACE) with the commonly used standard high-resolution postcontrast 3D T1-SPACE for the evaluation of brain metastases. MATERIALS AND METHODS Among the 387 patients who underwent postcontrast wave-T1-SPACE and standard SPACE, 56 patients with suspected brain metastases were retrospectively included. Two neuroradiologists assessed the number of enhancing lesions according to lesion size, contrast-to-noise ratiolesion/parenchyma, contrast-to-noise ratiowhite matter/gray matter, contrast ratiolesion/parenchyma, and overall image quality for the 2 different sequences. RESULTS Although there was no significant difference in the evaluation of larger enhancing lesions (>5 mm) between the 2 different sequences (P = .66 for observer 1, P = .26 for observer 2), wave-T1-SPACE showed a significantly lower number of smaller enhancing lesions (<5 mm) than standard SPACE (1.61 [SD, 0.29] versus 2.84 [SD, 0.47] for observer 1; 1.41 [SD, 0.19] versus 2.68 [SD, 0.43] for observer 2). Furthermore, mean contrast-to-noise ratiolesion/parenchyma and overall image quality of wave-T1-SPACE were significantly lower than those in standard SPACE. CONCLUSIONS Postcontrast wave-T1-SPACE showed comparable diagnostic performance for larger enhancing lesions (>5 mm) and marked scan time reduction compared with standard SPACE. However, postcontrast wave-T1-SPACE showed underestimation of smaller enhancing lesions (<5 mm) and lower image quality than standard SPACE. Therefore, postcontrast wave-T1-SPACE should be interpreted carefully in the evaluation of brain metastasis.
Collapse
Affiliation(s)
- H J Baek
- From the Department of Radiology (H.J.B.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Y J Heo
- Department of Radiology (Y.J.H., D.K., S.Y.Y., J.W.B., H.W.J., H.J.C.), Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - D Kim
- Department of Radiology (Y.J.H., D.K., S.Y.Y., J.W.B., H.W.J., H.J.C.), Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - S Y Yun
- Department of Radiology (Y.J.H., D.K., S.Y.Y., J.W.B., H.W.J., H.J.C.), Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - J W Baek
- Department of Radiology (Y.J.H., D.K., S.Y.Y., J.W.B., H.W.J., H.J.C.), Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - H W Jeong
- Department of Radiology (Y.J.H., D.K., S.Y.Y., J.W.B., H.W.J., H.J.C.), Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - H J Choo
- Department of Radiology (Y.J.H., D.K., S.Y.Y., J.W.B., H.W.J., H.J.C.), Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - J Y Lee
- Department of Internal Medicine (J.Y.L), Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - S-I Oh
- Department of Neurology (S.-I.O.), Inje University Busan Paik Hospital, Busan, Republic of Korea
| |
Collapse
|
9
|
Fu Q, Cheng QG, Kong XC, Liu DX, Guo YH, Grinstead J, Zhang XY, Lei ZQ, Zheng CS. Comparison of contrast-enhanced T1-weighted imaging using DANTE-SPACE, PETRA, and MPRAGE: a clinical evaluation of brain tumors at 3 Tesla. Quant Imaging Med Surg 2022; 12:592-607. [PMID: 34993104 DOI: 10.21037/qims-21-107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/13/2021] [Indexed: 01/22/2023]
Abstract
Background We aimed to compare the performance of three contrast-enhanced T1-weighted three-dimensional (3D) magnetic resonance (MR) sequences to detect brain tumors at 3 Tesla. The three sequences were: (I) delay alternating with nutation for tailored excitation sampling perfection with application-optimized contrasts using different flip angle evolution (DANTE-SPACE), (II) pointwise encoding time reduction with radial acquisition (PETRA), and (III) magnetization-prepared rapid acquisition with gradient echo (MPRAGE). Methods This study involved 77 consecutive patients, including 34 patients with known primary brain tumors and 43 patients suspected of intracranial metastases. All patients underwent each of the three sequences with comparable spatial resolution and acquisition time post-injection. Signal-to-noise ratios (SNRs) for gray matter (GM) and white matter (WM), contrast-to-noise ratios (CNRs) for lesion/GM, lesion/WM, and GM/WM were quantitatively compared. Two radiologists determined the total number of enhancing lesions by consensus. Intraclass correlation coefficients (ICCs) between the two radiologists for metastases presence, qualitative ratings for image quality, and acoustic noise level of each sequence were assessed. Results Among the three sequences, SNRs and CNRs between lesions and surrounding parenchyma were highest using DANTE-SPACE, but CNRWM/GM was the lowest with DANTE-SPACE. SNRs for PETRA images were significantly higher than those for MPRAGE (P<0.001). CNRs between lesions and surrounding parenchyma were similar for PETRA and MPRAGE (P>0.05). Significantly more brain metastases were detected with DANTE-SPACE (n=94) compared with MPRAGE (n=71) and PETRA (n=72). The ICCs were 0.964 for MPRAGE, 0.975 for PETRA, and 0.973 for DANTE-SPACE. Qualitative scores for lesion imaging using DANTE-SPACE were significantly higher than those obtained with PETRA and MPRAGE (P=0.002 and P=0.004, respectively). The acoustic noise level for PETRA (64.45 dB) was significantly lower than that for MPRAGE (78.27 dB, P<0.01) and DANTE-SPACE (80.18 dB, P<0.01). Conclusions PETRA achieves comparable detection of brain tumors with MPRAGE and is preferred for depicting osseous metastases and meningeal enhancement. DANTE-SPACE with blood vessel suppression showed improved detection of cerebral metastases compared with MPRAGE and PETRA, which could be helpful for the differential diagnosis of tumors.
Collapse
Affiliation(s)
- Qing Fu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qi-Guang Cheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiang-Chuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ding-Xi Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yi-Hao Guo
- MR Collaboration, Siemens Healthcare Ltd., Guangzhou, China
| | | | | | - Zi-Qiao Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chuan-Sheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
10
|
Jin T, Zhang H, Liu X, Kong X, Makamure J, Chen Z, Alwalid O, Yao Z, Wang J. Enhancement degree of brain metastases: correlation analysis between enhanced T2 FLAIR and vascular permeability parameters of dynamic contrast-enhanced MRI. Eur Radiol 2021; 31:5595-5604. [PMID: 33847812 DOI: 10.1007/s00330-020-07625-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/13/2020] [Accepted: 12/10/2020] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To investigate the correlation between enhancement degrees of brain metastases on contrast-enhanced T2-fluid-attenuated inversion recovery (CE-T2 FLAIR) and vascular permeability parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS Thirty-nine patients with brain metastases were prospectively collected. They underwent non-enhanced T2 FLAIR, DCE-MRI, CE-T2 FLAIR, and contrast-enhanced three-dimensional brain volume imaging (CE-BRAVO). Quantitative parameters of DCE-MRI were evaluated for all lesions, which included volume transfer constant (Ktrans), rate constant (Kep), and fractional volume of the extracellular extravascular space (Ve). Contrast ratio (CR) and percentage increase (PI) values of all lesions on CE-T2 FLAIR were also measured. The tumor enhancement degree on CE-T2 FLAIR in relation to CE-BRAVO was visually classified as higher (group A), equal (group B), and lower (group C). RESULTS A total of 82 brain metastases were evaluated, including 31 in group A, 19 in group B, and 32 in group C. The Ktrans and Kep were negatively correlated with the CR (ρ = - 0.551, p < 0.001 and ρ = - 0.708, p < 0.001, respectively) and PI (ρ = - 0.511, p < 0.001 and ρ = - 0.621, p < 0.001, respectively). The Ktrans and Kep of group A were significantly lower than those of group C (both p < 0.001). No significant difference was found in Ve among the groups (p = 0.327). CONCLUSIONS The enhancement degree of brain metastases on CE-T2 FLAIR is negatively correlated with Ktrans and Kep values, which indicate that vascular permeability parameters may play an important role in explaining the difference in enhancement between CE-T2 FLAIR and CE-BRAVO. KEY POINTS • The enhancement degree on CE-T2 FLAIR was negatively correlated with Ktrans and Kep values. • The vascular permeability of brain metastasis accounted for the difference in enhancement degree between CE-T2 FLAIR and CE-BRAVO. • CE-T2 FLAIR is useful for detecting brain metastases with mild disruption of the blood-brain barrier.
Collapse
Affiliation(s)
- Teng Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Zhang
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Joyman Makamure
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziwen Chen
- Department of General Surgery, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Osamah Alwalid
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Jin T, Ge M, Huang R, Yang Y, Liu T, Zhan Q, Yao Z, Zhang H. Utility of Contrast-Enhanced T2 FLAIR for Imaging Brain Metastases Using a Half-dose High-Relaxivity Contrast Agent. AJNR Am J Neuroradiol 2021; 42:457-463. [PMID: 33361381 DOI: 10.3174/ajnr.a6931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/04/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Efficient detection of metastases is important for patient' treatment. This prospective study was to explore the clinical value of contrast-enhanced T2 FLAIR in imaging brain metastases using half-dose gadobenate dimeglumine. MATERIALS AND METHODS In vitro signal intensity of various gadolinium concentrations was explored by spin-echo T1-weighted imaging and T2 FLAIR. Then, 46 patients with lung cancer underwent nonenhanced T2 FLAIR before administration of half-dose gadobenate dimeglumine and 3 consecutive contrast-enhanced T2 FLAIR sequences followed by 1 spin-echo T1WI after administration of half-dose gadobenate dimeglumine. After an additional dose of 0.05 mmol/kg, 3D brain volume imaging was performed. All brain metastases were classified as follows: solid-enhancing, ≥ 5 mm (group A); ring-enhancing, ≥ 5 mm (group B); and lesion diameter of <5 mm (group C). The contrast ratio of the lesions on 3 consecutive phases of contrast-enhanced T2 FLAIR was measured, and the percentage increase of contrast-enhanced T2 FLAIR among the 3 groups was compared. RESULTS In vitro, the maximal signal intensity was achieved in T2 FLAIR at one-eighth to one-half of the contrast concentration needed for maximal signal intensity in T1WI. In vivo, the mean contrast ratio values of metastases on contrast-enhanced T2 FLAIR for the 3 consecutive phases ranged from 63.64% to 83.05%. The percentage increase (PI) values of contrast-enhanced T2 FLAIR were as follows: PIA < PIB (P = .001) and PIA < PIC (P < .001). The degree of enhancement of brain metastases on contrast-enhanced T2 FLAIR was lower than on 3D brain volume imaging (P < .001) in group A, and higher than on 3D brain volume imaging (P < .001) in group C. CONCLUSIONS Small or ring-enhancing metastases can be better visualized on delayed contrast-enhanced T2 FLAIR using a half-dose high-relaxivity contrast agent.
Collapse
Affiliation(s)
- T Jin
- From the Department of Radiology (T.J.), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - M Ge
- Department of Oncology (M.G., R.H., T.L., Q.Z.)
| | - R Huang
- Department of Oncology (M.G., R.H., T.L., Q.Z.)
| | - Y Yang
- Department of Oncology (Y.Y.), Huashan North Hospital, Fudan University, Shanghai, China
| | - T Liu
- Department of Oncology (M.G., R.H., T.L., Q.Z.)
| | - Q Zhan
- Department of Oncology (M.G., R.H., T.L., Q.Z.)
| | - Z Yao
- Radiology (Z.Y.), Huashan Hospital, Fudan University, Shanghai, China
| | - H Zhang
- Department of Radiology (H.Z.), The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Patel SH, Batchala PP, Schallert K, Patrie JT, Abbas SO, Ornan DA, Mukherjee S, Huerta T, Mugler JP. 3D fast low-angle shot (FLASH) technique for 3T contrast-enhanced brain MRI in the inpatient and emergency setting: comparison with 3D magnetization-prepared rapid gradient echo (MPRAGE) technique. Neuroradiology 2020; 63:897-904. [PMID: 33118042 DOI: 10.1007/s00234-020-02590-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To retrospectively evaluate the diagnostic performance of a 1-min contrast-enhanced 3D-FLASH pulse sequence for detecting intracranial enhancing lesions compared to standard contrast-enhanced 3D-MPRAGE pulse sequence. METHODS Contrast-enhanced 3D-FLASH (acquisition time 49 s) and contrast-enhanced 3D-MPRAGE (4 min 35 s) pulse sequences were performed consecutively in 110 inpatient/emergency department 3T MRI brain examinations and analyzed by two independent neuroradiologist readers. For each sequence, the readers recorded (1) number of enhancing intracranial lesions; (2) intracranial susceptibility artifact (presence or absence; mm depth of intracranial signal loss); and (3) motion artifact (none, mild, moderate, severe). Inter and intra-reader agreement and reader accuracy relative to a reference standard were determined, and sequence comparison with respect to susceptibility and motion artifacts was performed. RESULTS There was substantial intra-reader, inter-sequence agreement [reader 1, κ = 0.70 (95% CI: [0.60, 0.81]); reader 2, κ = 0.70 (95% CI: [0.59, 0.82])] and substantial intra-sequence, inter-reader agreement [3D-MPRAGE assessment, κ = 0.76 (95% CI: [0.66, 0.86]); 3D-FLASH assessment, κ = 0.86 (95% CI: [0.77, 0.94]) for detection of intracranial enhancing lesions. For both readers, the diagnostic accuracy of 3D-FLASH and 3D-MPRAGE was similar (3D-MPRAGE: 86.4 and 88.1%; 3D-FLASH: 88.2 and 84.5%), with no inter-sequence diagnostic accuracy discordancy between the sequences for either reader. 3D-FLASH was associated with less susceptibility artifact (p < 0.001 both readers) and less motion artifact (p < 0.001 both readers). CONCLUSION On 3T brain MRI in the inpatient and emergency department setting, 1-min 3D-FLASH pulse sequence achieved comparable diagnostic performance to 4.5 min 3D-MPRAGE pulse sequence for detecting enhancing intracranial lesions, with reduced susceptibility and motion artifacts.
Collapse
Affiliation(s)
- Sohil H Patel
- Department of Radiology and Medical Imaging, University of Virginia Health, PO Box 800170, Charlottesville, VA, 22908, USA.
| | - Prem P Batchala
- Department of Radiology and Medical Imaging, University of Virginia Health, PO Box 800170, Charlottesville, VA, 22908, USA
| | - Kellan Schallert
- Department of Radiology and Medical Imaging, University of Virginia Health, PO Box 800170, Charlottesville, VA, 22908, USA
| | - James T Patrie
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Salma O Abbas
- Department of Radiology and Medical Imaging, University of Virginia Health, PO Box 800170, Charlottesville, VA, 22908, USA
| | - David A Ornan
- Department of Radiology and Medical Imaging, University of Virginia Health, PO Box 800170, Charlottesville, VA, 22908, USA
| | - Sugoto Mukherjee
- Department of Radiology and Medical Imaging, University of Virginia Health, PO Box 800170, Charlottesville, VA, 22908, USA
| | - Thomas Huerta
- Department of Radiology and Medical Imaging, University of Virginia Health, PO Box 800170, Charlottesville, VA, 22908, USA
| | - John P Mugler
- Department of Radiology and Medical Imaging, University of Virginia Health, PO Box 800170, Charlottesville, VA, 22908, USA
| |
Collapse
|
13
|
Kaufmann TJ, Smits M, Boxerman J, Huang R, Barboriak DP, Weller M, Chung C, Tsien C, Brown PD, Shankar L, Galanis E, Gerstner E, van den Bent MJ, Burns TC, Parney IF, Dunn G, Brastianos PK, Lin NU, Wen PY, Ellingson BM. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro Oncol 2020; 22:757-772. [PMID: 32048719 PMCID: PMC7283031 DOI: 10.1093/neuonc/noaa030] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A recent meeting was held on March 22, 2019, among the FDA, clinical scientists, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocacy groups to discuss challenges and potential solutions for increasing development of therapeutics for central nervous system metastases. A key issue identified at this meeting was the need for consistent tumor measurement for reliable tumor response assessment, including the first step of standardized image acquisition with an MRI protocol that could be implemented in multicenter studies aimed at testing new therapeutics. This document builds upon previous consensus recommendations for a standardized brain tumor imaging protocol (BTIP) in high-grade gliomas and defines a protocol for brain metastases (BTIP-BM) that addresses unique challenges associated with assessment of CNS metastases. The "minimum standard" recommended pulse sequences include: (i) parameter matched pre- and post-contrast inversion recovery (IR)-prepared, isotropic 3D T1-weighted gradient echo (IR-GRE); (ii) axial 2D T2-weighted turbo spin echo acquired after injection of gadolinium-based contrast agent and before post-contrast 3D T1-weighted images; (iii) axial 2D or 3D T2-weighted fluid attenuated inversion recovery; (iv) axial 2D, 3-directional diffusion-weighted images; and (v) post-contrast 2D T1-weighted spin echo images for increased lesion conspicuity. Recommended sequence parameters are provided for both 1.5T and 3T MR systems. An "ideal" protocol is also provided, which replaces IR-GRE with 3D TSE T1-weighted imaging pre- and post-gadolinium, and is best performed at 3T, for which dynamic susceptibility contrast perfusion is included. Recommended perfusion parameters are given.
Collapse
Affiliation(s)
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jerrold Boxerman
- Department of Diagnostic Imaging, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Raymond Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Daniel P Barboriak
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christina Tsien
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lalitha Shankar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Evanthia Galanis
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth Gerstner
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Terry C Burns
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Gavin Dunn
- Department of Neurological Surgery, Washington University, St Louis, Missouri, USA
| | - Priscilla K Brastianos
- Departments of Medicine and Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|