1
|
Cho S, Song S, Yum J, Kim EH, Roh YH, Kim W, Heo K, Na HK, Kim KM. Enlarged perivascular space in the temporal lobe as a prognostic marker in temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2025; 66:1665-1676. [PMID: 39985382 PMCID: PMC12097466 DOI: 10.1111/epi.18301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE This study was undertaken to investigate the regional burden of enlarged perivascular spaces (EPVSs) in patients with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) and explore its prognostic relevance. METHODS In this retrospective observational study, EPVSs in the temporal lobe (T-EPVS), centrum semiovale (CS-EPVS), basal ganglia (BG-EPVS), midbrain, and hippocampus were visually rated in 68 treatment-naïve patients with TLE-HS. Regional EPVS burden was dichotomized into high and low degrees (cutoff: >10 for BG-EPVS/T-EPVS; >20 for CS-EPVS). Cox proportional hazards models were used to determine the potential predictors of seizure freedom (SF; no seizure for >1 year) and delayed SF (SF achieved >6 months after initiating antiseizure medication [ASM]). Multivariate logistic regression using stepwise variable selection based on the Akaike information criterion was performed to investigate whether EPVS burden was associated with medical refractoriness (never achieving SF). RESULTS Of the 68 patients, 20 were classified into the refractory group (29.4%). The high T-EPVS group had an older epilepsy onset (37.3 ± 12.3 vs. 26.5 ± 13.0 years, p = .005), higher pretreatment seizure density (median = 12.0, interquartile range [IQR] = 5.0-20.0 vs. 4.0, IQR = 2.0-10.5, p = .008), and lower focal to bilateral tonic-clonic seizure prevalence (13.3% vs. 73.6%, p < .001) than the low T-EPVS group. High T-EPVS burden (odds ratio [OR] = 10.908, 95% confidence interval [CI] = 1.895-62.789) was an independent predictor of medial refractoriness, along with female sex (OR = 12.906, 95% CI = 2.214-75.220) and ASM treatment duration (OR = .985, 95% CI = .971-.999). The low T-EPVS group had higher probability of achieving delayed SF than the high T-EPVS group (pLog-rank = .030, pCox regression = .038), whereas the probability of achieving SF was comparable between the two groups (pLog-rank = .053, pCox regression = .146). SIGNIFICANCE Increased T-EPVS burden may serve as an imaging marker of unfavorable prognosis in patients with TLE-HS, underscoring the potential role of perivascular dysfunction in diminished ASM response.
Collapse
Affiliation(s)
- Soomi Cho
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Seungwon Song
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Jungyon Yum
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Eun Hwa Kim
- Biostatistics Collaboration Unit, Department of Biomedical Systems InformaticsYonsei University College of MedicineSeoulKorea
| | - Yun Ho Roh
- Biostatistics Collaboration Unit, Department of Biomedical Systems InformaticsYonsei University College of MedicineSeoulKorea
| | - Won‐Joo Kim
- Department of NeurologyGangnam Severance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Kyoung Heo
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Han Kyu Na
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| | - Kyung Min Kim
- Department of NeurologySeverance Hospital, Yonsei University College of MedicineSeoulKorea
| |
Collapse
|
2
|
Zou K, Deng Q, Zhang H, Huang C. Glymphatic system: a gateway for neuroinflammation. Neural Regen Res 2024; 19:2661-2672. [PMID: 38595285 PMCID: PMC11168510 DOI: 10.4103/1673-5374.391312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
The glymphatic system is a relatively recently identified fluid exchange and transport system in the brain. Accumulating evidence indicates that glymphatic function is impaired not only in central nervous system disorders but also in systemic diseases. Systemic diseases can trigger the inflammatory responses in the central nervous system, occasionally leading to sustained inflammation and functional disturbance of the central nervous system. This review summarizes the current knowledge on the association between glymphatic dysfunction and central nervous system inflammation. In addition, we discuss the hypothesis that disease conditions initially associated with peripheral inflammation overwhelm the performance of the glymphatic system, thereby triggering central nervous system dysfunction, chronic neuroinflammation, and neurodegeneration. Future research investigating the role of the glymphatic system in neuroinflammation may offer innovative therapeutic approaches for central nervous system disorders.
Collapse
Affiliation(s)
- Kailu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qingwei Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hong Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Borrelli S, Guisset F, Vanden Bulcke C, Stölting A, Bugli C, Lolli V, Du Pasquier R, van Pesch V, Absinta M, Pasi M, Maggi P. Enlarged perivascular spaces are associated with brain microangiopathy and aging in multiple sclerosis. Mult Scler 2024; 30:983-993. [PMID: 38850029 DOI: 10.1177/13524585241256881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND Growing evidence links brain-MRI enlarged perivascular spaces (EPVS) and multiple sclerosis (MS), but their role remains unclear. OBJECTIVE This study aimed to investigate the cross-sectional associations of EPVS with several neuroinflammatory and neurodegenerative features in a large multicentric-MS cohort. METHODS In total, 207 patients underwent 3T axial-T2-weighted brain-MRI for EPVS assessment (EPVS dichotomized into high/low according to ⩾ 2/< 2 rating categories). MRI biomarkers included brain-predicted age and brain-predicted age difference (brain-PAD), central vein sign (CVS)-positive lesion percentage (CVS%), paramagnetic rim and cortical lesions, T2-lesion load, and brain volumetry. The variable relative importance for EPVS-category prediction was explored using a classification random forest approach. RESULTS High EPVS patients were older (49 vs 44 years, p = 0.003), had ⩾ 1 vascular risk factors (VRFs; p = 0.005), lower CVS% (67% vs 78%, p < 0.001), reduced brain volumes (whole brain: 0.63 vs 0.73, p = 0.01; gray matter: 0.36 vs 0.40; p = 0.002), and older brain-predicted age (58 vs 50 years, p < 0.001). No differences were found for neuroinflammatory markers. After adjusting for age and VFRs (multivariate analyses), the high EPVS category correlated with lower CVS% (odds ratio (OR) = 0.98, 95% confidence interval (CI) = 0.96-0.99; p = 0.02), lower whole brain (OR = 0.01, 95% CI = 0.0003-0.5; p = 0.02), gray matter (OR = 0.0004, 95% CI = 0.0000004-0.4; p = 0.03) volumes, and higher brain-PAD (OR = 1.05, 95% CI = 1.01-1.09; p = 0.02). Random forest identified brain-PAD as the most important predictor of high EPVS. CONCLUSION EPVS in MS likely reflect microangiopathic disease rather than neuroinflammation, potentially contributing to accelerated neurodegeneration.
Collapse
Affiliation(s)
- Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - François Guisset
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Colin Vanden Bulcke
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anna Stölting
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Céline Bugli
- Plateforme technologique de Support en Méthodologie et Calcul Statistique, Université catholique de Louvain, Brussels, Belgium
| | - Valentina Lolli
- Department of Radiology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - Renaud Du Pasquier
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Vincent van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Martina Absinta
- Vita-Salute San Raffaele University, Milan, Italy/Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marco Pasi
- Stroke Unit, Department of Neurology, CIC-IT 1415, CHRU de Tours, INSERM 1253 iBrain, Tours, France
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland/Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
4
|
Kamagata K, Saito Y, Andica C, Uchida W, Takabayashi K, Yoshida S, Hagiwara A, Fujita S, Nakaya M, Akashi T, Wada A, Kamiya K, Hori M, Aoki S. Noninvasive Magnetic Resonance Imaging Measures of Glymphatic System Activity. J Magn Reson Imaging 2024; 59:1476-1493. [PMID: 37655849 DOI: 10.1002/jmri.28977] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
The comprehension of the glymphatic system, a postulated mechanism responsible for the removal of interstitial solutes within the central nervous system (CNS), has witnessed substantial progress recently. While direct measurement techniques involving fluorescence and contrast agent tracers have demonstrated success in animal studies, their application in humans is invasive and presents challenges. Hence, exploring alternative noninvasive approaches that enable glymphatic research in humans is imperative. This review primarily focuses on several noninvasive magnetic resonance imaging (MRI) techniques, encompassing perivascular space (PVS) imaging, diffusion tensor image analysis along the PVS, arterial spin labeling, chemical exchange saturation transfer, and intravoxel incoherent motion. These methodologies provide valuable insights into the dynamics of interstitial fluid, water permeability across the blood-brain barrier, and cerebrospinal fluid flow within the cerebral parenchyma. Furthermore, the review elucidates the underlying concept and clinical applications of these noninvasive MRI techniques, highlighting their strengths and limitations. It addresses concerns about the relationship between glymphatic system activity and pathological alterations, emphasizing the necessity for further studies to establish correlations between noninvasive MRI measurements and pathological findings. Additionally, the challenges associated with conducting multisite studies, such as variability in MRI systems and acquisition parameters, are addressed, with a suggestion for the use of harmonization methods, such as the combined association test (COMBAT), to enhance standardization and statistical power. Current research gaps and future directions in noninvasive MRI techniques for assessing the glymphatic system are discussed, emphasizing the need for larger sample sizes, harmonization studies, and combined approaches. In conclusion, this review provides invaluable insights into the application of noninvasive MRI methods for monitoring glymphatic system activity in the CNS. It highlights their potential in advancing our understanding of the glymphatic system, facilitating clinical applications, and paving the way for future research endeavors in this field. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seina Yoshida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Moto Nakaya
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| |
Collapse
|
5
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
6
|
Alghanimy A, Work LM, Holmes WM. The glymphatic system and multiple sclerosis: An evolving connection. Mult Scler Relat Disord 2024; 83:105456. [PMID: 38266608 DOI: 10.1016/j.msard.2024.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder that affects the central nervous system, resulting in demyelination and an array of neurological manifestations. Recently, there has been significant scientific interest in the glymphatic system, which operates as a waste-clearance system for the brain. This article reviews the existing literature, and explores potential links between the glymphatic system and MS, shedding light on its evolving significance in the context of MS pathogenesis. The authors consider the pathophysiological implications of glymphatic dysfunction in MS, the impact of disrupted sleep on glymphatic function, and the bidirectional relationship between MS and sleep disturbances. By offering an understanding of the intricate interplay between the glymphatic system and MS, this review provides valuable insights which may lead to improved diagnostic techniques and more effective therapeutic interventions.
Collapse
Affiliation(s)
- Alaa Alghanimy
- School of Psychology and Neuroscience, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow G61 1QH, United Kingdom; Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Lorraine M Work
- School of Cardiovascular and Metabolic Health, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - William M Holmes
- School of Psychology and Neuroscience, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow G61 1QH, United Kingdom
| |
Collapse
|
7
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Subhash S, Chaurawal N, Raza K. Promises of Lipid-Based Nanocarriers for Delivery of Dimethyl Fumarate to Multiple Sclerosis Brain. Methods Mol Biol 2024; 2761:457-475. [PMID: 38427255 DOI: 10.1007/978-1-0716-3662-6_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) infecting 2.5 million people worldwide. It is the most common nontraumatic neurological impairment in young adults. The blood-brain barrier rupture for multiple sclerosis pathogenesis has two effects: first, during the onset of the immunological attack, and second, for the CNS self-sustained "inside-out" demyelination and neurodegeneration processes. In addition to genetic variations, environmental and lifestyle variables can also significantly increase the risk of developing MS. Dimethyl fumarate (DMF) and sphingosine-1-phosphate (S1P) receptor modulators that may pass the blood-brain barrier and have positive direct effects in the CNS with quite diverse mechanisms of action raise the possibility that a combination therapy could be successful in treating MS. Lipid nanocarriers are recognized as one of the best drug delivery techniques to the brain for effective brain delivery. Numerous scientific studies have shown that lipid nanoparticles can enhance the lipid solubility, oral bioavailability, and brain availability of the drugs. Nanolipidic carriers for DMF delivery could be derived through vitamin D, tocopherol acetate, stearic acid, quercetin, cell-mimicking platelet-based, and chitosan-alginate core-shell-corona-shaped nanoparticles. Clinical and laboratory diagnosis of MS can be performed mainly through magnetic resonance imaging. The advancements in nanotechnology have enabled the clinicians to cross the blood-brain barrier and to target the brain and central nervous system of the patient with multiple sclerosis.
Collapse
Affiliation(s)
- Sreya Subhash
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| | - Nishtha Chaurawal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India.
| |
Collapse
|
9
|
Alghanimy AA, Giovannoni G, Lechner-Scott J, Levy M, Yeh EA, Hawkes CH. Is multiple sclerosis a glymphaticopathy? Mult Scler Relat Disord 2023; 80:105141. [PMID: 38039696 DOI: 10.1016/j.msard.2023.105141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Affiliation(s)
- Alaa A Alghanimy
- Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Science, University of Glasgow, UK.
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - E Ann Yeh
- Department of Pediatrics (Neurology), Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Christopher H Hawkes
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Shahbodaghy F, Shafaghi L, Rostampour M, Rostampour A, Kolivand P, Gharaylou Z. Symmetry differences of structural connectivity in multiple sclerosis and healthy state. Brain Res Bull 2023; 205:110816. [PMID: 37972899 DOI: 10.1016/j.brainresbull.2023.110816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Focal and diffuse cerebral damages occur in Multiple Sclerosis (MS) that promotes profound shifts in local and global structural connectivity parameters, mainly derived from diffusion tensor imaging. Most of the reconstruction analyses have applied conventional tracking algorithms largely based on the controversial streamline count. For a more credible explanation of the diffusion MRI signal, we used convex optimization modeling for the microstructure-informed tractography2 (COMMIT2) framework. All multi-shell diffusion data from 40 healthy controls (HCs) and 40 relapsing-remitting MS (RRMS) patients were transformed into COMMIT2-weighted matrices based on the Schefer-200 parcels atlas (7 networks) and 14 bilateral subcortical regions. The success of the classification process between MS and healthy state was efficiently predicted by the left DMN-related structures and visual network-associated pathways. Additionally, the lesion volume and age of onset were remarkably correlated with the components of the left DMN. Using complementary approaches such as global metrics revealed differences in WM microstructural integrity between MS and HCs (efficiency, strength). Our findings demonstrated that the cutting-edge diffusion MRI biomarkers could hold the potential for interpreting brain abnormalities in a more distinctive way.
Collapse
Affiliation(s)
- Fatemeh Shahbodaghy
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Lida Shafaghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoumeh Rostampour
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Rostampour
- Department of Computer Engineering and Information Technology, Payame Noor University, Tehran, Iran
| | - Pirhossein Kolivand
- Department of Health Economics, School of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
11
|
Rümenapp JE, Sendel M, Kersebaum D, Larsen N, Jansen O, Baron R. Impaired glymphatic flow as a potential driver of pain chronification. Pain 2023; 164:2191-2195. [PMID: 37433183 DOI: 10.1097/j.pain.0000000000002979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 07/13/2023]
Affiliation(s)
- Johanna Elisabeth Rümenapp
- Division of Neurological Pain Research and Therapy, Clinic for Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Clinic for Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Clinic for Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Naomi Larsen
- Clinic for Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Olav Jansen
- Clinic for Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Clinic for Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
12
|
Vivash L. Dilated Virchow Robin spaces in multiple sclerosis - a generalised marker of disease? EBioMedicine 2023; 94:104708. [PMID: 37422981 PMCID: PMC10435834 DOI: 10.1016/j.ebiom.2023.104708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne 3004, Australia; Department of Neurology, Alfred Hospital, 55 Commercial Road, Melbourne 3004, Australia.
| |
Collapse
|
13
|
Okar SV, Hu F, Shinohara RT, Beck ES, Reich DS, Ineichen BV. The etiology and evolution of magnetic resonance imaging-visible perivascular spaces: Systematic review and meta-analysis. Front Neurosci 2023; 17:1038011. [PMID: 37065926 PMCID: PMC10098201 DOI: 10.3389/fnins.2023.1038011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
ObjectivesPerivascular spaces have been involved in neuroinflammatory and neurodegenerative diseases. Upon a certain size, these spaces can become visible on magnetic resonance imaging (MRI), referred to as enlarged perivascular spaces (EPVS) or MRI-visible perivascular spaces (MVPVS). However, the lack of systematic evidence on etiology and temporal dynamics of MVPVS hampers their diagnostic utility as MRI biomarker. Thus, the goal of this systematic review was to summarize potential etiologies and evolution of MVPVS.MethodsIn a comprehensive literature search, out of 1,488 unique publications, 140 records assessing etiopathogenesis and dynamics of MVPVS were eligible for a qualitative summary. 6 records were included in a meta-analysis to assess the association between MVPVS and brain atrophy.ResultsFour overarching and partly overlapping etiologies of MVPVS have been proposed: (1) Impairment of interstitial fluid circulation, (2) Spiral elongation of arteries, (3) Brain atrophy and/or perivascular myelin loss, and (4) Immune cell accumulation in the perivascular space. The meta-analysis in patients with neuroinflammatory diseases did not support an association between MVPVS and brain volume measures [R: −0.15 (95%-CI −0.40–0.11)]. Based on few and mostly small studies in tumefactive MVPVS and in vascular and neuroinflammatory diseases, temporal evolution of MVPVS is slow.ConclusionCollectively, this study provides high-grade evidence for MVPVS etiopathogenesis and temporal dynamics. Although several potential etiologies for MVPVS emergence have been proposed, they are only partially supported by data. Advanced MRI methods should be employed to further dissect etiopathogenesis and evolution of MVPVS. This can benefit their implementation as an imaging biomarker.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=346564, identifier CRD42022346564.
Collapse
Affiliation(s)
- Serhat V. Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Fengling Hu
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Russell T. Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin S. Beck
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Benjamin V. Ineichen
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
- *Correspondence: Benjamin V. Ineichen, , ; orcid.org/0000-0003-1362-4819
| |
Collapse
|
14
|
Liu H, Chen B, Zhu Q. Potential application of hydrogel to the diagnosis and treatment of multiple sclerosis. J Biol Eng 2022; 16:10. [PMID: 35395765 PMCID: PMC8991948 DOI: 10.1186/s13036-022-00288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. This disorder may cause progressive and permanent impairment, placing significant physical and psychological strain on sufferers. Each progress in MS therapy marks a significant advancement in neurological research. Hydrogels can serve as a scaffold with high water content, high expansibility, and biocompatibility to improve MS cell proliferation in vitro and therapeutic drug delivery to cells in vivo. Hydrogels may also be utilized as biosensors to detect MS-related proteins. Recent research has employed hydrogels as an adjuvant imaging agent in immunohistochemistry assays. Following an overview of the development and use of hydrogels in MS diagnostic and therapy, this review discussed hydrogel’s advantages and future opportunities in the diagnosis and treatment of MS. Graphical abstract ![]()
Collapse
Affiliation(s)
- Haochuan Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China.
| | - Qingsan Zhu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China.
| |
Collapse
|