3
|
Schlaeger S, Mühlau M, Gilbert G, Vavasour I, Amthor T, Doneva M, Menegaux A, Mora M, Lauerer M, Pongratz V, Zimmer C, Wiestler B, Kirschke JS, Preibisch C, Berg RC. Sensitivity of multi-parametric quantitative magnetic resonance imaging for multiple sclerosis pathology. PLoS One 2025; 20:e0318415. [PMID: 40238815 PMCID: PMC12002544 DOI: 10.1371/journal.pone.0318415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/15/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND In recent years, quantitative magnetic resonance imaging (MRI) made progress towards clinical applicability mainly through advances in acceleration techniques. In patients with multiple sclerosis (MS), objective quantitative MRI-based characterization of subtle pathological alterations in lesions, perilesion (PL), as well as normal-appearing (NA) white matter (NAWM) and grey matter (NAGM) would revolutionize clinical assessment. While numerous quantitative techniques have been applied in studies of MS patients, their diagnostic significance especially for individual patients with relatively short disease duration is unclear. Therefore, we investigated the sensitivity of several quantitative MRI parameters to focal and diffuse MS pathology in a clinical feasibility study with a small sample size. METHODS In 13 MS patients with a mean disease duration of 8 years and a mean EDSS of 1.1 as well as 14 healthy age-matched controls (HC), we acquired nine (semi-)quantitative magnetic resonance (MR) biomarkers, namely myelin water fraction (MWF), magnetization transfer (MT) saturation (MTsat), inhomogeneous MT ratio (ihMTR), quantitative longitudinal relaxation time (qT1), intrinsic (qT2) and effective (qT2*) quantitative transverse relaxation times, proton density (PD), quantitative susceptibility mapping (QSM), and the ratio between T1-weighted and T2-weighted images (T1w/T2w). Four volumes of interest were automatically defined (NA/HC grey matter (GM), NA/HC white matter (WM), lesion, and PL), and biomarker values were analyzed between groups and tissue types. RESULTS For all nine assessed biomarkers, mean values per patient were significantly different between lesion, PL, and NAWM (p < 0.05, FDR corrected). The lesion values of qT1, qT2, qT2 * , PD, and QSM were rather inhomogeneous. Furthermore, MWF, MTsat, and ihMTR were sensitive to diffuse WM pathology in MS with the largest absolute differences between NAWM and HCWM medians, albeit not statistically significant after correction for multiple testing. DISCUSSION In our study, we successfully compared nine different quantitative MR parameters within the same subjects for tissue characterization of MS. Our study adds relevant aspects to the current debate on different sensitivities of various quantitative MR biomarkers to MS pathology. While all investigated MR biomarkers allowed characterizing lesions in individual patients, a separation of NAWM and HCWM could be most promising with the myelin-sensitive measures MWF, MTsat, and ihMTR.
Collapse
Affiliation(s)
- Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mark Mühlau
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Irene Vavasour
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria Mora
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Lauerer
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Viola Pongratz
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ronja C. Berg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Cagol A, Ocampo-Pineda M, Lu PJ, Weigel M, Barakovic M, Melie-Garcia L, Chen X, Lutti A, Calabrese P, Kuhle J, Kappos L, Sormani MP, Granziera C. Advanced Quantitative MRI Unveils Microstructural Thalamic Changes Reflecting Disease Progression in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200299. [PMID: 39270143 PMCID: PMC11409727 DOI: 10.1212/nxi.0000000000200299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND OBJECTIVES In patients with multiple sclerosis (PwMS), thalamic atrophy occurs during the disease course. However, there is little understanding of the mechanisms leading to volume loss and of the relationship between microstructural thalamic pathology and disease progression. This cross-sectional and longitudinal study aimed to comprehensively characterize in vivo pathologic changes within thalamic microstructure in PwMS using advanced multiparametric quantitative MRI (qMRI). METHODS Thalamic microstructural integrity was evaluated using quantitative T1, magnetization transfer saturation, multishell diffusion, and quantitative susceptibility mapping (QSM) in 183 PwMS and 105 healthy controls (HCs). The same qMRI protocol was available for 127 PwMS and 73 HCs after a 2-year follow-up period. Inclusion criteria for PwMS encompassed either an active relapsing-remitting MS (RRMS) or inactive progressive MS (PMS) disease course. Thalamic alterations were compared between PwMS and HCs and among disease phenotypes. In addition, the study investigated the relationship between thalamic damage and clinical and conventional MRI measures of disease severity. RESULTS Compared with HCs, PwMS exhibited substantial thalamic alterations, indicative of microstructural and macrostructural damage, demyelination, and disruption in iron homeostasis. These alterations extended beyond focal thalamic lesions, affecting normal-appearing thalamic tissue diffusely. Over the follow-up period, PwMS displayed an accelerated decrease in myelin volume fraction [mean difference in annualized percentage change (MD-ApC) = -1.50; p = 0.041] and increase in quantitative T1 (MD-ApC = 0.92; p < 0.0001) values, indicating heightened demyelinating and neurodegenerative processes. The observed differences between PwMS and HCs were substantially driven by the subgroup with PMS, wherein thalamic degeneration was significantly accelerated, even in comparison with patients with RRMS. Thalamic qMRI alterations showed extensive correlations with conventional MRI, clinical, and cognitive disease burden measures. Disability progression over follow-up was associated with accelerated thalamic degeneration, as reflected by enhanced diffusion (β = -0.067; p = 0.039) and QSM (β = -0.077; p = 0.027) changes. Thalamic qMRI metrics emerged as significant predictors of neurologic and cognitive disability even when accounting for other established markers including white matter lesion load and brain and thalamic atrophy. DISCUSSION These findings offer deeper insights into thalamic pathology in PwMS, emphasizing the clinical relevance of thalamic damage and its link to disease progression. Advanced qMRI biomarkers show promising potential in guiding interventions aimed at mitigating thalamic neurodegenerative processes.
Collapse
Affiliation(s)
- Alessandro Cagol
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Mario Ocampo-Pineda
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Po-Jui Lu
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Matthias Weigel
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Muhamed Barakovic
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Lester Melie-Garcia
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Xinjie Chen
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Antoine Lutti
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Pasquale Calabrese
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Jens Kuhle
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Ludwig Kappos
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Maria Pia Sormani
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Cristina Granziera
- From the Translational Imaging in Neurology (ThINk) Basel (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Department of Neurology (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (A.C., M.O.-P., P.-J.L., M.W., M.B., L.M.-G., X.C., J.K., L.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Dipartimento di Scienze della Salute, (A.C., M.P.S.), Università degli Studi di Genova, Italy; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Laboratory for Research in Neuroimaging (A.L.), Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne; Neuropsychology and Behavioral Neurology Unit (P.C.), Division of Cognitive and Molecular Neuroscience, University of Basel, Switzerland; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| |
Collapse
|
9
|
Ravano V, Piredda GF, Krasensky J, Andelova M, Uher T, Srpova B, Havrdova EK, Vodehnalova K, Horakova D, Nytrova P, Disselhorst JA, Hilbert T, Maréchal B, Thiran JP, Kober T, Richiardi J, Vaneckova M. Tract-wise microstructural analysis informs on current and future disability in early multiple sclerosis. J Neurol 2024; 271:631-641. [PMID: 37819462 PMCID: PMC10827809 DOI: 10.1007/s00415-023-12023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVES Microstructural characterization of patients with multiple sclerosis (MS) has been shown to correlate better with disability compared to conventional radiological biomarkers. Quantitative MRI provides effective means to characterize microstructural brain tissue changes both in lesions and normal-appearing brain tissue. However, the impact of the location of microstructural alterations in terms of neuronal pathways has not been thoroughly explored so far. Here, we study the extent and the location of tissue changes probed using quantitative MRI along white matter (WM) tracts extracted from a connectivity atlas. METHODS We quantified voxel-wise T1 tissue alterations compared to normative values in a cohort of 99 MS patients. For each WM tract, we extracted metrics reflecting tissue alterations both in lesions and normal-appearing WM and correlated these with cross-sectional disability and disability evolution after 2 years. RESULTS In early MS patients, T1 alterations in normal-appearing WM correlated better with disability evolution compared to cross-sectional disability. Further, the presence of lesions in supratentorial tracts was more strongly associated with cross-sectional disability, while microstructural alterations in infratentorial pathways yielded higher correlations with disability evolution. In progressive patients, all major WM pathways contributed similarly to explaining disability, and correlations with disability evolution were generally poor. CONCLUSIONS We showed that microstructural changes evaluated in specific WM pathways contribute to explaining future disability in early MS, hence highlighting the potential of tract-wise analyses in monitoring disease progression. Further, the proposed technique allows to estimate WM tract-specific microstructural characteristics in clinically compatible acquisition times, without the need for advanced diffusion imaging.
Collapse
Affiliation(s)
- Veronica Ravano
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland.
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Gian Franco Piredda
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jan Krasensky
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michaela Andelova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Barbora Srpova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Karolina Vodehnalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petra Nytrova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jonathan A Disselhorst
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bénédicte Maréchal
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonas Richiardi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|