1
|
Singh NK, Singh P, Varshney P, Singh A, Bhushan B. Multimodal action of phosphodiesterase 5 inhibitors against neurodegenerative disorders: An update review. J Biochem Mol Toxicol 2024; 38:e70021. [PMID: 39425458 DOI: 10.1002/jbt.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Phosphodiesterase type 5 (PDE5) is an enzyme primarily found in the smooth muscle of the corpus cavernosum and also highly expressed in the substantia nigra, cerebellum, caudate, hippocampal regions and cerebellar purkinje cells, responsible for selectively breaking down cyclic guanosine monophosphate (cGMP) into 5'-GMP and regulate intracellular cGMP levels. As a second messenger, cyclic GMP enhances signals at postsynaptic receptors and triggers downstream effector molecules, leading to changes in gene expression and neuronal responses. Additionally, cGMP signaling transduction cascade, present in the brain, is also essential for learning and memory processes. Mechanistically, PDE5 inhibitors share structural similarities with cGMP, competitively binding to PDE5 and inhibiting cGMP hydrolysis. This action enhances the effects of nitric oxide, resulting in anti-inflammatory and neuroprotective effects. Neurodegenerative disorders entail the progressive loss of neuron structure, culminating in neuronal cell death, with currently available drugs providing only limited symptomatic relief, rendering neurodegeneration considered incurable. PDE5 inhibitors have recently emerged as a potential therapeutic approach for neurodegeneration, neuroinflammation, and diseases involving cognitive impairment. This review elucidates the principal roles of 3',5'-cyclic adenosine monophosphate (cAMP) and cGMP signaling pathways in neuronal functions, believed to play pivotal roles in the pathogenesis of various neurodegenerative disorders. It provides an updated assessment of PDE5 inhibitors as disease-modifying agents for conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral ischemia, Huntington's disease, and neuroinflammation. The paper aims to review the current understanding of PDE5 inhibitors, which concurrently regulate both cAMP and cGMP signaling pathways, positing that they may exert complementary and synergistic effects in modifying neurodegeneration, thus presenting a novel direction in therapeutic discovery. Moreover, the review provides critical about biological functions, therapeutic potentials, limitations, challenges, and emerging applications of selective PDE5 inhibitors. This comprehensive overview aims to guide future academic and industrial endeavors in this field.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Pranjul Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Prachi Varshney
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| | - Bharat Bhushan
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Chaumuhan, Mathura, India
| |
Collapse
|
2
|
Tadros D, Abdelhalim TI, Sarhan N, El-Anwar N, Elkholy RA, Tahoon D, Sorour OA. Histopathology and electron microscopy evaluation of the sildenafil effect on diabetic rats' retinae. Indian J Ophthalmol 2024; 72:S111-S118. [PMID: 38131552 PMCID: PMC10833156 DOI: 10.4103/ijo.ijo_976_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Although there is increasing evidence that phosphodiesterase-5 (PDE-5) inhibitors modify the effect of diabetes on different tissues, its effect on diabetic retinopathy is not well studied. METHODS Forty male Sprague-Dawley (SD) rats were divided into four groups: group I = control group that received no treatment; group II (diabetic group), in which diabetes was induced by a single streptozotocin injection; group III (sildenafil small dose, SSD), in which diabetes was similarly introduced (however, rats received daily oral 1 mg/kg sildenafil citrate (SC) for 3 months); and group IV (sildenafil large dose, SLD), which was as in group 3, but SC was 2.5 mg/kg. After 3 months, globes were removed and retinae were dissected; one globe from each rat was examined by light microscopy (LM), and the other by electron microscopy (EM). RESULTS In contrast to the control group, diabetic rats in group II demonstrated well-established diabetic changes in the form of capillary congestion, decreased cell population, hyaline changes of capillary walls, and degenerated nerve fiber layer by LM. Similarly, EM demonstrated photoreceptor degeneration, mitochondrial cristolysis, and vacuolated depleted cells among other features in group II. These diabetic features were less prominent in group III and nearly absent in group IV. CONCLUSION SC use in the early stages of DR may prevent/delay diabetic retinopathy development or progression in diabetic rat models, an effect that seems to be dose-related.
Collapse
Affiliation(s)
- Dina Tadros
- Department of Ophthalmology, Faculty of Medicine, Tanta University, Egypt
| | - Tamer I Abdelhalim
- Department of Ophthalmology, Faculty of Medicine, Tanta University, Egypt
| | - Naglaa Sarhan
- Department of Histology, Faculty of Medicine, Tanta University, Egypt
| | - Noha El-Anwar
- Department of Pathology, Faculty of Medicine, Tanta University, Egypt
- Department of Pathology, Armed Forces, College of Medicine, Egypt
| | - Reem A. Elkholy
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
- Department of Pharmacology, School of Medicine, Badr University In Cairo, Egypt
| | - Dina Tahoon
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Osama A Sorour
- Department of Ophthalmology, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
3
|
Pușcașu C, Zanfirescu A, Negreș S, Șeremet OC. Exploring the Multifaceted Potential of Sildenafil in Medicine. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2190. [PMID: 38138293 PMCID: PMC10744870 DOI: 10.3390/medicina59122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Phosphodiesterase type 5 (PDE5) is pivotal in cellular signalling, regulating cyclic guanosine monophosphate (cGMP) levels crucial for smooth muscle relaxation and vasodilation. By targeting cGMP for degradation, PDE5 inhibits sustained vasodilation. PDE5 operates in diverse anatomical regions, with its upregulation linked to various pathologies, including cancer and neurodegenerative diseases. Sildenafil, a selective PDE5 inhibitor, is prescribed for erectile dysfunction and pulmonary arterial hypertension. However, considering the extensive roles of PDE5, sildenafil might be useful in other pathologies. This review aims to comprehensively explore sildenafil's therapeutic potential across medicine, addressing a gap in the current literature. Recognising sildenafil's broader potential may unveil new treatment avenues, optimising existing approaches and broadening its clinical application.
Collapse
Affiliation(s)
| | - Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (O.C.Ș.)
| | | | | |
Collapse
|
4
|
Samaja M, Ottolenghi S. The Oxygen Cascade from Atmosphere to Mitochondria as a Tool to Understand the (Mal)adaptation to Hypoxia. Int J Mol Sci 2023; 24:ijms24043670. [PMID: 36835089 PMCID: PMC9960749 DOI: 10.3390/ijms24043670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypoxia is a life-threatening challenge for about 1% of the world population, as well as a contributor to high morbidity and mortality scores in patients affected by various cardiopulmonary, hematological, and circulatory diseases. However, the adaptation to hypoxia represents a failure for a relevant portion of the cases as the pathways of potential adaptation often conflict with well-being and generate diseases that in certain areas of the world still afflict up to one-third of the populations living at altitude. To help understand the mechanisms of adaptation and maladaptation, this review examines the various steps of the oxygen cascade from the atmosphere to the mitochondria distinguishing the patterns related to physiological (i.e., due to altitude) and pathological (i.e., due to a pre-existing disease) hypoxia. The aim is to assess the ability of humans to adapt to hypoxia in a multidisciplinary approach that correlates the function of genes, molecules, and cells with the physiologic and pathological outcomes. We conclude that, in most cases, it is not hypoxia by itself that generates diseases, but rather the attempts to adapt to the hypoxia condition. This underlies the paradigm shift that when adaptation to hypoxia becomes excessive, it translates into maladaptation.
Collapse
Affiliation(s)
- Michele Samaja
- MAGI GROUP, San Felice del Benaco, 25010 Brescia, Italy
- Correspondence:
| | - Sara Ottolenghi
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| |
Collapse
|
5
|
Rey F, Balsari A, Giallongo T, Ottolenghi S, Di Giulio AM, Samaja M, Carelli S. Erythropoietin as a Neuroprotective Molecule: An Overview of Its Therapeutic Potential in Neurodegenerative Diseases. ASN Neuro 2020; 11:1759091419871420. [PMID: 31450955 PMCID: PMC6712762 DOI: 10.1177/1759091419871420] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a cytokine mainly induced in hypoxia conditions. Its major production site is the kidney. EPO primarily acts on the erythroid progenitor cells in the bone marrow. More and more studies are highlighting its secondary functions, with a crucial focus on its role in the central nervous system. Here, EPO may interact with up to four distinct isoforms of its receptor (erythropoietin receptor [EPOR]), activating different signaling cascades with roles in neuroprotection and neurogenesis. Indeed, the EPO/EPOR axis has been widely studied in the neurodegenerative diseases field. Its potential therapeutic effects have been evaluated in multiple disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, spinal cord injury, as well as brain ischemia, hypoxia, and hyperoxia. EPO is showing great promise by counteracting secondary neuroinflammatory processes, reactive oxygen species imbalance, and cell death in these diseases. Multiple studies have been performed both in vitro and in vivo, characterizing the mechanisms through which EPO exerts its neurotrophic action. In some cases, clinical trials involving EPO have been performed, highlighting its therapeutic potential. Together, all these works indicate the potential beneficial effects of EPO.
Collapse
Affiliation(s)
- Federica Rey
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Alice Balsari
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Toniella Giallongo
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Sara Ottolenghi
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Anna M Di Giulio
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| | - Michele Samaja
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Stephana Carelli
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| |
Collapse
|
6
|
Abstract
Nitric oxide/cyclic guanosine monophosphate (cGMP) signaling is compromised in Alzheimer’s disease (AD), and phosphodiesterase 5 (PDE5), which degrades cGMP, is upregulated. Sildenafil inhibits PDE5 and increases cGMP levels. Integrating previous findings, we determine that most doses of sildenafil (especially low doses) likely activate peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) via protein kinase G-mediated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) phosphorylation and/or Sirtuin-1 activation and PGC1α deacetylation. Via PGC1α signaling, low-dose sildenafil likely suppresses β-secretase 1 expression and amyloid-β (Aβ) generation, upregulates antioxidant enzymes, and induces mitochondrial biogenesis. Plus, sildenafil should increase brain perfusion, insulin sensitivity, long-term potentiation, and neurogenesis while suppressing neural apoptosis and inflammation. A systematic review of sildenafil in AD was undertaken. In vitro, sildenafil protected neural mitochondria from Aβ and advanced glycation end products. In transgenic AD mice, sildenafil was found to rescue deficits in CREB phosphorylation and memory, upregulate brain-derived neurotrophic factor, reduce reactive astrocytes and microglia, decrease interleukin-1β, interleukin-6, and tumor necrosis factor-α, decrease neural apoptosis, increase neurogenesis, and reduce tau hyperphosphorylation. All studies that tested Aβ levels reported significant improvements except the two that used the highest dosage, consistent with the dose-limiting effect of cGMP-induced phosphodiesterase 2 (PDE2) activation and cAMP depletion on PGC1α signaling. In AD patients, a single dose of sildenafil decreased spontaneous neural activity, increased cerebral blood flow, and increased the cerebral metabolic rate of oxygen. A randomized control trial of sildenafil (ideally with a PDE2 inhibitor) in AD patients is warranted.
Collapse
|
7
|
Tu Z, Tan X, Li S, Cui J, Tu S, Jiang L. The therapeutic effect of controlled reoxygenation on chronic hypoxia-associated brain injury. Biol Open 2019; 8:bio.039370. [PMID: 31719034 PMCID: PMC6918765 DOI: 10.1242/bio.039370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cardiopulmonary bypass (CPB) is the most general technique applied in congenital heart disease (CHD). However, standard CPB poses a specific pathologic condition for patients during surgery: exposure to reoxygenation. When surgery is performed on cyanotic infants, standard CPB is usually initiated at a high concentration of oxygen without consideration of cytotoxic effects. Controlled reoxygenation is defined as using normoxic CPB with a pump primed to the PO2 (oxygen tension in the blood), which is matched to the patient's preoperative saturation. The aim of this study was to determine whether controlled reoxygenation could avoid standard reoxygenation injury and also to clarify the molecular signaling pathways during hypoxia. We successfully reproduced the abnormal brain observed in mice with chronic hypoxia during early postnatal development – equivalent to the third trimester in human. Mice were treated with standard reoxygenation and controlled reoxygenation after hypoxia for 24 h. We then assessed the brain tissue of these mice. In standard reoxygenation-treated hypoxia mice, the caspase-3-dependent neuronal apoptosis was enhanced by increasing concentration of oxygen. Interestingly, controlled reoxygenation inhibited neuron and glial cell apoptosis through suppressing cleavage of caspase-3 and PARP. We also found that controlled reoxygenation suppressed LCN2 expression and inflammatory cytokine (including TNF-α, IL-6, and CXCL10) production, in which the JAK2/STAT3 signaling pathway might participate. In conclusion, our findings propose the novel therapeutic potential of controlled reoxygenation on CPB during CHD. Summary: Controlled reoxygenation may provide an effective therapeutic strategy for hypoxia-induced tissue injury via regulation of the JAK2/STAT3 signaling pathway. It will help make better informed clinical treatment decisions for cyanotic infants.
Collapse
Affiliation(s)
- Zhenzhen Tu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing 400016, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Xingqin Tan
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing 400016, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Shangyingying Li
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China
| | - Jie Cui
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China
| | - Shengfen Tu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing 400016, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Li Jiang
- China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing 400016, China .,Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China
| |
Collapse
|
8
|
Duarte-Silva E, Araújo SMDR, Oliveira WH, Lós DBD, França MERD, Bonfanti AP, Peron G, Thomaz LDL, Verinaud L, Nunes AKDS, Peixoto CA. Sildenafil ameliorates EAE by decreasing apoptosis in the spinal cord of C57BL/6 mice. J Neuroimmunol 2018; 321:125-137. [DOI: 10.1016/j.jneuroim.2018.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
|
9
|
Lack of acclimatization to chronic hypoxia in humans in the Antarctica. Sci Rep 2017; 7:18090. [PMID: 29273712 PMCID: PMC5741743 DOI: 10.1038/s41598-017-18212-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/05/2017] [Indexed: 01/31/2023] Open
Abstract
The study was carried out at Concordia Station (Antarctic Plateau). The aim was to investigate the respiratory and haematological responses to hypoxia in healthy subjects living at constant altitude. Thirteen men and women (34.1 ± 3.1 years) were exposed for 10 months to hypobaric hypoxia (oxygen level equivalent to 3800 m asl). These unique conditions enable a greater accuracy of monitoring human responses to chronic hypoxia than can be achieved elsewhere. Blood haemoglobin and erythropoietin concentrations were determined at sea level (Pre), and after 3, 7, 20, 90 and 300 days at altitude. Blood gas analysis, base excess and arterial oxygen saturation were measured at Pre, and after 150 and 300 days at altitude. Erythropoietin returned quickly to baseline level after a transient increase in the first days. Blood haemoglobin concentration started increasing at day 7 and remained markedly higher for the entire duration of the mission. At day 150 the blood carbon dioxide partial pressure was markedly reduced, and consequently blood pH remained higher at negative base excess until day 300. The arterial oxygen saturation remained lower than Pre throughout. In conclusion, humans display little capacity of hypoxia acclimatization even after ten months of constant exposure to low oxygen partial pressure.
Collapse
|
10
|
Terraneo L, Samaja M. Comparative Response of Brain to Chronic Hypoxia and Hyperoxia. Int J Mol Sci 2017; 18:ijms18091914. [PMID: 28880206 PMCID: PMC5618563 DOI: 10.3390/ijms18091914] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/25/2022] Open
Abstract
Two antithetic terms, hypoxia and hyperoxia, i.e., insufficient and excess oxygen availability with respect to needs, are thought to trigger opposite responses in cells and tissues. This review aims at summarizing the molecular and cellular mechanisms underlying hypoxia and hyperoxia in brain and cerebral tissue, a context that may prove to be useful for characterizing not only several clinically relevant aspects, but also aspects related to the evolution of oxygen transport and use by the tissues. While the response to acute hypoxia/hyperoxia presumably recruits only a minor portion of the potentially involved cell machinery, focusing into chronic conditions, instead, enables to take into consideration a wider range of potential responses to oxygen-linked stress, spanning from metabolic to genic. We will examine how various brain subsystems, including energetic metabolism, oxygen sensing, recruitment of pro-survival pathways as protein kinase B (Akt), mitogen-activated protein kinases (MAPK), neurotrophins (BDNF), erythropoietin (Epo) and its receptors (EpoR), neuroglobin (Ngb), nitric oxide (NO), carbon monoxide (CO), deal with chronic hypoxia and hyperoxia to end-up with the final outcomes, oxidative stress and brain damage. A more complex than expected pattern results, which emphasizes the delicate balance between the severity of the stress imposed by hypoxia and hyperoxia and the recruitment of molecular and cellular defense patterns. While for certain functions the expectation that hypoxia and hyperoxia should cause opposite responses is actually met, for others it is not, and both emerge as dangerous treatments.
Collapse
Affiliation(s)
- Laura Terraneo
- Department of Health Science, University of Milan, I-20142 Milano, Italy.
| | - Michele Samaja
- Department of Health Science, University of Milan, I-20142 Milano, Italy.
| |
Collapse
|
11
|
|
12
|
Favre S, Gambini E, Nigro P, Scopece A, Bianciardi P, Caretti A, Pompilio G, Corno AF, Vassalli G, von Segesser LK, Samaja M, Milano G. Sildenafil attenuates hypoxic pulmonary remodelling by inhibiting bone marrow progenitor cells. J Cell Mol Med 2016; 21:871-880. [PMID: 27860185 PMCID: PMC5387166 DOI: 10.1111/jcmm.13026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 01/26/2023] Open
Abstract
The recruitment of bone marrow (BM)-derived progenitor cells to the lung is related to pulmonary remodelling and the pathogenesis of pulmonary hypertension (PH). Although sildenafil is a known target in PH treatment, the underlying molecular mechanism is still elusive. To test the hypothesis that the therapeutic effect of sildenafil is linked to the reduced recruitment of BM-derived progenitor cells, we induced pulmonary remodelling in rats by two-week exposure to chronic hypoxia (CH, 10% oxygen), a trigger of BM-derived progenitor cells. Rats were treated with either placebo (saline) or sildenafil (1.4 mg/kg/day ip) during CH. Control rats were kept in room air (21% oxygen) with no treatment. As expected, sildenafil attenuated the CH-induced increase in right ventricular systolic pressure and right ventricular hypertrophy. However, sildenafil suppressed the CH-induced increase in c-kit+ cells in the adventitia of pulmonary arteries. Moreover, sildenafil reduced the number of c-kit+ cells that colocalize with tyrosine kinase receptor 2 (VEGF-R2) and CD68 (a marker for macrophages), indicating a positive effect on moderating hypoxia-induced smooth muscle cell proliferation and inflammation without affecting the pulmonary levels of hypoxia-inducible factor (HIF)-1α. Furthermore, sildenafil depressed the number of CXCR4+ cells. Collectively, these findings indicate that the improvement in pulmonary haemodynamic by sildenafil is linked to decreased recruitment of BM-derived c-kit+ cells in the pulmonary tissue. The attenuation of the recruitment of BM-derived c-kit+ cells by sildenafil may provide novel therapeutic insights into the control of pulmonary remodelling.
Collapse
Affiliation(s)
- Shirley Favre
- Laboratory of Cardiovascular Research, Department of Surgery and Anesthesiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Elisa Gambini
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Patrizia Nigro
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Alessandro Scopece
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | | - Anna Caretti
- Department of Health Science, University of Milan, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | | - Giuseppe Vassalli
- Laboratory of Molecular and Cellular Cardiology, Departments of Cardiology and Heart Surgery, Lausanne, Switzerland
| | - Ludwig K von Segesser
- Laboratory of Cardiovascular Research, Department of Surgery and Anesthesiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Giuseppina Milano
- Laboratory of Cardiovascular Research, Department of Surgery and Anesthesiology, University Hospital Lausanne, Lausanne, Switzerland.,Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| |
Collapse
|
13
|
Terraneo L, Paroni R, Bianciardi P, Giallongo T, Carelli S, Gorio A, Samaja M. Brain adaptation to hypoxia and hyperoxia in mice. Redox Biol 2016; 11:12-20. [PMID: 27835780 PMCID: PMC5107733 DOI: 10.1016/j.redox.2016.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
Aims Hyperoxic breathing might lead to redox imbalance and signaling changes that affect cerebral function. Paradoxically, hypoxic breathing is also believed to cause oxidative stress. Our aim is to dissect the cerebral tissue responses to altered O2 fractions in breathed air by assessing the redox imbalance and the recruitment of the hypoxia signaling pathways. Results Mice were exposed to mild hypoxia (10%O2), normoxia (21%O2) or mild hyperoxia (30%O2) for 28 days, sacrificed and brain tissue excised and analyzed. Although one might expect linear responses to %O2, only few of the examined variables exhibited this pattern, including neuroprotective phospho- protein kinase B and the erythropoietin receptor. The major reactive oxygen species (ROS) source in brain, NADPH oxidase subunit 4 increased in hypoxia but not in hyperoxia, whereas neither affected nuclear factor (erythroid-derived 2)-like 2, a transcription factor that regulates the expression of antioxidant proteins. As a result of the delicate equilibrium between ROS generation and antioxidant defense, neuron apoptosis and cerebral tissue hydroperoxides increased in both 10%O2 and 30%O2, as compared with 21%O2. Remarkably, the expression level of hypoxia-inducible factor (HIF)−2α (but not HIF-1α) was higher in both 10%O2 and 30%O2 with respect to 21%O2 Innovation Comparing the in vivo effects driven by mild hypoxia with those driven by mild hyperoxia helps addressing whether clinically relevant situations of O2 excess and scarcity are toxic for the organism. Conclusion Prolonged mild hyperoxia leads to persistent cerebral damage, comparable to that inferred by prolonged mild hypoxia. The underlying mechanism appears related to a model whereby the imbalance between ROS generation and anti-ROS defense is similar, but occurs at higher levels in hypoxia than in hyperoxia. Both oxygen scarcity and oxygen excess are harmful for the brain. Hypoxia increases ROS more than hyperoxia. Hypoxia increases the antioxidant defenses to an extent larger than hyperoxia. Both hypoxia and hyperoxia imbalance the ROS generation/ antiROS defense equilibrium. These findings have implications for those who need supplemental oxygen therapy.
Collapse
Affiliation(s)
- Laura Terraneo
- Department of Health Science, University of Milan, 20142 Milan, Italy
| | - Rita Paroni
- Department of Health Science, University of Milan, 20142 Milan, Italy
| | - Paola Bianciardi
- Department of Health Science, University of Milan, 20142 Milan, Italy
| | | | - Stephana Carelli
- Department of Health Science, University of Milan, 20142 Milan, Italy
| | - Alfredo Gorio
- Department of Health Science, University of Milan, 20142 Milan, Italy
| | - Michele Samaja
- Department of Health Science, University of Milan, 20142 Milan, Italy.
| |
Collapse
|
14
|
Involvement of Cold Inducible RNA-Binding Protein in Severe Hypoxia-Induced Growth Arrest of Neural Stem Cells In Vitro. Mol Neurobiol 2016; 54:2143-2153. [PMID: 26927658 PMCID: PMC5355520 DOI: 10.1007/s12035-016-9761-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
Neonatal hypoxia is the leading cause of brain damage with birth complications. Many studies have reported proliferation-promoting effect of mild hypoxia on neural stem cells (NSCs). However, how severe hypoxia influences the behavior of NSCs has been poorly explored. In the present study, we investigated the effects of 5, 3, and 1 % oxygen exposure on NSCs in vitro. MTT, neurosphere assay, and 5-ethynyl-2′-deoxyuridine (EdU) incorporation revealed a quick growth arrest of C17.2 cells and primary NSCs induced by 1 % oxygen exposure. Cell cycle analysis showed that this hypoxia exposure caused a significant increase of cells in G0/G1 phase and decrease of cells in S phase that is associated with decrease of Cyclin D1. Interestingly, the expression of cold inducible RNA-binding protein (CIRBP), a cold responsive gene reacting to multiple cellular stresses, was decreased in parallel with the 1 % oxygen-induced proliferation inhibition. Forced expression of CIRBP under hypoxia could restore the proliferation of NSCs, as showed by EdU incorporation and cell cycle analysis. Furthermore, the expression of Cyclin D1 under hypoxia was also restored by CIRBP overexpression. Taken together, these data suggested a growth-suppressing effect of severe hypoxia on NSCs and, for the first time, revealed a novel role of CIRBP in hypoxia-induced cell cycle arrest, suggesting that modulating CIRBP may be utilized for preventing hypoxia-induced neonatal brain injury.
Collapse
|
15
|
Barros-Miñones L, Orejana L, Goñi-Allo B, Suquía V, Hervías I, Aguirre N, Puerta E. Modulation of the ASK1-MKK3/6-p38/MAPK signalling pathway mediates sildenafil protection against chemical hypoxia caused by malonate. Br J Pharmacol 2015. [PMID: 23186227 DOI: 10.1111/bph.12071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE PD5 inhibitors have recently been reported to exert beneficial effects against ischaemia-reperfusion injury in several organs. However, there are few studies regarding their neuroprotective effects in brain ischaemia. The present study was designed to assess the effects of sildenafil against chemical hypoxia induced by malonate. Intrastriatal injection of malonate produces energy depletion and striatal lesions similar to that seen in cerebral ischaemia through mechanisms that involve generation of reactive oxygen species (ROS). EXPERIMENTAL APPROACH Volume lesion was analysed by cytochrome oxidase histochemistry. Generation of reactive species was determined by in situ visualization of superoxide production and nitrotyrosine measurement. Protein levels were determined by Western blot after subcellular fractionation. KEY RESULTS Sildenafil, given 30 min before malonate, significantly decreased the lesion volume in the rat. This protective effect cannot be attributed to any effect on ROS production but to the inhibition of downstream pathways. Thus, malonate induced the activation of apoptosis signal-regulating kinase-1 (ASK1) and two MAPK kinases, MKK3/6 and MKK7, which lead to an increased phosphorylation of JNK and p38 MAPK, effects that were blocked by sildenafil. Selective inhibitors of p38 and JNK (SB203580 or SP600125, respectively) were used in combination with malonate in order to evaluate the plausible implication of these pathways in the protection afforded by sildenafil. While inhibition of p38 provided a significant protection against malonate-induced neurotoxicity, inhibition of JNK did not. CONCLUSIONS AND IMPLICATIONS Sildenafil protects against the chemical hypoxia induced by malonate through the regulation of the ASK1-MKK3/6-p38/MAPK signalling pathway.
Collapse
Affiliation(s)
- L Barros-Miñones
- Department of Pharmacology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Gai XY, Tang F, Ma J, Zeng KW, Wang SL, Wang YP, Wuren TN, Lu DX, Zhou Y, Ge RL. Antiproliferative effect of echinacoside on rat pulmonary artery smooth muscle cells under hypoxia. J Pharmacol Sci 2015; 126:155-63. [PMID: 25341567 DOI: 10.1254/jphs.14072fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The main purpose of this study is to evaluate the effect of echinacoside (ECH) on hypoxia-induced proliferation of rat pulmonary artery smooth muscle cells (PASMCs) and the underlying mechanism. PASMCs were incubated under normoxia (nor), hypoxia (hyp), hypoxia + 0.35 mM ECH (hyp + ECH0.35), or hypoxia + 0.4 mM ECH (hyp + ECH0.4) for 24 h. Cell viability was assessed by MTS assays. The morphology of apoptosis was observed by DAPI staining, and apoptosis was quantified by flow cytometric analysis. Caspase-3 activity was determined by immunohistochemistry and real-time PCR, and the expressions of HIF-1α, Bax, Bcl-2, and Fas were determined by real-time PCR. Hypoxia induced significant proliferation of PASMCs, which could be inhibited by ECH in a concentration-dependent manner. This was associated with apoptosis of PASMCs. Z-DEVD-FMK could partly reduce the suppression effect of ECH; protein and gene expression of caspase-3 were significantly higher in the hyp + ECH0.4 and hyp + ECH0.35 groups. ECH significantly increased the expressions of Bax and Fas, but decreased the expressions of Bcl-2 and HIF-1α. ECH could inhibit hypoxia-induced proliferation of rat PASMCs, which is associated with apoptosis of PASMCs and improvement of hypoxia. ECH might be a potential agent for prevention and treatment of hypoxia-induced PAH.
Collapse
Affiliation(s)
- Xiang-Yun Gai
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Godinho J, de Oliveira JN, Ferreira EDF, Zaghi GGD, Bacarin CC, de Oliveira RMW, Milani H. Cilostazol but not sildenafil prevents memory impairment after chronic cerebral hypoperfusion in middle-aged rats. Behav Brain Res 2015; 283:61-8. [DOI: 10.1016/j.bbr.2015.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/02/2023]
|
18
|
Vandegriff KD, Malavalli A, Lohman J, Young MA, Terraneo L, Virgili E, Bianciardi P, Caretti A, Samaja M. Impact of acellular hemoglobin-based oxygen carriers on brain apoptosis in rats. Transfusion 2014; 54:2045-54. [PMID: 24673504 DOI: 10.1111/trf.12643] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Extracellular hemoglobin (Hb)-based oxygen carriers (HBOCs) are under extensive consideration as oxygen therapeutics. Their effects on cellular mechanisms related to apoptosis are of particular interest, because the onset of proapoptotic pathways may give rise to tissue damage. STUDY DESIGN AND METHODS The objective was to assess whether the properties of the Hb that replaces blood during an isovolemic hemodilution would modulate apoptotic-response mechanisms in rat brain and whether such signaling favors cytoprotection or damage. We exposed rats to exchange transfusion (ET; 50% blood volume and isovolemic replacement with Hextend [negative colloid control], MP4OX [PEGylated HBOC with high oxygen affinity], and ααHb [αα-cross-linked HBOC with low oxygen affinity; n=4-6/group]). Sham rats acted as control. Animals were euthanized at 2, 6, and 12 hours after ET; brain tissue was harvested and processed for analysis. RESULTS In MP4OX animals, the number of neurons that overexpressed the hypoxia-inducible factor (HIF)-1α was higher than in ααHb, particularly at the early time points. In addition, MP4OX was associated with greater phosphorylation of protein kinase B (Akt), a well-known cytoprotective factor. Indeed, the degree of apoptosis, measured as terminal deoxynucleotidyl transferase-positive neurons and caspase-3 cleavage, ranked in order of MP4OX < Hextend < ααHb. CONCLUSION Even though both HBOCs showed increased levels of HIF-1α compared to shams or Hextend-treated animals, differences in signaling events resulted in very different outcomes for the two HBOCs. ααHb-treated brain tissue showed significant neuronal damage, measured as apoptosis. This was in stark contrast to the protection seen with MP4OX, apparently due to recruitment of Akt and neuronal specific HIF-1α pathways.
Collapse
|
19
|
Fawzi AA, Chou JC, Kim GA, Rollins SD, Taylor JM, Farrow KN. Sildenafil attenuates vaso-obliteration and neovascularization in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2014; 55:1493-501. [PMID: 24519428 DOI: 10.1167/iovs.13-13207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE We sought to determine the effect of sildenafil on retinal vascular changes in a mouse model of oxygen-induced retinopathy (OIR). METHODS Vascular defects in OIR mice were quantified by measuring vaso-obliteration at postnatal days 12 and 17 (P12 and P17) and neovascularization at P17 to compare sildenafil-treated to dextrose-treated OIR mice. Retinal HIF1α protein expression was quantified by Western blotting and normalized to that of β-actin. Right ventricular hypertrophy was measured by Fulton's index as a surrogate for hyperoxia-induced pulmonary hypertension. RESULTS At P12, OIR mice treated with sildenafil demonstrated a 24% reduction in vaso-obliteration (P < 0.05), whereas at P17, treated animals showed a 50% reduction in neovascularization (P < 0.05) compared to dextrose-treated controls. Sildenafil-treated OIR mice had stabilization of retinal HIF1α at P12, immediately after hyperoxia. At P17, sildenafil-treated OIR mice had decreased HIF1α relative to untreated mice. OIR mice developed right ventricle hypertrophy that was significant compared to that in room air controls, which was abrogated by sildenafil. CONCLUSIONS Sildenafil treatment significantly decreased retinal vaso-obliteration and neovascularization in a mouse OIR model. These effects are likely due to sildenafil-induced HIF1α stabilization during hyperoxia exposure. Furthermore, we confirm disease overlap by showing that OIR mice also develop hyperoxia-induced right ventricular hypertrophy, which is prevented by sildenafil. This study is a first step toward delineating a potential therapeutic role for sildenafil in OIR and further suggests that there may be common pathophysiologic mechanisms underlying hyperoxia-induced retinal and pulmonary vascular disease.
Collapse
Affiliation(s)
- Amani A Fawzi
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
20
|
Zou YY, Kan EM, Cao Q, Lu J, Ling EA. Combustion smoke-induced inflammation in the cerebellum and hippocampus of adult rats. Neuropathol Appl Neurobiol 2014; 39:531-52. [PMID: 23106634 DOI: 10.1111/nan.12001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/23/2012] [Indexed: 12/12/2022]
Abstract
AIMS The effect of combustion smoke inhalation on the respiratory system is widely reported but its effects on the central nervous system remain unclear. Here, we aimed to determine the effects of smoke inhalation on the cerebellum and hippocampus which are areas vulnerable to hypoxia injury. METHODS Adult male Sprague-Dawley rats were subjected to combustion smoke inhalation and sacrificed at 0.5, 3, 24 and 72 h after exposure. The cerebellum and hippocampus were subjected to Western analysis for VEGF, iNOS, eNOS, nNOS and AQP4 expression; ELISA analysis for cytokine and chemokine levels; and immunohistochemistry for GFAP/AQP4, RECA-1/RITC and TUNEL. Aminoguanidine (AG) was administered to determine the effects of iNOS after smoke inhalation. RESULTS Both the cerebellum and hippocampus showed a significant increase in VEGF, iNOS, eNOS, nNOS and AQP4 expression with corresponding increases in inflammatory cytokines and chemokines and increased AQP4 expression and RITC permeability after smoke exposure. AG was able to decrease the expression of iNOS, followed by VEGF, eNOS, nNOS, RITC and AQP4 after smoke exposure. There was also a significant increase in TUNEL+ cells in the cerebellum and hippocampus which were not significantly reduced by AG. Beam walk test revealed immediate deficits after smoke inhalation which was attenuated with AG. CONCLUSION The findings suggest that iNOS plays a major role in the central nervous system inflammatory pathophysiology after smoke inhalation exposure with concomitant increase in proinflammatory molecules, vascular permeability and oedema, for which the cerebellum appears to be more vulnerable to smoke exposure than the hippocampus.
Collapse
Affiliation(s)
- Y-Y Zou
- Department of Pathology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | | | | | | | | |
Collapse
|
21
|
Effect of phosphodiesterase-5 inhibition on apoptosis and beta amyloid load in aged mice. Neurobiol Aging 2013; 35:520-31. [PMID: 24112792 DOI: 10.1016/j.neurobiolaging.2013.09.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/06/2023]
Abstract
Age-related cognitive decline is accompanied by an increase of neuronal apoptosis and a dysregulation of neuroplasticity-related molecules such as brain-derived neurotrophic factor and neurotoxic factors including beta amyloid (Aβ) peptide. Because it has been previously demonstrated that phosphodiesterase-5 inhibitors (PDE5-Is) protect against hippocampal synaptic dysfunction and memory deficits in mouse models of Alzheimer's disease and physiological aging, we investigated the effect of a treatment with the PDE5-I, sildenafil, on cell death, pro- and antiapoptotic molecules, and Aβ production. We demonstrated that chronic intraperitoneal injection of sildenafil (3 mg/kg for 3 weeks) decreased terminal deoxyuridine triphosphate nick end labeling-positive cells in the CA1 hippocampal area of 26-30-month-old mice, downregulating the proapoptotic proteins, caspase-3 and B-cell lymphoma 2-associated X, and increasing antiapoptotic molecules such as B-cell lymphoma protein-2 and brain-derived neurotrophic factor. Also, sildenafil reverted the shifting of amyloid precursor protein processing toward Aβ42 production and the increase of the Aβ42:Aβ40 ratio in aged mice. Our data suggest that PDE5-I might be beneficial to treat age-related detrimental features in a physiological mouse model of aging.
Collapse
|
22
|
Milano G, Abruzzo PM, Bolotta A, Marini M, Terraneo L, Ravara B, Gorza L, Vitadello M, Burattini S, Curzi D, Falcieri E, von Segesser LK, Samaja M. Impact of the phosphatidylinositide 3-kinase signaling pathway on the cardioprotection induced by intermittent hypoxia. PLoS One 2013; 8:e76659. [PMID: 24124584 PMCID: PMC3790757 DOI: 10.1371/journal.pone.0076659] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/26/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Exposure to intermittent hypoxia (IH) may enhance cardiac function and protects heart against ischemia-reperfusion (I/R) injury. To elucidate the underlying mechanisms, we developed a cardioprotective IH model that was characterized at hemodynamic, biochemical and molecular levels. METHODS Mice were exposed to 4 daily IH cycles (each composed of 2-min at 6-8% O2 followed by 3-min reoxygenation for 5 times) for 14 days, with normoxic mice as controls. Mice were then anesthetized and subdivided in various subgroups for analysis of contractility (pressure-volume loop), morphology, biochemistry or resistance to I/R (30-min occlusion of the left anterior descending coronary artery (LAD) followed by reperfusion and measurement of the area at risk and infarct size). In some mice, the phosphatidylinositide 3-kinase (PI3K) inhibitor wortmannin was administered (24 µg/kg ip) 15 min before LAD. RESULTS We found that IH did not induce myocardial hypertrophy; rather both contractility and cardiac function improved with greater number of capillaries per unit volume and greater expression of VEGF-R2, but not of VEGF. Besides increasing the phosphorylation of protein kinase B (Akt) and the endothelial isoform of NO synthase with respect to control, IH reduced the infarct size and post-LAD proteins carbonylation, index of oxidative damage. Administration of wortmannin reduced the level of Akt phosphorylation and worsened the infarct size. CONCLUSION We conclude that the PI3K/Akt pathway is crucial for IH-induced cardioprotection and may represent a viable target to reduce myocardial I/R injury.
Collapse
Affiliation(s)
- Giuseppina Milano
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Laboratorio di Biologia Vascolare e Medicina Regenerativa, Centro Cardiologico Monzino, IRCSS, Milan, Italy
- * E-mail:
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Laura Terraneo
- Department of Health Science, University of Milan, Milan, Italy
| | - Barbara Ravara
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | - Luisa Gorza
- Dipartimento di Scienze Biomediche, Università di Padova, Padova, Italy
| | | | | | - Davide Curzi
- DiSTeVA, University of Urbino “Carlo Bo”, Urbino, Italy
| | | | | | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Song S, Wang S, Ma J, Yao L, Xing H, Zhang L, Liao L, Zhu D. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway. Exp Cell Res 2013; 319:1973-1987. [PMID: 23722043 DOI: 10.1016/j.yexcr.2013.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway.
Collapse
Affiliation(s)
- Shasha Song
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319, China
| | - Shuang Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319, China; Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Jun Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319, China
| | - Lan Yao
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319, China
| | - Hao Xing
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319, China
| | - Lei Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319, China
| | - Lin Liao
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319, China
| | - Daling Zhu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319, China; Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081, China.
| |
Collapse
|
24
|
Milton SL, Dawson-Scully K. Alleviating brain stress: what alternative animal models have revealed about therapeutic targets for hypoxia and anoxia. FUTURE NEUROLOGY 2013; 8:287-301. [PMID: 25264428 DOI: 10.2217/fnl.13.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
While the mammalian brain is highly dependent on oxygen, and can withstand only a few minutes without air, there are both vertebrate and invertebrate examples of anoxia tolerance. One example is the freshwater turtle, which can withstand days without oxygen, thus providing a vertebrate model with which to examine the physiology of anoxia tolerance without the pathology seen in mammalian ischemia/reperfusion studies. Insect models such as Drosophila melanogaster have additional advantages, such as short lifespans, low cost and well-described genetics. These models of anoxia tolerance share two common themes that enable survival without oxygen: entrance into a state of deep hypometabolism, and the suppression of cellular injury during anoxia and upon restoration of oxygen. The study of such models of anoxia tolerance, adapted through millions of years of evolution, may thus suggest protective pathways that could serve as therapeutic targets for diseases characterized by oxygen deprivation and ischemic/reperfusion injuries.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
25
|
Bakir S, Firat U, Gün R, Bozkurt Y, Yorgancilar E, Kiniş V, Penbegül N, Gökalp O, Topçu İ. Histopathologic results of long-term sildenafil administration on rat inner ear. Am J Otolaryngol 2012; 33:667-72. [PMID: 22683010 DOI: 10.1016/j.amjoto.2012.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/17/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Sildenafil, a selective inhibitor of phosphodiesterase type 5, is widely used for the treatment of erectile dysfunction. Although cochlear effects of phosphodiesterase type 5 inhibitors remain still unclear because of inadequate data, some evidence that recently emerged indicates that these medications may be responsible for hearing impairment. In the present study, we aimed to examine the histopathologic effects of long-term sildenafil use on the cochlea in a rat model. METHODS The study was performed with adult male Wistar albino rats. The control group was fed on standard laboratory diet. The study group was applied orally with sildenafil therapy, 1.5 mg/kg once a day for 45 days. Rats were anesthetized and decapitated. Each temporal bone was dissected, and the cochleas were removed en bloc. The inner-ear biopsy specimens were examined histologically with hematoxylin and eosin and caspase 3 immunoreaction under light microscopy. RESULTS Hematoxylin and eosin staining showed no distinctive difference between the control group and the sildenafil group. With immunohistochemical examination, caspase 3 immunoreactivity was observed in the sildenafil group. In the control group, caspase 3 immunoreactivity was not observed. CONCLUSIONS The caspase 3 immunoreactivity in the sildenafil group was strongly associated with an increase in apoptotic events in the cochlea. Long-term use of sildenafil can cause hearing impairment through increased apoptosis.
Collapse
|
26
|
Sildenafil provides sustained neuroprotection in the absence of learning recovery following the 4-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion in middle-aged rats. Brain Res Bull 2012; 90:58-65. [PMID: 22982173 DOI: 10.1016/j.brainresbull.2012.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/27/2012] [Accepted: 08/30/2012] [Indexed: 12/19/2022]
Abstract
In this study, we tested whether the phosphodiesterase-5 inhibitor sildenafil protects against neurodegeneration and facilitates recovery from learning deficits examined long after chronic cerebral hypoperfusion (CCH) induced by the 4-vessel occlusion/internal carotid artery (4-VO/ICA) model in middle-aged rats. Male Wistar rats (12-15 months of age) were subjected to permanent 3-stage 4-VO/ICA with an interstage interval of 4 days. Sildenafil (3 mg/kg, p.o.) was administered at one dose per day for 10 days, beginning soon after the first occlusion stage. Three months later, learning in a non-food-rewarded, eight-arm radial maze task was tested. Learning performance is expressed as the latency to find a goal box and the number of reference or working memory errors. Histological examination was performed 1-3 days after behavioral testing. In the vehicle-treated group, permanent 4-VO/ICA markedly disrupted learning performance and caused moderate-to-severe neurodegeneration in the CA1-CA4 subfields of the hippocampus (56.2%), dentate gyrus (DG; 19.2%), retrosplenial cortex (RS cortex; 47.4%), and parietal association cortex (PtA cortex; 38.2%). Sildenafil treatment did not prevent 4-VO/ICA-induced learning deficits, whereas neurodegeneration was significantly reduced in the CA1-CA4 subfields (30.5%), DG (7.2%), RS cortex (11.8%), and PtA cortex (6.5%). Advancing previous findings from our laboratory, this study suggests that while sildenafil can provide important neuroprotection in different brain regions of middle-aged rats subjected to CCH, such histological effect does not translate into cognitive recovery.
Collapse
|
27
|
Abu Shmais GA, Al-Ayadhi LY, Al-Dbass AM, El-Ansary AK. Mechanism of nitrogen metabolism-related parameters and enzyme activities in the pathophysiology of autism. J Neurodev Disord 2012; 4:4. [PMID: 22958401 PMCID: PMC3374296 DOI: 10.1186/1866-1955-4-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/13/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND There is evidence that impaired metabolism play an important role in the etiology of many neuropsychiatric disorders. Although this has not been investigated to date, several recent studies proposed that nitrogen metabolism-related parameters may have a pathophysiological role in autism. METHODS The study enrolled 20 Saudi boys with autism aged 4 to 12 years and 20 healthy controls matched for age and gender. Levels of creatine, urea, ammonia, gamma-aminobutyric acid (GABA), glutamate:glutamine (Glu:Gln) ratio, and enzymatic activities of glutamate dehydrogenase, 5'-nucleotidase, and adenosine deaminase (ADA) were determined in plasma samples from both groups. RESULTS We found a significant elevation of creatine, 5'-nucleotidase, GABA, and glutamic acid and a significant decrease in the enzymatic activity of ADA and glutamine level in patients with autism compared with healthy controls. The most significant variation between the two groups was found in the Glu:Gln ratio. CONCLUSION A raised Glu:Gln ratio together with positive correlations in creatine, GABA, and 5'-nucleotidase levels could contribute to the pathophysiology of autism, and might be useful diagnostic markers. The mechanism through which these parameters might be related to autism is discussed in detail.
Collapse
Affiliation(s)
- Ghada A Abu Shmais
- Biochemistry Department, Science College, King Saud University, P.O box 22452, Zip code 11495, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
| | - Abeer M Al-Dbass
- Biochemistry Department, Science College, King Saud University, P.O box 22452, Zip code 11495, Riyadh, Saudi Arabia
| | - Afaf K El-Ansary
- Biochemistry Department, Science College, King Saud University, P.O box 22452, Zip code 11495, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Milano G, Bianciardi P, Rochemont V, Vassalli G, Segesser LKV, Corno AF, Guazzi M, Samaja M. Phosphodiesterase-5 inhibition mimics intermittent reoxygenation and improves cardioprotection in the hypoxic myocardium. PLoS One 2011; 6:e27910. [PMID: 22140481 PMCID: PMC3225385 DOI: 10.1371/journal.pone.0027910] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/27/2011] [Indexed: 12/04/2022] Open
Abstract
Although chronic hypoxia is a claimed myocardial risk factor reducing tolerance to ischemia/reperfusion (I/R), intermittent reoxygenation has beneficial effects and enhances heart tolerance to I/R. Aim of the study: To test the hypothesis that, by mimicking intermittent reoxygenation, selective inhibition of phosphodiesterase-5 activity improves ischemia tolerance during hypoxia. Adult male Sprague-Dawley rats were exposed to hypoxia for 15 days (10% O2) and treated with placebo, sildenafil (1.4 mg/kg/day, i. p.), intermittent reoxygenation (1 h/day exposure to room air) or both. Controls were normoxic hearts. To assess tolerance to I/R all hearts were subjected to 30-min regional ischemia by left anterior descending coronary artery ligation followed by 3 h-reperfusion. Whereas hypoxia depressed tolerance to I/R, both sildenafil and intermittent reoxygenation reduced the infarct size without exhibiting cumulative effects. The changes in myocardial cGMP, apoptosis (DNA fragmentation), caspase-3 activity (alternative marker for cardiomyocyte apoptosis), eNOS phosphorylation and Akt activity paralleled the changes in cardioprotection. However, the level of plasma nitrates and nitrites was higher in the sildenafil+intermittent reoxygenation than sildenafil and intermittent reoxygenation groups, whereas total eNOS and Akt proteins were unchanged throughout. Conclusions: Sildenafil administration has the potential to mimic the cardioprotective effects led by intermittent reoxygenation, thereby opening the possibility to treat patients unable to be reoxygenated through a pharmacological modulation of NO-dependent mechanisms.
Collapse
|
29
|
Dawson-Scully K, Bukvic D, Chakaborty-Chatterjee M, Ferreira R, Milton SL, Sokolowski MB. Controlling anoxic tolerance in adult Drosophila via the cGMP-PKG pathway. ACTA ACUST UNITED AC 2010; 213:2410-6. [PMID: 20581270 DOI: 10.1242/jeb.041319] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study we identify a cGMP-dependent protein kinase (PKG) cascade as a biochemical pathway critical for controlling low-oxygen tolerance in the adult fruit fly, Drosophila melanogaster. Even though adult Drosophila can survive in 0% oxygen (anoxia) environments for hours, air with less than 2% oxygen rapidly induces locomotory failure resulting in an anoxic coma. We use natural genetic variation and an induced mutation in the foraging (for) gene, which encodes a Drosophila PKG, to demonstrate that the onset of anoxic coma is correlated with PKG activity. Flies that have lower PKG activity demonstrate a significant increase in time to the onset of anoxic coma. Further, in vivo pharmacological manipulations reveal that reducing either PKG or protein phosphatase 2A (PP2A) activity increases tolerance of behavior to acute hypoxic conditions. Alternatively, PKG activation and phosphodiesterase (PDE5/6) inhibition significantly reduce the time to the onset of anoxic coma. By manipulating these targets in paired combinations, we characterized a specific PKG cascade, with upstream and downstream components. Further, using genetic variants of PKG expression/activity subjected to chronic anoxia over 6 h, approximately 50% of animals with higher PKG activity survive, while only approximately 25% of those with lower PKG activity survive after a 24 h recovery. Therefore, in this report we describe the PKG pathway and the differential protection of function vs survival in a critically low oxygen environment.
Collapse
Affiliation(s)
- K Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Sabayan B, Zamiri N, Farshchizarabi S, Sabayan B. Phosphodiesterase-5 inhibitors: novel weapons against Alzheimer's disease? Int J Neurosci 2010; 120:746-51. [PMID: 20942592 DOI: 10.3109/00207454.2010.520381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although Alzheimer's disease (AD) poses a major health problem in both developing and developed countries, no definite treatment is available for its cure; hence efforts are being focused on introducing disease-modifying agents for slowing down its course. Recent studies on the effects of sildenafil on different organs have shown that PDE-5 inhibitors may offer new horizons in therapeutic treatment of pulmonary hypertension, multiple sclerosis, neuropathic pain, and age-related memory impairment. In this paper we introduce PDE-5 inhibitors as novel disease-modifying agents against AD and review the different impacts of PDE-5 inhibition on various pathogenic mechanisms leading to AD, including neuronal apoptosis, neurovascular dysfunction, neurotransmitter modulation, and impairment of neurogenesis.
Collapse
Affiliation(s)
- Behnam Sabayan
- Department of Geriatrics and Gerontology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | |
Collapse
|
31
|
Zhang L, Ma J, Li Y, Guo L, Ran Y, Liu S, Jiang C, Zhu D. 15-Hydroxyeicosatetraenoic acid (15-HETE) protects pulmonary artery smooth muscle cells against apoptosis via HSP90. Life Sci 2010; 87:223-31. [DOI: 10.1016/j.lfs.2010.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 05/20/2010] [Accepted: 06/14/2010] [Indexed: 01/11/2023]
|
32
|
Mostafa T, Rashed LA, Kotb K. Testosterone and chronic sildenafil/tadalafil anti-apoptotic role in aged diabetic rats. Int J Impot Res 2010; 22:255-261. [PMID: 20574430 DOI: 10.1038/ijir.2010.12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 05/04/2010] [Accepted: 05/10/2010] [Indexed: 02/08/2023]
Abstract
This work aimed to assess the cavernous anti-apoptotic role of using chronic low-dose sildenafil/tadalafil with and without testosterone (T) in aged diabetic rats. In all, 140 Sprague-Dawley aged rats were divided into the following groups: controls; induced diabetic rats; diabetic rats that received intramuscular depot T once every 4 weeks; diabetic rats on sildenafil 2 mg kg(-1) orally daily; diabetic rats on T and daily sildenafil; diabetic rats on tadalafil 0.45 mg kg(-1) orally every other day; diabetic rats on every-other-day tadalafil and T; diabetic rats on alternate sildenafil and tadalafil; and diabetic rats on alternate sildenafil, tadalafil and T. After 12 weeks, Bax (apoptotic factor), Bcl(2) (B-cell lymphoma 2; anti-apoptotic factor), cGMP (cyclic guanosine monophosphate) were estimated in their cavernous tissues. Compared with the controls, aged diabetic rats showed significant increased cavernous tissue Bax and significant decreased Bcl(2), in which diabetic rats injected with T showed the reverse compared with the diabetic rats. Diabetic rats on sildenafil or tadalafil showed significant increased cavernous Bcl(2) and decreased Bax with upgraded Bcl(2)/Bax ratio that was improved being on T. Diabetic rats on alternate sildenafil/tadalafil with or without T showed further significant increased cavernous tissue Bcl(2) with upgraded Bcl(2)/Bax ratio. It is concluded that frequent low-dose use of sildenafil and/or tadalafil combined with T would be predicted to have a pronounced anti-apoptotic cavernous tissue effect on the cavernous tissues of aged diabetic rats.
Collapse
Affiliation(s)
- T Mostafa
- Department of Andrology and Sexology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | | |
Collapse
|
33
|
Milano G, von Segesser LK, Morel S, Joncic A, Bianciardi P, Vassalli G, Samaja M. Phosphorylation of phosphatidylinositol-3-kinase-protein kinase B and extracellular signal-regulated kinases 1/2 mediate reoxygenation-induced cardioprotection during hypoxia. Exp Biol Med (Maywood) 2010; 235:401-10. [PMID: 20404059 DOI: 10.1258/ebm.2009.009153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In vivo exposure to chronic hypoxia (CH) depresses myocardial performance and tolerance to ischemia, but daily reoxyenation during CH (CHR) confers cardioprotection. To elucidate the underlying mechanism, we tested the role of phosphatidylinositol-3-kinase-protein kinase B (Akt) and p42/p44 extracellular signal-regulated kinases (ERK1/2), which are known to be associated with protection against ischemia/reperfusion (I/R). Male Sprague-Dawley rats were maintained for two weeks under CH (10% O(2)) or CHR (as CH but with one-hour daily exposure to room air). Then, hearts were either frozen for biochemical analyses or Langendorff-perfused to determine performance (intraventricular balloon) and tolerance to 30-min global ischemia and 45-min reperfusion, assessed as recovery of performance after I/R and infarct size (tetrazolium staining). Additional hearts were perfused in the presence of 15 micromol/L LY-294002 (inhibitor of Akt), 10 micromol/L UO-126 (inhibitor of ERK1/2) or 10 micromol/L PD-98059 (less-specific inhibitor of ERK1/2) given 15 min before ischemia and throughout the first 20 min of reperfusion. Whereas total Akt and ERK1/2 were unaffected by CH and CHR in vivo, in CHR hearts the phosphorylation of both proteins was higher than in CH hearts. This was accompanied by better performance after I/R (heart rate x developed pressure), lower end-diastolic pressure and reduced infarct size. Whereas the treatment with LY-294002 decreased the phosphorylation of Akt only, the treatment with UO-126 decreased ERK1/2, and that with PD-98059 decreased both Akt and ERK1/2. In all cases, the cardioprotective effect led by CHR was lost. In conclusion, in vivo daily reoxygenation during CH enhances Akt and ERK1/2 signaling. This response was accompanied by a complex phenotype consisting in improved resistance to stress, better myocardial performance and lower infarct size after I/R. Selective inhibition of Akt and ERK1/2 phosphorylation abolishes the beneficial effects of the reoxygenation. Therefore, Akt and ERK1/2 have an important role to mediate cardioprotection by reoxygenation during CH in vivo.
Collapse
|
34
|
Romanini CV, Schiavon AP, Ferreira EDF, de Oliveira RMW, Milani H. Sildenafil prevents mortality and reduces hippocampal damage after permanent, stepwise, 4-vessel occlusion in rats. Brain Res Bull 2010; 81:631-40. [DOI: 10.1016/j.brainresbull.2009.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/30/2022]
|
35
|
Chai Y, Lin YF. Stimulation of neuronal KATP channels by cGMP-dependent protein kinase: involvement of ROS and 5-hydroxydecanoate-sensitive factors in signal transduction. Am J Physiol Cell Physiol 2010; 298:C875-92. [PMID: 20053925 PMCID: PMC2853218 DOI: 10.1152/ajpcell.00196.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 12/31/2009] [Indexed: 11/22/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channel couples intracellular metabolic state to membrane excitability. Recently, we demonstrated that neuronal K(ATP) channels are functionally enhanced by activation of a nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) signaling cascade. In this study, we further investigated the intracellular mechanism underlying PKG stimulation of neuronal K(ATP) channels. By performing single-channel recordings in transfected HEK293 and neuroblastoma SH-SY5Y cells, we found that the increase of Kir6.2/SUR1 (i.e., the neuronal-type K(ATP)) channel currents by PKG activation in cell-attached patches was diminished by 5-hydroxydecanoate (5-HD), an inhibitor of the putative mitochondrial K(ATP) channel; N-(2-mercaptopropionyl)glycine, a reactive oxygen species (ROS) scavenger, and catalase, a hydrogen peroxide (H(2)O(2))-decomposing enzyme. These reagents also ablated NO-induced K(ATP) channel stimulation and prevented the shifts in the single-channel open- and closed-time distributions resulting from PKG activation and NO induction. Bath application of H(2)O(2) reproduced PKG stimulation of Kir6.2/SUR1 but did not activate tetrameric Kir6.2LRKR368/369/370/371AAAA channels. Moreover, neither the PKG activator nor exogenous H(2)O(2) was able to enhance the function of K(ATP) channels in the presence of Ca(2+) chelators and calmodulin antagonists, whereas the stimulatory effect of H(2)O(2) was unaffected by 5-HD. Altogether, in this report we provide novel evidence that activation of PKG stimulates neuronal K(ATP) channels by modulating intrinsic channel gating via a 5-HD-sensitive factor(s)/ROS/Ca(2+)/calmodulin signaling pathway that requires the presence of the SUR1 subunit. This signaling pathway may contribute to neuroprotection against ischemic injury and regulation of neuronal excitability and neurotransmitter release by modulating the function of neuronal K(ATP) channels.
Collapse
Affiliation(s)
- Yongping Chai
- Dept. of Physiology and Membrane Biology, Univ. of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | | |
Collapse
|
36
|
Cyclic GMP and nitric oxide synthase in aging and Alzheimer's disease. Mol Neurobiol 2010; 41:129-37. [PMID: 20213343 DOI: 10.1007/s12035-010-8104-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Cyclic guanosine monophosphate (cGMP) is an important secondary messenger synthesized by the guanylyl cyclases which are found in the soluble (sGC) and particular isoforms. In the central nervous system, the nitric oxide (NO)-sensitive sGC isoform is the major enzyme responsible for cGMP synthesis. Phosphodiesterases (PDEs) are enzymes for hydrolysis of cGMP in the brain, and they are mainly isoforms 2, 5, and 9. The NO/cGMP signaling pathway has been shown to play an important role in the process underlying learning and memory. Aging is associated with an increase in PDE expression and activity and a decrease in cGMP concentration. In addition, aging is also associated with an enhancement of neuronal NO synthase, a lowering of endothelial, and no alteration in inducible activity. The observed changes in NMDA receptor density along with the Ca(2+)/NO/cGMP pathway underscore the lower synaptic plasticity and cognitive performance during aging. This notion is in agreement with last data indicating that inhibitors of PDE2 and PDE9 improve learning and memory in older rats. In this review, we focus on recent studies supporting the role of Ca(2+)/NO/cGMP pathway in aging and Alzheimer's disease.
Collapse
|