1
|
Paoletti N, Liu KS, Chen H, Smolka SA, Lin S. Data-Driven Robust Control for a Closed-Loop Artificial Pancreas. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1981-1993. [PMID: 31027048 DOI: 10.1109/tcbb.2019.2912609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a fully closed-loop design for an artificial pancreas (AP) that regulates the delivery of insulin for the control of Type I diabetes. Our AP controller operates in a fully automated fashion, without requiring any manual interaction with the patient (e.g., in the form of meal announcements). A major obstacle to achieving closed-loop insulin control are the "unknown disturbances" related to various aspects of a patient's daily behavior, especially meals and physical activity. Such disturbances can significantly affect the patient's blood glucose levels. To handle such uncertainties, we present a data-driven, robust, model-predictive control framework in which we capture a wide range of individual meal and exercise patterns using uncertainty sets learned from historical data. These uncertainty sets are then used in the insulin controller to achieve automated, precise, and personalized insulin therapy. We provide an extensive in silico evaluation of our robust AP design, demonstrating the potential of the approach. In particular, without the benefit of explicit meal announcements, our approach can regulate glucose levels for large clusters of meal profiles learned from population-wide survey data and cohorts of virtual patients, even in the presence of high carbohydrate disturbances.
Collapse
|
2
|
Artificial Pancreas Control Strategies Used for Type 1 Diabetes Control and Treatment: A Comprehensive Analysis. APPLIED SYSTEM INNOVATION 2020. [DOI: 10.3390/asi3030031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper presents a comprehensive survey about the fundamental components of the artificial pancreas (AP) system including insulin administration and delivery, glucose measurement (GM), and control strategies/algorithms used for type 1 diabetes mellitus (T1DM) treatment and control. Our main focus is on the T1DM that emerges due to pancreas’s failure to produce sufficient insulin due to the loss of beta cells (β-cells). We discuss various insulin administration and delivery methods including physiological methods, open-loop, and closed-loop schemes. Furthermore, we report several factors such as hyperglycemia, hypoglycemia, and many other physical factors that need to be considered while infusing insulin in human body via AP systems. We discuss three prominent control algorithms including proportional-integral- derivative (PID), fuzzy logic, and model predictive, which have been clinically evaluated and have all shown promising results. In addition, linear and non-linear insulin infusion control schemes have been formally discussed. To the best of our knowledge, this is the first work which systematically covers recent developments in the AP components with a solid foundation for future studies in the T1DM field.
Collapse
|
4
|
Sánchez-Peña R, Colmegna P, Garelli F, De Battista H, García-Violini D, Moscoso-Vásquez M, Rosales N, Fushimi E, Campos-Náñez E, Breton M, Beruto V, Scibona P, Rodriguez C, Giunta J, Simonovich V, Belloso WH, Cherñavvsky D, Grosembacher L. Artificial Pancreas: Clinical Study in Latin America Without Premeal Insulin Boluses. J Diabetes Sci Technol 2018; 12:914-925. [PMID: 29998754 PMCID: PMC6134619 DOI: 10.1177/1932296818786488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Emerging therapies such as closed-loop (CL) glucose control, also known as artificial pancreas (AP) systems, have shown significant improvement in type 1 diabetes mellitus (T1DM) management. However, demanding patient intervention is still required, particularly at meal times. To reduce treatment burden, the automatic regulation of glucose (ARG) algorithm mitigates postprandial glucose excursions without feedforward insulin boluses. This work assesses feasibility of this new strategy in a clinical trial. METHODS A 36-hour pilot study was performed on five T1DM subjects to validate the ARG algorithm. Subjects wore a subcutaneous continuous glucose monitor (CGM) and an insulin pump. Insulin delivery was solely commanded by the ARG algorithm, without premeal insulin boluses. This was the first clinical trial in Latin America to validate an AP controller. RESULTS For the total 36-hour period, results were as follows: average time of CGM readings in range 70-250 mg/dl: 88.6%, in range 70-180 mg/dl: 74.7%, <70 mg/dl: 5.8%, and <50 mg/dl: 0.8%. Results improved analyzing the final 15-hour period of this trial. In that case, the time spent in range was 70-250 mg/dl: 94.7%, in range 70-180 mg/dl: 82.6%, <70 mg/dl: 4.1%, and <50 mg/dl: 0.2%. During the last night the time spent in range was 70-250 mg/dl: 95%, in range 70-180 mg/dl: 87.7%, <70 mg/dl: 5.0%, and <50 mg/dl: 0.0%. No severe hypoglycemia occurred. No serious adverse events were reported. CONCLUSIONS The ARG algorithm was successfully validated in a pilot clinical trial, encouraging further tests with a larger number of patients and in outpatient settings.
Collapse
Affiliation(s)
- Ricardo Sánchez-Peña
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Ricardo Sánchez-Peña, PhD, National Scientific and Technical Research Council (CONICET), Instituto Tecnológico de Buenos Aires (ITBA), Av Madero 399, Buenos Aires, C1106ACD, Argentina.
| | - Patricio Colmegna
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- University of Virginia, Charlottesville, VA, USA
- Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Fabricio Garelli
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Universidad Nacional de La Plata, La Plata, Buenos Aires Argentina
| | - Hernán De Battista
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Universidad Nacional de La Plata, La Plata, Buenos Aires Argentina
| | - Demián García-Violini
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Marcela Moscoso-Vásquez
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Nicolás Rosales
- Universidad Nacional de La Plata, La Plata, Buenos Aires Argentina
| | - Emilia Fushimi
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Universidad Nacional de La Plata, La Plata, Buenos Aires Argentina
| | | | - Marc Breton
- University of Virginia, Charlottesville, VA, USA
| | - Valeria Beruto
- Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Paula Scibona
- Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Javier Giunta
- Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
5
|
Colmegna PH, Sanchez-Pena RS, Gondhalekar R, Dassau E, Doyle FJ. Switched LPV Glucose Control in Type 1 Diabetes. IEEE Trans Biomed Eng 2015; 63:1192-1200. [PMID: 26452196 DOI: 10.1109/tbme.2015.2487043] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The purpose of this paper is to regulate the blood glucose level in Type 1 Diabetes Mellitus patients with a practical and flexible procedure that can switch among a finite number of distinct controllers, depending on the user's choice. METHODS A switched linear parameter-varying controller with multiple switching regions, related to hypo-, hyper-, and euglycemia situations, is designed. The key feature is to arrange the controller into a framework that provides stability and performance guaranty. RESULTS The closed-loop performance is tested on the complete in silico adult cohort of the UVA/Padova metabolic simulator, which has been accepted by the U.S. Food and Drug Administration in lieu of animal trials. The outcome produces comparable or improved results with respect to previous works. CONCLUSION The strategy is practical because it is based on a model tuned only with a priori patient information in order to cover the interpatient uncertainty. Results confirm that this control structure yields tangible improvements in minimizing risks of hyper- and hypoglycemia in scenarios with unannounced meals. SIGNIFICANCE This flexible procedure opens the possibility of taking into account, at the design stage, unannounced meals and/or patients' physical exercise.
Collapse
|