1
|
Vučetić A, Šovljanski O, Pezo L, Gligorijević N, Kostić S, Vulić J, Čanadanović-Brunet J. A Comprehensive Antioxidant and Nutritional Profiling of Brassicaceae Microgreens. Antioxidants (Basel) 2025; 14:191. [PMID: 40002378 PMCID: PMC11852083 DOI: 10.3390/antiox14020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Microgreens are gaining prominence as nutrient-dense foods with health-promoting activities while aligning with smart agriculture and functional food trends. They are rich in numerous bioactive compounds like phenolics, ascorbic acid, and carotenoids, which act as antioxidants, while also causing multiple other biological activities. Using advanced statistical methods, this study investigated Brassicaceae microgreens, identifying kale and Sango radish as standout varieties. Both contained 16 amino acids, with potassium and calcium as dominant minerals. Sugar and protein contents ranged from 4.29 to 4.66% and 40.27 to 43.90%, respectively. Kale exhibited higher carotenoid levels, particularly lutein (996.36 mg/100 g) and beta-carotene (574.15 mg/100 g). In comparison, Sango radish excelled in glucose metabolism (α-glucosidase inhibition: 58%) and antioxidant activities (DPPH•: 7.92 mmol TE/100 g, ABTS•+: 43.47 mmol TE/100 g). Both showed antimicrobial activity against Escherichia coli and Staphylococcus aureus. Kale demonstrated stronger anti-inflammatory effects, while Sango radish showed antiproliferative potential. These results, supported by PCA and correlation analysis, underscore the dual role of these microgreens as nutritious and therapeutic food additives, addressing oxidative stress, inflammation, and microbial threats.
Collapse
Affiliation(s)
- Anja Vučetić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (A.V.); (J.V.)
| | - Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (A.V.); (J.V.)
| | - Lato Pezo
- Institute of General and Physical Chemistry Belgrade, 11000 Belgrade, Serbia;
| | - Nevenka Gligorijević
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia;
| | - Saša Kostić
- Institute of Lowland Forestry and Environment Novi Sad, 21000 Novi Sad, Serbia;
| | - Jelena Vulić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (A.V.); (J.V.)
| | | |
Collapse
|
2
|
Grace MH, Hoskin RT, Alghamdi M, Lila MA, Chalova VI. Betalain-Chickpea Protein Particles Produced by Freeze Drying and Spray Drying: Physicochemical Aspects, Storage Stability, and In Vitro Digestion. Foods 2025; 14:281. [PMID: 39856947 PMCID: PMC11765016 DOI: 10.3390/foods14020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Beetroots are one of the primary sources of betalains, nitrogenous pigments with anti-inflammatory and antioxidant properties. However, due to their chemical instability, betalains have limited use in food applications. This work investigated whether betalains encapsulated in chickpea protein could be stabilized and delivered in a shelf-stable format. Freeze-dried (CB-FD) and spray-dried (CB-SD) protein-betalain particles encapsulated in chickpea protein isolate (6% w/v) were prepared. The encapsulation method affected particles' morphology, water activity, hygroscopicity, solubility, and color. Particles captured total betalains of 9.30 ± 0.61 and 4.40 ± 0.92 mg/g for CB-SD and CB-FD, respectively. LC-MS identified 12 betacyanins and 6 betaxanthins. The stability of betalains revealed that encapsulation efficiently preserved betalain integrity of over 6 weeks of storage at 4, 22, and 40 °C compared to dry beetroot extract. CB-SD particles were stable with no significant changes, while CB-FD showed slight degradation after 4 weeks due to increased Aw. Antioxidant activity correlated well with betalain concentration. In vitro digestion resulted in only 25% bioaccessibility of betacyanins, while betaxanthins were more stable with 100% recovery. Encapsulation with chickpea protein isolate is an efficient and straightforward strategy for expanding and diversifying applications of phytochemical-rich beetroot extracts for the food industry.
Collapse
Affiliation(s)
- Mary H. Grace
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (M.H.G.); (R.T.H.); (M.A.); (M.A.L.)
| | - Roberta Targino Hoskin
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (M.H.G.); (R.T.H.); (M.A.); (M.A.L.)
| | - Malak Alghamdi
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (M.H.G.); (R.T.H.); (M.A.); (M.A.L.)
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (M.H.G.); (R.T.H.); (M.A.); (M.A.L.)
| | - Vesela I. Chalova
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA; (M.H.G.); (R.T.H.); (M.A.); (M.A.L.)
- Department of Biochemistry and Nutrition, University of Food Technologies, 4002 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Vargas V, Saldarriaga S, Sánchez FS, Cuellar LN, Paladines GM. Effects of the spray-drying process using maltodextrin on bioactive compounds and antioxidant activity of the pulp of the tropical fruit açai ( Euterpe oleracea Mart.). Heliyon 2024; 10:e33544. [PMID: 39040403 PMCID: PMC11260920 DOI: 10.1016/j.heliyon.2024.e33544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024] Open
Abstract
Aҫai fruit is characterized by the properties of its bioactive compounds; however, this fruit is highly perishable and its compounds are sensitive when exposed to non-optimal environmental factors. Therefore, the objective of this study was to encapsulate the fruit pulp by spray drying to improve the nutritional value and extend the shelf life of the products derived from acai fruit. Maltodextrin was used as a wall material and the process was optimized to obtain the desirable values of the response variables. For this, a central compound design (CCD) was developed to determine the influence of temperature (110-170 °C) and the wall material proportion (5-15 %) on dependent variables: the retention of ascorbic acid, moisture percentage, hygroscopicity, solubility, water activity, and yield. Furthermore, the effects of spray drying on bioactive compounds (AA, TPC, TFC, TA, TCC, GA, CT, and QC) and antioxidant activity (ABTS, DPPH, and ORAC) were evaluated. The maximum design temperature (170 °C) and wall material proportion (15 %) significantly influenced the response variables where encapsulation was applied, with high ascorbic acid retention (96.886 %), low moisture (0.303 %), low hygroscopicity (7.279 g/100 g), low level of water activity (0.255), a water solubility index of 23.206 %, and a high yield of 70.285 %. The bioactive compounds analyzed and the antioxidant capacity presented significant retention values for AA (96.86 %), TPC (65.13 %), TFC (82.09 %), TA (62.46 %), TCC (7.28 %), GA (35.02 %), CT (49.03 %), QC (37.57 %), ABTS (81.24 %), DPPH (75.11 %), and ORAC (15.68 %). Therefore, it is concluded that the powder obtained under these conditions has desirable physical properties, and the drying process preserved a notable retention of bioactive compounds and their antioxidant activities.
Collapse
Affiliation(s)
- Valentina Vargas
- Grupo de Investigación en Productos Naturales Amazónicos GIPRONAZ, Universidad de la Amazonia, Calle 17 Diagonal 17-Carrera 3F, Florencia, Colombia
| | - Sebastian Saldarriaga
- Grupo de Investigación en Productos Naturales Amazónicos GIPRONAZ, Universidad de la Amazonia, Calle 17 Diagonal 17-Carrera 3F, Florencia, Colombia
| | - Francis S. Sánchez
- Grupo de Investigación en Productos Naturales Amazónicos GIPRONAZ, Universidad de la Amazonia, Calle 17 Diagonal 17-Carrera 3F, Florencia, Colombia
| | - Liceth N. Cuellar
- Grupo de Investigación en Productos Naturales Amazónicos GIPRONAZ, Universidad de la Amazonia, Calle 17 Diagonal 17-Carrera 3F, Florencia, Colombia
| | - Gloria M. Paladines
- Grupo de Investigación en Productos Naturales Amazónicos GIPRONAZ, Universidad de la Amazonia, Calle 17 Diagonal 17-Carrera 3F, Florencia, Colombia
| |
Collapse
|
4
|
Zannou O, Oussou KF, Chabi IB, Odouaro OBO, Deli MGEP, Goksen G, Vahid AM, Kayodé APP, Kelebek H, Selli S, Galanakis CM. A comprehensive review of recent development in extraction and encapsulation techniques of betalains. Crit Rev Food Sci Nutr 2023; 64:11263-11280. [PMID: 37477284 DOI: 10.1080/10408398.2023.2235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Samsun, Türkiye
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Kouame F Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ifagbémi B Chabi
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Oscar B O Odouaro
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Mahn G E P Deli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Aïssi M Vahid
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété, Benin
| | - Adéchola P P Kayodé
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Türkiye
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
5
|
Complexation of anthocyanins, betalains and carotenoids with biopolymers: An approach to complexation techniques and evaluation of binding parameters. Food Res Int 2023; 163:112277. [PMID: 36596187 DOI: 10.1016/j.foodres.2022.112277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Natural pigments are bioactive compounds that can present health-promoting bioactivities in the human body. Due to their strong coloring properties, these compounds have been widely used as color additives as an alternative to artificial colorants. However, since these pigments are unstable under certain conditions, such as the presence of light, oxygen, and heat, the use of complexation and encapsulation techniques with biopolymers is in demand. Moreover, some functional properties can be achieved by using natural pigments-biopolymers complexes in food matrices. The complexation and encapsulation of natural pigments with biopolymers consist of forming a complex with the aim to make these compounds less susceptible to oxidative and degrading agents, and can also be used to improve their solubility in different media. This review aims to discuss different techniques that have been used over the last years to create natural pigment-biopolymers complexes, as well as the recent advances, limitations, effects, and possible applications of these complexes in foods. Moreover, the understanding of thermodynamic parameters between natural pigments and biopolymers is very important regarding the complex formation and their use in food systems. In this sense, thermodynamic techniques that can be used to determine binding parameters between natural pigments and potential wall materials, as well as their applications, advantages, and limitations are presented in this work. Several studies have shown an improvement in many aspects regarding the use of these complexes, including increased thermal and storage stability. Nonetheless, data regarding the biological effects on the human body and the sensory acceptance of natural pigments-biopolymers complexes in food systems are scarce in the literature.
Collapse
|
6
|
Horned Melon (Cucumis metuliferus E. Meyer Ex. Naudin)—Current Knowledge on Its Phytochemicals, Biological Benefits, and Potential Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies reveal that numerous non-edible parts of fruits and vegetables, as well as food wastes, are a good source of phytochemicals that can be extracted and reintroduced into the food chain as natural food additives. Horned melon or kiwano (Cucumis metuliferus E. Mey. Ex. Naudin) is a fruit rich in various phytochemical components important in the daily diet. After primary processing, horned melon non-edible parts (e.g., peels and seeds) can represent raw materials that can be utilized in numerous applications. Among under-researched fruits, this study aims to present the potential of using horned melon edible and non-edible parts based on current knowledge on nutritional value, phytochemicals, biological activity, as well as biological benefits. Overall, this review concluded that the biological properties of horned melon are associated with the phytochemicals present in this fruit and its waste parts. Further studies should be conducted to identify phytochemicals and valorize all horned melon parts, assess their biological efficacy, and promote their potential uses in different health purposes.
Collapse
|
7
|
N Soliman T, Shehata SH, Salem SA. Beetroot Nanoencapsulation in Flavored Beverage and its Effect as Hepatoprotective Agent in Rats. Pak J Biol Sci 2022; 25:803-815. [PMID: 36098082 DOI: 10.3923/pjbs.2022.803.815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> Beetroot juice is a biological antioxidant and acts as health-promoting minerals as well as soluble fibres and vitamins. This study aimed to encapsulate the Beetroot Juice Powder (BJP) by the conjugate sodium caseinate (NaCas) and Maltodextrin (MD) to protect it from environmental conditions. Produced flavoured acid beverage using BJP encapsulated using conjugates. <b>Materials and Methods:</b> Nano-encapsulation of BJP (20, 30, 40 mg g<sup></sup><sup>1</sup>) and determine the encapsulation efficiency, size and zeta potential. Rats were divided into 4 groups as follows, negative control, positive control and 2 test groups that received free BJP or encapsulated BJP. All rats except the negative control group were injected with CCl<sub>4</sub> twice a week. <b>Results:</b> The NaCas-MD conjugate has the advantage over the NaCas-MD complex of higher stability and BJP binding, also showing high encapsulation efficiency (>93.75%) of different levels of BJP. The flavoured beverage from the addition of BJP encapsulated by conjugate has better sensory and technological properties than fortified with BJP in the complex. Injection with CCl<sub>4</sub> leads to a decrease in body weight, serum parameters including, protein, albumin, GSH, CAT and SOD, also increase ALT, AST, ALP and liver weight. Moreover, a variable pathological alteration in liver tissue was found. At the end of the experiment receiving encapsulated beetroot juice led to improvement in all above body and liver weight, all biochemical parameters and histopathological elevation. <b>Conclusion:</b> Thus, it could be concluded that flavoured beverage containing BJP encapsulated by conjugate is of acceptable quality and high antioxidant activity. Also, it has a remarkable protective effect against acute hepatotoxicity.
Collapse
|
8
|
Dhiman A, Suhag R, Chauhan DS, Thakur D, Chhikara S, Prabhakar PK. Status of beetroot processing and processed products: Thermal and emerging technologies intervention. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Fu Y, Shi J, Xie SY, Zhang TY, Soladoye OP, Aluko RE. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11595-11611. [PMID: 33040529 DOI: 10.1021/acs.jafc.0c04241] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In recent years, red beetroot has received a growing interest due to its abundant source of bioactive compounds, particularly betalains. Red beetroot betalains have great potential as a functional food ingredient employed in the food and medical industry due to their diverse health-promoting effects. Betalains from red beetroot are natural pigments, which mainly include either yellow-orange betaxanthins or red-violet betacyanins. However, betalains are quite sensitive toward heat, pH, light, and oxygen, which leads to the poor stability during processing and storage. Therefore, it is necessary to comprehend the impacts of the processing approaches on betalains. In this review, the effective extraction and processing methods of betalains from red beetroot were emphatically reviewed. Furthermore, a variety of recently reported bioactivities of beetroot betalains were also summarized. The present work can provide a comprehensive review on both conventional and innovative extraction techniques, processing methods, and the stability of betalains.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jia Shi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Si-Yi Xie
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ting-Yi Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Olugbenga P Soladoye
- Food Processing Development Centre, Ministry of Agriculture and Forestry, Government of Alberta, Leduc, Alberta T9E 7C5, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
10
|
Kayahan S, Saloglu D. Optimization and kinetic modelling of microwave-assisted extraction of phenolic contents and antioxidants from Turkish artichoke. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1800103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Seda Kayahan
- Department of Chemical Engineering, Yalova University, Institute of Science, Yalova, Turkey
| | - Didem Saloglu
- Faculty of Engineering, Department of Chemical Engineering, Yalova University, Yalova, Turkey
| |
Collapse
|
11
|
Wiczkowski W. Thematic Issue on “Red Beetroot as a Source of Nutrients, Bioactive Compounds and Pigments”. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/117717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|