1
|
Takahashi K, Noda Y, Hondo N, Shibukawa S, Kamagata K, Wada M, Honda S, Homma S, Tsukazaki A, Tsugawa S, Tobari Y, Moriyama S, Taniguchi K, Koike S, Cassidy C, Mimura M, Uchida H, Nakajima S. Abnormal neuritic microstructures in the anterior limb of internal capsules in treatment-resistant depression - A cross-sectional NODDI study. J Psychiatr Res 2025; 183:93-99. [PMID: 39954542 DOI: 10.1016/j.jpsychires.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Microstructural deficits of brain tissue are implicated in the pathophysiology of major depressive disorder (MDD). Recent studies have highlighted the neurotrophic mechanisms underlying effective treatments such as ketamine for treatment-resistant depression (TRD). However, little is known about microstructural changes in TRD. Neurite orientation dispersion and density imaging (NODDI) has enabled in vivo investigation of gray matter (GM) and white matter (WM) microstructure. This study sought to examine microstructural abnormalities in gray and white matter in patients with TRD using NODDI. METHODS This study compared the neurite density index (NDI) and orientation dispersion index (ODI) of neurites in 70 patients with TRD and 35 healthy controls. We fitted separate optimal NODDI models for gray and white matter. The locations of microstructural deficit were identified using region-based and voxel-based analysis. The affected white matter fibers were tracked with correlational tractography analysis. RESULTS An increase of ODI at the middle to the ventral part of the right anterior limb of the internal capsule (ALIC) was observed in patients with TRD compared with healthy controls. The quantitative anisotropy of frontothalamic fibers passing through the ALIC negatively correlated with the ODI increase in the TRD group. CONCLUSION The microstructural disorganization of the frontothalamic pathway could be linked to the pathophysiology and individual heterogeneity of TRD.
Collapse
Affiliation(s)
- Koki Takahashi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry, International University of Health and Welfare, Mita Hospital, Tokyo, Japan.
| | - Nobuaki Hondo
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Shibukawa
- Department of Radiology, Tokyo Medical University, Tokyo, Japan; Faculty of Health Science, Department of Radiological Technology, Juntendo University, Tokyo, Japan; Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Graduate School of Media and Governance, Keio University, Kanagawa, Japan; Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Saki Homma
- Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Amaki Tsukazaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sotaro Moriyama
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Keita Taniguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Clifford Cassidy
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
McCall A, Forouhandehpour R, Celebi S, Richard-Malenfant C, Hamati R, Guimond S, Tuominen L, Weinshenker D, Jaworska N, McQuaid RJ, Shlik J, Robillard R, Kaminsky Z, Cassidy CM. Evidence for Locus Coeruleus-Norepinephrine System Abnormality in Military Posttraumatic Stress Disorder Revealed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Biol Psychiatry 2024; 96:268-277. [PMID: 38296219 DOI: 10.1016/j.biopsych.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 07/26/2024]
Abstract
BACKGROUND The complex neurobiology of posttraumatic stress disorder (PTSD) calls for the characterization of specific disruptions in brain functions that require targeted treatment. One such alteration could be an overactive locus coeruleus (LC)-norepinephrine system, which may be linked to hyperarousal symptoms, a characteristic and burdensome aspect of the disorder. METHODS Study participants were Canadian Armed Forces veterans with PTSD related to deployment to combat zones (n = 34) and age- and sex-matched healthy control participants (n = 32). Clinical measures included the Clinician-Administered PTSD Scale for DSM-5, and neuroimaging measures included a neuromelanin-sensitive magnetic resonance imaging scan to measure the LC signal. Robust linear regression analyses related the LC signal to clinical measures. RESULTS Compared with control participants, the LC signal was significantly elevated in the PTSD group (t62 = 2.64, p = .010), and this group difference was most pronounced in the caudal LC (t56 = 2.70, Cohen's d = 0.72). The caudal LC signal was also positively correlated with the severity of Clinician-Administered PTSD Scale for DSM-5 hyperarousal symptoms in the PTSD group (t26 = 2.16, p = .040). CONCLUSIONS These findings are consistent with a growing body of evidence indicative of elevated LC-norepinephrine system function in PTSD. Furthermore, they indicate the promise of neuromelanin-sensitive magnetic resonance imaging as a noninvasive method to probe the LC-norepinephrine system that has the potential to support subtyping and treatment of PTSD or other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Adelina McCall
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Seyda Celebi
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | | | - Rami Hamati
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Synthia Guimond
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Département de psychoéducation et de psychologie, Université du Québec en Outaouais, Gatineau, Quebec, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Robyn J McQuaid
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jakov Shlik
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Rebecca Robillard
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Zachary Kaminsky
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada
| | - Clifford M Cassidy
- University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Renaissance School of Medicine at Stony Brook University, Stony Brook, New York.
| |
Collapse
|
3
|
Vande Casteele T, Laroy M, Van Cauwenberge M, Koole M, Dupont P, Sunaert S, Van den Stock J, Bouckaert F, Van Laere K, Emsell L, Vandenbulcke M. Preliminary evidence for preserved synaptic density in late-life depression. Transl Psychiatry 2024; 14:145. [PMID: 38485934 PMCID: PMC10940592 DOI: 10.1038/s41398-024-02837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/18/2024] Open
Abstract
Late-life depression has been consistently associated with lower gray matter volume, the origin of which remains largely unexplained. Recent in-vivo PET findings in early-onset depression and Alzheimer's Disease suggest that synaptic deficits contribute to the pathophysiology of these disorders and may therefore contribute to lower gray matter volume in late-life depression. Here, we investigate synaptic density in vivo for the first time in late-life depression using the synaptic vesicle glycoprotein 2A receptor radioligand 11C-UCB-J. We included 24 currently depressed adults with late-life depression (73.0 ± 6.2 years, 16 female, geriatric depression scale = 19.5 ± 6.8) and 36 age- and gender-matched healthy controls (70.4 ± 6.2 years, 21 female, geriatric depression scale = 2.7 ± 2.9) that underwent simultaneous 11C-UCB-J positron emission tomography (PET) and 3D T1- and T2-FLAIR weighted magnetic resonance (MR) imaging on a 3-tesla PET-MR scanner. We used analyses of variance to test for 11C-UCB-J binding and gray matter volumes differences in regions implicated in depression. The late-life depression group showed a trend in lower gray matter volumes in the hippocampus (p = 0.04), mesial temporal (p = 0.02) and prefrontal cortex (p = 0.02) compared to healthy control group without surviving correction for multiple comparison. However, no group differences in 11C-UCB-J binding were found in these regions nor were any associations between 11C-UCB-J and depressive symptoms. Our data suggests that, in contrast to Alzheimer's Disease, lower gray matter volume in late-life depression is not associated with synaptic density changes. From a therapeutic standpoint, preserved synaptic density in late-life depression may be an encouraging finding.
Collapse
Affiliation(s)
- Thomas Vande Casteele
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium.
| | - Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium
| | - Margot Van Cauwenberge
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium
- Neurology, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Michel Koole
- KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Nuclear Medicine, B-3000, Leuven, Belgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Laboratory for Cognitive Neurology, B-3000, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium
- Radiology, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Jan Van den Stock
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| | - Koen Van Laere
- KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Nuclear Medicine, B-3000, Leuven, Belgium
- Nuclear Medicine, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium
- KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| |
Collapse
|
4
|
Curry AR, Ooi L, Matosin N. How spatial omics approaches can be used to map the biological impacts of stress in psychiatric disorders: a perspective, overview and technical guide. Stress 2024; 27:2351394. [PMID: 38752853 DOI: 10.1080/10253890.2024.2351394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Exposure to significant levels of stress and trauma throughout life is a leading risk factor for the development of major psychiatric disorders. Despite this, we do not have a comprehensive understanding of the mechanisms that explain how stress raises psychiatric disorder risk. Stress in humans is complex and produces variable molecular outcomes depending on the stress type, timing, and duration. Deciphering how stress increases disorder risk has consequently been challenging to address with the traditional single-target experimental approaches primarily utilized to date. Importantly, the molecular processes that occur following stress are not fully understood but are needed to find novel treatment targets. Sequencing-based omics technologies, allowing for an unbiased investigation of physiological changes induced by stress, are rapidly accelerating our knowledge of the molecular sequelae of stress at a single-cell resolution. Spatial multi-omics technologies are now also emerging, allowing for simultaneous analysis of functional molecular layers, from epigenome to proteome, with anatomical context. The technology has immense potential to transform our understanding of how disorders develop, which we believe will significantly propel our understanding of how specific risk factors, such as stress, contribute to disease course. Here, we provide our perspective of how we believe these technologies will transform our understanding of the neurobiology of stress, and also provided a technical guide to assist molecular psychiatry and stress researchers who wish to implement spatial omics approaches in their own research. Finally, we identify potential future directions using multi-omics technology in stress research.
Collapse
Affiliation(s)
- Amber R Curry
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Molecular Horizons, School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Molecular Horizons, School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Molecular Horizons, School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
5
|
Marques KL, Moreira ML, Thiele MC, Cunha-Rodrigues MC, Barradas PC. Depressive-like behavior and impaired synaptic plasticity in the prefrontal cortex as later consequences of prenatal hypoxic-ischemic insult in rats. Behav Brain Res 2023; 452:114571. [PMID: 37421988 DOI: 10.1016/j.bbr.2023.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Perinatal hypoxia-ischemia (HI) is a leading cause of morbidity and mortality among newborns. Infants with HI encephalopathy may experience lasting consequences, such as depression, in adulthood. In this study, we examined depressive-like behavior, neuronal population, and markers of monoaminergic and synaptic plasticity in the prefrontal cortex (PFC) of adolescent rats subjected to a prenatal HI model. Pregnant rats underwent a surgery in which uterine and ovarian blood flow was blocked for 45 min at E18 (HI procedure). Sham-operated subjects were also generated (SH procedure). Behavioral tests were conducted on male and female pups from P41 to P43, and animals were histologically processed or dissected for western blotting at P45. We found that the HI groups consumed less sucrose in the sucrose preference test and remained immobile for longer periods in the forced swim test. Additionally, we observed a significant reduction in neuronal density and PSD95 levels in the HI group, as well as a smaller number of synaptophysin-positive cells. Our results underscore the importance of this model in investigating the effects of HI-induced injuries, as it reproduces an increase in depressive-like behavior and suggests that the HI insult affects circuits involved in mood modulation.
Collapse
Affiliation(s)
- Kethely L Marques
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Milena L Moreira
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria C Thiele
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marta C Cunha-Rodrigues
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Penha C Barradas
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Zhang Z, Wiencke JK, Kelsey KT, Koestler DC, Molinaro AM, Pike SC, Karra P, Christensen BC, Salas LA. Hierarchical deconvolution for extensive cell type resolution in the human brain using DNA methylation. Front Neurosci 2023; 17:1198243. [PMID: 37404460 PMCID: PMC10315586 DOI: 10.3389/fnins.2023.1198243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The human brain comprises heterogeneous cell types whose composition can be altered with physiological and pathological conditions. New approaches to discern the diversity and distribution of brain cells associated with neurological conditions would significantly advance the study of brain-related pathophysiology and neuroscience. Unlike single-nuclei approaches, DNA methylation-based deconvolution does not require special sample handling or processing, is cost-effective, and easily scales to large study designs. Existing DNA methylation-based methods for brain cell deconvolution are limited in the number of cell types deconvolved. Methods Using DNA methylation profiles of the top cell-type-specific differentially methylated CpGs, we employed a hierarchical modeling approach to deconvolve GABAergic neurons, glutamatergic neurons, astrocytes, microglial cells, oligodendrocytes, endothelial cells, and stromal cells. Results We demonstrate the utility of our method by applying it to data on normal tissues from various brain regions and in aging and diseased tissues, including Alzheimer's disease, autism, Huntington's disease, epilepsy, and schizophrenia. Discussion We expect that the ability to determine the cellular composition in the brain using only DNA from bulk samples will accelerate understanding brain cell type composition and cell-type-specific epigenetic states in normal and diseased brain tissues.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - John K. Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Karl T. Kelsey
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI, United States
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Annette M. Molinaro
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Steven C. Pike
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Neurology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Prasoona Karra
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| |
Collapse
|
7
|
Maitra M, Mitsuhashi H, Rahimian R, Chawla A, Yang J, Fiori LM, Davoli MA, Perlman K, Aouabed Z, Mash DC, Suderman M, Mechawar N, Turecki G, Nagy C. Cell type specific transcriptomic differences in depression show similar patterns between males and females but implicate distinct cell types and genes. Nat Commun 2023; 14:2912. [PMID: 37217515 PMCID: PMC10203145 DOI: 10.1038/s41467-023-38530-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Major depressive disorder (MDD) is a common, heterogenous, and potentially serious psychiatric illness. Diverse brain cell types have been implicated in MDD etiology. Significant sexual differences exist in MDD clinical presentation and outcome, and recent evidence suggests different molecular bases for male and female MDD. We evaluated over 160,000 nuclei from 71 female and male donors, leveraging new and pre-existing single-nucleus RNA-sequencing data from the dorsolateral prefrontal cortex. Cell type specific transcriptome-wide threshold-free MDD-associated gene expression patterns were similar between the sexes, but significant differentially expressed genes (DEGs) diverged. Among 7 broad cell types and 41 clusters evaluated, microglia and parvalbumin interneurons contributed the most DEGs in females, while deep layer excitatory neurons, astrocytes, and oligodendrocyte precursors were the major contributors in males. Further, the Mic1 cluster with 38% of female DEGs and the ExN10_L46 cluster with 53% of male DEGs, stood out in the meta-analysis of both sexes.
Collapse
Affiliation(s)
- Malosree Maitra
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Haruka Mitsuhashi
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Anjali Chawla
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Deborah C Mash
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Matthew Suderman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Wang X, Song H, Du Y, Zhao Y, Fu Y, Meng Q, Gao Y, Gong M, Song L, Wang S, Yuan F, Shi Y, Shi H. CircSYNDIG1 ameliorates stress-induced abnormal behaviors by suppressing miR-344-5p in mice. Brain Res Bull 2023; 195:66-77. [PMID: 36801359 DOI: 10.1016/j.brainresbull.2023.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Circular RNA (circRNA) plays an important role in diverse stress-related neuropsychiatric disorders like depression, anxiety and cognitive disorders. Here, using a circRNA microarray, we found that circSYNDIG1, an unreported circRNA, was significantly downregulated in the hippocampus of chronic unpredictable mild stress (CUMS) mice and further validated this finding in corticosterone (CORT) and lipopolysaccharide (LPS) mice by qRT-PCR, and it was negatively correlated with depressive- and anxiety-like behaviors of these three stressed mice. Furthermore, the interaction of miR-344-5p and circSYNDIG1 was confirmed by in situ hybridization (FISH) assay in hippocampus and dual luciferase reporter assay in 293 T cells. And miR-344-5p mimics could simulate the dendritic spine density reduction, depressive- and anxiety-like behaviors and memory impairment induced by CUMS. Overexpression of circSYNDIG1 in hippocampus significantly ameliorated these abnormal changes induced by CUMS or miR-344-5p. It indicated that circSYNDIG1 functions as an miR-344-5p sponge to inhibit miR-344-5p impact, resulting in the increase of dendritic spine density and the subsequent amelioration of the abnormal behaviors. Therefore, the downregulation of circSYNDIG1 in hippocampus participates in CUMS-induced depressive and anxiety-like behavior of mice though miR-344-5p. These findings represent the first evidence for the involvement of circSYNDIG1 and its coupling mechanism in depression and anxiety, suggesting that circSYNDIG1 and miR-344-5p might be new targets for the treatment of stress-related disorder.
Collapse
Affiliation(s)
- Xi Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China; Department of Endocrinology, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang 050051, China.
| | - Han Song
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China; Psychiatric Rehabilitation Unit, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Yaling Fu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Qian Meng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Fang Yuan
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| |
Collapse
|
9
|
Sherif MA, Khalil MZ, Shukla R, Brown JC, Carpenter LL. Synapses, predictions, and prediction errors: A neocortical computational study of MDD using the temporal memory algorithm of HTM. Front Psychiatry 2023; 14:976921. [PMID: 36911109 PMCID: PMC9995817 DOI: 10.3389/fpsyt.2023.976921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Synapses and spines play a significant role in major depressive disorder (MDD) pathophysiology, recently highlighted by the rapid antidepressant effect of ketamine and psilocybin. According to the Bayesian brain and interoception perspectives, MDD is formalized as being stuck in affective states constantly predicting negative energy balance. To understand how spines and synapses relate to the predictive function of the neocortex and thus to symptoms, we used the temporal memory (TM), an unsupervised machine-learning algorithm. TM models a single neocortical layer, learns in real-time, and extracts and predicts temporal sequences. TM exhibits neocortical biological features such as sparse firing and continuous online learning using local Hebbian-learning rules. Methods We trained a TM model on random sequences of upper-case alphabetical letters, representing sequences of affective states. To model depression, we progressively destroyed synapses in the TM model and examined how that affected the predictive capacity of the network. We found that the number of predictions decreased non-linearly. Results Destroying 50% of the synapses slightly reduced the number of predictions, followed by a marked drop with further destruction. However, reducing the synapses by 25% distinctly dropped the confidence in the predictions. Therefore, even though the network was making accurate predictions, the network was no longer confident about these predictions. Discussion These findings explain how interoceptive cortices could be stuck in limited affective states with high prediction error. Connecting ketamine and psilocybin's proposed mechanism of action to depression pathophysiology, the growth of new synapses would allow representing more futuristic predictions with higher confidence. To our knowledge, this is the first study to use the TM model to connect changes happening at synaptic levels to the Bayesian formulation of psychiatric symptomatology. Linking neurobiological abnormalities to symptoms will allow us to understand the mechanisms of treatments and possibly, develop new ones.
Collapse
Affiliation(s)
- Mohamed A. Sherif
- Lifespan Physician Group, Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Carney Institute for Brain Science, Norman Prince Neurosciences Institute, Providence, RI, United States
| | - Mostafa Z. Khalil
- Department of Psychiatry and Behavioral Health, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
| | - Rammohan Shukla
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Joshua C. Brown
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI, United States
| | - Linda L. Carpenter
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI, United States
| |
Collapse
|
10
|
Okahara K, Ohsawa M, Haruta-Tsukamoto A, Miyoshi R, Funahashi H, Fukutani Y, Makita S, Matsuo H, Ishida Y. Frailty Improvement by Multicomponent Drug, Ninjin'Yoeito, in Mild Cognitive Impairment and Mild Alzheimer's Disease Patients: An Open-Label Exploratory Study (FRAMINGO). J Alzheimers Dis Rep 2023; 7:107-117. [PMID: 36891253 PMCID: PMC9986705 DOI: 10.3233/adr-220074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023] Open
Abstract
Background Alzheimer's disease (AD) and dementia have increasingly been conceived of as "complex diseases of aging", determined by multiple, simultaneous, interacting pathophysiological processes. The condition known as frailty is a phenotype of aging and its comprehensive pathophysiology is thought to be closely related to the incidence of mild cognitive impairment (MCI) and the exacerbation of dementia. Objective This study aimed to investigate the effect of the multicomponent drug, ninjin'yoeito (NYT), on frailty in MCI and mild AD patients. Methods This study was an open-label trial. A total of 14 patients, including 9 with MCI and 5 with mild AD, were enrolled. Among them, 11 were frail while 3 were prefrail. NYT (6-9 g/day) was administered orally for 24 weeks, and assessments were carried out at baseline (week 0), and at 4, 8, 16, and 24 weeks. Results In the primary endpoint, significant early improvements were observed in the anorexia scores according to the Neuropsychiatric Inventory after four weeks of treatment with NYT. The Cardiovascular Health Study score was significantly improved, and no frailty was observed after 24 weeks. The fatigue visual analog scale scores also significantly improved. The Clinical Dementia Rating and the Montreal Cognitive Assessment scores remained at baseline levels during the NYT treatment period. Conclusion The results suggest that NYT may be effective in the treatment of frailty, especially for anorexia and fatigue, in both MCI and mild AD patients, which would be beneficial for the prognosis of dementia.
Collapse
Affiliation(s)
| | | | - Ayaka Haruta-Tsukamoto
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki-city, Miyazaki, Japan
| | - Ryoei Miyoshi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki-city, Miyazaki, Japan.,Heartopia Miyoshi Clinic, Miyazaki-city, Miyazaki, Japan
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki-city, Miyazaki, Japan
| | | | | | - Hisae Matsuo
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki-city, Miyazaki, Japan.,Center for Health Sciences and Counseling, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki-city, Miyazaki, Japan
| |
Collapse
|
11
|
Kraguljac NV, Guerreri M, Strickland MJ, Zhang H. Neurite Orientation Dispersion and Density Imaging in Psychiatric Disorders: A Systematic Literature Review and a Technical Note. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:10-21. [PMID: 36712566 PMCID: PMC9874146 DOI: 10.1016/j.bpsgos.2021.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 02/01/2023] Open
Abstract
While major psychiatric disorders lack signature diagnostic neuropathologies akin to dementias, classic postmortem studies have established microstructural involvement, i.e., cellular changes in neurons and glia, as a key pathophysiological finding. Advanced magnetic resonance imaging techniques allow mapping of cellular tissue architecture and microstructural abnormalities in vivo, which holds promise for advancing our understanding of the pathophysiology underlying psychiatric disorders. Here, we performed a systematic review of case-control studies using neurite orientation dispersion and density imaging (NODDI) to assess brain microstructure in psychiatric disorders and a selective review of technical considerations in NODDI. Of the 584 potentially relevant articles, 18 studies met the criteria to be included in this systematic review. We found a general theme of abnormal gray and white matter microstructure across the diagnostic spectrum. We also noted significant variability in patterns of neurite density and fiber orientation within and across diagnostic groups, as well as associations between brain microstructure and phenotypical variables. NODDI has been successfully used to detect subtle microstructure abnormalities in patients with psychiatric disorders. Given that NODDI indices may provide a more direct link to pathophysiological processes, this method may not only contribute to advancing our mechanistic understanding of disease processes, it may also be well positioned for next-generation biomarker development studies.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michele Guerreri
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Molly Jordan Strickland
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
12
|
Zhang X, Wolfinger A, Wu X, Alnafisah R, Imami A, Hamoud AR, Lundh A, Parpura V, McCullumsmith RE, Shukla R, O’Donovan SM. Gene Enrichment Analysis of Astrocyte Subtypes in Psychiatric Disorders and Psychotropic Medication Datasets. Cells 2022; 11:3315. [PMID: 36291180 PMCID: PMC9600295 DOI: 10.3390/cells11203315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
Astrocytes have many important functions in the brain, but their roles in psychiatric disorders and their responses to psychotropic medications are still being elucidated. Here, we used gene enrichment analysis to assess the relationships between different astrocyte subtypes, psychiatric diseases, and psychotropic medications (antipsychotics, antidepressants and mood stabilizers). We also carried out qPCR analyses and "look-up" studies to assess the chronic effects of these drugs on astrocyte marker gene expression. Our bioinformatic analysis identified gene enrichment of different astrocyte subtypes in psychiatric disorders. The highest level of enrichment was found in schizophrenia, supporting a role for astrocytes in this disorder. We also found differential enrichment of astrocyte subtypes associated with specific biological processes, highlighting the complex responses of astrocytes under pathological conditions. Enrichment of protein phosphorylation in astrocytes and disease was confirmed by biochemical analysis. Analysis of LINCS chemical perturbagen gene signatures also found that kinase inhibitors were highly discordant with astrocyte-SCZ associated gene signatures. However, we found that common gene enrichment of different psychotropic medications and astrocyte subtypes was limited. These results were confirmed by "look-up" studies and qPCR analysis, which also reported little effect of psychotropic medications on common astrocyte marker gene expression, suggesting that astrocytes are not a primary target of these medications. Conversely, antipsychotic medication does affect astrocyte gene marker expression in postmortem schizophrenia brain tissue, supporting specific astrocyte responses in different pathological conditions. Overall, this study provides a unique view of astrocyte subtypes and the effect of medications on astrocytes in disease, which will contribute to our understanding of their role in psychiatric disorders and offers insights into targeting astrocytes therapeutically.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Alyssa Wolfinger
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Rawan Alnafisah
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ali Imami
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Abdul-rizaq Hamoud
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Anna Lundh
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Promedica Neurosciences Institute, Toledo, OH 43606, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | | |
Collapse
|
13
|
Crosstalk between neurological, cardiovascular, and lifestyle disorders: insulin and lipoproteins in the lead role. Pharmacol Rep 2022; 74:790-817. [PMID: 36149598 DOI: 10.1007/s43440-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Insulin resistance and impaired lipoprotein metabolism contribute to a plethora of metabolic and cardiovascular disorders. These alterations have been extensively linked with poor lifestyle choices, such as consumption of a high-fat diet, smoking, stress, and a redundant lifestyle. Moreover, these are also known to increase the co-morbidity of diseases like Type 2 diabetes mellitus and atherosclerosis. Under normal physiological conditions, insulin and lipoproteins exert a neuroprotective role in the central nervous system. However, the tripping of balance between the periphery and center may alter the normal functioning of the brain and lead to neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, depression, and multiple sclerosis. These neurological disorders are further characterized by certain behavioral and molecular changes that show consistent overlap with alteration in insulin and lipoprotein signaling pathways. Therefore, targeting these two mechanisms not only reveals a way to manage the co-morbidities associated with the circle of the metabolic, central nervous system, and cardiovascular disorders but also exclusively work as a disease-modifying therapy for neurological disorders. In this review, we summarize the role of insulin resistance and lipoproteins in the progression of various neurological conditions and discuss the therapeutic options currently in the clinical pipeline targeting these two mechanisms; in addition, challenges faced in designing these therapeutic approaches have also been touched upon briefly.
Collapse
|
14
|
Baxi M, Cetin-Karayumak S, Papadimitriou G, Makris N, van der Kouwe A, Jenkins B, Moore TL, Rosene DL, Kubicki M, Rathi Y. Investigating the contribution of cytoarchitecture to diffusion MRI measures in gray matter using histology. FRONTIERS IN NEUROIMAGING 2022; 1:947526. [PMID: 37555179 PMCID: PMC10406256 DOI: 10.3389/fnimg.2022.947526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 08/10/2023]
Abstract
Postmortem studies are currently considered a gold standard for investigating brain structure at the cellular level. To investigate cellular changes in the context of human development, aging, or disease treatment, non-invasive in-vivo imaging methods such as diffusion MRI (dMRI) are needed. However, dMRI measures are only indirect measures and require validation in gray matter (GM) in the context of their sensitivity to the underlying cytoarchitecture, which has been lacking. Therefore, in this study we conducted direct comparisons between in-vivo dMRI measures and histology acquired from the same four rhesus monkeys. Average and heterogeneity of fractional anisotropy and trace from diffusion tensor imaging and mean squared displacement (MSD) and return-to-origin-probability from biexponential model were calculated in nine cytoarchitectonically different GM regions using dMRI data. DMRI measures were compared with corresponding histology measures of regional average and heterogeneity in cell area density. Results show that both average and heterogeneity in trace and MSD measures are sensitive to the underlying cytoarchitecture (cell area density) and capture different aspects of cell composition and organization. Trace and MSD thus would prove valuable as non-invasive imaging biomarkers in future studies investigating GM cytoarchitectural changes related to development and aging as well as abnormal cellular pathologies in clinical studies.
Collapse
Affiliation(s)
- Madhura Baxi
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - George Papadimitriou
- Center for Morphometric Analysis, Massachusetts General Hospital, Charlestown, MA, United States
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Andre van der Kouwe
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bruce Jenkins
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Tara L. Moore
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston, MA, United States
| | - Douglas L. Rosene
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston, MA, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
15
|
Bruno A, Bludau S, Mohlberg H, Amunts K. Cytoarchitecture, intersubject variability, and 3D mapping of four new areas of the human anterior prefrontal cortex. Front Neuroanat 2022; 16:915877. [PMID: 36032993 PMCID: PMC9403835 DOI: 10.3389/fnana.2022.915877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
The dorsolateral prefrontal cortex (DLPFC) plays a key role in cognitive control and executive functions, including working memory, attention, value encoding, decision making, monitoring, and controlling behavioral strategies. However, the relationships between this variety of functions and the underlying cortical areas, which specifically contribute to these functions, are not yet well-understood. Existing microstructural maps differ in the number, localization, and extent of areas of the DLPFC. Moreover, there is a considerable intersubject variability both in the sulcal pattern and in the microstructure of this region, which impedes comparison with functional neuroimaging studies. The aim of this study was to provide microstructural, cytoarchitectonic maps of the human anterior DLPFC in 3D space. Therefore, we analyzed 10 human post-mortem brains and mapped their borders using a well-established approach based on statistical image analysis. Four new areas (i.e., SFS1, SFS2, MFG1, and MFG2) were identified in serial, cell-body stained brain sections that occupy the anterior superior frontal sulcus and middle frontal gyrus, i.e., a region corresponding to parts of Brodmann areas 9 and 46. Differences between areas in cytoarchitecture were captured using gray level index profiles, reflecting changes in the volume fraction of cell bodies from the surface of the brain to the cortex-white matter border. A hierarchical cluster analysis of these profiles indicated that areas of the anterior DLPFC displayed higher cytoarchitectonic similarity between each other than to areas of the neighboring frontal pole (areas Fp1 and Fp2), Broca's region (areas 44 and 45) of the ventral prefrontal cortex, and posterior DLPFC areas (8d1, 8d2, 8v1, and 8v2). Area-specific, cytoarchitectonic differences were found between the brains of males and females. The individual areas were 3D-reconstructed, and probability maps were created in the MNI Colin27 and ICBM152casym reference spaces to take the variability of areas in stereotaxic space into account. The new maps contribute to Julich-Brain and are publicly available as a resource for studying neuroimaging data, helping to clarify the functional and organizational principles of the human prefrontal cortex.
Collapse
Affiliation(s)
- Ariane Bruno
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Ariane Bruno
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Młynarska E, Gadzinowska J, Tokarek J, Forycka J, Szuman A, Franczyk B, Rysz J. The Role of the Microbiome-Brain-Gut Axis in the Pathogenesis of Depressive Disorder. Nutrients 2022; 14:1921. [PMID: 35565888 PMCID: PMC9105444 DOI: 10.3390/nu14091921] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
The role of gut microbiota and its association with the central nervous system via the microbiome-brain-gut axis has been widely discussed in the literature. The aim of this review is to investigate the impact of gut microbiota on the development of depression and underlying molecular mechanisms. There are two possible pathways in which this interaction might occur. The first one suggests that depressive disorder could lead to dysbiosis and one of the causes may be the influence on the hypothalamic-pituitary-adrenal (HPA) axis. The second one considers if changes in the composition of gut microbiota might cause depressive disorder. The mechanisms that could be responsible for this interaction include the secretion of neurotransmitters, gut peptides and the activation of the immune system. However, current knowledge on this topic does not allow for us to state an unambiguous conclusion, and future studies that take into consideration more precise stress-measurement methods are needed to further explore direct mechanisms of the interaction between gut microbiota and mental health.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Lodz, Poland; (J.G.); (J.T.); (J.F.); (A.S.); (B.F.); (J.R.)
| | | | | | | | | | | | | |
Collapse
|
17
|
Kamran M, Bibi F, ur. Rehman A, Morris DW. Major Depressive Disorder: Existing Hypotheses about Pathophysiological Mechanisms and New Genetic Findings. Genes (Basel) 2022; 13:646. [PMID: 35456452 PMCID: PMC9025468 DOI: 10.3390/genes13040646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
Major depressive disorder (MDD) is a common mental disorder generally characterized by symptoms associated with mood, pleasure and effectiveness in daily life activities. MDD is ranked as a major contributor to worldwide disability. The complex pathogenesis of MDD is not yet understood, and this is a major cause of failure to develop new therapies and MDD recurrence. Here we summarize the literature on existing hypotheses about the pathophysiological mechanisms of MDD. We describe the different approaches undertaken to understand the molecular mechanism of MDD using genetic data. Hundreds of loci have now been identified by large genome-wide association studies (GWAS). We describe these studies and how they have provided information on the biological processes, cell types, tissues and druggable targets that are enriched for MDD risk genes. We detail our understanding of the genetic correlations and causal relationships between MDD and many psychiatric and non-psychiatric disorders and traits. We highlight the challenges associated with genetic studies, including the complexity of MDD genetics in diverse populations and the need for a study of rare variants and new studies of gene-environment interactions.
Collapse
Affiliation(s)
- Muhammad Kamran
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.K.); (A.u.R.)
- Centre for Neuroimaging, Cognition and Genomics (NICOG), Discipline of Biochemistry, National University of Ireland Galway, H91 CF50 Galway, Ireland
| | - Farhana Bibi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Asim. ur. Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.K.); (A.u.R.)
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), Discipline of Biochemistry, National University of Ireland Galway, H91 CF50 Galway, Ireland
| |
Collapse
|
18
|
Leung E, Lau EW, Liang A, de Dios C, Suchting R, Östlundh L, Masdeu JC, Fujita M, Sanches M, Soares JC, Selvaraj S. Alterations in brain synaptic proteins and mRNAs in mood disorders: a systematic review and meta-analysis of postmortem brain studies. Mol Psychiatry 2022; 27:1362-1372. [PMID: 35022529 DOI: 10.1038/s41380-021-01410-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
The pathophysiological mechanisms underlying bipolar (BD) and major depressive disorders (MDD) are multifactorial but likely involve synaptic dysfunction and dysregulation. There are multiple synaptic proteins but three synaptic proteins, namely SNAP-25, PSD-95, and synaptophysin, have been widely studied for their role in synaptic function in human brain postmortem studies in BD and MDD. These studies have yielded contradictory results, possibly due to the small sample size and sourcing material from different cortical regions of the brain. We performed a systematic review and meta-analysis to understand the role of these three synaptic proteins and other synaptic proteins, messenger RNA (mRNA) and their regional localizations in BD and MDD. A systematic literature search was conducted and the review is reported in accordance with the MOOSE Guidelines. Meta-analysis was performed to compare synaptic marker levels between BD/MDD groups and controls separately. 1811 papers were identified in the literature search and screened against the preset inclusion and exclusion criteria. A total of 72 studies were screened in the full text, of which 47 were identified as eligible to be included in the systematic review. 24 of these 47 papers were included in the meta-analysis. The meta-analysis indicated that SNAP-25 protein levels were significantly lower in BD. On average, PSD-95 mRNA levels were lower in BD, and protein levels of SNAP-25, PSD-95, and syntaxin were lower in MDD. Localization analysis showed decreased levels of PSD-95 protein in the frontal cortex. We found specific alterations in synaptic proteins and RNAs in both BD and MDD. The review was prospectively registered online in PROSPERO international prospective register of systematic reviews, registration no. CRD42020196932.
Collapse
Affiliation(s)
- Edison Leung
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ethan W Lau
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andi Liang
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Constanza de Dios
- Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert Suchting
- Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Linda Östlundh
- The National Medical Library, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Joseph C Masdeu
- Houston Methodist Neurological Institute, Houston, TX, USA.,Weill Cornell Medicine, New York, NY, USA
| | - Masahiro Fujita
- Weill Cornell Medicine, New York, NY, USA.,PET Core Facility, Houston Methodist Research Insitute, Houston, TX, USA
| | - Marsal Sanches
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sudhakar Selvaraj
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
19
|
Wang Y, Qu P, Sun Y, Li Z, Liu L, Yang L. Association between increased inflammatory cytokine expression in the lateral habenular nucleus and depressive-like behavior induced by unpredictable chronic stress in rats. Exp Neurol 2021; 349:113964. [PMID: 34971677 DOI: 10.1016/j.expneurol.2021.113964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Depression induced by unpredictable chronic stress (UCS) has been widely studied using animal models. However, its underlying pathological mechanisms remain unclear. Increased inflammatory cytokines (ICs) in the central nervous system (CNS) are closely related to depressive disorder. UCS was used as an animal model in this study to investigate how UCS-induced changes in cytokine signaling lead to depression. We found that UCS could increase ICs in the CNS, especially in the habenular nucleus (Hb). UCS resulted in decreased expression of Menin in Hb and increased the activation of the NF-κB signaling pathway. Local administration of tumor necrosis factor-α in the lateral Hb (LHb) could induce depressive-like behavior in rats. The anti-inflammatory drug aspirin and the NF-κB inhibitor pyrrolidine dithiocarbamate could alleviate depressive-like behavior. This phenomenon was not observed for local administration in the dorsal raphe nucleus and paraventricular nucleus. These results indicate that LHb is the main central target for ICs to regulate depressive-like behaviors. We also found that LHb lesions could improve the inflammatory response in the hippocampus, reduce the activation of the NF-κB signaling pathway and the expression of ICs, and increase the expression of brain-derived neurotrophic factor and its receptor tropomyosin receptor kinase B, collectively improving the neuroinflammation caused by UCS. Moreover, LHb lesions improve not only hippocampal neurogenesis damage caused by UCS by activating the PI3K/mTOR signaling pathway but also hippocampal function by reducing the expression of apoptosis-related proteins, including phosphorylated p53, Bax, Bcl2, and cleaved-caspase3. In conclusion, our study sheds light on the pathogenesis of ICs-induced depression. Anti-inflammation in the CNS could be a new strategy in the treatment of depression.
Collapse
Affiliation(s)
- Yachun Wang
- School of Medicine, Dalian University, Dalian 116622, China; Medical Laboratory, Henan Provincial Chest Hospital, Zhengzhou 450003, China
| | - Peng Qu
- School of Medicine, Dalian University, Dalian 116622, China; Chronic Disease Research Center, Dalian Key Laboratory, Dalian 116622, China
| | - Yimeng Sun
- School of Medicine, Dalian University, Dalian 116622, China
| | - Ziang Li
- School of Medicine, Dalian University, Dalian 116622, China
| | - Lei Liu
- School of Medicine, Jiamusi University, Jiamusi 154007, China.
| | - Limin Yang
- School of Medicine, Dalian University, Dalian 116622, China; Chronic Disease Research Center, Dalian Key Laboratory, Dalian 116622, China.
| |
Collapse
|
20
|
Rootes-Murdy K, Zendehrouh E, Calhoun VD, Turner JA. Spatially Covarying Patterns of Gray Matter Volume and Concentration Highlight Distinct Regions in Schizophrenia. Front Neurosci 2021; 15:708387. [PMID: 34720851 PMCID: PMC8551386 DOI: 10.3389/fnins.2021.708387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: Individuals with schizophrenia have consistent gray matter reduction throughout the cortex when compared to healthy individuals. However, the reduction patterns vary based on the quantity (concentration or volume) utilized by study. The objective of this study was to identify commonalities between gray matter concentration and gray matter volume effects in schizophrenia. Methods: We performed both univariate and multivariate analyses of case/control effects on 145 gray matter images from 66 participants with schizophrenia and 79 healthy controls, and processed to compare the concentration and volume estimates. Results: Diagnosis effects in the univariate analysis showed similar areas of volume and concentration reductions in the insula, occipitotemporal gyrus, temporopolar area, and fusiform gyrus. In the multivariate analysis, healthy controls had greater gray matter volume and concentration additionally in the superior temporal gyrus, prefrontal cortex, cerebellum, calcarine, and thalamus. In the univariate analyses there was moderate overlap between gray matter concentration and volume across the entire cortex (r = 0.56, p = 0.02). The multivariate analyses revealed only low overlap across most brain patterns, with the largest correlation (r = 0.37) found in the cerebellum and vermis. Conclusions: Individuals with schizophrenia showed reduced gray matter volume and concentration in previously identified areas of the prefrontal cortex, cerebellum, and thalamus. However, there were only moderate correlations across the cortex when examining the different gray matter quantities. Although these two quantities are related, concentration and volume do not show identical results, and therefore, should not be used interchangeably in the literature.
Collapse
Affiliation(s)
- Kelly Rootes-Murdy
- Department of Psychology, Georgia State University, Atlanta, GA, United States.,Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Elaheh Zendehrouh
- Department of Computer Science, Georgia State University, Atlanta, GA, United States.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Vince D Calhoun
- Department of Psychology, Georgia State University, Atlanta, GA, United States.,Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, GA, United States.,Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| |
Collapse
|
21
|
Scarante FF, Ribeiro MA, Almeida-Santos AF, Guimarães FS, Campos AC. Glial Cells and Their Contribution to the Mechanisms of Action of Cannabidiol in Neuropsychiatric Disorders. Front Pharmacol 2021; 11:618065. [PMID: 33613284 PMCID: PMC7890128 DOI: 10.3389/fphar.2020.618065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD) is a phytocannabinoid with a broad-range of therapeutic potential in several conditions, including neurological (epilepsy, neurodegenerative diseases, traumatic and ischemic brain injuries) and psychiatric disorders (schizophrenia, addiction, major depressive disorder, and anxiety). The pharmacological mechanisms responsible for these effects are still unclear, and more than 60 potential molecular targets have been described. Regarding neuropsychiatric disorders, most studies investigating these mechanisms have focused on neuronal cells. However, glial cells (astrocytes, oligodendrocytes, microglia) also play a crucial role in keeping the homeostasis of the central nervous system. Changes in glial functions have been associated with neuropathological conditions, including those for which CBD is proposed to be useful. Mostly in vitro studies have indicated that CBD modulate the activation of proinflammatory pathways, energy metabolism, calcium homeostasis, and the proliferative rate of glial cells. Likewise, some of the molecular targets proposed for CBD actions are f expressed in glial cells, including pharmacological receptors such as CB1, CB2, PPAR-γ, and 5-HT1A. In the present review, we discuss the currently available evidence suggesting that part of the CBD effects are mediated by interference with glial cell function. We also propose additional studies that need to be performed to unveil the contribution of glial cells to CBD effects in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Franciele F. Scarante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Melissa A. Ribeiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana F. Almeida-Santos
- Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alline C. Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
22
|
Gong J, Meng T, Yang J, Hu N, Zhao H, Tian T. Three-dimensional in vitro tissue culture models of brain organoids. Exp Neurol 2021; 339:113619. [PMID: 33497645 DOI: 10.1016/j.expneurol.2021.113619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Brain organoids are three-dimensional self-assembled structures that are derived from human induced pluripotent stem cells (hiPSCs). They can recapitulate the spatiotemporal organization and function of the brain, presenting a robust system for in vitro modeling of brain development, evolution, and diseases. Significant advances in biomaterials, microscale technologies, gene editing technologies, and stem cell biology have enabled the construction of human specific brain structures in vitro. However, the limitations of long-term culture, necrosis, and hypoxic cores in different culture models obstruct brain organoid growth and survival. The in vitro models should facilitate oxygen and nutrient absorption, which is essential to generate complex organoids and provides a biomimetic microenvironment for modeling human brain organogenesis and human diseases. This review aims to highlight the progress in the culture devices of brain organoids, including dish, bioreactor, and organ-on-a-chip models. With the modulation of bioactive molecules and biomaterials, the generated organoids recapitulate the key features of the human brain in a more reproducible and hyperoxic fashion. Furthermore, an outlook for future preclinical studies and the genetic modifications of brain organoids is presented.
Collapse
Affiliation(s)
- Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Tianyue Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hezhao Zhao
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tian Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
23
|
Czéh B, Nagy SA. Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders. Front Mol Neurosci 2018. [PMID: 29535607 PMCID: PMC5835102 DOI: 10.3389/fnmol.2018.00056] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the “gliocentric theory”, glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation—mediated by microglial activation—triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the “gliocentric” theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Szilvia A Nagy
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Neurosurgery, University of Pécs, Medical School, Pécs, Hungary.,MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary
| |
Collapse
|
24
|
Shilpa BM, Bhagya V, Harish G, Srinivas Bharath MM, Shankaranarayana Rao BS. Environmental enrichment ameliorates chronic immobilisation stress-induced spatial learning deficits and restores the expression of BDNF, VEGF, GFAP and glucocorticoid receptors. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:88-100. [PMID: 28288856 DOI: 10.1016/j.pnpbp.2017.02.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 01/17/2023]
Abstract
Severe and prolonged stress is the main environmental factor that precipitates depression, anxiety and cognitive dysfunctions. On the other hand, exposure to environmental enrichment (EE) has been shown to induce progressive plasticity in the brain and improve learning and memory in various neurological and psychiatric disorders. It is not known whether exposure to enriched environment could ameliorate chronic immobilisation stress-induced cognitive deficits and altered molecular markers. Hence, in the present study we aimed to evaluate the effect of enriched environment on chronic immobilisation stress (CIS) associated changes in spatial learning and memory, behavioural measures of anxiety, depression and molecular markers as well as structural alterations. Male Wistar rats were subjected to chronic immobilisation stress for 2h/day/10days followed by 2weeks of exposure to EE. CIS resulted in weight loss, anhedonia, increased immobility, spatial learning and memory impairment, enhanced anxiety, and reduced expression of BDNF, VEGF, GFAP and glucocorticoid receptors (GR) in discrete brain regions. Interestingly, stressed rats exposed to enrichment ameliorated behavioural depression, spatial learning and memory impairment and reduced anxiety behaviour. In addition, EE restored BDNF, VEGF, GFAP and GR expression and normalized hypotrophy of dentate gyrus and hippocampus in CIS rats. In contrast, EE did not restore hypertrophy of the amygdalar complex. Thus, EE ameliorates stress-induced cognitive deficits by modulating the neurotrophic factors, astrocytes and glucocorticoid receptors in the hippocampus, frontal cortex and amygdala.
Collapse
Affiliation(s)
- B M Shilpa
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - V Bhagya
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - G Harish
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - M M Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
25
|
Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity. Neurobiol Learn Mem 2016; 134 Pt B:379-91. [DOI: 10.1016/j.nlm.2016.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/06/2016] [Accepted: 08/19/2016] [Indexed: 01/19/2023]
|
26
|
Calabrese F, Riva MA, Molteni R. Synaptic alterations associated with depression and schizophrenia: potential as a therapeutic target. Expert Opin Ther Targets 2016; 20:1195-207. [PMID: 27167520 DOI: 10.1080/14728222.2016.1188080] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In recent years, the concept of 'synaptopathy' has been extended from neurodegenerative and neurological disorders to psychiatric diseases. According to this nascent line of research, disruption in synaptic structure and function acts as the main determinant of mental illness. Therefore, molecular systems and processes crucial for synaptic activity may represent promising therapeutic targets. AREAS COVERED We review data on synaptic structural alterations in depression and schizophrenia and on specific molecular systems and/or mechanisms important for the maintenance of proper synaptic function. Specifically, we examine the involvement of the neuroligin system, the local protein translation, and the neurotrophin BDNF by reviewing clinical and preclinical studies, with particular attention to results provided by using animal models based on the role of stress in psychiatric diseases. Finally, we also discuss the impact of pharmacological treatment on these molecular systems/mechanisms. EXPERT OPINION The relevance of synaptic dysfunctions in psychiatric diseases is undoubted and the potential to normalize, ameliorate, and shape such alterations by acting on molecular systems crucial to ensure synaptic function property is fascinating. However, future studies are required to elucidate several open issues.
Collapse
Affiliation(s)
- Francesca Calabrese
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| | - Marco A Riva
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| | - Raffaella Molteni
- a Dipartimento di Scienze Farmacologiche e Biomolecolari , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
27
|
Chronic treatment with coenzyme Q10 reverses restraint stress-induced anhedonia and enhances brain mitochondrial respiratory chain and creatine kinase activities in rats. Behav Pharmacol 2016; 24:552-60. [PMID: 23928691 DOI: 10.1097/fbp.0b013e3283654029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several recent studies suggest a close link between mitochondrial dysfunction and depression. Coenzyme Q10 (CoQ10) is a mobile electron carrier in the mitochondrial respiratory chain (MRC) with antioxidant and potential neuroprotective activities. This study investigated the effect of chronic administration of CoQ10 (50, 100, and 200 mg/kg/day, intraperitoneally, for 4 weeks) on anhedonia and on the activities of MRC complexes and creatine kinase in the frontal cortex and hippocampus of Wistar rats subjected to chronic restraint stress (CRS, 6 h × 28 days). Exposure to CRS-induced anhedonic-like behavior (decreased sucrose preference), reduced body weight gain and food intake, increased adrenal gland weight, and altered the activity of the MRC complexes in the brain areas tested. CoQ10 dose-dependently antagonized CRS-induced depressive behavior by increasing sucrose preference (reversal of anhedonia), body weight, and food intake and reducing adrenal gland weight. CoQ10 also enhanced the activities of MRC complexes (I-IV) and creatine kinase in the frontal cortex and hippocampus. Thus, the reversal of CRS-induced anhedonia may be partially mediated by amelioration of brain mitochondrial function. The findings also support the hypothesis that brain energy impairment is involved in the pathophysiology of depression and enhancing mitochondrial function could provide an opportunity for development of a potentially more efficient drug therapy for depression.
Collapse
|
28
|
Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev 2015; 58:79-91. [PMID: 26116544 PMCID: PMC4684432 DOI: 10.1016/j.neubiorev.2015.06.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one's safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans.
Collapse
Affiliation(s)
- Jason Radley
- Department of Psychological and Brain Sciences and Interdisciplinary Neuroscience Program, University of Iowa, IA, United States
| | - David Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor Viau
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States.
| |
Collapse
|
29
|
Miskowiak KW, Vinberg M, Macoveanu J, Ehrenreich H, Køster N, Inkster B, Paulson OB, Kessing LV, Skimminge A, Siebner HR. Effects of Erythropoietin on Hippocampal Volume and Memory in Mood Disorders. Biol Psychiatry 2015; 78:270-7. [PMID: 25641635 DOI: 10.1016/j.biopsych.2014.12.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Persistent cognitive dysfunction in depression and bipolar disorder (BD) impedes patients' functional recovery. Erythropoietin (EPO) increases neuroplasticity and reduces cognitive difficulties in treatment-resistant depression (TRD) and remitted BD. This magnetic resonance imaging study assessed the neuroanatomical basis for these effects. METHODS Patients with TRD who were moderately depressed or BD in partial remission were randomized to 8 weekly EPO (40,000 IU) or saline infusions in a double-blind, parallel-group design. Patients underwent magnetic resonance imaging, memory assessment with the Rey Auditory Verbal Learning Test, and mood ratings with the Beck Depression Inventory, Hamilton Depression Rating Scale, and Young Mania Rating Scale at baseline and week 14. Hippocampus segmentation and analysis of hippocampal volume, shape, and gray matter density were conducted with FMRIB Software Library tools. Memory change was analyzed with repeated-measures analysis of covariance adjusted for depression symptoms, diagnosis, age, and gender. RESULTS Eighty-four patients were randomized; 1 patient withdrew and data collection was incomplete for 14 patients; data were thus analyzed for 69 patients (EPO: n = 35, saline: n = 34). Compared with saline, EPO was associated with mood-independent memory improvement and reversal of brain matter loss in the left hippocampal cornu ammonis 1 to cornu ammonis 3 and subiculum. Using the entire sample, memory improvement was associated with subfield hippocampal volume increase independent of mood change. CONCLUSIONS EPO-associated memory improvement in TRD and BD may be mediated by reversal of brain matter loss in a subfield of the left hippocampus. EPO may provide a therapeutic option for patients with mood disorders who have impaired neuroplasticity and cognition.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Maj Vinberg
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Julian Macoveanu
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nicolai Køster
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Becky Inkster
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Olaf B Paulson
- Neurobiological Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars V Kessing
- Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Arnold Skimminge
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
30
|
Nocjar C, Alex KD, Sonneborn A, Abbas AI, Roth BL, Pehek EA. Serotonin-2C and -2a receptor co-expression on cells in the rat medial prefrontal cortex. Neuroscience 2015; 297:22-37. [PMID: 25818050 PMCID: PMC4595040 DOI: 10.1016/j.neuroscience.2015.03.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 11/28/2022]
Abstract
Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin-2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a complex interplay of cortical 5-HT2A and 5-HT2C receptor mechanisms exists, which if altered, could modulate efferent brain systems implicated in mental illness.
Collapse
Affiliation(s)
- C Nocjar
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - K D Alex
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - A Sonneborn
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA.
| | - A I Abbas
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - B L Roth
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, 120 Mason Farm Road, 4072 Genetic Medicine Building, Campus Box 7365, Chapel Hill, NC 27599-7365, USA.
| | - E A Pehek
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
31
|
Williams AJ, Umemori H. The best-laid plans go oft awry: synaptogenic growth factor signaling in neuropsychiatric disease. Front Synaptic Neurosci 2014; 6:4. [PMID: 24672476 PMCID: PMC3957327 DOI: 10.3389/fnsyn.2014.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/21/2014] [Indexed: 12/27/2022] Open
Abstract
Growth factors play important roles in synapse formation. Mouse models of neuropsychiatric diseases suggest that defects in synaptogenic growth factors, their receptors, and signaling pathways can lead to disordered neural development and various behavioral phenotypes, including anxiety, memory problems, and social deficits. Genetic association studies in humans have found evidence for similar relationships between growth factor signaling pathways and neuropsychiatric phenotypes. Accumulating data suggest that dysfunction in neuronal circuitry, caused by defects in growth factor-mediated synapse formation, contributes to the susceptibility to multiple neuropsychiatric diseases, including epilepsy, autism, and disorders of thought and mood (e.g., schizophrenia and bipolar disorder, respectively). In this review, we will focus on how specific synaptogenic growth factors and their downstream signaling pathways might be involved in the development of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Aislinn J Williams
- Department of Psychiatry, University of Michigan Ann Arbor, MI, USA ; Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Hisashi Umemori
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Neurology, F.M. Kirby Neurobiology Center, Harvard Medical School, Boston Children's Hospital Boston, MA, USA
| |
Collapse
|
32
|
Salvadore G, Drevets WC, Henter ID, Zarate CA, Manji HK. Early intervention in bipolar disorder, part I: clinical and imaging findings. Early Interv Psychiatry 2008; 2:122-35. [PMID: 19649152 PMCID: PMC2613320 DOI: 10.1111/j.1751-7893.2008.00071.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The concept of prevention is not new to psychiatry and has long been recognized in general medicine. Recent evidence has highlighted that early pharmacological and psychosocial treatment dramatically ameliorates poor prognosis and outcome for individuals with psychotic disorders, reducing conversion rates to full-blown illness and decreasing symptom severity. Nevertheless, despite the many recent advances in our thinking about early intervention, the need for early intervention in bipolar disorder (BPD) is an area that has been relatively neglected. This review attempts to synthesize what is currently known about early intervention in BPD. We discuss methodological issues pertaining to this topic, review clinical studies that focus on high-risk subjects as well as first-episode patients and review findings from brain imaging studies in the offspring of individuals with BPD as well as in first-episode patients. A companion paper discusses the cellular and molecular mechanisms of action of agents with neurotrophic and neuroplastic properties, with a particular emphasis on lithium and valproate.
Collapse
Affiliation(s)
- Giacomo Salvadore
- Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
It has been known for some time that cytokines made and released during systemic illness can result in a constellation of symptoms strikingly similar to those observed in depression. The overlap of the symptoms of depression and systemic illness raises the intriguing possibility that cytokines may be involved in the development and maintenance of mood disorders. Cytokines are small ubiquitous pleiotropic molecules that are made and released in response to a variety of stimuli. They have a multitude of actions throughout the body, including actions on the central and peripheral nervous systems. Alterations in the levels of circulating cytokines, especially the key proinflammatory cytokines, interleukin 6 and tumor necrosis factor alpha , have been linked to a variety of disease states including those involving central nervous system depression. In this brief review, epidemiological and clinical data on depression, as well as findings from relevant animal models, are examined for links between cytokine expression and depression. We suggest that glial cells, both as a source and target of cytokines, represent the overlooked targets involved in the etiology of depression.
Collapse
Affiliation(s)
- Diane B Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | |
Collapse
|