1
|
Safwi SR, Rizvi A, Usmani MA, Husain K, Brar K, Yadava D. Transcranial direct current stimulation and its effect on cognitive symptoms of schizophrenia: An updated review. Schizophr Res Cogn 2025; 39:100335. [PMID: 39512786 PMCID: PMC11541428 DOI: 10.1016/j.scog.2024.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
Objective Cognitive impairments in schizophrenia significantly affect functional outcomes and quality of life. This meta-analysis evaluates the effectiveness of transcranial direct current stimulation (tDCS) as an intervention for cognitive deficits in individuals with schizophrenia. Methods From May 20 to June 15, 2024, a systematic search of PubMed, Medline, Embase, and the Cochrane central register of controlled trials was conducted. After applying eligibility criteria, 13 randomized sham-controlled trials were included, involving 261 participants in the tDCS group and 247 in the sham group. Standardized mean difference (SMD) was computed to measure the effect size of cognitive outcomes. Statistical analyses were performed using a random-effects model to account for heterogeneity. Results The pooled analysis yielded an SMD of 0.09 (95 % CI: -0.17 to 0.35), indicating a non-significant difference between tDCS and sham on cognitive outcomes. Moderate heterogeneity (I2 = 44 %) was observed, attributed to variations in tDCS protocols, participant demographics, and cognitive assessment tools. Although certain studies showed improvements in specific domains like working memory, the overall impact of tDCS on cognitive symptoms was not statistically significant. Conclusions This meta-analysis underscores the lack of significant evidence for tDCS in improving cognitive deficits in schizophrenia. The findings highlight the urgent need for standardizing tDCS protocols and employing domain-specific cognitive assessments. This standardization, along with the collection of more domain-specific data, is crucial for future research and the improvement of current methodologies.
Collapse
Affiliation(s)
| | - Abid Rizvi
- Department of Behavioral Medicine and Psychiatry, West Virginia University, USA
| | | | - Karrar Husain
- Texas Tech University Health Science Center at Permian Basin, TX, USA
| | | | - Deep Yadava
- Department of Behavioral Medicine and Psychiatry, West Virginia University, USA
| |
Collapse
|
2
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
3
|
Asad Z, Fakheir Y, Abukhaled Y, Khalil R. Implications of altered pyramidal cell morphology on clinical symptoms of neurodevelopmental disorders. Eur J Neurosci 2024; 60:4877-4892. [PMID: 39054743 DOI: 10.1111/ejn.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The prevalence of pyramidal cells (PCs) in the mammalian cerebral cortex underscore their value as they play a crucial role in various brain functions, ranging from cognition, sensory processing, to motor output. PC morphology significantly influences brain connectivity and plays a critical role in maintaining normal brain function. Pathological alterations to PC morphology are thought to contribute to the aetiology of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. This review explores the relationship between abnormalities in PC morphology in key cortical areas and the clinical manifestations in schizophrenia and ASD. We focus largely on human postmortem studies and provide evidence that dendritic segment length, complexity and spine density are differentially affected in these disorders. These morphological alterations can lead to disruptions in cortical connectivity, potentially contributing to the cognitive and behavioural deficits observed in these disorders. Furthermore, we highlight the importance of investigating the functional and structural characteristics of PCs in these disorders to illuminate the underlying pathogenesis and stimulate further research in this area.
Collapse
Affiliation(s)
- Zummar Asad
- School of Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Yara Fakheir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Yara Abukhaled
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Mockevičius A, Voicikas A, Jurkuvėnas V, Tarailis P, Griškova-Bulanova I. Individualized EEG-Based Neurofeedback Targeting Auditory Steady-State Responses: A Proof-of-Concept Study. Appl Psychophysiol Biofeedback 2024:10.1007/s10484-024-09662-1. [PMID: 39183248 DOI: 10.1007/s10484-024-09662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Gamma-band (> 30 Hz) brain oscillatory activity is linked with sensory and cognitive processes and exhibits abnormalities in neuropsychiatric disorders. Therefore, neuromodulation techniques targeting gamma activity are being developed. One promising approach is neurofeedback (NFB) which is based on the alteration of brain responses via online feedback. However, the existing gamma-based NFB systems lack individualized approach. In the present work, we developed and tested an individualized EEG-NFB system. 46 healthy volunteers participated in three sessions on separate days. Before NFB training, individual gamma frequency (IGF) was estimated using chirp-modulated auditory stimulation (30-60 Hz). Participants were subjected to IGF-increase (if IGF was ≤ 45 Hz) or IGF-decrease conditions (if IGF was > 45 Hz). Gamma-band responses were targeted during NFB training, in which participants received auditory steady-state stimulation at frequency slightly above or below IGF and were instructed to try to increase their response while receiving real-time visual feedback. Each time a pre-defined response goal was reached, stimulation frequency was either increased or decreased. After training, IGF was reassessed. Experimental group participants were divided into equal groups based on the median success rate during NFB training. The results showed that high-responders had a significantly higher IGF modulation compared to control group, while low-responders did not differ from controls. No differences in IGF modulation were found between sessions and between NFB repetitions in all participant groups. The initial evaluation of the proposed EEG-NFB system showed potential to modulate IGF. Future studies could investigate longer-lasting electrophysiological and behavioural effects of the application of ASSR/IGF-based NFB system in clinical populations.
Collapse
|
5
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
6
|
Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110626. [PMID: 36055561 DOI: 10.1016/j.pnpbp.2022.110626] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022]
Abstract
Both the discovery of biomarkers of schizophrenia and the verification of biological hypotheses of schizophrenia are an essential part of the process of understanding the etiology of this mental disorder. Schizophrenia has long been considered a neurodevelopmental disease whose symptoms are caused by impaired synaptic signal transduction and brain neuroplasticity. Both the onset and chronic course of schizophrenia are associated with risk factors-induced disruption of brain function and the establishment of a new homeostatic setpoint characterized by biomarkers. Different risk factors and biomarkers can converge to the same symptoms of schizophrenia, suggesting that the primary cause of the disease can be highly individual. Schizophrenia-related biomarkers include measurable biochemical changes induced by stress (elevated allostatic load), mitochondrial dysfunction, neuroinflammation, oxidative and nitrosative stress, and circadian rhythm disturbances. Here is a summary of selected valid biological hypotheses of schizophrenia formulated based on risk factors and biomarkers, neurodevelopment, neuroplasticity, brain chemistry, and antipsychotic medication. The integrative neurodevelopmental-vulnerability-neurochemical model is based on current knowledge of the neurobiology of the onset and progression of the disease and the effects of antipsychotics and psychotomimetics and reflects the complex and multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Czech Republic.
| |
Collapse
|
7
|
Qian N, Lipkin RM, Kaszowska A, Silipo G, Dias EC, Butler PD, Javitt DC. Computational modeling of excitatory/inhibitory balance impairments in schizophrenia. Schizophr Res 2022; 249:47-55. [PMID: 32291128 PMCID: PMC8760932 DOI: 10.1016/j.schres.2020.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Deficits in glutamatergic function are well established in schizophrenia (SZ) as reflected in "input" dysfunction across sensory systems. By contrast, less is known about contributions of the GABAergic system to impairments in excitatory/inhibitory balance. We investigated this issue by measuring contrast thresholds for orientation detection, orientation discriminability, and orientation-tilt-aftereffect curves in schizophrenia subjects and matched controls. These measures depend on the amplitude and width of underlying orientation tuning curves, which, in turn, depend on excitatory and inhibitory interactions. By simulating a well-established V1 orientation selectivity model and its link to perception, we demonstrate that reduced cortical excitation and inhibition are both necessary to explain our psychophysical data. Reductions in GABAergic feedback may represent a compensatory response to impaired glutamatergic input in SZ, or a separate pathophysiological event. We also found evidence for the widely accepted, but rarely tested, inverse relationship between orientation discriminability and tuning width.
Collapse
Affiliation(s)
- Ning Qian
- Department of Neuroscience, Zuckerman Institute, Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10027, United States of America
| | - Richard M Lipkin
- Department of Neuroscience, Zuckerman Institute, Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10027, United States of America
| | - Aleksandra Kaszowska
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America; Department of Electronic Systems, Aalborg University, Denmark
| | - Gail Silipo
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Elisa C Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Pamela D Butler
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America
| | - Daniel C Javitt
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States of America; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States of America.
| |
Collapse
|
8
|
Nasrallah HA. Re-inventing the schizophrenia syndrome: The elusive "theory of everything". Schizophr Res 2022; 242:106-108. [PMID: 34799222 DOI: 10.1016/j.schres.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 10/25/2022]
Affiliation(s)
- Henry A Nasrallah
- Neurology and Neuroscience, University of Cincinnati College of Medicine, United States of America.
| |
Collapse
|
9
|
Faller J, Doose J, Sun X, Mclntosh JR, Saber GT, Lin Y, Teves JB, Blankenship A, Huffman S, Goldman RI, George MS, Brown TR, Sajda P. Daily prefrontal closed-loop repetitive transcranial magnetic stimulation (rTMS) produces progressive EEG quasi-alpha phase entrainment in depressed adults. Brain Stimul 2022; 15:458-471. [PMID: 35231608 PMCID: PMC8979612 DOI: 10.1016/j.brs.2022.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation modality that can treat depression, obsessive-compulsive disorder, or help smoking cessation. Research suggests that timing the delivery of TMS relative to an endogenous brain state may affect efficacy and short-term brain dynamics. OBJECTIVE To investigate whether, for a multi-week daily treatment of repetitive TMS (rTMS), there is an effect on brain dynamics that depends on the timing of the TMS relative to individuals' prefrontal EEG quasi-alpha rhythm (between 6 and 13 Hz). METHOD We developed a novel closed-loop system that delivers personalized EEG-triggered rTMS to patients undergoing treatment for major depressive disorder. In a double blind study, patients received daily treatments of rTMS over a period of six weeks and were randomly assigned to either a synchronized or unsynchronized treatment group, where synchronization of rTMS was to their prefrontal EEG quasi-alpha rhythm. RESULTS When rTMS is applied over the dorsal lateral prefrontal cortex (DLPFC) and synchronized to the patient's prefrontal quasi-alpha rhythm, patients develop strong phase entrainment over a period of weeks, both over the stimulation site as well as in a subset of areas distal to the stimulation site. In addition, at the end of the course of treatment, this group's entrainment phase shifts to be closer to the phase that optimally engages the distal target, namely the anterior cingulate cortex (ACC). These entrainment effects are not observed in the group that is given rTMS without initial EEG synchronization of each TMS train. CONCLUSIONS The entrainment effects build over the course of days/weeks, suggesting that these effects engage neuroplastic changes which may have clinical consequences in depression or other diseases.
Collapse
Affiliation(s)
- Josef Faller
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jayce Doose
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaoxiao Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, 20115, USA
| | - James R Mclntosh
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Orthopaedic Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Golbarg T Saber
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurology, University of Chicago, Chicago, IL, 60637, USA
| | - Yida Lin
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Joshua B Teves
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aidan Blankenship
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sarah Huffman
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robin I Goldman
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Truman R Brown
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA; Data Science Institute, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
10
|
Talebian A, Britton R, Henkemeyer M. Abnormalities in cortical interneuron subtypes in ephrin-B mutant mice. Eur J Neurosci 2018; 48:1803-1817. [PMID: 29904965 DOI: 10.1111/ejn.14022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 12/01/2022]
Abstract
To explore roles for ephrin-B/EphB signaling in cortical interneurons, we previously generated ephrin-B (Efnb1/b2/b3) conditional triple mutant (TMlz ) mice using a Dlx1/2.Cre inhibitory neuron driver and green fluorescent protein (GFP) reporters for the two main inhibitory interneuron groups distinguished by expression of either glutamic acid decarboxylase 1 (GAD1; GAD67-GFP) or 2 (GAD2; GAD65-GFP). This work showed a general involvement of ephrin-B in migration and population of interneurons into the embryonic neocortex. We now determined whether specific interneurons are selectively affected in the adult brains of TMlz .Cre mice by immunostaining with antibodies that identify the different subtypes. The results indicate that GAD67-GFP-expressing interneurons that also express parvalbumin (PV), calretinin (CR) and, to a lesser extent, somatostatin (SST) and Reelin (Rln) were significantly reduced in the cortex and hippocampal CA1 region in TMlz .Cre mutant mice. Neuropeptide Y (NPY) interneurons that also express GAD67-GFP were reduced in the hippocampal CA1 region, but much less so in the cortex, although these cells exhibited abnormal cortical layering. In GAD65-GFP-expressing interneurons, CR subtypes were reduced in both cortex and hippocampal CA1 region, whereas Rln interneurons were reduced exclusively in hippocampus, and the numbers of NPY and vasoactive intestinal polypeptide (VIP) subtypes appeared normal. PV and CR subtype interneurons in TMlz .Cre mice also exhibited reductions in their perisomatic area, suggesting abnormalities in dendritic/axonal complexity. Altogether, our data indicate that ephrin-B expression within forebrain interneurons is required in specific subtypes for their normal population, cortical layering and elaboration of cell processes.
Collapse
Affiliation(s)
- Asghar Talebian
- Department of Neuroscience and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rachel Britton
- Department of Neuroscience and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark Henkemeyer
- Department of Neuroscience and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Crosstalk between endoplasmic reticulum stress and oxidative stress in schizophrenia: The dawn of new therapeutic approaches. Neurosci Biobehav Rev 2017; 83:589-603. [DOI: 10.1016/j.neubiorev.2017.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 01/15/2023]
|
12
|
Shepard R, Heslin K, Coutellier L. The transcription factor Npas4 contributes to adolescent development of prefrontal inhibitory circuits, and to cognitive and emotional functions: Implications for neuropsychiatric disorders. Neurobiol Dis 2017; 99:36-46. [DOI: 10.1016/j.nbd.2016.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022] Open
|
13
|
Goff D. The Therapeutic Role of d-Cycloserine in Schizophrenia. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:39-66. [PMID: 27288073 DOI: 10.1016/bs.apha.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ketamine model for schizophrenia has led to several therapeutic strategies for enhancing N-methyl d-aspartate (NMDA) receptor activity, including agonists directed at the glycine receptor site and inhibitors of glycine reuptake. Because ketamine may primarily block NMDA receptors on inhibitory interneurons, drugs that reduce glutamate release have also been investigated as a means of countering a deficit in inhibitory input. These approaches have met with some success for the treatment of negative and positive symptoms, but results have not been consistent. An emerging approach with the NMDA partial agonist, d-cycloserine (DCS), aims to enhance plasticity by intermittent treatment. Early trials have demonstrated benefit with intermittent DCS dosing for negative symptoms and memory. When combined with cognitive remediation, intermittent DCS treatment enhanced learning on a practiced auditory discrimination task and when added to cognitive behavioral therapy, DCS improved delusional severity in subjects who received DCS with the first CBT session. These studies require replication, but point toward a promising strategy for the treatment of schizophrenia and other disorders of plasticity.
Collapse
Affiliation(s)
- D Goff
- NYU School of Medicine, New York, United States.
| |
Collapse
|
14
|
Udakis M, Wright VL, Wonnacott S, Bailey CP. Integration of inhibitory and excitatory effects of α7 nicotinic acetylcholine receptor activation in the prelimbic cortex regulates network activity and plasticity. Neuropharmacology 2016; 105:618-629. [PMID: 26921769 PMCID: PMC4881417 DOI: 10.1016/j.neuropharm.2016.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 12/02/2022]
Abstract
Cognitive and attentional processes governed by the prefrontal cortex (PFC) are influenced by cholinergic innervation. Here we have explored the role of α7 nicotinic acetylcholine receptors (nAChRs) as mediators of cholinergic signalling in the dorsomedial (prelimbic) PFC, using mouse brain slice electrophysiology. Activation of α7 nAChRs located on glutamatergic terminals and cell soma of GABAergic interneurons increased excitation and inhibition, respectively, in layer V of the prelimbic cortex. These actions were distinguished by their differential dependence on local acetylcholine (ACh): potentiation of endogenous cholinergic signalling with the positive allosteric modulator, PNU-120596, enhanced spontaneous excitatory events, an effect that was further increased by inhibition of acetylcholinesterase. In contrast, α7 nicotinic modulation of inhibitory signalling required addition of exogenous agonist (PNU-282987) as well as PNU-120596, and was unaffected by acetylcholinesterase inhibition. Thus α7 nAChRs can bi-directionally regulate network activity in the prelimbic cortex, depending on the magnitude and localisation of cholinergic signalling. This bidirectional influence is manifest in dual effects of α7 nAChRs on theta-burst-induced long-term potentiation (LTP) in layer V of the prelimbic cortex. Antagonism of α7 nAChRs significantly decreased LTP implicating a contribution from endogenous ACh, consistent with the ability of local ACh to enhance glutamatergic signalling. Exogenous agonist plus potentiator also decreased LTP, indicative of the influence of this drug combination on inhibitory signalling. Thus α7 nAChRs make a complex contribution to network activity and synaptic plasticity in the prelimbic cortex. α7 nAChRs exist at glutamatergic nerve terminals in the prelimbic cortex. α7 nAChRs exist at GABAergic cell bodies in the prelimbic cortex. Tonic ACh preferentially activates α7 nAChRs at glutamatergic nerve terminals. α7 nAChRs exert bidirectional control of LTP in the prelimbic cortex.
Collapse
Affiliation(s)
- Matthew Udakis
- Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK
| | | | - Susan Wonnacott
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | |
Collapse
|
15
|
Banerjee A, Wang HY, Borgmann-Winter KE, MacDonald ML, Kaprielian H, Stucky A, Kvasic J, Egbujo C, Ray R, Talbot K, Hemby SE, Siegel SJ, Arnold SE, Sleiman P, Chang X, Hakonarson H, Gur RE, Hahn CG. Src kinase as a mediator of convergent molecular abnormalities leading to NMDAR hypoactivity in schizophrenia. Mol Psychiatry 2015; 20:1091-100. [PMID: 25330739 PMCID: PMC5156326 DOI: 10.1038/mp.2014.115] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 01/28/2023]
Abstract
Numerous investigations support decreased glutamatergic signaling as a pathogenic mechanism of schizophrenia, yet the molecular underpinnings for such dysregulation are largely unknown. In the post-mortem dorsolateral prefrontal cortex (DLPFC), we found striking decreases in tyrosine phosphorylation of N-methyl-D aspartate (NMDA) receptor subunit 2 (GluN2) that is critical for neuroplasticity. The decreased GluN2 activity in schizophrenia may not be because of downregulation of NMDA receptors as MK-801 binding and NMDA receptor complexes in postsynaptic density (PSD) were in fact increased in schizophrenia cases. At the postreceptor level, however, we found striking reductions in the protein kinase C, Pyk 2 and Src kinase activity that in tandem can decrease GluN2 activation. Given that Src serves as a hub of various signaling mechanisms affecting GluN2 phosphorylation, we postulated that Src hypoactivity may result from convergent alterations of various schizophrenia susceptibility pathways and thus mediate their effects on NMDA receptor signaling. Indeed, the DLPFC of schizophrenia cases exhibit increased PSD-95 and erbB4 and decreased receptor-type tyrosine-protein phosphatase-α (RPTPα) and dysbindin-1, each of which reduces Src activity via protein interaction with Src. To test genomic underpinnings for Src hypoactivity, we examined genome-wide association study results, incorporating 13 394 cases and 34 676 controls. We found no significant association of individual variants of Src and its direct regulators with schizophrenia. However, a protein-protein interaction-based network centered on Src showed significant enrichment of gene-level associations with schizophrenia compared with other psychiatric illnesses. Our results together demonstrate striking decreases in NMDA receptor signaling at the postreceptor level and propose Src as a nodal point of convergent dysregulations affecting NMDA receptor pathway via protein-protein associations.
Collapse
Affiliation(s)
- Anamika Banerjee
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Hoau-Yan Wang
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, NY 10031
| | | | - Mathew L. MacDonald
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Hagop Kaprielian
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Andres Stucky
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, NY 10031
| | - Jessica Kvasic
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, NY 10031
| | - Chijioke Egbujo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Rabindranath Ray
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Konrad Talbot
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Scott E Hemby
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27106
| | - Steven J. Siegel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Steven E. Arnold
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Patrick Sleiman
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Xiao Chang
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| |
Collapse
|
16
|
Roux L, Buzsáki G. Tasks for inhibitory interneurons in intact brain circuits. Neuropharmacology 2014; 88:10-23. [PMID: 25239808 DOI: 10.1016/j.neuropharm.2014.09.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 01/17/2023]
Abstract
Synaptic inhibition, brought about by a rich variety of interneuron types, counters excitation, modulates the gain, timing, tuning, bursting properties of principal cell firing, and exerts selective filtering of synaptic excitation. At the network level, it allows for coordinating transient interactions among the principal cells to form cooperative assemblies for efficient transmission of information and routing of excitatory activity across networks, typically in the form of brain oscillations. Recent techniques based on targeted expression of neuronal activity modulators, such as optogenetics, allow physiological identification and perturbation of specific interneuron subtypes in the intact brain. Combined with large-scale recordings or imaging techniques, these approaches facilitate our understanding of the multiple roles of inhibitory interneurons in shaping circuit functions.
Collapse
Affiliation(s)
- Lisa Roux
- NYU Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY 10016, USA
| | - György Buzsáki
- NYU Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
17
|
Identification of gene ontologies linked to prefrontal-hippocampal functional coupling in the human brain. Proc Natl Acad Sci U S A 2014; 111:9657-62. [PMID: 24979789 DOI: 10.1073/pnas.1404082111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Functional interactions between the dorsolateral prefrontal cortex and hippocampus during working memory have been studied extensively as an intermediate phenotype for schizophrenia. Coupling abnormalities have been found in patients, their unaffected siblings, and carriers of common genetic variants associated with schizophrenia, but the global genetic architecture of this imaging phenotype is unclear. To achieve genome-wide hypothesis-free identification of genes and pathways associated with prefrontal-hippocampal interactions, we combined gene set enrichment analysis with whole-genome genotyping and functional magnetic resonance imaging data from 269 healthy German volunteers. We found significant enrichment of the synapse organization and biogenesis gene set. This gene set included known schizophrenia risk genes, such as neural cell adhesion molecule (NRCAM) and calcium channel, voltage-dependent, beta 2 subunit (CACNB2), as well as genes with well-defined roles in neurodevelopmental and plasticity processes that are dysfunctional in schizophrenia and have mechanistic links to prefrontal-hippocampal functional interactions. Our results demonstrate a readily generalizable approach that can be used to identify the neurogenetic basis of systems-level phenotypes. Moreover, our findings identify gene sets in which genetic variation may contribute to disease risk through altered prefrontal-hippocampal functional interactions and suggest a link to both ongoing and developmental synaptic plasticity.
Collapse
|
18
|
Cooper MA, Koleske AJ. Ablation of ErbB4 from excitatory neurons leads to reduced dendritic spine density in mouse prefrontal cortex. J Comp Neurol 2014; 522:3351-62. [PMID: 24752666 DOI: 10.1002/cne.23615] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/18/2022]
Abstract
Dendritic spine loss is observed in many psychiatric disorders, including schizophrenia, and likely contributes to the altered sense of reality, disruption of working memory, and attention deficits that characterize these disorders. ErbB4, a member of the EGF family of receptor tyrosine kinases, is genetically associated with schizophrenia, suggesting that alterations in ErbB4 function contribute to the disease pathology. Additionally, ErbB4 functions in synaptic plasticity, leading us to hypothesize that disruption of ErbB4 signaling may affect dendritic spine development. We show that dendritic spine density is reduced in the dorsomedial prefrontal cortex of ErbB4 conditional whole-brain knockout mice. We find that ErbB4 localizes to dendritic spines of excitatory neurons in cortical neuronal cultures and is present in synaptic plasma membrane preparations. Finally, we demonstrate that selective ablation of ErbB4 from excitatory neurons leads to a decrease in the proportion of mature spines and an overall reduction in dendritic spine density in the prefrontal cortex of weanling (P21) mice that persists at 2 months of age. These results suggest that ErbB4 signaling in excitatory pyramidal cells is critical for the proper formation and maintenance of dendritic spines in excitatory pyramidal cells.
Collapse
Affiliation(s)
- Margaret A Cooper
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | | |
Collapse
|
19
|
McGuire JL, Hammond JH, Yates SD, Chen D, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Altered serine/threonine kinase activity in schizophrenia. Brain Res 2014; 1568:42-54. [PMID: 24780530 DOI: 10.1016/j.brainres.2014.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Converging evidence implicates alterations in multiple signaling pathways in the etiology of schizophrenia. Previously, these studies were limited to the analysis of one or a few phosphoproteins at a time. Here, we use a novel kinase array platform to simultaneously investigate the convergence of multiple signaling cascades implicated in schizophrenia. This technology uses consensus peptide substrates to assess activity levels of a large number (>100) of serine/threonine protein kinases. 19 peptide substrates were differentially phosphorylated (>15% change) in the frontal cortex in schizophrenia. These peptide substrates were examined using Ingenuity Pathway Analysis to group them according to the functions and to identify processes most likely affected in schizophrenia. Pathway analysis placed 14 of the 19 peptides into cellular homeostatic pathways, 10 into pathways governing cytoskeletal organization, and 8 into pathways governing ion homeostasis. These data are the first to simultaneously investigate comprehensive changes in signaling cascades in a severe psychiatric disorder. The examination of kinase activity in signaling pathways may facilitate the identification of novel substrates for drug discovery and the development of safer and more effective pharmacological treatment for schizophrenia.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| | - John H Hammond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Stefani D Yates
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Dongquan Chen
- Division of Preventative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Iafrati J, Orejarena MJ, Lassalle O, Bouamrane L, Chavis P. Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. Mol Psychiatry 2014; 19:417-26. [PMID: 23752244 PMCID: PMC3965840 DOI: 10.1038/mp.2013.66] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 02/07/2023]
Abstract
Defective brain extracellular matrix (ECM) is a factor of vulnerability in various psychiatric diseases such as schizophrenia, depression and autism. The glycoprotein reelin is an essential building block of the brain ECM that modulates neuronal development and participates to the functions of adult central synapses. The reelin gene (RELN) is a strong candidate in psychiatric diseases of early onset, but its synaptic and behavioral functions in juvenile brain circuits remain unresolved. Here, we found that in juvenile reelin-haploinsufficient heterozygous reeler mice (HRM), abnormal fear memory erasure is concomitant to reduced dendritic spine density and anomalous long-term potentiation in the prefrontal cortex. In juvenile HRM, a single in vivo injection with ketamine or Ro25-6981 to inhibit GluN2B-N-methyl-D-aspartate receptors (NMDARs) restored normal spine density, synaptic plasticity and converted fear memory to an erasure-resilient state typical of adult rodents. The functional and behavioral rescue by ketamine was prevented by rapamycin, an inhibitor of the mammalian target of rapamycin pathway. Finally, we show that fear memory erasure persists until adolescence in HRM and that a single exposure to ketamine during the juvenile period reinstates normal fear memory in adolescent mice. Our results show that reelin is essential for successful structural, functional and behavioral development of juvenile prefrontal circuits and that this developmental period provides a critical window for therapeutic rehabilitation with GluN2B-NMDAR antagonists.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Cell Adhesion Molecules, Neuronal/deficiency
- Cell Adhesion Molecules, Neuronal/genetics
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Dendritic Spines/drug effects
- Dendritic Spines/genetics
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Agents/pharmacology
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Fear/drug effects
- Fear/physiology
- Female
- In Vitro Techniques
- Ketamine/pharmacology
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Patch-Clamp Techniques
- Phenols
- Piperidines/pharmacology
- Prefrontal Cortex/cytology
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/growth & development
- Receptors, N-Methyl-D-Aspartate/metabolism
- Reelin Protein
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sirolimus
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- J Iafrati
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - M J Orejarena
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - O Lassalle
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - L Bouamrane
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| | - P Chavis
- INSERM UMR 901, Marseille, France
- Aix-Marseille Université, Unité Mixte de Recherche 901, Marseille, France
- INMED, Marseille, France
| |
Collapse
|
21
|
Sasamoto A, Miyata J, Kubota M, Hirao K, Kawada R, Fujimoto S, Tanaka Y, Hazama M, Sugihara G, Sawamoto N, Fukuyama H, Takahashi H, Murai T. Global association between cortical thinning and white matter integrity reduction in schizophrenia. Schizophr Bull 2014; 40:420-7. [PMID: 23461997 PMCID: PMC3932083 DOI: 10.1093/schbul/sbt030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous neuroimaging studies have revealed that both gray matter (GM) and white matter (WM) are altered in several morphological aspects in schizophrenia patients. Although several studies reported associations between GM and WM alterations in restricted regions, the existence of a global association between GM and WM pathologies is unknown. Considering the wide distribution of GM morphological changes and the profound genetic background of WM abnormalities, it would be natural to postulate a global association between pathologies of GM and WM in schizophrenia. In this investigation, we studied 35 schizophrenia patients and 35 healthy control subjects using T1-weighted magnetic resonance imaging and diffusion tensor imaging (DTI) and investigated the association between GM thickness and WM fractional anisotropy (FA) as a proxy of pathology in each tissue. To investigate cortical thickness, surface-based analysis was used. The mean cortical thickness for the whole brain was computed for each hemisphere, and group comparisons were performed. For DTI data, mean FA for the whole brain was calculated, and group comparisons were performed. Subsequently, the correlation between mean cortical thickness and mean FA was investigated. Results showed that the mean cortical thickness was significantly thinner, and the mean FA was significantly lower in schizophrenia patients. Only in the patient group the mean cortical thickness and mean FA showed significant positive correlations in both hemispheres. This correlation remained significant even after controlling for demographic and clinical variables. Thus, our results indicate that the GM and WM pathologies of schizophrenia are intertwined at the global level.
Collapse
Affiliation(s)
- Akihiko Sasamoto
- *To whom correspondence should be addressed; 54 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan; tel: +81 75 751 3386, fax: +81 75 751 3246, e-mail:
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan;,*To whom correspondence should be addressed; 54 Shogoin-Kawahara-cho, Kyoto 606–8507, Japan; tel: +81 75 751 3386, fax: +81 75 751 3246, e-mail:
| | - Manabu Kubota
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuyuki Hirao
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan;,Department of Clinical Psychology, Kyoto Bunkyo University, Uji, Japan
| | - Ryosaku Kawada
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinsuke Fujimoto
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Tanaka
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaaki Hazama
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Genichi Sugihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Modulating neural plasticity with non-invasive brain stimulation in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2013; 263:621-31. [PMID: 24061608 DOI: 10.1007/s00406-013-0446-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 09/02/2013] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a severe mental disorder characterised by a complex phenotype including positive, negative, affective and cognitive symptoms. Various theories have been developed to integrate the clinical phenotype into a strong neurobiological framework. One theory describes schizophrenia as a disorder of impaired neural plasticity. Recently, non-invasive brain stimulation techniques have garnered much attention to their ability to modulate plasticity and treat schizophrenia. The aim of this review is to introduce the basic physiological principles of conventional non-invasive brain stimulation techniques and to review the available evidence for schizophrenia. Despite promising evidence for efficacy in a large number of clinical trials, we continue to have a rudimentary understanding of the underlying neurobiology. Additional investigation is required to improve the response rates to non-invasive brain stimulation, to reduce the interindividual variability and to improve the understanding of non-invasive brain stimulation in schizophrenia.
Collapse
|
23
|
Pujol N, Penadés R, Rametti G, Catalán R, Vidal-Piñeiro D, Palacios E, Bargallo N, Bernardo M, Junqué C. Inferior frontal and insular cortical thinning is related to dysfunctional brain activation/deactivation during working memory task in schizophrenic patients. Psychiatry Res 2013; 214:94-101. [PMID: 23993992 DOI: 10.1016/j.pscychresns.2013.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 05/27/2013] [Accepted: 06/14/2013] [Indexed: 01/03/2023]
Abstract
Although working memory is known to be impaired in schizophrenia the anatomical and functional relationships underlying this deficit remain to be elucidated. A combined imaging approach involving functional and structural magnetic resonance techniques was used, applying independent component analysis and surface-based morphometry to 14 patients with schizophrenia and 14 healthy controls. Neurocognitive functioning was assessed by a neuropsychological test battery that measured executive function. It was hypothesized that working memory dysfunctional connectivity in schizophrenia is related to underlying anatomical abnormalities. Patients with schizophrenia showed cortical thinning in the left inferior frontal gyrus and insula, which explained 57% of blood oxygenation level-dependent signal magnitude in functional magnetic resonance imaging in the central executive network (lateral prefrontal and parietal cortex) over-activation and default mode network (anterior and posterior cingulate) deactivation. No structure-function relationship emerged in the healthy control group. The study provides evidence to suggest that dysfunctional activation/deactivation patterns in schizophrenia may be explained in terms of underlying gray matter deficits.
Collapse
Affiliation(s)
- Núria Pujol
- Department of Psychiatry and Clinical Psychobiology, Faculty of Medicine, University of Barcelona, C/Casanova 143, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/ Villarroel 170, 08036 Barcelona, Spain; Clinical Institute of Neurosciences (ICN), Hospital Clinic, C/ Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder. Proc Natl Acad Sci U S A 2013; 110:13222-7. [PMID: 23878213 DOI: 10.1073/pnas.1221880110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions that are accompanied by atypical brain connectivity. So far, in vivo evidence for atypical structural brain connectivity in ASD has mainly been based on neuroimaging studies of cortical white matter. However, genetic studies suggest that abnormal connectivity in ASD may also affect neural connections within the cortical gray matter. Such intrinsic gray-matter connections are inherently more difficult to describe in vivo but may be inferred from a variety of surface-based geometric features that can be measured using magnetic resonance imaging. Here, we present a neuroimaging study that examines the intrinsic cortico-cortical connectivity of the brain in ASD using measures of "cortical separation distances" to assess the global and local intrinsic "wiring costs" of the cortex (i.e., estimated length of horizontal connections required to wire the cortex within the cortical sheet). In a sample of 68 adults with ASD and matched controls, we observed significantly reduced intrinsic wiring costs of cortex in ASD, both globally and locally. Differences in global and local wiring cost were predominantly observed in fronto-temporal regions and also significantly predicted the severity of social and repetitive symptoms (respectively). Our study confirms that atypical cortico-cortical "connectivity" in ASD is not restricted to the development of white-matter connections but may also affect the intrinsic gray-matter architecture (and connectivity) within the cortical sheet. Thus, the atypical connectivity of the brain in ASD is complex, affecting both gray and white matter, and forms part of the core neural substrates underlying autistic symptoms.
Collapse
|
25
|
Peselmann N, Schmitt A, Gebicke-Haerter PJ, Zink M. Aripiprazole differentially regulates the expression of Gad67 and γ-aminobutyric acid transporters in rat brain. Eur Arch Psychiatry Clin Neurosci 2013; 263:285-97. [PMID: 22968646 DOI: 10.1007/s00406-012-0367-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/29/2012] [Indexed: 12/13/2022]
Abstract
The molecular etiology of schizophrenia comprises abnormal neurotransmission of the amino acid GABA (γ-aminobutyric acid). Neuropathological studies convincingly revealed reduced expression of glutamic acid decarboxylase (Gad67) in GABAergic interneurons. Several antipsychotics influence the expression of GABAergic genes, but aripiprazole (APZ), a partial dopaminergic and serotonergic receptor agonist, has not been involved into these studies so far. We treated Sprague-Dawley rats for 4 weeks or 4 months with APZ suspended in drinking water and doses of 10 and 40 mg per kg body weight. Gene expression of Gad67, the vesicular GABA transporter Slc32a1 (solute carrier family, Vgat), the transmembrane transporters Slc6a1 (Gat1) and Slc6a11 (Gat3) was assessed by semiquantitative radioactive in situ hybridization. APZ treatment resulted in time- and dose-dependent effects with qualitative differences between brain regions. In the 10-mg group, Slc6a1 was strongly induced after 4 weeks in the hippocampus, amygdala, and cerebral cortex, followed by an induction of Gad67 in the same regions after 4 months, while frontocortical regions as well as basal ganglia showed dose-dependent reductions of Gad67 expression after 4 months. In several frontocortical and subcortical regions, we observed a decrease of Slc32a1 and an increase of Slc6a11 expression. In conclusion, APZ modulates gene expression of GABAergic marker genes involved into pathogenetic theories of schizophrenia. APZ only partially mirrors the effects of other antipsychotics with some important differences regarding brain regions. The findings might be explained by regulatory connections between serotonergic, GABAergic, and dopaminergic neurotransmission and should be validated in behavioral animal models of psychotic disorders.
Collapse
Affiliation(s)
- Nina Peselmann
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | | | | | | |
Collapse
|
26
|
Esslinger C, Schüler N, Sauer C, Gass D, Mier D, Braun U, Ochs E, Schulze TG, Rietschel M, Kirsch P, Meyer-Lindenberg A. Induction and quantification of prefrontal cortical network plasticity using 5 Hz rTMS and fMRI. Hum Brain Mapp 2012; 35:140-51. [PMID: 22965696 DOI: 10.1002/hbm.22165] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 01/08/2023] Open
Abstract
Neuronal plasticity is crucial for flexible interaction with a changing environment and its disruption is thought to contribute to psychiatric diseases like schizophrenia. High-frequency repetitive transcranial magnetic stimulation (rTMS) is a noninvasive tool to increase local excitability of neurons and induce short-time functional reorganization of cortical networks. While this has been shown for the motor system, little is known about the short-term plasticity of networks for executive cognition in humans. We examined 12 healthy control subjects in a crossover study with fMRI after real and sham 5 Hz rTMS to the right dorsolateral prefrontal cortex (DLPFC). During scanning, subjects performed an n-back working memory (WM) task and a flanker task engaging cognitive control. Reaction times during the n-back task were significantly shorter after rTMS than after sham stimulation. RTMS compared with sham stimulation caused no activation changes at the stimulation site (right DLPFC) itself, but significantly increased connectivity within the WM network during n-back and reduced activation in the anterior cingulate cortex during the flanker task. Reduced reaction times after real stimulation support an excitatory effect of high-frequency rTMS. Our findings identified plastic changes in prefrontally connected networks downstream of the stimulation site as the substrate of this behavioral effect. Using a multimodal fMRI-rTMS approach, we could demonstrate changes in cortical plasticity in humans during executive cognition. In further studies this approach could be used to study pharmacological, genetic and disease-related alterations.
Collapse
Affiliation(s)
- Christine Esslinger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Section summary and perspectives: Translational medicine in psychiatry. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Ryan RT, Bhardwaj SK, Tse YC, Srivastava LK, Wong TP. Opposing alterations in excitation and inhibition of layer 5 medial prefrontal cortex pyramidal neurons following neonatal ventral hippocampal lesion. Cereb Cortex 2012; 23:1198-207. [PMID: 22581849 DOI: 10.1093/cercor/bhs111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cognitive abnormalities in schizophrenia reflect deficits in prefrontal cortical function, which could be related to attrition of dendritic structures of prefrontal cortical neurons. Schizophrenia-related prefrontal deficits have been modeled in postpubertal neonatal ventral hippocampal lesioned (NVHL) rats, which displayed a loss of dendritic complexity and spines in layer 3 pyramidal neurons in the medial prefrontal cortex (mPFC). The influence of dendritic attrition on synaptic function and neuronal excitability in the mPFC remains poorly understood. Here, we performed electrophysiological recordings of layer 5 mPFC pyramidal neurons from postpubertal (postnatal 40-60 days) NVHL rats and sham-operated controls. We found that the dendritic length, complexity, and spine density of neurobiotin-labeled layer 5 mPFC pyramidal neurons in NVHL rats were significantly lower than those in sham-operated rats. However, the excitability of layer 5 mPFC pyramidal neurons remained unchanged after NVHL. We found no significant changes in the expression of vesicular glutamate and γ-aminobutyric acid transporters after NVHL. Intriguingly, NVHL increased the amplitude of action potential-independent miniature excitatory postsynaptic currents and decreased the frequency of miniature inhibitory postsynaptic currents. These opposing alterations in excitatory and inhibitory synapses, possibly shifting basal synaptic activity toward increased excitation, could be cellular substrates for mPFC functional deficits reported in NVHL rats.
Collapse
Affiliation(s)
- Richard T Ryan
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
29
|
Ethridge L, Moratti S, Gao Y, Keil A, Clementz BA. Sustained versus transient brain responses in schizophrenia: the role of intrinsic neural activity. Schizophr Res 2011; 133:106-11. [PMID: 21839617 PMCID: PMC3220784 DOI: 10.1016/j.schres.2011.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/06/2011] [Accepted: 07/13/2011] [Indexed: 11/26/2022]
Abstract
Schizophrenia patients (SZ) show early visual processing deficits in many, but not all, tasks. These deficits may be associated with dysregulation of intrinsic oscillatory activity that compromises signal-to-noise in the SZ brain. This question was studied using visual steady-state stimulation and post-steady-state presentation of transient visual stimuli. SZ had higher intrinsic oscillatory activity at the steady-state stimulation frequency (12.5 Hz) and at the 6.25 Hz subharmonic, showed a significant decrease in visual steady-state magnitude over 2s of stimulation, and were unable to promptly terminate the steady-state response following stimulation offset. If adjustment for levels of intrinsic brain activity were made, however, it would have appeared that SZ had activity of similar magnitude as healthy subjects following steady-state stimulus termination, indicating that such adjustments could substantially alter theoretical interpretations. Visual evoked potential abnormalities (N1/P2 amplitudes) present among SZ at the initiation of steady-state stimulation were less apparent in the 750 ms immediately following steady-state stimulation offset. Higher intrinsic oscillatory brain activity may be a fundamental characteristic of SZ that merits further evaluation for understanding this disorder's neuropathological correlates and associated symptomatology.
Collapse
Affiliation(s)
- Lauren Ethridge
- Departments of Psychology and Neuroscience BioImaging Research Center University of Georgia
| | - Stephan Moratti
- Department of Basic Psychology Universidad Complutense de Madrid, Spain; Center for Biomedical Technology, Polytechnic University of Madrid, Spain
| | - Yuan Gao
- Departments of Psychology and Neuroscience BioImaging Research Center University of Georgia
| | - Andreas Keil
- Department of Psychology Center for the Study of Emotion and Attention University of Florida
| | - Brett A. Clementz
- Departments of Psychology and Neuroscience BioImaging Research Center University of Georgia
,Corresponding Author: Psychology Dept., Psychology Building, University of Georgia, Athens, GA 30602; ; phone: 706-542-3128; fax: 706-542-3275
| |
Collapse
|
30
|
Optogenetic neuronal control in schizophrenia. Med Hypotheses 2011; 76:914-21. [PMID: 21482453 DOI: 10.1016/j.mehy.2011.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/22/2011] [Accepted: 03/07/2011] [Indexed: 11/23/2022]
Abstract
Schizophrenia is a serious mental disorder characterized by a heterogeneous spectrum of clinical manifestations. Schizophrenia is basically incurable. The discovery of antipsychotic medications in the late 1940s has helped control some of the symptoms but has not reversed the course of the disorder and has had limited effect on the debilitating symptoms of the illness. In recent years brain stimulation technologies have emerged in the bio-scientific scenery. Deep brain stimulation now plays an important role in the treatment of many neurological disorders, and seems promising in treating depression. Optogenetics is a new technology that offers control over neuronal activity by turning on and off distinct neuronal populations. It has a great advantage over previous brain stimulation technologies in that it is accurate and specific to the neurons intended for activation and control. There is no evidence that brain stimulation has been investigated in schizophrenia patients. This possibility was discussed in a single commentary that proposed the hippocampus and nucleus accumbence as targets for DBS in schizophrenia, however it was emphasized that the neurophysiology and neuroanatomy of schizophrenia have not been elucidated to the extent that brain stimulation can be planned. In light of new optogenetic technology time is ripe to seriously consider optional targets of intervention in the brain of schizophrenia patients. Any such target should involve neuronal circuits (1) known to be relevant for schizophrenia, (2) involved in cognitive and brain functions that are disturbed in schizophrenia, and (3) relevant to alleged neuronal network mechanisms that are presumably damaged or malfunctioning in schizophrenia. This paper reviews the relevant literature and proposes that optogenetic interventions in schizophrenia should begin in the prefrontal cortex and the Globus-Pallidus Subthalamic nuclei systems. In the protocol for the prefrontal cortex, wide-arbore and chandelier inhibitory interneurons should be targets for optogenetic intervention and in the Globus-Pallidus Subthalamic nuclei the fast spiking neurons should be targets for optogenetic intervention. These subsystems are critical modulators of neural complexity which is directly relevant to connectivity organization in the brain. Schizophrenia is described as a disturbance of connectivity organization in the brain treatable by the relevant optogenetic interventions promoted in this paper.
Collapse
|
31
|
Cramer SC, Sur M, Dobkin BH, O'Brien C, Sanger TD, Trojanowski JQ, Rumsey JM, Hicks R, Cameron J, Chen D, Chen WG, Cohen LG, deCharms C, Duffy CJ, Eden GF, Fetz EE, Filart R, Freund M, Grant SJ, Haber S, Kalivas PW, Kolb B, Kramer AF, Lynch M, Mayberg HS, McQuillen PS, Nitkin R, Pascual-Leone A, Reuter-Lorenz P, Schiff N, Sharma A, Shekim L, Stryker M, Sullivan EV, Vinogradov S. Harnessing neuroplasticity for clinical applications. Brain 2011; 134:1591-609. [PMID: 21482550 PMCID: PMC3102236 DOI: 10.1093/brain/awr039] [Citation(s) in RCA: 654] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuroplasticity can be defined as the ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function and connections. Major advances in the understanding of neuroplasticity have to date yielded few established interventions. To advance the translation of neuroplasticity research towards clinical applications, the National Institutes of Health Blueprint for Neuroscience Research sponsored a workshop in 2009. Basic and clinical researchers in disciplines from central nervous system injury/stroke, mental/addictive disorders, paediatric/developmental disorders and neurodegeneration/ageing identified cardinal examples of neuroplasticity, underlying mechanisms, therapeutic implications and common denominators. Promising therapies that may enhance training-induced cognitive and motor learning, such as brain stimulation and neuropharmacological interventions, were identified, along with questions of how best to use this body of information to reduce human disability. Improved understanding of adaptive mechanisms at every level, from molecules to synapses, to networks, to behaviour, can be gained from iterative collaborations between basic and clinical researchers. Lessons can be gleaned from studying fields related to plasticity, such as development, critical periods, learning and response to disease. Improved means of assessing neuroplasticity in humans, including biomarkers for predicting and monitoring treatment response, are needed. Neuroplasticity occurs with many variations, in many forms, and in many contexts. However, common themes in plasticity that emerge across diverse central nervous system conditions include experience dependence, time sensitivity and the importance of motivation and attention. Integration of information across disciplines should enhance opportunities for the translation of neuroplasticity and circuit retraining research into effective clinical therapies.
Collapse
Affiliation(s)
- Steven C Cramer
- Department of Neurology, UC Irvine Medical Centre, 101 The City Drive South, Bldg 53, Rm 203, Orange, CA 92868-4280, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Discrete forebrain neuronal networks supporting noradrenergic regulation of sensorimotor gating. Neuropsychopharmacology 2011; 36:1003-14. [PMID: 21248721 PMCID: PMC3077269 DOI: 10.1038/npp.2010.238] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prepulse inhibition (PPI) refers to the reduction in the startle response when a startling stimulus is preceded by a weak prestimulus, and is an endophenotype of deficient sensorimotor gating in several neuropsychiatric disorders. Emerging evidence suggests that norepinephrine (NE) regulates PPI, however, the circuitry involved is unknown. We found recently that stimulation of the locus coeruleus (LC), the primary source of NE to the forebrain, induces a PPI deficit that is a result of downstream NE release. Hence, this study sought to identify LC-innervated forebrain regions that mediate this effect. Separate groups of male Sprague-Dawley rats received a cocktail solution of the α1-NE receptor agonist phenylephrine plus the β-receptor agonist isoproterenol (equal parts of each; 0, 3, 10, and 30 μg) into subregions of the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc), extended amygdala, mediodorsal thalamus (MD-thalamus), or the dorsal hippocampus (DH) before PPI testing. NE agonist infusion into the posterior mPFC, NAcc shell, bed nucleus of the stria terminalis, basolateral amygdala, and the MD-thalamus disrupted PPI, with particularly strong effects in MD-thalamus. Sites in which NE receptor stimulation did not disrupt PPI (anterior mPFC, NAcc core, central amygdala, and DH) did support PPI disruptions with the dopamine D2 receptor agonist quinpirole (0, 10 μg). This pattern reveals new pathways in the regulation of PPI, and suggests that NE transmission within distinct thalamocortical and ventral forebrain networks may subserve the sensorimotor gating deficits that are seen in disorders such as schizophrenia, Tourette syndrome, and post-traumatic stress disorder.
Collapse
|
33
|
Zai G, Zai C, Tiwari A, King N, Braithwaite J, van Tol H, Kennedy JL. Weak association of the platelet-derived growth factor beta (PDGFB) and PDGF receptor beta (PDGFRB) genes with schizophrenia and schizoaffective disorder. World J Biol Psychiatry 2011; 12:127-33. [PMID: 20950212 DOI: 10.3109/15622975.2010.520333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED Schizophrenia is a severe neuropsychiatric disorder with diverse characterization of symptoms. Extensive research has been performed to elucidate the etiology of schizophrenia. One of the most convincing hypotheses comes from the dopaminergic system although none of the core genes has been consistently positive in association studies. OBJECTIVE In this investigation, we explored the possibility that the genes for platelet-derived growth factor beta (PDGFB) and its receptor (PDGFRB) might play an important role in the development of schizophrenia based on previous reports pointing to their ability to interact with the dopamine D(2)/D(4) and NMDA receptors as well as their role in neurite outgrowth. METHODS We investigated the association of variants around these genes with schizophrenia and schizoaffective disorder in 104 small nuclear families using the Sib-Transmission Disequilibrium Test (TDT-STDT). Furthermore, quantitative trait analysis using family-based association test was applied to determine possible association of age at onset (AAO). RESULTS Allele G in PDGFRB(rs758588) was associated with AAO (P=0.019). An over-transmission of allele T in PDGFB(rs130650) polymorphism (P=0.043) and an over-transmission of allele A in PDGFRB(rs6865659) polymorphism (P=0.046) were observed. Furthermore, the combined TDT-STDT yielded consistent results. CONCLUSION Overall, PDGFB and PDGFRB genes might play a role in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Gwyneth Zai
- Neurogenetics Section, Centre for Addiction and Mental Health, Clarke Division, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Narita K, Takei Y, Suda M, Aoyama Y, Uehara T, Kosaka H, Amanuma M, Fukuda M, Mikuni M. Relationship of parental bonding styles with gray matter volume of dorsolateral prefrontal cortex in young adults. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:624-31. [PMID: 20197076 DOI: 10.1016/j.pnpbp.2010.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
Previous epidemiologic studies using the parental bonding instrument (PBI), a self-report scale to rate attitudes of parents during the first 16 years, have suggested that a lower parental care score or higher parental overprotection score could lead to an increased risk of several psychiatric disorders, including schizophrenia and mood disorder. However, neuroimaging studies of an association between PBI scores and brain developmental abnormalities are still limited. In this region-of-interest analysis study using a cross-sectional design, we examined 50 normal young adults, in terms of relationships of parental bonding styles during the first 16 years measured by PBI with regional gray matter (GM) volume in the dorsolateral prefrontal cortex (DLPFC). Our study showed that paternal care score positively correlated with the GM volume in the left DLPFC, and paternal and maternal overprotection score negatively correlated with the GM volume in the left DLPFC. In conclusion, our results suggest that in normal young adults, lower paternal care and higher parental overprotection scores correlated with the GM volume reduction in the DLPFC.
Collapse
Affiliation(s)
- Kosuke Narita
- Department of Psychiatry and Human Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|