1
|
Trovão LDO, Vieira MAM, Santos ACDM, Puño-Sarmiento JJ, Nunes PHS, Santos FF, Rocha VGP, Knöbl T, Navarro-Garcia F, Gomes TAT. Identification of a genomic cluster related to hypersecretion of intestinal mucus and mucinolytic activity of atypical enteropathogenic Escherichia coli (aEPEC). Front Cell Infect Microbiol 2024; 14:1393369. [PMID: 39703371 PMCID: PMC11656320 DOI: 10.3389/fcimb.2024.1393369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) strains are subdivided into typical (tEPEC) and atypical (aEPEC) according to the presence or absence of a virulence-associated plasmid called pEAF. Our research group has previously demonstrated that two aEPEC strains, 0421-1 and 3991-1, induce an increase in mucus production in a rabbit ileal loop model in vivo. This phenomenon was not observed with a tEPEC prototype strain. Few studies on aEPEC strains evaluating their capacity to induce intestinal mucus hypersecretion were done. This study aimed to investigate aEPEC strains regarding their genotypic and phenotypic characteristics, their ability to alter mucus production in an in vivo intestinal infection model, and their potential mucinolytic activity. To investigate the relationship between strains 0421-1 and 3991-1 and 11 other aEPEC strains, their serotypes, sequence types (ST), and virulence factors (VF), several sequencing and genomic analyses were carried out. The study also involved researching the reproduction of mucus hypersecretion in rabbits in vivo. We found that the two mucus-inducing strains and two other strains (1582-4 and 2531-13) shared the same phylogroup (A), ST (378), serotype (O101/O162:H33), and intimin subtype (ι2), were phylogenetically related, and induced mucus hypersecretion in vivo. A wide diversity of VFs was found among the strains, confirming their genomic heterogeneity. However, among the genes studied, no unique virulence factor or gene set was identified exclusively in the mucus-inducing strains, suggesting the multifactorial nature of this phenomenon. The two strains (1582-4 and 2531-13) closely related to the two aEPEC strains that induced mucus production in vivo also induced the phenomenon. The investigation of the mucinolytic activity revealed that all aEPEC strains used mucins as their carbon sources. Ten of the 13 aEPEC strains could cross a mucin layer, and only four adhered better to agar containing mucin than to agar without mucin. The present study paves the way for subsequent investigations into the molecular mechanisms regarding cellular interactions and responses, as well as the correlation between virulence factors and the induction of mucus production/expression during aEPEC infections.
Collapse
Affiliation(s)
- Liana de Oliveira Trovão
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mônica Aparecida Midolli Vieira
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Carolina de Mello Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juan Josue Puño-Sarmiento
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Pedro Henrique Soares Nunes
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Laboratório Alerta, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Terezinha Knöbl
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Navarro-Garcia
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Tânia Aparecida Tardelli Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Romão FT, Santos ACM, Puño-Sarmiento JJ, Sperandio V, Hernandes RT, Gomes TAT. Expression of the locus of enterocyte effacement genes during the invasion process of the atypical enteropathogenic Escherichia coli 1711-4 strain of serotype O51:H40. Microbiol Spectr 2024; 12:e0030424. [PMID: 39189752 PMCID: PMC11448038 DOI: 10.1128/spectrum.00304-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 08/28/2024] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) is a significant cause of diarrhea in low- and middle-income countries. Certain aEPEC strains, including the Brazilian representative strain of serotype O51:H40 called aEPEC 1711-4, can use flagella to attach to, invade, and persist in T84 and Caco-2 intestinal cells. It can also translocate from the gut to extraintestinal sites in a rat model. Although various aspects of the virulence of this strain were studied and the requirement of a type III secretion system for the efficiency of the invasion process was demonstrated, the expression of the locus of enterocyte effacement (LEE) genes during the invasion and intracellular persistence remains unclear. To address this question, the expression of flagella and the different LEE operons was evaluated during kinetic experiments of the interaction of aEPEC 1711-4 with enterocytes in vitro. The genome of the strain was also sequenced. The results showed that flagella expression remained unchanged, but the expression of eae and escJ increased during the early interaction and invasion of aEPEC 1711-4 into Caco-2 cells, and there was no change 24 h post-infection during the persistence period. The number of actin accumulation foci formed on HeLa cells also increased during the 6-h analysis. No known gene related to the invasion process was identified in the genome of aEPEC 1711-4, which was shown to belong to the global EPEC lineage 10. These findings suggest that the LEE components and the intimate adherence promoted by intimin are necessary for the invasion and persistence of aEPEC 1711-4, but the detailed mechanism needs further study.IMPORTANCEAtypical enteropathogenic Escherichia coli (aEPEC) is a major cause of diarrhea, especially in low- and middle-income countries, like Brazil. However, due to the genome heterogeneity of each clonal group, it is difficult to comprehend the pathogenicity of this strain fully. Among aEPEC strains, 1711-4 can invade eukaryotic cells in vitro, cross the gut barrier, and reach extraintestinal sites in animal models. By studying how different known aEPEC virulence factors are expressed during the invasion process, we can gain insight into the commonalities of this phenotype among other aEPEC strains. This will help in developing preventive measures to control infections caused by invasive strains. No known virulence-encoding genes linked to the invasion process were found. Nevertheless, additional studies are still necessary to evaluate the role of other factors in this phenotype.
Collapse
Affiliation(s)
- Fabiano T. Romão
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ana C. M. Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juan J. Puño-Sarmiento
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vanessa Sperandio
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rodrigo T. Hernandes
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Tânia A. T. Gomes
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Romão FT, Santos ACM, Sperandio V, Hernandes RT, Gomes TAT. Expression of the locus of enterocyte effacement genes during the invasion process of the atypical enteropathogenic Escherichia coli 1711-4 strain of serotype O51:H40. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578415. [PMID: 38352511 PMCID: PMC10862855 DOI: 10.1101/2024.02.01.578415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) is a significant cause of diarrhea in developing countries. Some aEPEC strains, including the Brazilian representative strain of serotype O51:H40 called aEPEC 1711-4, can use flagella to attach to, invade, and persist in T84 and Caco-2 intestinal cells. They can even translocate from the gut to extraintestinal sites in a rat model. Although various aspects of the virulence of this strain were studied and the requirement of the T3SS for the efficiency of the invasion process was demonstrated, the expression of the LEE genes during the invasion and intracellular persistence remains unclear. To address this, the expression of flagella and the different LEE operons was evaluated during kinetic experiments of the interaction of aEPEC 1711-4 with enterocytes in vitro. The genome of the strain was also sequenced. The results showed that flagella expression remained unchanged, but the expression of eae and escJ increased during the early interaction and invasion of aEPEC 1711-4 into Caco-2 cells, and there was no change 24 hours post-infection during the persistence period. The number of pedestal-like structures formed on HeLa cells also increased during the 24-hour analysis. No known gene related to the invasion process was identified in the genome of aEPEC 1711-4, which was shown to belong to the global EPEC lineage 10. These findings suggest that LEE components and the intimate adherence promoted by intimin are necessary for the invasion and persistence of aEPEC 1711-4, but the detailed mechanism needs further study.
Collapse
Affiliation(s)
- Fabiano T. Romão
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ana C. M. Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Vanessa Sperandio
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rodrigo T. Hernandes
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Tânia A. T. Gomes
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Bonino MP, Crivelli XB, Petrina JF, Galateo S, Gomes TAT, Navarro A, Cundon C, Broglio A, Sanin M, Bentancor A. Detection and analysis of Shiga toxin producing and enteropathogenic Escherichia coli in cattle from Tierra del Fuego, Argentina. Braz J Microbiol 2023; 54:1257-1266. [PMID: 37041346 PMCID: PMC10235289 DOI: 10.1007/s42770-023-00958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
Shiga toxin producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are pathovars that affect mainly infants' health. Cattle are the main reservoir of STEC. Uremic hemolytic syndrome and diarrheas can be found at high rates in Tierra del Fuego (TDF). This study aimed to establish the prevalence of STEC and EPEC in cattle at slaughterhouses in TDF and to analyze the isolated strains. Out of 194 samples from two slaughterhouses, STEC prevalence was 15%, and EPEC prevalence was 5%. Twenty-seven STEC strains and one EPEC were isolated. The most prevalent STEC serotypes were O185:H19 (7), O185:H7 (6), and O178:H19 (5). There were no STEC eae + strains (AE-STEC) or serogroup O157 detected in this study. The prevalent genotype was stx2c (10/27) followed by stx1a/stx2hb (4/27). Fourteen percent of the strains presented at least one stx non-typeable subtype (4/27). Shiga toxin production was detected in 25/27 STEC strains. The prevalent module for the Locus of Adhesion and Autoaggregation (LAA) island was module III (7/27). EPEC strain was categorized as atypical and with the ability to cause A/E lesion. The ehxA gene was present in 16/28 strains, 12 of which were capable of producing hemolysis. No hybrid strains were detected in this work. Antimicrobial susceptibility tests showed that all strains were resistant to ampicillin and 20/28 were resistant to aminoglycosides. No statistical differences could be seen in the detection of STEC or EPEC either by slaughterhouse location or by production system (extensive grass or feedlot). The rate of STEC detection was lower than the one reported for the rest of Argentina. STEC/EPEC relation was 3 to 1. This is the first study on cattle from TDF as reservoir for strains that are potentially pathogenic to humans.
Collapse
Affiliation(s)
- Maria Paz Bonino
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ximena Blanco Crivelli
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Juan Facundo Petrina
- Departamento de Epidemiología, Ministerio de Salud de Tierra del Fuego, Ushuaia, Argentina
| | - Sebastian Galateo
- Dirección de Fiscalización Sanitaria, Ministerio de Salud de Tierra del Fuego, Ushuaia, Argentina
| | | | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Cecilia Cundon
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Alicia Broglio
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Sanin
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Adriana Bentancor
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| |
Collapse
|
5
|
Munhoz DD, Richards AC, Santos FF, Mulvey MA, Piazza RMF. E. coli Common pili promote the fitness and virulence of a hybrid aEPEC/ExPEC strain within diverse host environments. Gut Microbes 2023; 15:2190308. [PMID: 36949030 PMCID: PMC10038029 DOI: 10.1080/19490976.2023.2190308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Pathogenic subsets of Escherichia coli include diarrheagenic (DEC) strains that cause disease within the gut and extraintestinal pathogenic E. coli (ExPEC) strains that are linked with urinary tract infections, bacteremia, and other infections outside of intestinal tract. Among DEC strains is an emergent pathotype known as atypical enteropathogenic E. coli (aEPEC), which can cause severe diarrhea. Recent sequencing efforts revealed that some E. coli strains possess genetic features that are characteristic of both DEC and ExPEC isolates. BA1250 is a newly reclassified hybrid strain with characteristics of aEPEC and ExPEC. This strain was isolated from a child with diarrhea, but its genetic features indicate that it might have the capacity to cause disease at extraintestinal sites. The spectrum of adhesins encoded by hybrid strains like BA1250 are expected to be especially important in facilitating colonization of diverse niches. E. coli common pilus (ECP) is an adhesin expressed by many E. coli pathogens, but how it impacts hybrid strains has not been ascertained. Here, using zebrafish larvae as surrogate hosts to model both gut colonization and extraintestinal infections, we found that ECP can act as a multi-niche colonization and virulence factor for BA1250. Furthermore, our results indicate that ECP-related changes in activation of envelope stress response pathways may alter the fitness of BA1250. Using an in silico approach, we also delineated the broader repertoire of adhesins that are encoded by BA1250, and provide evidence that the expression of at least a few of these varies in the absence of functional ECP.
Collapse
Affiliation(s)
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake, UT, USA
| | - Fernanda F. Santos
- Laboratório Alerta, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake, UT, USA
| | | |
Collapse
|
6
|
Yamani LZ, Elhadi N. Virulence Characteristics, Antibiotic Resistance Patterns and Molecular Typing of Enteropathogenic Producing Escherichia coli (EPEC) Isolates in Eastern Province of Saudi Arabia: 2013–2014. Infect Drug Resist 2022; 15:6763-6772. [DOI: 10.2147/idr.s388956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
|
7
|
Silva HGDS, Franzolin MR, dos Anjos GF, Barbosa AS, dos Santos LF, Miranda KF, Marques RM, de Souza MCL, Piazza RMF, Domingos MDO. O55 Polysaccharides Are Good Antigen Targets for the Formulation of Vaccines against O55 STEC and Capsulated aEPEC Strains. Pathogens 2022; 11:pathogens11080895. [PMID: 36015015 PMCID: PMC9414270 DOI: 10.3390/pathogens11080895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The serogroup O55 of E. coli is composed of strains whose mechanisms of virulence are different from each other. Since the O55 polysaccharides are present in all E. coli O55 strains, and so are the polymers that compose the capsule of O55 atypical enteropathogenic E. coli (aEPEC), it was investigated whether anti-O55 antibodies were able to help the innate immune system to eliminate capsulated aEPEC and Shiga toxin-producing E. coli (STEC) belonging to the serogroup O55. The results demonstrate that the capsule of EPEC was able to inhibit the deposition of C3b on the bacterial surface and, as a consequence, their lysis by the alternative pathway of the complement system. However, in the presence of antibodies, the ability of the complement to lyse these pathogens was restored. It was also observed that macrophages were able to ingest EPEC and STEC, but they were only able to kill the ingested pathogens in the presence of antibodies. Anti-O55 antibodies were also able to inhibit aEPEC and STEC O55 adherence to human epithelial cells. In summary, the results demonstrated that the O55 polysaccharides have the potential to induce an effective humoral immune response against STEC and EPEC, indicating that they are good antigen targets to be used in vaccine formulations against these pathogens.
Collapse
Affiliation(s)
| | - Marcia Regina Franzolin
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo CEP 05503-900, SP, Brazil
| | - Geovana Ferreira dos Anjos
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo CEP 05503-900, SP, Brazil
| | - Angela Silva Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo CEP 05503-900, SP, Brazil
| | - Luis Fernando dos Santos
- Centro de Bacteriologia, Núcleo de Doenças Entéricas, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 355, São Paulo CEP 01246-000, SP, Brazil
| | - Kaique Ferrari Miranda
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo CEP 05503-900, SP, Brazil
| | - Ronaldo Maciel Marques
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo CEP 05503-900, SP, Brazil
| | - Matilde Costa Lima de Souza
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo CEP 05503-900, SP, Brazil
| | - Roxane Maria Fontes Piazza
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo CEP 05503-900, SP, Brazil
| | - Marta de Oliveira Domingos
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo CEP 05503-900, SP, Brazil
- Correspondence: ; Tel.: +55-11-2627-9708
| |
Collapse
|
8
|
Multidrug-Resistant Enteropathogenic Escherichia coli Isolated from Diarrhoeic Calves, Milk, and Workers in Dairy Farms: A Potential Public Health Risk. Antibiotics (Basel) 2022; 11:antibiotics11080999. [PMID: 35892389 PMCID: PMC9332572 DOI: 10.3390/antibiotics11080999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhoeagenic diseases in humans and cattle worldwide. The emergence of multidrug-resistant (MDR) EPEC from cattle sources is a public health concern. A total of 240 samples (75 diarrhoeic calves, 150 milk samples, and 15 workers) were examined for prevalence of EPEC in three dairy farms in Egypt. Antimicrobial resistance (AMR) traits were determined by antibiogram and polymerase chain reaction (PCR) detection of β-lactamase-encoding genes, plasmid-mediated quinolone resistance genes, and carbapenemase-encoding genes. The genetic relatedness of the isolates was assessed using repetitive extragenic palindromic sequence-based PCR (REP-PCR). EPEC isolates were detected in 22.7% (17/75) of diarrhoeic calves, 5.3% (8/150) of milk samples, and 20% (3/15) of worker samples. The detected serovars were O26 (5%), O111 (3.3%), O124 (1.6%), O126 (0.8%), and O55 (0.8%). AMR-EPEC (harbouring any AMR gene) was detected in 9.2% of samples. Among isolates, blaTEM was the most detected gene (39.3%), followed by blaSHV (32.1%) and blaCTX-M-1 (25%). The qnrA, qnrB, and qnrS genes were detected in 21.4%, 10.7%, and 7.1% of isolates, respectively. The blaVIM gene was detected in 14.3% of isolates. All EPEC (100%) isolates were MDR. High resistance rates were reported for ampicillin (100%), tetracycline (89.3%), cefazolin (71%), and ciprofloxacin (64.3%). Three O26 isolates and two O111 isolates showed the highest multiple-antibiotic resistance (MAR) indices (0.85–0.92); these isolates harboured blaSHV-12 and blaCTX-M-15 genes, respectively. REP-PCR genotyping showed high genetic diversity of EPEC, although isolates belonging to the same serotype or farm were clustered together. Two worker isolates (O111 and O26) showed high genetic similarity (80–95%) with diarrhoeic calf isolates of matched serotypes/farms. This may highlight potential inter-species transmission within the farm. This study highlights the potential high risk of cattle (especially diarrhoeic calves) as disseminators of MDR-EPEC and/or their AMR genes in the study area. Prohibition of non-prescribed use of antibiotics in dairy farms in Egypt is strongly warranted.
Collapse
|
9
|
Ahmed AS, Diab HM, Alkahtani MA, Alshehri MA, Saber H, Badr H, Dandrawy MK, El-Mansi AA, Shati AA, Ahmed AE. Molecular epidemiology of virulent E. coli among rural small scale dairy herds and shops: Efficacy of selected marine algal extracts and disinfectants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:72-94. [PMID: 32053006 DOI: 10.1080/09603123.2020.1727422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Virulent pathotypes of E. coli seriously affect the livestock regarding the misuse of antibiotics. All 180 samples collected from cow's environment and dairy shops in Qena, Egypt were serologically and molecularly positive for coliforms. Enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli (STEC), Enteroinvasive E. coli (EIEC) and Enterotoxigenic E. coli (ETEC) pathotypes were isolated from water and milk-related samples. STEC serogroups O26, O55, O111, O113, O145 were also recovered. The non-O157 STEC serotypes were recovered from human diarrheagenic patients contacting cattle or consuming contaminated water/milk products. BlaCTX-M and blaTEM genes were detected in 25.5% and 100%, respectively. Disinfectants and algal extracts, identified by GC-MS, were evaluated in vitro for antibacterial activities. TH4+® disinfectant and methanol extract of Turbinaria decurrens reduced E. coli at 13 log10 at 1.5% and 3 mg/ml concentrations, respectively. Ag-NPs/T. decurrens showed 8-9 log10 reduction at concentration of 1.6 × 105 NPs/ml. Examined water sources, milk and milk products were potential reservoirs for virulent antibiotic-resistant E.coli which may impose animal and public health threats.Abbreviations: APEC: Avian pathogenic E. coli; blaCTX-M: β-lactamase inhibitors-Cefotaximase gene; blaTEM: β-lactamase inhibitors-Temoneira gene; CFU: Colony-forming unit; DAEC: Diffusely adherent E. coli; DEC: Diarrheagenic Escherichia coli; DEMSO: Dimethyl sulfoxide; eaeA: Intimin or E. coli attaching gene; EAEC: Enteroaggregative E. coli; EHEC: Enterohemorrhagic E. coli; EIEC: Enteroinvasive E. coli; EOSQC: Egyptian Organization for Standardization and Quality Control; EPEC: Enteropathogenic E. coli; ETEC: Enterotoxigenic E. coli; ExPEC: Extra-intestinal pathogenic E. coli; GC-MS: Gas chromatography-mass spectrometry technique; hly: Hemolysin gene; STEC: Shiga like producing E. coli; stx1: Shiga-toxin 1 gene; ESBLs: Extended-spectrum beta-lactamases.
Collapse
Affiliation(s)
- Ahmed S Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hassan M Diab
- Department of Animal and Poultry Health and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mohammed A Alkahtani
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Hani Saber
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Heba Badr
- Bacteriology Unit, Reference Laboratory for Quality Control of Poultry Production, Animal Health Research Institute, El-Dokki- Giza, Egypt
| | - Mohamed K Dandrawy
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ahmed A El-Mansi
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
10
|
Munhoz DD, Santos FF, Mitsunari T, Schüroff PA, Elias WP, Carvalho E, Piazza RMF. Hybrid Atypical Enteropathogenic and Extraintestinal Escherichia coli (aEPEC/ExPEC) BA1250 Strain: A Draft Genome. Pathogens 2021; 10:475. [PMID: 33919948 PMCID: PMC8070890 DOI: 10.3390/pathogens10040475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/02/2023] Open
Abstract
Diarrheagenic Escherichia coli is the major bacterial etiological agent of severe diarrhea and a major concern of public health. These pathogens have acquired genetic characteristics from other pathotypes, leading to unusual and singular genetic combinations, known as hybrid strains and may be more virulent due to a set of virulence factors from more than one pathotype. One of the possible combinations is with extraintestinal E. coli (ExPEC), a leading cause of urinary tract infection, often lethal after entering the bloodstream and atypical enteropathogenic E. coli (aEPEC), responsible for death of thousands of people every year, mainly children under five years old. Here we report the draft genome of a strain originally classified as aEPEC (BA1250) isolated from feces of a child with acute diarrhea. Phylogenetic analysis indicates that BA1250 genome content is genetically closer to E. coli strains that cause extraintestinal infections, other than intestinal infections. A deeper analysis showed that in fact this is a hybrid strain, due to the presence of a set of genes typically characteristic of ExPEC. These genomic findings expand our knowledge about aEPEC heterogeneity allowing further studies concerning E. coli pathogenicity and may be a source for future comparative studies, virulence characteristics, and evolutionary biology.
Collapse
Affiliation(s)
- Danielle D. Munhoz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Fernanda F. Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Thais Mitsunari
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Paulo A. Schüroff
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Roxane M. F. Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| |
Collapse
|
11
|
Lima MP, Yamamoto D, Santos ACDM, Ooka T, Hernandes RT, Vieira MAM, Santos FF, Silva RM, Hayashi T, Gomes TAT. Phenotypic characterization and virulence-related properties of Escherichia albertii strains isolated from children with diarrhea in Brazil. Pathog Dis 2020; 77:5379300. [PMID: 30865776 DOI: 10.1093/femspd/ftz014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/12/2019] [Indexed: 11/14/2022] Open
Abstract
Escherichia albertii are emerging enteropathogens, whose identification is difficult, as they share biochemical characteristics and some virulence-related genes with diarrheagenic Escherichia coli (DEC). Studies on phylogeny, phenotypic characteristics and potential virulence factors of human E. albertii strains are scarce. In this study, we identified by multiplex PCR five E. albertii among 106 strains isolated from diarrheic children in São Paulo, Brazil, which were previously classified as atypical enteropathogenic E. coli. All strains were investigated regarding their phylogeny, biochemical properties, virulence-related properties, antimicrobial resistance and presence of putative virulence-related genes. All strains belonged to different E. albertii lineages and adhered to and produced attaching and effacing lesions on HeLa cells. Three strains invaded Caco-2 cells, but did not persist intracellularly, and three formed biofilms on polystyrene surfaces. All strains were resistant to few antibiotics and only one carried a self-transmissible resistance plasmid. Finally, among 38 DEC and 18 extraintestinal pathogenic E. coli (ExPEC) virulence-related genes searched, six and three were detected, respectively, with paa and cdtB being found in all strains. Despite the limited number of strains, this study provided additional knowledge on human E. albertii virulence potential, showing that they share important virulence factors with DEC and ExPEC.
Collapse
Affiliation(s)
- Mauricio P Lima
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| | - Denise Yamamoto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil.,Rua Prof. Enéas de Siqueira Neto, Universidade Santo Amaro (UNISA), 340 CEP 04829-300-São Paulo, SP, Brazil
| | - Ana Carolina de Mello Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Rodrigo T Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Distrito de Rubião Jr. CEP 18618-691, Botucatu, SP, Brazil
| | - Mônica A M Vieira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| | - Fernanda Fernandes Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| | - Rosa Maria Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maedashi, Higashi-ku, Fukuoka City, Fukuoka Prefecture 812-8582, Japan
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (UNIFESP-EPM), Universidade Federal de São Paulo, Rua Botucatu, 862, 3° andar, CEP 04023-062, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Santos FF, Yamamoto D, Abe CM, Bryant JA, Hernandes RT, Kitamura FC, Castro FS, Valiatti TB, Piazza RMF, Elias WP, Henderson IR, Gomes TAT. The Type III Secretion System (T3SS)-Translocon of Atypical Enteropathogenic Escherichia coli (aEPEC) Can Mediate Adherence. Front Microbiol 2019; 10:1527. [PMID: 31338081 PMCID: PMC6629874 DOI: 10.3389/fmicb.2019.01527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
The intimin protein is the major adhesin involved in the intimate adherence of atypical enteropathogenic Escherichia coli (aEPEC) strains to epithelial cells, but little is known about the structures involved in their early colonization process. A previous study demonstrated that the type III secretion system (T3SS) plays an additional role in the adherence of an Escherichia albertii strain. Therefore, we assumed that the T3SS could be related to the adherence efficiency of aEPEC during the first stages of contact with epithelial cells. To test this hypothesis, we examined the adherence of seven aEPEC strains and their eae (intimin) isogenic mutants in the standard HeLa adherence assay and observed that all wild-type strains were adherent while five isogenic eae mutants were not. The two eae mutant strains that remained adherent were then used to generate the eae/escN double mutants (encoding intimin and the T3SS ATPase, respectively) and after the adherence assay, we observed that one strain lost its adherence capacity. This suggested a role for the T3SS in the initial adherence steps of this strain. In addition, we demonstrated that this strain expressed the T3SS at significantly higher levels when compared to the other wild-type strains and that it produced longer translocon-filaments. Our findings reveal that the T3SS-translocon can play an additional role as an adhesin at the beginning of the colonization process of aEPEC.
Collapse
Affiliation(s)
- Fernanda F Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Denise Yamamoto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cecilia M Abe
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Jack A Bryant
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rodrigo T Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Felipe C Kitamura
- Departamento de Diagnóstico por Imagem, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Felipe S Castro
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tiago B Valiatti
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Ian R Henderson
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Identification and characterization of atypical enteropathogenic and Shiga toxin-producing Escherichia coli isolated from ground beef and poultry breast purchased in Botucatu, Brazil. Braz J Microbiol 2019; 50:1099-1103. [PMID: 31187444 DOI: 10.1007/s42770-019-00101-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Atypical enteropathogenic (serotypes O4:H16, O8:H25, O68:H2, O105:H7, and OR:H25) and Shigatoxigenic (ONT:H46) Escherichia coli were isolated from samples of ground beef and poultry breast purchased in Botucatu, Brazil. Phenotypic and molecular characterization indicated the potential of these isolates to adhere to host epithelial cells and cause damage.
Collapse
|
14
|
Draft Whole-Genome Sequences of 10 Atypical Enteropathogenic Escherichia coli Strains Isolated in Brazil. Microbiol Resour Announc 2018; 7:MRA01432-18. [PMID: 30533858 PMCID: PMC6284090 DOI: 10.1128/mra.01432-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/13/2018] [Indexed: 11/23/2022] Open
Abstract
The number of diarrhea cases caused by atypical enteropathogenic Escherichia coli (aEPEC) has been increasing worldwide. Here, we report the draft whole-genome sequences of 10 aEPEC strains isolated in Brazil. The number of diarrhea cases caused by atypical enteropathogenic Escherichia coli (aEPEC) has been increasing worldwide. Here, we report the draft whole-genome sequences of 10 aEPEC strains isolated in Brazil. These sequences will provide an important source for future studies concerning aEPEC pathogenicity and genetic markers of potentially virulent strains.
Collapse
|
15
|
Munhoz DD, Nara JM, Freitas NC, Moraes CTP, Nunes KO, Yamamoto BB, Vasconcellos FM, Martínez-Laguna Y, Girón JA, Martins FH, Abe CM, Elias WP, Piazza RMF. Distribution of Major Pilin Subunit Genes Among Atypical Enteropathogenic Escherichia coli and Influence of Growth Media on Expression of the ecp Operon. Front Microbiol 2018; 9:942. [PMID: 29867850 PMCID: PMC5962669 DOI: 10.3389/fmicb.2018.00942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) strains are unable to produce the bundle-forming pilus (BFP), which is responsible for the localized adherence pattern, a characteristic of the pathogenicity of typical EPEC strains. The lack of BFP in aEPEC strains suggests that other fimbrial or non-fimbrial adhesins are involved in their adhesion to the host cells. The aim of this study was to investigate the distribution of major subunit fimbrial genes known to be important adherence factors produced by several E. coli pathotypes in a collection of 72 aEPEC strains. Our results demonstrate that a high percentage (94–100%) of aEPEC strains harbored ecpA, fimA, hcpA, and lpfA fimbrial genes. Other fimbrial genes including pilS, pilV, sfpA, daaC, papA, and sfa were detected at lower frequencies (1–8%). Genes encoding fimbrial subunits, which are characteristic of enteroaggregative E. coli or enterotoxigenic E. coli were not found. No correlation was found between fimbrial gene profiles and adherence phenotypes. Since all aEPEC strains contained ecpA, the major pilin gene of the E. coli common pilus (ECP), a subset of ecpA+ strains was analyzed for transcription of ecpRABCDE and production of ECP upon growth in three different culture conditions at 37°C. Transcription of ecpRABCDE occurred in all conditions; however, ECP production was medium dependent. In all, the data suggest that aEPEC strains are highly heterogeneous in terms of their fimbrial gene profiles. Despite lacking BFP production, other mechanisms of cell adherence exist in aEPEC strains to ensure host colonization, e.g., mediated by other prevalent pili such as ECP. Moreover, the production of ECP by aEPEC strains might be influenced by yet unknown post-transcriptional factors.
Collapse
Affiliation(s)
| | - Júlia M Nara
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | | | - Kamila O Nunes
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Bruno B Yamamoto
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | | | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Cecilia M Abe
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
16
|
Darbandi A, Owlia P, Bouzari S, Saderi H. Diarrheagenic Escherichia coli pathotypes frequency in Khuzestan province of Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2016; 8:352-358. [PMID: 28491244 PMCID: PMC5420388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Diarrheagenic Escherichia coli (DEC) is an emerging agent among pathogens that causes diarrhea. Studies showed that diarrheagenic E. coli such as enterohaemorrhagic E. coli (EHEC), enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC), diffusely adhering E. coli (DAEC) and shiga toxin producing E. coli (STEC) strains are among the most frequent causative agents in acute diarrhea. The aim of this study was to determine the frequency of DEC pathotypes in Khuzestan province. MATERIALS AND METHODS Stool samples were collected from patients with diarrhea in Khuzestan province of Iran. E. coli strains were isolated using conventional culture and standard biochemical tests. The polymerase chain reaction (PCR) technique was used to detect presence of virulence genes, i.e; eae, stx1 and stx2 for EHEC, bfp and eae for EPEC, LT and ST for ETEC, AA for EAEC, invE for EIEC, stx1 and stx2 for STEC. RESULTS Altogether, 200 stool samples were obtained from patients, of which 158 (79%) were positive for E. coli. DEC was identified in 127 (63%) of stool samples, which frequency of each pathotypes were as follows: atypical EPEC 49 (39%), typical EPEC 1 (0.7%), STEC 50 (39.3%), ETEC 21 (16.3%), EAEC 5 (4.0%) and EIEC 1 (0.7%). Most frequent etiological agents of diarrhea in Khuzestan province of Iran were STEC and EPEC. CONCLUSION Our findings showed DEC had been agent of diarrhea in Khuzestan. This finding provides evidence that effort should be made to estimate the burden of infection by the etiological agent for better medical approach and should raise notification about antibiotic resistance among bacterial infection.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran,Corresponding author: Parviz Owlia Ph.D, Molecular Microbiology Research Center, Shahed University, Tehran, Iran. Tel: +98-2188952203, Fax: +98-2166952202,
| | - Saeid Bouzari
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Horieh Saderi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
17
|
Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF, Piazza RMF, Ferreira LCS, Martinez MB. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3-30. [PMID: 27866935 PMCID: PMC5156508 DOI: 10.1016/j.bjm.2016.10.015] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.
Collapse
Affiliation(s)
- Tânia A T Gomes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil.
| | - Waldir P Elias
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Isabel C A Scaletsky
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Beatriz E C Guth
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brazil
| | - Juliana F Rodrigues
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Instituto Butantan, Laboratório de Bacterologia, São Paulo, SP, Brazil
| | - Luís C S Ferreira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Marina B Martinez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Martins FH, Guth BEC, Piazza RMF, Elias WP, Leão SC, Marzoa J, Dahbi G, Mora A, Blanco M, Blanco J, Pelayo JS. Lambs are an important source of atypical enteropathogenic Escherichia coli in southern Brazil. Vet Microbiol 2016; 196:72-77. [PMID: 27939159 DOI: 10.1016/j.vetmic.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/07/2016] [Accepted: 10/09/2016] [Indexed: 12/16/2022]
Abstract
Food-producing animals can harbor Escherichia coli strains with potential to cause diseases in humans. In this study, the presence of enteropathogenic E. coli (EPEC) was investigated in fecal samples from 130 healthy sheep (92 lambs and 38 adults) raised for meat in southern Brazil. EPEC was detected in 19.2% of the sheep examined, but only lambs were found to be positive. A total of 25 isolates was characterized and designated atypical EPEC (aEPEC) as tested negative for bfpA gene and BFP production. The presence of virulence markers linked to human disease as ehxA, paa, and lpfAO113 was observed in 60%, 24%, and 88% of the isolates, respectively. Of the 11 serotypes identified, eight were described among human pathogenic strains, while three (O1:H8, O11:H21 and O125:H19) were not previously detected in aEPEC. Associations between intimin subtypes and phylogroups were observed, including eae-θ2/A, eae-β1/B1, eae-α2/B2 and eae-γ1/D. Although PFGE typing of 16 aEPEC isolates resulted in 14 unique pulsetypes suggesting a genetic diversity, specific clones were found to be distributed in some flocks. In conclusion, potentially pathogenic aEPEC strains are present in sheep raised for meat, particularly in lambs, which can better contribute to dissemination of these bacteria than adult animals.
Collapse
Affiliation(s)
- Fernando H Martins
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Beatriz E C Guth
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Sylvia C Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Juan Marzoa
- Laboratorio de Referencia de E. coli, Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ghizlane Dahbi
- Laboratorio de Referencia de E. coli, Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Azucena Mora
- Laboratorio de Referencia de E. coli, Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Miguel Blanco
- Laboratorio de Referencia de E. coli, Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Jorge Blanco
- Laboratorio de Referencia de E. coli, Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Jacinta S Pelayo
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
19
|
de Souza CS, Torres AG, Caravelli A, Silva A, Polatto JM, Piazza RMF. Characterization of the universal stress protein F from atypical enteropathogenic Escherichia coli and its prevalence in Enterobacteriaceae. Protein Sci 2016; 25:2142-2151. [PMID: 27616205 PMCID: PMC5119564 DOI: 10.1002/pro.3038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/25/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous strains in terms of serotypes, adherence patterns and the presence of novel virulence factors. This heterogeneity is intriguing, promoting studies trying to characterize these novel proteins and to better comprehend this pathotype group. In a previous study analyzing low-molecular mass proteomes of four representative aEPEC strains of three different adhesion phenotypes, we classified proteins according to their annotated function, with most of them being involved in metabolism and transport; while some of them were classified as hypothetical proteins. The majority of the hypothetical proteins were homologue products of genes identified in the genome of enterohemorrhagic E. coli. One of the hypothetical proteins was annotated as Z2335, with orthologue in EPEC, and by bioinformatics analysis, this protein was revealed to be the universal stress protein F (UspF). Thus, herein we successfully obtained a recombinant UspF protein from aEPEC, which is a α/β, ATP-binding protein involved in stress response, with comparable protein production among the four studied strains, but showing noteworthy differences when cultivated in different stress conditions, also present in other enterobacterial species, such as Shigella sonnei and Citrobacter freundii. Furthermore, our results confirm that the Usp protein superfamily encompasses a conserved group of proteins involved in stress resistance in aEPEC and other Enterobacteriaceae.
Collapse
Affiliation(s)
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | | | - Anderson Silva
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Juliana M Polatto
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Vieira MA, Dos Santos LF, Dias RCB, Camargo CH, Pinheiro SRS, Gomes TAT, Hernandes RT. Atypical enteropathogenic Escherichia coli as aetiologic agents of sporadic and outbreak-associated diarrhoea in Brazil. J Med Microbiol 2016; 65:998-1006. [PMID: 27412254 DOI: 10.1099/jmm.0.000313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) are important agents of diarrhoea in industrialized as well as developing countries, such as Brazil. The hallmark of EPEC pathogenesis is the establishment of attaching and effacing lesions in enterocytes, in which pedestal-like structures are formed underneath adherent bacteria. EPEC are divided into two subgroups, typical (tEPEC) and atypical (aEPEC), based on the presence of the EPEC adherence factor plasmid in tEPEC and its absence in aEPEC. This study was designed to characterize 82 aEPEC isolates obtained from stool samples of diarrhoeic patients during 2012 and 2013 in Brazil. The majority of the aEPEC were assigned to the phylo-group B1 (48.8 %), and intimin subtypes θ (20.7 %), β1 (9.7 %) and λ (9.7 %) were the most prevalent among the isolates. The nleB and nleE genes were concomitantly detected in 32.9 % of the isolates, demonstrating the occurrence of the pathogenicity island O122 among them. The O157-plasmid genes (ehxA and/or espP) were detected in 7.3 % of the isolates, suggesting that some aEPEC could be derived from Shiga-toxin-producing E. coli that lost the stx genes while trafficking in the host. PFGE of 14 aEPEC of serotypes O2 : H16, O33 : H34, O39 : H9, O108 : H- and ONT : H19 isolated from five distinct outbreaks showed serotype-specific PFGE clusters, indicating a high degree of similarity among the isolates from the same event, thus highlighting these serotypes as potential aetiologic agents of diarrhoeal outbreaks in Brazil.
Collapse
Affiliation(s)
- Melissa A Vieira
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Botucatu, SP, Brazil
| | - Luís F Dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, SP, Brazil
| | - Regiane C B Dias
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Botucatu, SP, Brazil
| | - Carlos H Camargo
- Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, SP, Brazil
| | | | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia da Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Rodrigo T Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
21
|
Bozçal E, Yiğittürk G, Uzel A, Aydemir SŞ. Investigation of enteropathogenic Escherichia coli and Shiga toxin-producingEscherichia coli associated with hemolytic uremic syndrome in İzmir Province, Turkey. Turk J Med Sci 2016; 46:733-41. [PMID: 27513249 DOI: 10.3906/sag-1501-60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/27/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM The purpose of this study was to investigate Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) strains originating from diarrheagenic patients. MATERIALS AND METHODS A total of 102 patients with diarrhea between October 2012 and January 2013 were enrolled in this study. Multiplex and standard polymerase chain reactions were performed to detect and distinguish STEC and EPEC strains. O serotyping of EPEC was carried out by monovalent antisera. The O and H serotyping of STEC strains was performed at the Refik Saydam Institute, Ankara. RESULTS A total of 5 (3.42%) strains were identified as STEC, and 3 strains (2.05%) were atypical EPEC. One of the STEC serotypes was O157:H7 carrying VT1, Stx1A, and escv genes. The other STEC strain was identified as O174:H21, which is associated with hemolytic uremic syndrome and consists of VT2 and Stx2A genes. One of the EPEC and three of the STEC serotypes were nontypeable. The serotypes of the atypical EPEC strains were identified as O114 and O26. CONCLUSION To the best of our knowledge, this is the first report of O174:H21 from the İzmir region that was shown to be a Shiga toxin-producing non-O157 serotype of STEC.
Collapse
Affiliation(s)
- Elif Bozçal
- Department of Biology, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, İzmir, Turkey
| | - Gürkan Yiğittürk
- Department of Biology, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, İzmir, Turkey
| | - Ataç Uzel
- Department of Biology, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, İzmir, Turkey
| | - Sabire Şöhret Aydemir
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Ege University, İzmir, Turkey
| |
Collapse
|
22
|
Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli. Infect Immun 2016; 84:1112-1122. [PMID: 26831466 DOI: 10.1128/iai.01001-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022] Open
Abstract
The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliCa nd fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of a EPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of a EPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The a EPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of a EPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process.
Collapse
|
23
|
Abreu AG, Abe CM, Nunes KO, Moraes CTP, Chavez-Dueñas L, Navarro-Garcia F, Barbosa AS, Piazza RMF, Elias WP. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli. Gut Microbes 2016; 7:115-25. [PMID: 26963626 PMCID: PMC4856457 DOI: 10.1080/19490976.2015.1136775] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system.
Collapse
Affiliation(s)
- Afonso G. Abreu
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil,Programa de Pós-Graduação em Ciências da Saúde, Federal University of Maranhão, São Luís, Brazil
| | - Cecilia M. Abe
- Laboratory of Cell Biology, Butantan Institute, São Paulo, Brazil
| | - Kamila O. Nunes
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | | | - Lucia Chavez-Dueñas
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico DF, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico DF, Mexico
| | | | | | - Waldir P. Elias
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
24
|
Garcia BG, Ooka T, Gotoh Y, Vieira MAM, Yamamoto D, Ogura Y, Girão DM, Sampaio SCF, Melo AB, Irino K, Hayashi T, Gomes TAT. Genetic relatedness and virulence properties of enteropathogenic Escherichia coli strains of serotype O119:H6 expressing localized adherence or localized and aggregative adherence-like patterns on HeLa cells. Int J Med Microbiol 2016; 306:152-64. [PMID: 27083266 DOI: 10.1016/j.ijmm.2016.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 02/01/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) induce attaching and effacing (A/E) lesions in enterocytes and produce the bundle-forming pilus (BFP) contributing to the localized adherence (LA) pattern formation on HeLa cells. Enteroaggregative E. coli (EAEC) produce aggregative adherence (AA) on HeLa cells and form prominent biofilms. The ability to produce LA or AA is an important hallmark to classify fecal E. coli isolates as EPEC or EAEC, respectively. E. coli strains of serotype O119:H6 exhibit an LA+ phenotype and have been considered as comprising a clonal group of EPEC strains. However, we have recently identified O119:H6 EPEC strains that produce LA and an AA-like pattern concurrently (LA/AA-like+). In this study, we evaluated the relatedness of three LA/AA-like+ and three LA+ O119:H6 strains by comparing their virulence and genotypic properties. We first found that the LA/AA-like+ strains induced actin accumulation in HeLa cells (indicative of A/E lesions formation) and formed biofilms on abiotic surfaces more efficiently than the LA+ strains. MLST analysis showed that the six strains all belong to the ST28 complex. All strains carried multiple plasmids, but as plasmid profiles were highly variable, this cannot be used to differentiate LA/AA-like+ and LA+ strains. We further obtained their draft genome sequences and the complete sequences of four plasmids harbored by one LA/AA-like+ strain. Analysis of these sequences and comparison with 37 fully sequenced E. coli genomes revealed that both O119:H6 groups belong to the E. coli phylogroup B2 and are very closely related with only 58-67 SNPs found between LA/AA-like+ and LA+ strains. Search of the draft sequences of the six strains for adhesion-related genes known in EAEC and other E. coli pathotypes detected no genes specifically present in LA/AA-like+ strains. Unexpectedly however, we found that a large plasmid distinct from pEAF is responsible for the AA-like phenotype of the LA/AA-like+ strains. Although we have not identified any plasmid genes specifically present in all LA/AA-like+ strains and absent in the LA+ strains, these results suggest the presence of an unknown mechanism to promote the AA-like pattern production and biofilm formation by the LA/AA-like+ strains. Because their ability to produce A/E lesions and biofilm concomitantly could exacerbate the clinical condition of the patient and lead to persistent diarrhea, the mechanism underlying the enhanced biofilm formation by the LA/AA-like+ O119:H6 strains and their spread and involvement in severe diarrheal diseases should be more intensively investigated.
Collapse
Affiliation(s)
- Bruna G Garcia
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Yasuhiro Gotoh
- Department of Infectious Diseases, Division of Microbiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Mônica A M Vieira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| | - Denise Yamamoto
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Dennys M Girão
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da Saúde-Ilha do Fundão, Rio de Janeiro, Brazil.
| | - Suely C F Sampaio
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| | - Alexis Bonfim Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| | - Kinue Irino
- Seção de Bacteriologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde, São Paulo, Brazil.
| | - Tetsuya Hayashi
- Department of Infectious Diseases, Division of Microbiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, Brazil.
| |
Collapse
|
25
|
Dias RCB, dos Santos BC, dos Santos LF, Vieira MA, Yamatogi RS, Mondelli AL, Sadatsune T, Sforcin JM, Gomes TAT, Hernandes RT. DiarrheagenicEscherichia colipathotypes investigation revealed atypical enteropathogenicE. colias putative emerging diarrheal agents in children living in Botucatu, São Paulo State, Brazil. APMIS 2016; 124:299-308. [DOI: 10.1111/apm.12501] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/27/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Regiane C. B. Dias
- Departamento de Microbiologia e Imunologia; Instituto de Biociências; Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP); Botucatu SP Brazil
| | - Bruna C. dos Santos
- Departamento de Microbiologia e Imunologia; Instituto de Biociências; Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP); Botucatu SP Brazil
| | - Luis F. dos Santos
- Centro de Bacteriologia; Instituto Adolfo Lutz (IAL); São Paulo SP Brazil
| | - Melissa A. Vieira
- Departamento de Microbiologia e Imunologia; Instituto de Biociências; Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP); Botucatu SP Brazil
| | - Ricardo S. Yamatogi
- Departamento de Microbiologia e Imunologia; Instituto de Biociências; Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP); Botucatu SP Brazil
| | - Alessandro L. Mondelli
- Departamento de Patologia Clínica; Faculdade de Medicina; Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP); Botucatu SP Brazil
| | - Terue Sadatsune
- Departamento de Microbiologia e Imunologia; Instituto de Biociências; Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP); Botucatu SP Brazil
| | - José M. Sforcin
- Departamento de Microbiologia e Imunologia; Instituto de Biociências; Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP); Botucatu SP Brazil
| | - Tânia A. T. Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia da; Universidade Federal de São Paulo (UNIFESP); São Paulo SP Brazil
| | - Rodrigo T. Hernandes
- Departamento de Microbiologia e Imunologia; Instituto de Biociências; Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP); Botucatu SP Brazil
| |
Collapse
|
26
|
Teixeira NB, Rojas TCG, da Silveira WD, Matheus-Guimarães C, Silva NP, Scaletsky ICA. Genetic analysis of enteropathogenic Escherichia coli (EPEC) adherence factor (EAF) plasmid reveals a new deletion within the EAF probe sequence among O119 typical EPEC strains. BMC Microbiol 2015; 15:200. [PMID: 26438110 PMCID: PMC4594896 DOI: 10.1186/s12866-015-0539-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/29/2015] [Indexed: 11/22/2022] Open
Abstract
Background Enteropathogenic Escherichia coli (EPEC) are classified into typical and atypical strains based on the presence of the E. coli adherence factor (EAF) plasmid. The EAF plasmid contains the bfp (bundle-forming pilus) operon and the perABC (plasmid encoded regulator) gene cluster. A 1-kb cryptic region of EAF plasmid has been widely used as a genetic probe for EPEC detection. However, some EPEC strains may harbor an EAF plasmid lacking the EAF probe sequence, which makes the differentiation between typical and atypical a complex task. In this study, we report the genetic analysis of the EAF plasmid-encoded genes in a collection of EPEC clinical isolates. Methods A total of 222 EPEC clinical isolates, which were previously classified as typical (n = 70) or atypical (n = 152) by EAF probe reactivity, were screened for the presence of different EAF sequences by PCR and DNA hybridization. Results All typical strains possessed intact bfpA and perA genes, and most of them were positive in the PCR for EAF probe sequence. However, a subset of 30 typical strains, 22 of which belonged to O119 serogroup, presented a 1652 pb deletion in the region between 1093-bp downstream perC and 616-bp of the EAF fragment. The bfpA, bfpG, and per genes were found in all typical strains. In addition, 32 (21 %) atypical strains presented the perA gene, and 20 (13.2 %) also presented the bfpA gene. Among the 32 strains, 16 belonged to the O119:H2, O119:HND, and ONT:HND serotypes. All 32 atypical strains contained perA mutation frameshifts and possessed an IS1294 element upstream of the per operon as detected by PCR followed by restriction fragment length polymorphism (RFLP) typing and multiplex PCR. Among the 20 bfpA probe-positive strains, eight O119 strains possessed deletion in the bfp operon at the 3′end of bfpA due to an IS66 element. Conclusion Our data show that typical O119 strains may contain a deletion within the EAF probe sequence not previously reported. This new finding suggests that care should be taken when using the previously described EAF PCR assay in epidemiological studies for the detection of typical O119 strains. In addition, we were able to confirm that some atypical strains carry vestiges of the EAF plasmid.
Collapse
Affiliation(s)
- Nathalia B Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, 3 andar, São Paulo, 04023-062, São Paulo, Brazil.
| | - Thais C G Rojas
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| | - Wanderley D da Silveira
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| | - Cecília Matheus-Guimarães
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, 3 andar, São Paulo, 04023-062, São Paulo, Brazil.
| | - Neusa P Silva
- Disciplina de Reumatologia, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Isabel C A Scaletsky
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, 3 andar, São Paulo, 04023-062, São Paulo, Brazil.
| |
Collapse
|
27
|
Sanjar F, Rusconi B, Hazen TH, Koenig SSK, Mammel MK, Feng PCH, Rasko DA, Eppinger M. Characterization of the pathogenome and phylogenomic classification of enteropathogenic Escherichia coli of the O157:non-H7 serotypes. Pathog Dis 2015; 73:ftv033. [PMID: 25962987 DOI: 10.1093/femspd/ftv033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli of the O157 serogroup are comprised of a diverse collection of more than 100 O157:non-H7 serotypes that are found in the environment, animal reservoir and infected patients and some have been linked to severe outbreaks of human disease. Among these, the enteropathogenic E. coli O157:non-H7 serotypes carry virulence factors that are hallmarks of enterohemorrhagic E. coli, such as causing attaching and effacing lesions during human gastrointestinal tract infections. Given the shared virulence gene pool between O157:H7 and O157:non-H7 serotypes, our objective was to examine the prevalence of virulence traits of O157:non-H7 serotypes within and across their H-serotype and when compared to other E. coli pathovars. We sequenced six O157:non-H7 genomes complemented by four genomes from public repositories in an effort to determine their virulence state and genetic relatedness to the highly pathogenic enterohemorrhagic O157:H7 lineage and its ancestral O55:H7 serotype. Whole-genome-based phylogenomic analysis and molecular typing is indicative of a non-monophyletic origin of the heterogeneous O157:non-H7 serotypes that are only distantly related to the O157:H7 serotype. The availability of multiple genomes enables robust phylogenomic placement of these strains into their evolutionary context, and the assessment of the pathogenic potential of the O157:non-H7 strains in causing human disease.
Collapse
Affiliation(s)
- Fatemeh Sanjar
- Department of Biology & South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Brigida Rusconi
- Department of Biology & South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Tracy H Hazen
- Institute for Genome Sciences (IGS), University of Maryland, School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21021, USA
| | - Sara S K Koenig
- Department of Biology & South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Mark K Mammel
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Peter C H Feng
- Division of Microbiology, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - David A Rasko
- Institute for Genome Sciences (IGS), University of Maryland, School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21021, USA
| | - Mark Eppinger
- Department of Biology & South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
28
|
Influence of environmental factors in the adherence of an atypical enteropathogenic Escherichia coli strain to epithelial cells. BMC Microbiol 2014; 14:299. [PMID: 25527183 PMCID: PMC4290818 DOI: 10.1186/s12866-014-0299-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Attachment is essential to maintain bacteria at their preferential intestinal colonization sites. There is little information on the influence of different environmental conditions in the interaction of atypical enteropathogenic Escherichia coli (aEPEC) strains with epithelial cells. In this study, we evaluated the effect of different glucose (5 and 25 mM) and CO2 (0.03 and 5%) concentrations and presence of bile salts on the adhesiveness of the aEPEC strain 1551–2. Results We found that a CO2-enriched atmosphere enhanced the adhesiveness of the aEPEC 1551–2 strain independently of glucose concentrations or presence of bile salts. Conversely, the presence of high glucose concentration altered the original localized adherence (LA) pattern observed at 5 mM glucose, which is characterized by the formation of compact bacterial clusters, to a hybrid adherence pattern (LA and an aggregative adherence-like pattern). In addition, at high glucose concentration, there was increased expression of the fimA gene, which encodes the major subunit of type 1 pilus (T1P), and an isogenic fimA mutant displayed only LA. The presence of bile salts did not interfere with the adhesion properties of the 1551–2 strain to HeLa cells. Conclusions Our data suggest that a CO2-enriched atmosphere could favor aEPEC adhesion to the host cells, whereas enhanced T1P production under high glucose concentration could allow bacteria to access more extensive intestinal colonization sites in the host at the beginning of the infectious process.
Collapse
|
29
|
Salvador FA, Hernandes RT, Vieira MAM, Rockstroh AC, Gomes TAT. Distribution of non-LEE-encoded type 3 secretion system dependent effectors in enteropathogenic Escherichia coli. Braz J Microbiol 2014; 45:851-5. [PMID: 25477918 PMCID: PMC4204969 DOI: 10.1590/s1517-83822014000300014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 03/14/2014] [Indexed: 01/02/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) are important human gastroenteritis agents. The prevalence of six non-LEE genes encoding type 3 translocated effectors was investigated. The nleC, cif and nleB genes were more prevalent in typical than in atypical EPEC, although a higher diversity of genes combinations was observed in atypical EPEC.
Collapse
Affiliation(s)
- Fábia A Salvador
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo T Hernandes
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil. ; Departamento de Microbiologia e Imunologia Instituto de Biociências Universidade Estadual Paulista "Julio de Mesquita Filho" BotucatuSP Brazil Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil
| | - Mônica A M Vieira
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Anna C Rockstroh
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
30
|
Rocha LB, Santos ARR, Munhoz DD, Cardoso LTA, Luz DE, Andrade FB, Horton DSPQ, Elias WP, Piazza RMF. Development of a rapid agglutination latex test for diagnosis of enteropathogenic and enterohemorrhagic Escherichia coli infection in developing world: defining the biomarker, antibody and method. PLoS Negl Trop Dis 2014; 8:e3150. [PMID: 25254981 PMCID: PMC4177769 DOI: 10.1371/journal.pntd.0003150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
Background Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC/EHEC) are human intestinal pathogens responsible for diarrhea in both developing and industrialized countries. In research laboratories, EPEC and EHEC are defined on the basis of their pathogenic features; nevertheless, their identification in routine laboratories is expensive and laborious. Therefore, the aim of the present work was to develop a rapid and simple assay for EPEC/EHEC detection. Accordingly, the EPEC/EHEC-secreted proteins EspA and EspB were chosen as target antigens. Methodology First, we investigated the ideal conditions for EspA/EspB production/secretion by ELISA in a collection of EPEC/EHEC strains after cultivating bacterial isolates in Dulbecco’s modified Eagle’s medium (DMEM) or DMEM containing 1% tryptone or HEp-2 cells-preconditioned DMEM, employing either anti-EspA/anti-EspB polyclonal or monoclonal antibodies developed and characterized herein. Subsequently, a rapid agglutination latex test (RALT) was developed and tested with the same collection of bacterial isolates. Principal findings EspB was defined as a biomarker and its corresponding monoclonal antibody as the tool for EPEC/EHEC diagnosis; the production of EspB was better in DMEM medium. RALT assay has the sensitivity and specificity required for high-impact diagnosis of neglected diseases in the developing world. Conclusion RALT assay described herein can be considered an alternative assay for diarrhea diagnosis in low-income countries since it achieved 97% sensitivity, 98% specificity and 97% efficiency. A rapid and low-cost diagnosis for EPEC/EHEC infections is extremely required considering their global prevalence, the severity of the diseases associated with them, and the fact that the use of antibiotics to treat EHEC infections can be harmful. For EHEC, the detection of Stx toxins has already been developed, but for EPEC, an internationally recognized standard diagnostic test is lacking. Thus, the approach for their rapid detection in this study was the use of the secreted proteins EspA and/or EspB, since they are the major secreted proteins in both pathogens. EspB was defined as a biomarker and its corresponding monoclonal antibody as the tool for EPEC/EHEC diagnosis using a latex agglutination assay, which can be employed in less equipped laboratories in developing countries.
Collapse
Affiliation(s)
- Letícia B. Rocha
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Anna R. R. Santos
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Danielle D. Munhoz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Lucas T. A. Cardoso
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Daniela E. Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Fernanda B. Andrade
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Roxane M. F. Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
31
|
Pitondo-Silva A, Nakazato G, Falcão JP, Irino K, Martinez R, Darini ALC, Hernandes RT. Phenotypic and genetic features of enteropathogenic Escherichia coli isolates from diarrheal children in the Ribeirão Preto metropolitan area, São Paulo State, Brazil. APMIS 2014; 123:128-35. [PMID: 25257819 DOI: 10.1111/apm.12314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/25/2014] [Indexed: 12/01/2022]
Abstract
This study was designed to characterize a collection of 60 enteropathogenic Escherichia coli (EPEC) isolates from diarrheic feces of patients in the Ribeirão Preto metropolitan area regarding different phenotypic and molecular features. We examined antibiotic resistance profiles, occurrence of virulence factors-encoding genes, intimin subtypes and the correlation of serotypes among typical (tEPEC) and atypical (aEPEC) EPEC isolates. The results demonstrated that atypical EPEC was more heterogeneous than typical EPEC concerning the characteristics investigated and 45.2% do not belong to classical EPEC serogroups. Intimin subtype β was the most frequent among the EPEC isolates (46.7%), being detected in both tEPEC and aEPEC. The majority of aEPEC isolates presented localized adherence-like (LAL) pattern to HEp-2 cells, although aEPEC isolates displaying diffuse adherence (DA) or non-adherent were also detected. High prevalence of antimicrobial resistance was found for ampicillin, cephalothin, sulfonamide and tetracycline. In general, tEPEC isolates were more resistant to the antimicrobials tested than aEPEC isolates.
Collapse
Affiliation(s)
- André Pitondo-Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Atypical enteropathogenic Escherichia coli secretes plasmid encoded toxin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:896235. [PMID: 24949475 PMCID: PMC4037613 DOI: 10.1155/2014/896235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/13/2014] [Indexed: 02/06/2023]
Abstract
Plasmid encoded toxin (Pet) is a serine protease originally described in enteroaggregative Escherichia coli (EAEC) prototype strain 042 whose entire characterization was essentially obtained from studies performed with the purified toxin. Here we show that Pet is not exclusive to EAEC. Atypical enteropathogenic Escherichia coli (aEPEC) strains, isolated from diarrhea cases, express Pet and its detection in supernatants of infected HEp-2 cells coincides with the appearance of cell damage, which, in turn, were similar to those described with purified Pet. Pet secretion and the cytotoxic effects are time and culture medium dependent. In presence of DMEM supplemented with tryptone cell rounding and detachment were observed after just 5 h of incubation with the bacteria. In the absence of tryptone, the cytotoxic effects were detected only after 24 h of infection. We also show that, in addition to the prototype EAEC, other pet+ EAEC strains, also isolated from diarrhea cases, induce cellular damage in the same degree as the aEPEC. The cytotoxic effects of EAEC and aEPEC strains were significantly reduced in the presence of a serine protease inhibitor or anti-Pet IgG serum. Our results show a common aspect between the aEPEC and EAEC and provide the first evidence pointing to a role of Pet in aEPEC pathogenesis.
Collapse
|
33
|
Atypical enteropathogenic Escherichia coli strains form biofilm on abiotic surfaces regardless of their adherence pattern on cultured epithelial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:845147. [PMID: 24883330 PMCID: PMC4032706 DOI: 10.1155/2014/845147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 12/30/2022]
Abstract
The aim of this study was to determine the capacity of biofilm formation of atypical enteropathogenic Escherichia coli (aEPEC) strains on abiotic and biotic surfaces. Ninety-one aEPEC strains, isolated from feces of children with diarrhea, were analyzed by the crystal violet (CV) assay on an abiotic surface after 24 h of incubation. aEPEC strains representing each HEp-2 cell type of adherence were analyzed after 24 h and 6, 12, and 18 days of incubation at 37°C on abiotic and cell surfaces by CFU/cm2 counting and confocal laser scanning microscopy (CLSM). Biofilm formation on abiotic surfaces occurred in 55 (60.4%) of the aEPEC strains. There was no significant difference in biofilm biomass formation on an abiotic versus prefixed cell surface. The biofilms could be visualized by CLSM at various developmental stages. aEPEC strains are able to form biofilm on an abiotic surface with no association with their adherence pattern on HEp-2 cells with the exception of the strains expressing UND (undetermined adherence). This study revealed the capacity of adhesion and biofilm formation by aEPEC strains on abiotic and biotic surfaces, possibly playing a role in pathogenesis, mainly in cases of persistent diarrhea.
Collapse
|
34
|
Analysis of the virulence of an atypical enteropathogenic Escherichia coli strain in vitro and in vivo and the influence of type three secretion system. BIOMED RESEARCH INTERNATIONAL 2014; 2014:797508. [PMID: 24877131 PMCID: PMC4022249 DOI: 10.1155/2014/797508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/05/2014] [Indexed: 12/18/2022]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) inject various effectors into intestinal cells through a type three secretion system (T3SS), causing attaching and effacing (A/E) lesions. We investigated the role of T3SS in the ability of the aEPEC 1711-4 strain to interact with enterocytes in vitro (Caco-2 cells) and in vivo (rabbit ileal loops) and to translocate the rat intestinal mucosa in vivo. A T3SS isogenic mutant strain was constructed, which showed marked reduction in the ability to associate and invade but not to persist inside Caco-2 cells. After rabbit infection, only aEPEC 1711-4 was detected inside enterocytes at 8 and 24 hours pointing to a T3SS-dependent invasive potential in vivo. In contrast to aEPEC 1711-4, the T3SS-deficient strain no longer produced A/E lesions or induced macrophage infiltration. We also demonstrated that the ability of aEPEC 1711-4 to translocate through mesenteric lymph nodes to spleen and liver in a rat model depends on a functional T3SS, since a decreased number of T3SS mutant bacteria were recovered from extraintestinal sites. These findings indicate that the full virulence potential of aEPEC 1711-4 depends on a functional T3SS, which contributes to efficient adhesion/invasion in vitro and in vivo and to bacterial translocation to extraintestinal sites.
Collapse
|
35
|
Pacheco VCR, Yamamoto D, Abe CM, Hernandes RT, Mora A, Blanco J, Gomes TAT. Invasion of differentiated intestinal Caco-2 cells is a sporadic property among atypical enteropathogenic Escherichia coli strains carrying common intimin subtypes. Pathog Dis 2013; 70:167-75. [PMID: 24339197 DOI: 10.1111/2049-632x.12112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/27/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) strains produce attaching-effacing (AE) lesions on enterocytes due to the interaction of the adhesin intimin with its translocated receptor. aEPEC strain 1551-2 was previously shown to invade HeLa and T84 cells by means of the uncommon intimin subtype omicron. Other aEPEC strains carrying uncommon intimin subtypes have also been shown to invade differentiated T84 intestinal cells. In this study, seven aEPEC strains carrying the most common EPEC intimin subtypes (alpha, beta, and gamma) were evaluated regarding the ability to invade differentiated intestinal Caco-2 cells. Although all strains adhered to and promoted AE lesions, the numbers of cell-associated bacteria varied significantly between the different strains regardless of the intimin subtype (P < 0.05). Gentamicin protection assay and transmission electron microscopy analyses showed that in comparison with the invasive strain 1551-2, only one strain (aEPEC EC423/03, intimin beta) was invasive (P = 0.05). Although both strains persisted intracellularly until 48 h, the number of viable bacteria of EC423/03 decreased, whereas that of 1551-2 increased significantly up to 24 h and then decreased. In conclusion, invasiveness is a sporadic property among aEPEC strains carrying some common intimin subtypes.
Collapse
Affiliation(s)
- Veronica C R Pacheco
- Departamento de Microbiologia e Imunologia, Escola Paulista de Medicina (UNIFESP - EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Molecular and phenotypic characterization of Escherichia coli O26:H8 among diarrheagenic E. coli O26 strains isolated in Brazil. Appl Environ Microbiol 2013; 79:6847-54. [PMID: 23974139 DOI: 10.1128/aem.01693-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains of serogroup O26 comprise two distinct groups of pathogens, characterized as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among the several genes related to type III secretion system-secreted effector proteins, espK was found to be highly specific for EHEC O26:H11 and its stx-negative derivative strains isolated in European countries. E. coli O26 strains isolated in Brazil from infant diarrhea, foods, and the environment have consistently been shown to lack stx genes and are thus considered atypical EPEC. However, no further information related to their genetic background is known. Therefore, in this study, we aimed to discriminate and characterize these Brazilian O26 stx-negative strains by phenotypic, genetic, and biochemical approaches. Among 44 isolates confirmed to be O26 isolates, most displayed flagellar antigen H11 or H32. Out of the 13 nonmotile isolates, 2 tested positive for fliCH11, and 11 were fliCH8 positive. The identification of genetic markers showed that several O26:H11 and all O26:H8 strains tested positive for espK and could therefore be discriminated as EHEC derivatives. The presence of H8 among EHEC O26 and its stx-negative derivative isolates is described for the first time. The interaction of three isolates with polarized Caco-2 cells and with intestinal biopsy specimen fragments ex vivo confirmed the ability of the O26 strains analyzed to cause attaching-and-effacing (A/E) lesions. The O26:H32 strains, isolated mostly from meat, were considered nonvirulent. Knowledge of the virulence content of stx-negative O26 isolates within the same serotype helped to avoid misclassification of isolates, which certainly has important implications for public health surveillance.
Collapse
|
37
|
Dissection of the role of pili and type 2 and 3 secretion systems in adherence and biofilm formation of an atypical enteropathogenic Escherichia coli strain. Infect Immun 2013; 81:3793-802. [PMID: 23897608 DOI: 10.1128/iai.00620-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) strains are diarrheal pathogens that lack bundle-forming pilus production but possess the virulence-associated locus of enterocyte effacement. aEPEC strain 1551-2 produces localized adherence (LA) on HeLa cells; however, its isogenic intimin (eae) mutant produces a diffuse-adherence (DA) pattern. In this study, we aimed to identify the DA-associated adhesin of the 1551-2 eae mutant. Electron microscopy of 1551-2 identified rigid rod-like pili composed of an 18-kDa protein, which was identified as the major pilin subunit of type 1 pilus (T1P) by mass spectrometry analysis. Deletion of fimA in 1551-2 affected biofilm formation but had no effect on adherence properties. Analysis of secreted proteins in supernatants of this strain identified a 150-kDa protein corresponding to SslE, a type 2 secreted protein that was recently reported to be involved in biofilm formation of rabbit and human EPEC strains. However, neither adherence nor biofilm formation was affected in a 1551-2 sslE mutant. We then investigated the role of the EspA filament associated with the type 3 secretion system (T3SS) in DA by generating a double eae espA mutant. This strain was no longer adherent, strongly suggesting that the T3SS translocon is the DA adhesin. In agreement with these results, specific anti-EspA antibodies blocked adherence of the 1551-2 eae mutant. Our data support a role for intimin in LA, for the T3SS translocon in DA, and for T1P in biofilm formation, all of which may act in concert to facilitate host intestinal colonization by aEPEC strains.
Collapse
|
38
|
Hegde A, Ballal M, Shenoy S. Detection of diarrheagenic Escherichia coli by multiplex PCR. Indian J Med Microbiol 2013; 30:279-84. [PMID: 22885192 DOI: 10.4103/0255-0857.99485] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Diarrheagenic E.coli (DEC) are an important cause of childhood diarrhea.Identification of DEC strains needs to detect factors that determine the virulence of these organisms. There is not much data regarding the importance of DEC as a cause of diarrhea in children in India.The prevalence of DEC in children below five years with and without diarrhea was studied using two multiplex PCR assays. MATERIALS AND METHODS Two multiplex polymerase chain reaction assays were used to detect genes of five types of DEC.The targets selected for each category were eae and bfpA (bundle-forming pilus) for Enteropathogenic E.coli (EPEC), hlyA for Enterohemorrhagic E.coli (EHEC), elt and stla for Enterotoxigenic E.coli (ETEC), CVD432 for Enteroaggregative E.coli (EAEC) and ial for Enteroinvasive E.coli (EIEC). RESULTS In 200 children with diarrhea 52 (26%) DEC infections were found. Among 100 controls 8 (8%) DEC infections were found. EAEC was the most common DEC by multiplex PCR both in cases (26, 13%)and controls (5,5%), followed by EPEC seen in 16% cases and 3% controls. ETEC and EIEC were found in 7 (3.5%) and 3 (1.5%) of the diarrheal cases. EIEC and ETEC were not detected in the control cases. EHEC was not isolated from either the diarrheal or control cases. CONCLUSION DEC strains are a significant cause of diarrhea in children. The two Multiplex PCR assays can be used for the detection of DEC in routine diagnostic laboratories. These assays are specific and sensitive for the rapid detection of DEC. EAEC was the most frequent pathotype in the population under study.
Collapse
Affiliation(s)
- A Hegde
- Department of Microbiology, Kasturba Medical College, Manipal University, Mangalore IC, India
| | | | | |
Collapse
|
39
|
Autotransporter protein-encoding genes of diarrheagenic Escherichia coli are found in both typical and atypical enteropathogenic E. coli strains. Appl Environ Microbiol 2012; 79:411-4. [PMID: 23104414 DOI: 10.1128/aem.02635-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autotransporter (AT) protein-encoding genes of diarrheagenic Escherichia coli (DEC) pathotypes (cah, eatA, ehaABCDJ, espC, espI, espP, pet, pic, sat, and tibA) were detected in typical and atypical enteropathogenic E. coli (EPEC) in frequencies between 0.8% and 39.3%. Although these ATs have been described in particular DEC pathotypes, their presence in EPEC indicates that they should not be considered specific virulence markers.
Collapse
|
40
|
Feng PCH, Keys C, Lacher DW, Beutin L, Bentancor A, Heuvelink A, Afset JE, Rumi V, Monday S. Clonal relations of atypical enteropathogenic Escherichia coli O157:H16 strains isolated from various sources from several countries. FEMS Microbiol Lett 2012; 337:126-31. [PMID: 23020830 DOI: 10.1111/1574-6968.12017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 11/28/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) is comprised of a large heterogeneous group of strains and serotypes that carry the intimin gene (eae) but no other EPEC virulence factors. In a previous study, we examined a few aEPEC strains of O157:H16 serotype from the U.S. and France and found these to be nearly homologous, and speculated that the same strain had been disseminated or perhaps they are part of a large clonal group that exists worldwide. To test that hypothesis, we examined additional 45 strains isolated from various sources from 4 other countries and determined that although there are a few eae-negative O157:H16 strains, most are aEPEC that carried eae and specifically, the ε-eae allele. Analysis by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing showed that as a whole, O157:H16 strains are phylogenetically diverse and have different sequence types and PFGE profiles. But the aEPEC strains within the O157:H16 serotype, regardless of the eae allele carried, are a highly conserved and homologous group of sequence type (ST)-171 strains that shared similar PFGE profiles. These aEPEC strains of O157:H16 serotype are not closely related to any of the major EPEC and enterohemorrhagic E. coli clonal lineages and appear to be part of a large clonal group that are prevalent worldwide.
Collapse
Affiliation(s)
- Peter C H Feng
- Division of Microbiology, FDA, College Park, MD 20740, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Almeida PMPD, Arais LR, Andrade JRC, Prado EHRB, Irino K, Cerqueira ADMF. Characterization of atypical Enteropathogenic Escherichia coli (aEPEC) isolated from dogs. Vet Microbiol 2012; 158:420-4. [DOI: 10.1016/j.vetmic.2012.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 11/25/2022]
|
42
|
Nara JM, Pimenta DC, Abe CM, Abreu PAE, Moraes CTP, Freitas NC, Elias WP, Piazza RMF. Low-molecular mass comparative proteome of four atypical enteropathogenic Escherichia coli isolates showing different adherence patterns. Comp Immunol Microbiol Infect Dis 2012; 35:539-49. [PMID: 22768807 DOI: 10.1016/j.cimid.2012.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/04/2012] [Accepted: 06/10/2012] [Indexed: 11/19/2022]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous in terms of serotypes, adherence patterns and the presence of non-locus of enterocyte effacement virulence factors. In this study, the low-molecular mass proteomes of four representative aEPEC, comprising three different adhesion phenotypes (localized-like, aggregative and diffuse) and one non-adherent isolate, were analyzed and compared by 2D gel electrophoresis and LC-MS/MS. By mass spectrometry, a total of 59 proteins were identified according to their annotated function, with most of them being involved in metabolism, protection, and transport; some of them still classified as hypothetical proteins. Thus, in this comparative proteomic analysis of low-molecular mass extracted proteins from different aEPEC isolates, the proteins identified are mainly involved in key metabolic pathways. Also, the majority of the hypothetical and filamentous proteins identified in the isolates studied are products of genes originally identified in the genome of enterohemorrhagic E. coli.
Collapse
Affiliation(s)
- Júlia M Nara
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Al Hilali SA, Almohana AM. Occurrence and molecular characterization of enteropathogenic Escherichia coli serotypes isolated from children with diarrhoea in Najaf, Iraq. Indian J Med Microbiol 2012; 29:383-8. [PMID: 22120799 DOI: 10.4103/0255-0857.90171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE Enteropathogenic Escherichia coli (EPEC) are among the most important pathogens infecting children worldwide and are one of the main causes of diarrhoea. The study was carried out to investigate the occurrence of EPEC as a cause of infectious diarrhoea in children younger than 2 years of age and characterize their virulence genes. MATERIALS AND METHODS During the study period, a total of 656 faecal specimens from children with diarrhoea and 54 from healthy children were analyzed. E. coli isolates were serotypically identified with EPEC polyvalent and monovalent antisera. The isolated EPEC were examined for the presence of the attaching and effacing (eaeA), bundle-forming pilus (bfpA), Shiga like toxins (stx₁ and stx₂), enterohaemorrhagic E. coli enterohaemolysin (EHEC hlyA) and EPEC adherence factor (EAF) genes by the PCR assay. RESULTS The study has shown that 22 (3.4%) had diarrhoea due to EPEC, while no EPEC isolates were detected in asymptomatic children. The highest number of the EPEC isolated belonging to polyvalent 2. The primers encoding virulence genes were subjected to all the EPEC isolates. Only 9.1%, 27.3%, and 9.1% isolates gave positive re sults with intimin (eaeA), bfbA and (EAF) genes, respectively. None of the isolates were positive for stx₁, stx₂, and hlyA genes. Typical EPEC (eaeA⁺, bfpA⁺) was diagnosed in two isolates, while, atypical EPEC was manifested in four isolates. CONCLUSIONS According to the results, the frequency of EPEC isolates in Najaf was lower than what has been suspected and the investigation including the use of molecular technique and serotyping, are necessary to allow precise identification and epidemiological study of these pathogens.
Collapse
Affiliation(s)
- Samer A Al Hilali
- Department of Microbiology, College of Medicine, Kufa University, Iraq Najaf Kufa p.o. Box(18), Iraq.
| | | |
Collapse
|
44
|
Fimbrial adhesins produced by atypical enteropathogenic Escherichia coli strains. Appl Environ Microbiol 2011; 77:8391-9. [PMID: 21926222 DOI: 10.1128/aem.05376-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) has emerged as a significant cause of pediatric diarrhea worldwide; however, information regarding its adherence mechanisms to the human gut mucosa is lacking. In this study, we investigated the prevalence of several (fimA, ecpA, csgA, elfA, and hcpA) fimbrial genes in 71 aEPEC strains isolated from children with diarrhea (54 strains) and healthy individuals (17 strains) in Brazil and Australia by PCR. These genes are associated with adhesion and/or biofilm formation of pathogenic and commensal E. coli. Here, the most prevalent fimbrial genes found, in descending order, were hcpA (98.6%), ecpA (86%), fimA (76%), elfA (72%), and csgA (19.7%). Phenotypic expression of pili in aEPEC strains was assessed by several approaches. We were not able to detect the hemorrhagic coli pilus (HCP) or the E. coli laminin-binding fimbriae (ELF) in these strains by using immunofluorescence. Type 1 pili and curli were detected in 59% (by yeast agglutination) and 2.8% (by Congo red binding and immunofluorescence) of the strains, respectively. The E. coli common pilus (ECP) was evidenced in 36.6% of the strains on bacteria adhering to HeLa cells by immunofluorescence, suggesting that ECP could play an important role in cell adherence for some aEPEC strains. This study highlights the complex nature of the adherence mechanisms of aEPEC strains involving the coordinated function of fimbrial (e.g., ECP) and nonfimbrial (e.g., intimin) adhesins and indicates that these strains bear several pilus operons that could potentially be expressed in different niches favoring colonization and survival in and outside the host.
Collapse
|
45
|
Liberatore AMA, Moreira FC, Gomes TAT, Menchaca-Diaz JL, Koh IHJ. Typical and atypical enteropathogenic Escherichia coli bacterial translocation associated with tissue hypoperfusion in rats. Braz J Med Biol Res 2011; 44:1018-24. [PMID: 21989977 DOI: 10.1590/s0100-879x2011007500105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 07/27/2011] [Indexed: 11/21/2022] Open
Abstract
Although enteropathogenic Escherichia coli (EPEC) are well-recognized diarrheal agents, their ability to translocate and cause extraintestinal alterations is not known. We investigated whether a typical EPEC (tEPEC) and an atypical EPEC (aEPEC) strain translocate and cause microcirculation injury under conditions of intestinal bacterial overgrowth. Bacterial translocation (BT) was induced in female Wistar-EPM rats (200-250 g) by oroduodenal catheterization and inoculation of 10 mL 10(10) colony forming unit (CFU)/mL, with the bacteria being confined between the duodenum and ileum with ligatures. After 2 h, mesenteric lymph nodes (MLN), liver and spleen were cultured for translocated bacteria and BT-related microcirculation changes were monitored in mesenteric and abdominal organs by intravital microscopy and laser Doppler flow, respectively. tEPEC (N = 11) and aEPEC (N = 11) were recovered from MLN (100%), spleen (36.4 and 45.5%), and liver (45.5 and 72.7%) of the animals, respectively. Recovery of the positive control E. coli R-6 (N = 6) was 100% for all compartments. Bacteria were not recovered from extraintestinal sites of controls inoculated with non-pathogenic E. coli strains HB101 (N = 6) and HS (N = 10), or saline. Mesenteric microcirculation injuries were detected with both EPEC strains, but only aEPEC was similar to E. coli R-6 with regard to systemic tissue hypoperfusion. In conclusion, overgrowth of certain aEPEC strains may lead to BT and impairment of the microcirculation in systemic organs.
Collapse
Affiliation(s)
- A M A Liberatore
- Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | |
Collapse
|
46
|
Adhesin-encoding genes from shiga toxin-producing Escherichia coli are more prevalent in atypical than in typical enteropathogenic E. coli. J Clin Microbiol 2011; 49:3334-7. [PMID: 21795517 DOI: 10.1128/jcm.00779-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Four of six adhesin-encoding genes (lpfA, paa, iha, and toxB) from Shiga toxin-producing Escherichia coli strains were detected in typical and atypical enteropathogenic E. coli (EPEC) strains of various serotypes. Although the most prevalent gene was lpfA in both groups, paa was the only potential diarrhea-associated gene in atypical EPEC.
Collapse
|
47
|
Sampaio SCF, Andrade JRC, Sampaio JLM, Carneiro CRW, Freymüller E, Gomes TAT. Distinct Interaction of Two Atypical Enteropathogenic Escherichia coli Strains with Enterocytes In Vitro. Open Microbiol J 2011; 5:65-71. [PMID: 21792379 PMCID: PMC3141353 DOI: 10.2174/1874285801105010065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/25/2022] Open
Abstract
Typical and atypical Enteropathogenic Escherichia coli (EPEC) promote attaching-effacing lesions in intestinal cells but only typical EPEC carry the EPEC adherence factor plasmid. Atypical EPEC (aEPEC) are emerging agents of acute and persistent diarrhea worldwide. We aimed at comparing the ability of two aEPEC strains, 1711-4 (serotype O51:H40) and 3991-1 (serotype O non-typeable:non-motile) to invade, persist inside Caco-2 and T84 cells, and to induce IL-8 production. Typical EPEC strain E2348/69 was used for comparisons. The strains associated more significantly with T84 than with Caco-2 cells, with 3991-1 being the most adherent (P < 0.001). In contrast, aEPEC 1711-4 was significantly more invasive than the other strains in both cell lines, and was found within vacuoles near the basolateral cell surfaces. Strains persisted within both cell lines for at least 48 hours, but the persistence index was higher for 3991-1 in Caco-2 cells. IL-8 production was significantly higher from Caco-2 cells infected with 1711-4 for at least 48 hours (P < 0.001), and from T84 cells after 24 and 48 h than with the other strains (P = 0.001). We demonstrated that aEPEC are heterogeneous in various aspects of their interaction with enterocytes in vitro.
Collapse
Affiliation(s)
- Suely C F Sampaio
- Departamento de Microbiologia, Imunologia e Parasitologia - Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu 862, 3º andar - 04023-062- São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Characterization of Escherichia coli strains isolated from patients with diarrhea in Sao Paulo, Brazil: identification of intermediate virulence factor profiles by multiplex PCR. J Clin Microbiol 2011; 49:2274-8. [PMID: 21508159 DOI: 10.1128/jcm.00386-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intestinal pathogenic Escherichia coli is a major causative agent of severe diarrhea. In this study the prevalences of different pathotypes among 702 E. coli isolates from Brazilian patients with diarrhea were determined by multiplex PCR. Interestingly, most strains were enteroaggregative E. coli (EAEC) strains, followed by atypical EPEC (ATEC) strains. Classical enteropathogenic E. coli (EPEC) strains were not detected.
Collapse
|
49
|
Atypical enteropathogenic Escherichia coli that contains functional locus of enterocyte effacement genes can be attaching-and-effacing negative in cultured epithelial cells. Infect Immun 2011; 79:1833-41. [PMID: 21343354 DOI: 10.1128/iai.00693-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) induces a characteristic histopathology on enterocytes known as the attaching-and-effacing (A/E) lesion, which is triggered by proteins encoded by the locus of enterocyte effacement (LEE). EPEC is currently classified as typical EPEC (tEPEC) and atypical EPEC (aEPEC), based on the presence or absence of the EPEC adherence factor plasmid, respectively. Here we analyzed the LEE regions of three aEPEC strains displaying the localized adherence-like (LAL), aggregative adherence (AA), and diffuse adherence (DA) patterns on HEp-2 cells as well as one nonadherent (NA) strain. The adherence characteristics and the ability to induce A/E lesions were investigated with HeLa, Caco-2, T84, and HT29 cells. The adherence patterns and fluorescent actin staining (FAS) assay results were reproducible with all cell lines. The LEE region was structurally intact and functional in all strains regardless of their inability to cause A/E lesions. An EspF(U)-expressing plasmid (pKC471) was introduced into all strains, demonstrating no influence of this protein on either the adherence patterns or the capacity to cause A/E of the adherent strains. However, the NA strain harboring pKC471 expressed the LAL pattern and was able to induce A/E lesions on HeLa cells. Our data indicate that FAS-negative aEPEC strains are potentially able to induce A/E in vivo, emphasizing the concern about this test for the determination of aEPEC virulence. Also, the presence of EspF(U) was sufficient to provide an adherent phenotype for a nonadherent aEPEC strain via the direct or indirect activation of the LEE4 and LEE5 operons.
Collapse
|
50
|
Phylogenetic groups, virulence genes and quinolone resistance of integron-bearing Escherichia coli strains isolated from a wastewater treatment plant. Antonie Van Leeuwenhoek 2011; 99:817-24. [PMID: 21293926 PMCID: PMC3079074 DOI: 10.1007/s10482-011-9555-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/18/2011] [Indexed: 11/30/2022]
Abstract
We investigated phylogenetic affiliation, occurrence of virulence genes and quinolone resistance in 109 integron-containing strains of Escherichia coli isolated from a wastewater treatment plant. Selection for integron-bearing strains caused a shift toward phylogroup D, which was most numerous, followed by A, B1 and B2. Phylogroups D and B2, both of which are reported to include virulent extraintestinal pathotypes, made up 50.5% of all isolates and were present in every stage of wastewater treatment, including final effluent. Diarrheagenic pathotypes made up 21% of the strains. The average virulence factor genes score was low (1.40) and the range was from 0 to 5. Quinolone and fluoroquinolone resistance was observed in 56.0% and 50.4% of the strains, respectively; however, it was not associated with virulence factor score. Although the average virulence factor score was low, 17.4% of strains had three and more virulence genes. They were isolated mostly from raw sewage, but 30% of them were cultured from final effluent. Release of multiresistant integron-bearing E. coli strains with virulence traits into the environment may create potential threat and be of public health concern.
Collapse
|