1
|
Kambouris ME, Manoussopoulos Y, Kantzanou M, Velegraki A, Gaitanis G, Arabatzis M, Patrinos GP. Rebooting Bioresilience: A Multi-OMICS Approach to Tackle Global Catastrophic Biological Risks and Next-Generation Biothreats. ACTA ACUST UNITED AC 2018; 22:35-51. [DOI: 10.1089/omi.2017.0185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Manousos E. Kambouris
- Department of Pharmacy, University of Patras, Rio Patras, Greece
- Department of Food Technology, ATEI of Thessaly, Karditsa, Greece
| | - Yiannis Manoussopoulos
- Plant Protection Division of Patras, Institute of Industrial and Forage Plants, Patras, Greece
| | - Maria Kantzanou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristea Velegraki
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Gaitanis
- Department of Skin and Venereal Diseases, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michalis Arabatzis
- First Department of Dermatology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
2
|
Tan KK, Tan YC, Chang LY, Lee KW, Nore SS, Yee WY, Mat Isa MN, Jafar FL, Hoh CC, AbuBakar S. Full genome SNP-based phylogenetic analysis reveals the origin and global spread of Brucella melitensis. BMC Genomics 2015; 16:93. [PMID: 25888205 PMCID: PMC4409723 DOI: 10.1186/s12864-015-1294-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/29/2015] [Indexed: 11/17/2022] Open
Abstract
Background Brucellosis is an important zoonotic disease that affects both humans and animals. We sequenced the full genome and characterised the genetic diversity of two Brucella melitensis isolates from Malaysia and the Philippines. In addition, we performed a comparative whole-genome single nucleotide polymorphism (SNP) analysis of B. melitensis strains collected from around the world, to investigate the potential origin and the history of the global spread of B. melitensis. Results Single sequencing runs of each genome resulted in draft genome sequences of MY1483/09 and Phil1136/12, which covered 99.85% and 99.92% of the complete genome sequences, respectively. The B. melitensis genome sequences, and two B. abortus strains used as the outgroup strains, yielded a total of 13,728 SNP sites. Phylogenetic analysis using whole-genome SNPs and geographical distribution of the isolates revealed spatial clustering of the B. melitensis isolates into five genotypes, I, II, III, IV and V. The Mediterranean strains, identified as genotype I, occupied the basal node of the phylogenetic tree, suggesting that B. melitensis may have originated from the Mediterranean regions. All of the Asian B. melitensis strains clustered into genotype II with the SEA strains, including the two isolates sequenced in this study, forming a distinct clade denoted here as genotype IId. Genotypes III, IV and V of B. melitensis demonstrated a restricted geographical distribution, with genotype III representing the African lineage, genotype IV representing the European lineage and genotype V representing the American lineage. Conclusion We showed that SNPs retrieved from the B. melitensis draft full genomes were sufficient to resolve the interspecies relationships between B. melitensis strains and to discriminate between the vaccine and endemic strains. Phylogeographic reconstruction of the history of B. melitensis global spread at a finer scale by using whole-genome SNP analyses supported the origin of all B. melitensis strains from the Mediterranean region. The possible global distribution of B. melitensis following the ancient trade routes was also consistent with whole-genome SNP phylogeny. The whole genome SNP phylogenetics analysis, hence is a powerful tool for intraspecies discrimination of closely related species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1294-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yung-Chie Tan
- Codon Genomics S/B, No 26, Jalan Dutamas 7, Taman Dutamas, Balakong, 43200, Seri Kembangan, Selangor, Malaysia.
| | - Li-Yen Chang
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kok Wei Lee
- Codon Genomics S/B, No 26, Jalan Dutamas 7, Taman Dutamas, Balakong, 43200, Seri Kembangan, Selangor, Malaysia.
| | - Siti Sarah Nore
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wai-Yan Yee
- Codon Genomics S/B, No 26, Jalan Dutamas 7, Taman Dutamas, Balakong, 43200, Seri Kembangan, Selangor, Malaysia.
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Faizatul Lela Jafar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Chee-Choong Hoh
- Codon Genomics S/B, No 26, Jalan Dutamas 7, Taman Dutamas, Balakong, 43200, Seri Kembangan, Selangor, Malaysia.
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
The use of colorimetric sensor arrays to discriminate between pathogenic bacteria. PLoS One 2013; 8:e62726. [PMID: 23671629 PMCID: PMC3650032 DOI: 10.1371/journal.pone.0062726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/25/2013] [Indexed: 11/19/2022] Open
Abstract
A colorimetric sensor array is a high-dimensional chemical sensor that is cheap, compact, disposable, robust, and easy to operate, making it a good candidate technology to detect pathogenic bacteria, especially potential bioterrorism agents like Yersinia pestis and Bacillus anthracis which feature on the Center for Disease Control and Prevention's list of potential biothreats. Here, a colorimetric sensor array was used to continuously monitor the volatile metabolites released by bacteria in solid media culture in an Advisory Committee on Dangerous Pathogen Containment Level 3 laboratory. At inoculum concentrations as low as 8 colony-forming units per plate, 4 different bacterial species were identified with 100% accuracy using logistic regression to classify the kinetic profile of sensor responses to culture headspace gas. The sensor array was able to further discriminate between different strains of the same species, including 5 strains of Yersinia pestis and Bacillus anthracis. These preliminary results suggest that disposable colorimetric sensor arrays can be an effective, low-cost tool to identify pathogenic bacteria.
Collapse
|
4
|
Labib M, Zamay AS, Berezovski MV. Multifunctional electrochemical aptasensor for aptamer clones screening, virus quantitation in blood and viability assessment. Analyst 2013; 138:1865-75. [PMID: 23381386 DOI: 10.1039/c3an36771a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel attempt was made to develop a disposable multifunctional sensor for analysis of vaccinia virus (VACV), a promising oncolytic agent that can replicate in and kill tumor cells. Briefly, we developed aptamers specific to VACV that were negatively selected against human serum as well as human and mouse blood to be further utilized for viral analysis directly in serum and blood. In addition, the aptamers were negatively selected against heat-inactivated VACV to enable them to distinguish between viable and nonviable virus particles. The selected aptamers were integrated onto an electrochemical aptasensor to perform multiple functions, including quantification of VACV, viability assessment of the virus, and estimation of the binding affinity between the virus and the developed aptamers. The aptasensor was fabricated by self-assembling a hybrid of a thiolated ssDNA primer and a VACV-specific aptamer onto a gold nanoparticles modified screen-printed carbon electrode (GNPs-SPCE). Square wave voltammetry was employed to quantify VACV in serum and blood within the range of 150-900 PFU, with a detection limit of 60 PFU in 30 μL. According to the electrochemical affinity measurements, three virus specific aptamer clones, V-2, V-5, and V-9 exhibited the highest affinity to VACV. Furthermore, flow cytometry was employed to estimate the dissociation constants of the clones which were found to be 26.3, 40.9, and 24.7 nM, respectively. Finally, the developed aptasensor was able to distinguish between the intact virus and the heat-inactivated virus thanks to the tailored selectivity of the aptamers that was achieved via negative selection.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | | | | |
Collapse
|
5
|
Woubit A, Yehualaeshet T, Habtemariam T, Samuel T. Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens. J Food Prot 2012; 75:660-70. [PMID: 22488053 PMCID: PMC3524339 DOI: 10.4315/0362-028x.jfp-11-480] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia, and Francisella include important food safety and biothreat agents. By extensive mining of the whole genome and protein databases of diverse, closely and distantly related bacterial species and strains, we have identified novel genome regions, which we utilized to develop a rapid detection platform for these pathogens. The specific genomic targets we have identified to design the primers in Francisella tularensis subsp. tularensis, F. tularensis subsp. novicida, Shigella dysenteriae, Salmonella enterica serovar Typhimurium, Vibrio cholerae, Yersinia pestis, and Yersinia pseudotuberculosis contained either known genes or putative proteins. Primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in silico PCR against whole-genome sequences of different species, subspecies, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (Escherichia coli O157:H7 strain EDL 933, Shigella dysenteriae, S. enterica serovar Typhi, F. tularensis subsp. tularensis, V. cholerae, and Y. pestis) and six foodborne pathogens (Salmonella Typhimurium, Salmonella Saintpaul, Shigella sonnei, F. tularensis subsp. novicida, Vibrio parahaemolyticus, and Y. pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed with purified DNA showed the lowest detection limit of 128 fg of DNA/μl for F. tularensis subsp. tularensis. A preliminary test to detect Shigella organisms in a milk matrix also enabled the detection of 6 to 60 CFU/ml. These new tools could ultimately be used to develop platforms to simultaneously detect these pathogens.
Collapse
Affiliation(s)
- Abdela Woubit
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, AL 36088, USA
| | | | | | | |
Collapse
|
6
|
A multiplex nanoparticle-based bio-barcoded DNA sensor for the simultaneous detection of multiple pathogens. Biosens Bioelectron 2010; 26:1736-42. [DOI: 10.1016/j.bios.2010.08.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/16/2010] [Accepted: 08/04/2010] [Indexed: 11/24/2022]
|
7
|
Electrically active magnetic nanoparticles as novel concentrator and electrochemical redox transducer in Bacillus anthracis DNA detection. Biosens Bioelectron 2010; 26:1624-30. [PMID: 20864333 DOI: 10.1016/j.bios.2010.08.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 08/03/2010] [Accepted: 08/12/2010] [Indexed: 11/21/2022]
Abstract
Magnetic polymer nanostructures are a new class of multifunctional nanomaterials that are recently being explored in biosensor devices. In this paper, for the first time we report the novel application of electrically active magnetic (EAM) nanoparticles as concentrator of DNA targets as well as electrochemical transducers for detection of the Bacillus anthracis protective antigen A (pag A) gene. The EAM nanoparticles are synthesized by chemical polymerization and have dimensions of 80-100 nm. The biosensor detection encompasses two sets of DNA probes that are specific to the target gene: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe-DNA target-capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation-reduction signal of the EAM nanoparticles. Preliminary results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at DNA concentrations as low as 0.01 ng/μl.
Collapse
|
8
|
Talbot SR, Russmann H, Köhne S, Niederwöhrmeier B, Grote G, Scheper T. Effects of inactivation methods on the analysis of Bacillus atrophaeusendospores using real-time PCR and MALDI-TOF-MS. Eng Life Sci 2010. [DOI: 10.1002/elsc.200800078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
|
10
|
Jiang J, Peng Z, Deng L, Li G, Chen L. Detection of bifidobacterium species-specific 16S rDNA based on QD FRET bioprobe. J Fluoresc 2009; 20:365-9. [PMID: 19784763 DOI: 10.1007/s10895-009-0513-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/22/2009] [Indexed: 11/24/2022]
Abstract
Fluorescence resonance energy transfer (FRET) that consists of quantum dot as donors and organic fluorophore dyes as acceptors has been a very important method to detect biomolecules such as nucleic acids. In this work, we established a new FRET detection system of Bifidobacterium species-specific 16S rDNA using QD-ROX FRET bioprobe, in which 525 nm QD-DNA conjugation consisted of the carboxyl-modified QD and the amino-modified DNA in the presence of EDC. Both ROX-DNA and the conjugation above could hybridize with the target DNA after forming the QD-ROX bioprobe. When the hybridization made the distance between the QD and ROX to meet FRET effect needed, 525 nm QD fluorescence intensity decreased and ROX fluorescence intensity increased. In the control, there was no notable change of fluorescence intensities without target DNA. It is very clear that the change of the QD and ROX fluorescence intensities provide the good base and guaranty for this rapid and simple detection system.
Collapse
Affiliation(s)
- Junfeng Jiang
- Department of Microbiology, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health. Appl Environ Microbiol 2009; 75:6331-9. [PMID: 19648357 DOI: 10.1128/aem.00288-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Used for decades for biological warfare, Bacillus anthracis (category A agent) has proven to be highly stable and lethal. Quantitative risk assessment modeling requires descriptive statistics of the limit of detection to assist in defining the exposure. Furthermore, the sensitivities of various detection methods in environmental matrices are vital information for first responders. A literature review of peer-reviewed journal articles related to methods for detection of B. anthracis was undertaken. Articles focused on the development or evaluation of various detection approaches, such as PCR, real-time PCR, immunoassay, etc. Real-time PCR and PCR were the most sensitive methods for the detection of B. anthracis, with median instrument limits of detection of 430 and 440 cells/ml, respectively. There were very few peer-reviewed articles on the detection methods for B. anthracis in the environment. The most sensitive limits of detection for the environmental samples were 0.1 CFU/g for soil using PCR-enzyme-linked immunosorbent assay (ELISA), 17 CFU/liter for air using an ELISA-biochip system, 1 CFU/liter for water using cultivation, and 1 CFU/cm(2) for stainless steel fomites using cultivation. An exponential dose-response model for the inhalation of B. anthracis estimates of risk at concentrations equal to the environmental limit of detection determined the probability of death if untreated to be as high as 0.520. Though more data on the environmental limit of detection would improve the assumptions made for the risk assessment, this study's quantification of the risk posed by current limitations in the knowledge of detection methods should be considered when employing those methods in environmental monitoring and cleanup strategies.
Collapse
|
12
|
Wilson AD, Baietto M. Applications and advances in electronic-nose technologies. SENSORS (BASEL, SWITZERLAND) 2009; 9:5099-148. [PMID: 22346690 PMCID: PMC3274163 DOI: 10.3390/s90705099] [Citation(s) in RCA: 444] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/11/2009] [Accepted: 06/25/2009] [Indexed: 01/06/2023]
Abstract
Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arrays, based on different detection principles and mechanisms, is closely correlated with the expansion of new applications. Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of the major electronic-nose technologies, developed since this specialized field was born and became prominent in the mid 1980s, and a summarization of some of the more important and useful applications that have been of greatest benefit to man.
Collapse
Affiliation(s)
- Alphus D. Wilson
- Southern Hardwoods Laboratory, Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, P.O. Box 227, Stoneville, Mississippi, 38776, USA
| | - Manuela Baietto
- Department of Crop Science, University of Milan,Via Celoria 2, 20133, Milan, Italy; E-Mail:
| |
Collapse
|
13
|
Taitt CR, Malanoski AP, Lin B, Stenger DA, Ligler FS, Kusterbeck AW, Anderson GP, Harmon SE, Shriver-Lake LC, Pollack SK, Lennon DM, Lobo-Menendez F, Wang Z, Schnur JM. Discrimination between biothreat agents and 'near neighbor' species using a resequencing array. ACTA ACUST UNITED AC 2009; 54:356-64. [PMID: 19049648 DOI: 10.1111/j.1574-695x.2008.00486.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Timely identification of biothreat organisms from large numbers of clinical or environmental samples in potential outbreak or attack scenario is critical for effective diagnosis and treatment. This study aims to evaluate the potential of resequencing arrays for this purpose. Albeit suboptimal, this report demonstrated that respiratory pathogen microarray version 1 can identify Bacillus anthracis, Francisella tularensis, Yersinia pestis and distinguish them from benign 'near neighbor' species in a single assay. Additionally, the sequence information can discriminate strains and possibly the sources of the strains. With further development, it is possible to use resequencing microarrays for biothreat surveillance.
Collapse
Affiliation(s)
- Chris R Taitt
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li Z, Hayman RB, Walt DR. Detection of Single-Molecule DNA Hybridization Using Enzymatic Amplification in an Array of Femtoliter-Sized Reaction Vessels. J Am Chem Soc 2008; 130:12622-3. [DOI: 10.1021/ja8053018] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhaohui Li
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155
| | - Ryan B. Hayman
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155
| | - David R. Walt
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155
| |
Collapse
|
15
|
Orthopoxvirus detection in environmental specimens during suspected bioterror attacks: inhibitory influences of common household products. Appl Environ Microbiol 2007; 74:32-7. [PMID: 17965204 DOI: 10.1128/aem.01501-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After terrorists attacked the United States in 2001, the appearance of letters and other objects containing powdery substances with unknown potentials for biological threat focused attention on the speed, sensitivity, and reliability of diagnostic methods. This study summarizes the abilities and limitations of real-time PCR, electron microscopy (EM), and virus isolation when used to detect potential bioweapons. In particular, we investigated the inhibitory influences of different common household products present in environmental specimens on PCR yield, EM detection, and virus isolation. We used vaccinia virus as a model for orthopoxviruses by spiking it into specimens. In the second part of the study, we describe modifications of diagnostic methods to overcome inhibitory effects. A variety of PCR amplification enhancers, DNA extraction protocols, and applications of internal controls were evaluated to improve diagnostic simplicity, speed, and reliability. As a result, we strongly recommend using at least two different frontline techniques in parallel, e.g., EM and PCR. A positive result obtained by any one of these techniques should be followed by a biological method to confirm the putative diagnosis. Confirmatory methods include virus isolation followed by an agent-specific immunofluorescence assay to confirm the presence of replication-competent particles.
Collapse
|
16
|
Song L, Ahn S, Walt DR. Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection. Anal Chem 2007; 78:1023-33. [PMID: 16478092 DOI: 10.1021/ac051417w] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a multiplexed high-density DNA array capable of rapid, sensitive, and reliable identification of potential biological warfare agents. An optical fiber bundle containing 6000 individual 3.1-mum-diameter fibers was chemically etched to yield microwells and used as the substrate for the array. Eighteen different 50-mer single-stranded DNA probes were covalently attached to 3.1-mum microspheres. Probe sequences were designed for Bacillus anthracis, Yersinia pestis, Francisella tularensis, Brucella melitensis, Clostridium botulinum, Vaccinia virus, and one biological warfare agent (BWA) simulant, Bacillus thuringiensis kurstaki. The microspheres were distributed into the microwells to form a randomized multiplexed high-density DNA array. A detection limit of 10 fM in a 50-microL sample volume was achieved within 30 min of hybridization for B. anthracis, Y. pestis, Vaccinia virus, and B. thuringiensis kurstaki. We used both specific responses of probes upon hybridization to complementary targets as well as response patterns of the multiplexed array to identify BWAs with high accuracy. We demonstrated the application of this multiplexed high-density DNA array for parallel identification of target BWAs in spiked sewage samples after PCR amplification. The array's miniaturized feature size, fabrication flexibility, reusability, and high reproducibility may enable this array platform to be integrated into a highly sensitive, specific, and reliable portable instrument for in situ BWA detection.
Collapse
Affiliation(s)
- Linan Song
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | | | | |
Collapse
|
17
|
Karner J, Allerberger F. Detecting Clostridium botulinum. Emerg Infect Dis 2006. [PMID: 16972354 PMCID: PMC3291211 DOI: 10.3201/detectingclostridiumbotulinum] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Josef Karner
- Medical University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
18
|
Karner J, Allerberger F. Detecting Clostridium botulinum. Emerg Infect Dis 2006; 12:1292. [PMID: 16972354 PMCID: PMC3291211 DOI: 10.3201/eid1208.051364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Affiliation(s)
- Josef Karner
- Medical University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
19
|
Affiliation(s)
- Otto S Wolfbeis
- Institute of Analytical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|