1
|
Thakur M, Muniyappa K. Macrophage activation highlight an important role for NER proteins in the survival, latency and multiplication of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 138:102284. [PMID: 36459831 DOI: 10.1016/j.tube.2022.102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most extensively studied DNA repair processes in both prokaryotes and eukaryotes. The NER pathway is a highly conserved, ATP-dependent multi-step process involving several proteins/enzymes that function in a concerted manner to recognize and excise a wide spectrum of helix-distorting DNA lesions and bulky adducts by nuclease cleavage on either side of the damaged bases. As such, the NER pathway of Mycobacterium tuberculosis (Mtb) is essential for its survival within the hostile environment of macrophages and disease progression. This review focuses on present published knowledge about the crucial roles of Mtb NER proteins in the survival and multiplication of the pathogen within the macrophages and as potential targets for drug discovery.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Martial NT, Mubarik S, Yu C. Long-term trends of tuberculosis incidence and mortality in four central African countries. Sci Rep 2021; 11:16624. [PMID: 34404835 PMCID: PMC8371097 DOI: 10.1038/s41598-021-95967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis (TB) incidence and mortality rates are still high in Sub-Saharan Africa, and the knowledge about the current patterns is valuable for policymaking to decrease the TB burden. Based on the Global Burden of Disease (GBD) study 2019, we used a Joinpoint regression analysis to examine the variations in the trends of TB incidence and mortality, and the age-period-cohort statistical model to evaluate their risks associated with age, period, and cohort in males and females from Cameroon (CAM), Central African Republic (CAR), Chad, and the Democratic Republic of the Congo (DRC). In the four countries, TB incidence and mortality rates displayed decreasing trends in men and women; except for the males from DRC that recorded an almost steady pattern in the trend of TB incidence between 1990 and 2019. TB incidence and mortality rates decreased according to the overall annual percentage changes over the adjusted age category in men and women of the four countries, and CAM registered the highest decrease. Although TB incidence and mortality rates increased with age between 1990 and 2019, the male gender was mainly associated with the upward behaviors of TB incidence rates, and the female gender association was with the upward behaviors of TB mortality rates. Males and females aged between 15–54 and 15–49 years old were evaluated as the population at high risks of TB incidence and mortality respectively in CAM, CAR, Chad, and DRC. The period and cohort relative risks (RRs) both declined in men and women of the four countries although there were some upward behaviors in their trends. Relatively to the period and cohort RRs, females and males from CAM recorded the most significant decrease compared to the rest of the countries. New public health approaches and policies towards young adults and adults, and a particular focus on elderlies’ health and life conditions should be adopted in CAM, CAR, DRC, and Chad to rapidly decrease TB incidence and mortality in both genders of the four countries.
Collapse
Affiliation(s)
| | - Sumaira Mubarik
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Chisompola NK, Streicher EM, Muchemwa CMK, Warren RM, Sampson SL. Molecular epidemiology of drug resistant Mycobacterium tuberculosis in Africa: a systematic review. BMC Infect Dis 2020; 20:344. [PMID: 32404119 PMCID: PMC7222473 DOI: 10.1186/s12879-020-05031-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/14/2020] [Indexed: 11/24/2022] Open
Abstract
Background The burden of drug resistant tuberculosis in Africa is largely driven by the emergence and spread of multidrug resistant (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis strains. MDR-TB is defined as resistance to isoniazid and rifampicin, while XDR-TB is defined as MDR-TB with added resistance to any of the second line injectable drugs and any fluoroquinolone. The highest burden of drug resistant TB is seen in countries further experiencing an HIV epidemic. The molecular mechanisms of drug resistance as well as the evolution of drug resistant TB strains have been widely studied using various genotyping tools. The study aimed to analyse the drug resistant lineages in circulation and transmission dynamics of these lineages in Africa by describing outbreaks, nosocomial transmission and migration. Viewed as a whole, this can give a better insight into the transmission dynamics of drug resistant TB in Africa. Methods A systematic review was performed on peer reviewed original research extracted from PubMed reporting on the lineages associated with drug resistant TB from African countries, and their association with outbreaks, nosocomial transmission and migration. The search terms “Tuberculosis AND drug resistance AND Africa AND (spoligotyping OR molecular epidemiology OR IS6110 OR MIRU OR DNA fingerprinting OR RFLP OR VNTR OR WGS)” were used to identify relevant articles reporting the molecular epidemiology of drug resistant TB in Africa. Results Diverse genotypes are associated with drug resistant TB in Africa, with variations in strain predominance within the continent. Lineage 4 predominates across Africa demonstrating the ability of “modern strains” to adapt and spread easily. Most studies under review reported primary drug resistance as the predominant type of transmission. Drug resistant TB strains are associated with community and nosocomial outbreaks involving MDR- and XDR-TB strains. The under-use of molecular epidemiological tools is of concern, resulting in gaps in knowledge of the transmission dynamics of drug resistant TB on the continent. Conclusions Genetic diversity of M. tuberculosis strains has been demonstrated across Africa implying that diverse genotypes are driving the epidemiology of drug resistant TB across the continent.
Collapse
Affiliation(s)
- Namaunga Kasumu Chisompola
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. .,Department of Basic Medical Sciences, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia.
| | - Elizabeth Maria Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Robin Mark Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Samantha Leigh Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Minias A, Brzostek A, Dziadek J. Targeting DNA Repair Systems in Antitubercular Drug Development. Curr Med Chem 2019; 26:1494-1505. [DOI: 10.2174/0929867325666180129093546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
Abstract
Infections with Mycobacterium tuberculosis, the causative agent of tuberculosis, are difficult to treat using currently available chemotherapeutics. Clinicians agree on the urgent need for novel drugs to treat tuberculosis. In this mini review, we summarize data that prompts the consideration of DNA repair-associated proteins as targets for the development of new antitubercular compounds. We discuss data, including gene expression data, that highlight the importance of DNA repair genes during the pathogenic cycle as well as after exposure to antimicrobials currently in use. Specifically, we report experiments on determining the essentiality of DNA repair-related genes. We report the availability of protein crystal structures and summarize discovered protein inhibitors. Further, we describe phenotypes of available gene mutants of M. tuberculosis and model organisms Mycobacterium bovis and Mycobacterium smegmatis. We summarize experiments regarding the role of DNA repair-related proteins in pathogenesis and virulence performed both in vitro and in vivo during the infection of macrophages and animals. We detail the role of DNA repair genes in acquiring mutations, which influence the rate of drug resistance acquisition.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Brzostek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
5
|
Zeng X, Kwok JSL, Yang KY, Leung KSS, Shi M, Yang Z, Yam WC, Tsui SKW. Whole genome sequencing data of 1110 Mycobacterium tuberculosis isolates identifies insertions and deletions associated with drug resistance. BMC Genomics 2018; 19:365. [PMID: 29769016 PMCID: PMC5956929 DOI: 10.1186/s12864-018-4734-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background Drug resistance in Mycobacterium tuberculosis (MTB) is one of the major challenges in tuberculosis (TB) treatment. However, known mutations cannot explain all of the cases of resistance and little research has focused on the relationship between insertions / deletions (indels) and drug resistance. Results Here, we retrieved whole genome sequencing data of 743 drug-resistant MTB strains and 367 pan-susceptible strains from TB patients from the public domain to identify novel genomic markers of drug resistance. A total of 20 region markers containing genes and intergenic regions (IGRs) with significant statistical correlation with antibiotic resistance were revealed, four of which have been previously reported to be associated with drug resistance. In addition, 83 point markers containing frameshift (FS) mutations and IGR indels were also identified independently based on differences in their incidence rates between drug-sensitive and -resistant strains. Among the 83 point markers, eight indels were detected in known drug-associated genes or IGRs. Furthermore, the overlap between 20 region markers and 83 point markers further indicated their associations with drug resistance. The markers identified were involved in essential bacterial metabolic functions, including cell wall and transmembrane transporter functions. A strong correlation between FS mutations and mutations in DNA repair genes including I21V in alkA, R48G in mutT4 and P2R in nth was also found. Conclusions This study identified a set of novel genetic markers with FS mutations and IGR indels associated with MTB drug resistance, which greatly broadens the pool of mutations related to MTB drug resistance. This insight may be important in identifying novel mechanisms of drug resistance in MTB. Electronic supplementary material The online version of this article (10.1186/s12864-018-4734-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xi Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jamie Sui-Lam Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Siu-Sing Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mai Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhiyuan Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing-Cheong Yam
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Ilin AI, Kulmanov ME, Korotetskiy IS, Islamov RA, Akhmetova GK, Lankina MV, Reva ON. Genomic Insight into Mechanisms of Reversion of Antibiotic Resistance in Multidrug Resistant Mycobacterium tuberculosis Induced by a Nanomolecular Iodine-Containing Complex FS-1. Front Cell Infect Microbiol 2017; 7:151. [PMID: 28534009 PMCID: PMC5420568 DOI: 10.3389/fcimb.2017.00151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022] Open
Abstract
Drug induced reversion of antibiotic resistance is a promising way to combat multidrug resistant infections. However, lacking knowledge of mechanisms of drug resistance reversion impedes employing this approach in medicinal therapies. Induction of antibiotic resistance reversion by a new anti-tuberculosis drug FS-1 has been reported. FS-1 was used in this work in combination with standard anti-tuberculosis antibiotics in an experiment on laboratory guinea pigs infected with an extensively drug resistant (XDR) strain Mycobacterium tuberculosis SCAID 187.0. During the experimental trial, genetic changes in the population were analyzed by sequencing of M. tuberculosis isolates followed by variant calling. In total 11 isolates obtained from different groups of infected animals at different stages of disease development and treatment were sequenced. It was found that despite the selective pressure of antibiotics, FS-1 caused a counter-selection of drug resistant variants that speeded up the recovery of the infected animals from XDR tuberculosis. Drug resistance mutations reported in the genome of the initial strain remained intact in more sensitive isolates obtained in this experiment. Variant calling in the sequenced genomes revealed that the drug resistance reversion could be associated with a general increase in genetic heterogeneity of the population of M. tuberculosis. Accumulation of mutations in PpsA and PpsE subunits of phenolpthiocerol polyketide synthase was observed in the isolates treated with FS-1 that may indicate an increase of persisting variants in the population. It was hypothesized that FS-1 caused an active counter-selection of drug resistant variants from the population by aggravating the cumulated fitness cost of the drug resistance mutations. Action of FS-1 on drug resistant bacteria exemplified the theoretically predicted induced synergy mechanism of drug resistance reversion. An experimental model to study the drug resistance reversion phenomenon is hereby introduced.
Collapse
Affiliation(s)
| | | | | | - Rinat A Islamov
- Scientific Center for Anti-Infectious DrugsAlmaty, Kazakhstan
| | | | | | - Oleg N Reva
- Department of Biochemistry, Centre for Bioinformatics and Computational Biology, University of PretoriaPretoria, South Africa
| |
Collapse
|
7
|
Janssen S, Huson MAM, Bélard S, Stolp S, Kapata N, Bates M, van Vugt M, Grobusch MP. TB and HIV in the Central African region: current knowledge and knowledge gaps. Infection 2014; 42:281-94. [PMID: 24311148 DOI: 10.1007/s15010-013-0568-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE Reliable and comprehensive data on the HIV/AIDS and TB co-pandemics from Central Africa remain scarce. This systematic review provides a comprehensive overview on current and past research activities in the region and provides a basis for future research work to close knowledge gaps. METHODS The scientific literature was searched for publications meeting the following search terms: "tuberculosis" or "HIV" or "acquired immunodeficiency syndrome", combined with "Central Africa", or the names of individual countries within the region. Original studies, reviews and case series were included, and a selection of relevant articles was made. RESULTS Most research in the field of HIV and TB has been conducted in Cameroon, where the epidemics have been described fairly well. The Democratic Republic of Congo ranked second on the amount of publications, despite the civil wars over the past several decades. Very little has been published on HIV and TB in the other countries, possibly due to the poor infrastructure of health care systems, lack of scientific capacity building or shortage of laboratory equipment. CONCLUSIONS Despite the relatively high burden of HIV and TB in the Central African region, the amount of research activities on these topics is limited. A better understanding of the co-epidemics in this region is urgently needed. The occurrence of opportunistic infections, treatment complications and drug resistance in TB and HIV need to be better described; the failure of public health systems needs to be understood, and research infrastructure needs to be developed. Only then will it be possible to turn the tide against the HIV and TB epidemics in this region.
Collapse
Affiliation(s)
- S Janssen
- Department of Infectious Diseases, Division of Internal Medicine, Center of Tropical Medicine and Travel Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin Sci (Lond) 2010; 119:187-202. [PMID: 20522025 DOI: 10.1042/cs20100041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mycobacteria, including most of all MTB (Mycobacterium tuberculosis), cause pathogenic infections in humans and, during the infectious process, are exposed to a range of environmental insults, including the host's immune response. From the moment MTB is exhaled by infected individuals, through an active and latent phase in the body of the new host, until the time they reach the reactivation stage, MTB is exposed to many types of DNA-damaging agents. Like all cellular organisms, MTB has efficient DNA repair systems, and these are believed to play essential roles in mycobacterial pathogenesis. As different stages of infection have great variation in the conditions in which mycobacteria reside, it is possible that different repair systems are essential for progression to specific phases of infection. MTB possesses homologues of DNA repair systems that are found widely in other species of bacteria, such as nucleotide excision repair, base excision repair and repair by homologous recombination. MTB also possesses a system for non-homologous end-joining of DNA breaks, which appears to be widespread in prokaryotes, although its presence is sporadic within different species within a genus. However, MTB does not possess homologues of the typical mismatch repair system that is found in most bacteria. Recent studies have demonstrated that DNA repair genes are expressed differentially at each stage of infection. In the present review, we focus on different DNA repair systems from mycobacteria and identify questions that remain in our understanding of how these systems have an impact upon the infection processes of these important pathogens.
Collapse
|
9
|
Srivastava S, Musuka S, Sherman C, Meek C, Leff R, Gumbo T. Efflux-pump-derived multiple drug resistance to ethambutol monotherapy in Mycobacterium tuberculosis and the pharmacokinetics and pharmacodynamics of ethambutol. J Infect Dis 2010; 201:1225-31. [PMID: 20210628 DOI: 10.1086/651377] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Ethambutol is used for the treatment of tuberculosis in cases where there is isoniazid resistance. We examined the emergence of drug resistance to ethambutol monotherapy in pharmacokinetic-pharmacodynamic studies of a hollow-fiber system. METHODS Dose-effect and dose-scheduling studies were performed with ethambutol and log-phase growth Mycobacterium tuberculosis to identify exposures and schedules linked to optimal kill and resistance suppression. In one study, after 7 days of daily ethambutol, 300 mg isoniazid per day was administered to each system to determine its early bactericidal activity. RESULTS Efflux-pump blockage reduced the mutation frequency to ethambutol 64-fold. In dose-effect studies, ethambutol had a maximal early bactericidal activity of 0.22 log10 colony-forming units/mL/day, as is encountered in patients. By day 7, resistance to both ethambutol and isoniazid had increased. Previous exposure to ethambutol halted isoniazid early bactericidal activity. Daily therapy, as opposed to more intermittent therapy, was associated with the least proportion of efflux-pump-driven resistance, consistent with a time-driven effect. Microbial kill was best explained by the ratio of area under the concentration-time curve to minimum inhibitory concentration (r2 = 0.90). CONCLUSION The induction of an efflux pump that reduces the effect of multiple drugs provides an alternative pathway to sequential acquisition of mutations in the development of multiple drug resistance.
Collapse
Affiliation(s)
- Shashikant Srivastava
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9113, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ashiru OT, Pillay M, Sturm AW. Adhesion to and invasion of pulmonary epithelial cells by the F15/LAM4/KZN and Beijing strains of Mycobacterium tuberculosis. J Med Microbiol 2010; 59:528-533. [PMID: 20110390 DOI: 10.1099/jmm.0.016006-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Globally, specific genotypes of Mycobacterium tuberculosis have been shown to dominate in patients, suggesting that these are more successful pathogens. One such genotype, the F15/LAM4/KZN (KZN) family of M. tuberculosis, has predominated in KwaZulu-Natal, South Africa, since the early 1990s. This strain recently evolved from multidrug-resistant to extensively drug-resistant (XDR). The ability of M. tuberculosis strains belonging to the Beijing family, the KZN family, strains with unique DNA fingerprint patterns and laboratory strains (H37Rv and H37Ra) to adhere to and invade a human alveolar (A549) and a human bronchial (BBM) epithelial cell line was investigated. All strains displayed greater adhesion to and invasion of A549 cells as compared to BBM cells. The Beijing and KZN strains combined showed greater adhesion (28 %) than the unique strains (5 %) (P <0.05). The XDR variant of KZN invaded A549 cells more effectively than the other isolates. These results suggest that the successful spread of the Beijing and KZN strains might be related to their interaction with alveolar epithelium.
Collapse
Affiliation(s)
- Olubisi T Ashiru
- Medical Microbiology Research Laboratories, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, South Africa
| | - Manormoney Pillay
- Medical Microbiology Research Laboratories, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, South Africa
| | - A Willem Sturm
- Medical Microbiology Research Laboratories, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, South Africa
| |
Collapse
|
11
|
Dos Vultos T, Mestre O, Tonjum T, Gicquel B. DNA repair inMycobacterium tuberculosisrevisited. FEMS Microbiol Rev 2009; 33:471-87. [DOI: 10.1111/j.1574-6976.2009.00170.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Chuang PC, Liu H, Sola C, Chen YMA, Jou R. Spoligotypes of Mycobacterium tuberculosis isolates of a high tuberculosis burden aboriginal township in Taiwan. INFECTION GENETICS AND EVOLUTION 2008; 8:553-7. [DOI: 10.1016/j.meegid.2008.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
|
13
|
A non-sense mutation in the putative anti-mutator gene ada/alkA of Mycobacterium tuberculosis and M. bovis isolates suggests convergent evolution. BMC Microbiol 2007; 7:39. [PMID: 17506895 PMCID: PMC1891112 DOI: 10.1186/1471-2180-7-39] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 05/16/2007] [Indexed: 12/01/2022] Open
Abstract
Background Previous studies have suggested that variations in DNA repair genes of W-Beijing strains may have led to transient mutator phenotypes which in turn may have contributed to host adaptation of this strain family. Single nucleotide polymorphism (SNP) in the DNA repair gene mutT1 was identified in MDR-prone strains from the Central African Republic. A Mycobacteriumtuberculosis H37Rv mutant inactivated in two DNA repair genes, namely ada/alkA and ogt, was shown to display a hypermutator phenotype. We then looked for polymorphisms in these genes in Central African Republic strains (CAR). Results In this study, 55 MDR and 194 non-MDR strains were analyzed. Variations in DNA repair genes ada/alkA and ogt were identified. Among them, by comparison to M. tuberculosis published sequences, we found a non-sense variation in ada/alkA gene which was also observed in M. bovis AF2122 strain. SNPs that are present in the adjacent regions to the amber variation are different in M. bovis and in M. tuberculosis strain. Conclusion An Amber codon was found in the ada/alkA locus of clustered M. tuberculosis isolates and in M. bovis strain AF2122. This is likely due to convergent evolution because SNP differences between strains are incompatible with horizontal transfer of an entire gene. This suggests that such a variation may confer a selective advantage and be implicated in hypermutator phenotype expression, which in turn contributes to adaptation to environmental changes.
Collapse
|