1
|
Donkor ES, Sosah FK, Odoom A, Odai BT, Kunadu APH. How Long Do Microorganisms Survive and Persist in Food? A Systematic Review. Microorganisms 2025; 13:901. [PMID: 40284737 PMCID: PMC12029915 DOI: 10.3390/microorganisms13040901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 04/29/2025] Open
Abstract
Foodborne illnesses caused by microorganisms pose a significant threat to public health. Understanding the survival and persistence of these microorganisms in various food matrices is crucial for developing effective control strategies. This systematic review aims to address the current knowledge gaps related to the duration of survival and persistence of microbial pathogens in food, as well as the impact of external environmental conditions on their viability. A comprehensive search was conducted across major databases, including studies published until 3 June 2024. The PRISMA guidelines were followed to ensure a systematic and transparent approach. Foodborne bacteria, such as Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7, were found to persist for extended durations, ranging from days to over a year. The mean duration of persistence for all of the bacteria was 246 days, whereas the survival duration was 16 days. Bacterial survival and persistence were significantly influenced by temperature, with warmer conditions (>25 °C) generally supporting longer persistence. Relative humidity also played a role, with low-humidity environments (<50% RH) favouring the survival of pathogens like Listeria monocytogenes and Escherichia coli. In contrast, viruses, such as hepatitis A virus and Human norovirus, showed only survival patterns, with average durations of 21 days and temperature being the primary environmental factor influencing their survival. Overall, this review provides evidence that a wide range of microbial pathogens, including Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and the hepatitis A virus, can survive and persist in food for prolonged periods, leading to potential harm. These insights underscore the necessity of stringent food safety measures and continuous monitoring to mitigate the risks posed by these resilient pathogens, contributing to a safer and more secure food supply chain.
Collapse
Affiliation(s)
- Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (F.K.S.); (A.O.)
| | - Famous K. Sosah
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (F.K.S.); (A.O.)
| | - Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (F.K.S.); (A.O.)
| | - Bernard T. Odai
- Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra P.O. Box LG 80, Ghana;
| | | |
Collapse
|
2
|
Raymond P, Blain R, Nasheri N. Detection of Foodborne Viruses in Dates Using ISO 15216 Methodology. Viruses 2025; 17:174. [PMID: 40006929 PMCID: PMC11860475 DOI: 10.3390/v17020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Foodborne viruses such as human norovirus (HuNoV) and hepatitis A virus (HAV) are the major causes of foodborne illnesses worldwide. These viruses have a low infectious dose and are persistent in the environment and food for weeks. Ready-to-eat (RTE) low moisture foods (LMFs) undergo minimal pathogen reduction processes. In recent years, multiple foodborne HAV outbreaks involving hundreds of individuals were associated with the consumption of dates, indicating that they could be important vehicles for foodborne infection. There is no standard method for the extraction and detection of foodborne viruses from dates, but herein we have compared the efficiency of three different protocols based on the ISO 15216 method in the extraction of murine norovirus (MNV) from whole Medjool dates and successfully employed the best performing method in the extraction of HAV, HuNoV GI, and GII and determined the limit of detection (LOD95) of 61, 148, and 184 genomic equivalent (gEq) per 25 g, respectively. Finally, we tested the adopted method on various varieties of dates including pitted ones and reported the detection of HuNoV GI and GII from four naturally contaminated date varieties. This ISO 15216 protocol could be employed for surveillance purposes and outbreak management related to dates.
Collapse
Affiliation(s)
- Philippe Raymond
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Roxanne Blain
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Neda Nasheri
- Food Virology Laboratory, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada;
| |
Collapse
|
3
|
Treagus S, Lowther J, Longdon B, Gaze W, Baker-Austin C, Ryder D, Batista FM. Metabarcoding of Hepatitis E Virus Genotype 3 and Norovirus GII from Wastewater Samples in England Using Nanopore Sequencing. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:292-306. [PMID: 37910379 PMCID: PMC7615314 DOI: 10.1007/s12560-023-09569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Norovirus is one of the largest causes of gastroenteritis worldwide, and Hepatitis E virus (HEV) is an emerging pathogen that has become the most dominant cause of acute viral hepatitis in recent years. The presence of norovirus and HEV has been reported within wastewater in many countries previously. Here we used amplicon deep sequencing (metabarcoding) to identify norovirus and HEV strains in wastewater samples from England collected in 2019 and 2020. For HEV, we sequenced a fragment of the RNA-dependent RNA polymerase (RdRp) gene targeting genotype three strains. For norovirus, we sequenced the 5' portion of the major capsid protein gene (VP1) of genogroup II strains. Sequencing of the wastewater samples revealed eight different genotypes of norovirus GII (GII.2, GII.3, GII.4, GII.6, GII.7, GII.9, GII.13 and GII.17). Genotypes GII.3 and GII.4 were the most commonly found. The HEV metabarcoding assay was able to identify HEV genotype 3 strains in some samples with a very low viral concentration determined by RT-qPCR. Analysis showed that most HEV strains found in influent wastewater were typed as G3c and G3e and were likely to have originated from humans or swine. However, the small size of the HEV nested PCR amplicon could cause issues with typing, and so this method is more appropriate for samples with high CTs where methods targeting longer genomic regions are unlikely to be successful. This is the first report of HEV RNA in wastewater in England. This study demonstrates the utility of wastewater sequencing and the need for wider surveillance of norovirus and HEV within host species and environments.
Collapse
Affiliation(s)
- Samantha Treagus
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK.
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK.
- UK Health Security Agency, Manor Farm Road, Porton Down, SP4 0JG, Wiltshire, UK.
| | - James Lowther
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK
| | - William Gaze
- Faculty of Health and Life Sciences, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | | | - David Ryder
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | | |
Collapse
|
4
|
Tohma K, Ushijima H. [Molecular epidemiology and evolution of human noroviruses]. Uirusu 2023; 73:17-32. [PMID: 39343517 DOI: 10.2222/jsv.73.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Noroviruses are the most common viral cause of acute gastroenteritis after the introduction of rotavirus vaccines. Norovirus infection can cause severe symptoms in vulnerable populations including young children and the elderly. Thus, it is still a leading cause of death from diarrhea in children in developing countries. Recent advancement of genomics platforms facilitated understanding of the epidemiology of norovirus, while the whole picture of norovirus diversity is still undetermined. Currently, there are no approved vaccines for norovirus, but state-of-the-art norovirus cultivation systems could elucidate the antigenic diversity of this fast-evolving virus. In this review, we will summarize the historical and latest findings of norovirus epidemiology, diversity, and evolution.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, US Food and Drug Administration, Maryland, Unites States
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Jin T, Chen X, Nishio M, Zhuang L, Shiomi H, Tonosaki Y, Yokohata R, King MF, Kang M, Fujii K, Zhang N. Interventions to prevent surface transmission of an infectious virus based on real human touch behavior: a case study of the norovirus. Int J Infect Dis 2022; 122:83-92. [PMID: 35649497 PMCID: PMC9148625 DOI: 10.1016/j.ijid.2022.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Infectious viruses (e.g., SARS-CoV-2, norovirus) can transmit through surfaces. Norovirus has infected millions of individuals annually. Interventions on norovirus transmission in high-risk indoor environment are important. METHODS This study focused on a restaurant in Guangzhou, China. More than 41,000 touches by both diners and staff members were collected using video cameras. A surface transmission model was developed and combined with these real human touch behaviors to analyze the effectiveness of different norovirus prevention strategies. RESULTS When the virus carrier was a diner, the virus intake fraction of diners in the same table was the highest. Increasing the touch frequency on personal private surfaces would reduce the virus exposure. The virus intake fraction was reduced by 18.4% on average if public surfaces were not touched. Optimization on surface materials could reduce the virus intake fraction by 86.6%. Additionally, disinfecting tablecloths, clothes of diners, and chairs were the three most effective surface disinfection strategies. CONCLUSION Controlling human touch behavior (e.g., reducing the self-touches on mucous membranes) is more effective than surface disinfection in controlling norovirus transmission, but surface disinfection cannot be ignored because human behavior is difficult to be controlled.
Collapse
Affiliation(s)
- Tianyi Jin
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Xuguang Chen
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong province, China
| | - Masaya Nishio
- R&D-Safety Science, Kao Corporation, Japan,R&D-Strategy, Kao Corporation, Japan
| | - Linan Zhuang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Hiroyuki Shiomi
- R&D-Processing Development Research Laboratories, Kao Corporation, Japan
| | - Yosuke Tonosaki
- R&D-Processing Development Research Laboratories, Kao Corporation, Japan
| | | | | | - Min Kang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong province, China
| | - Kenkichi Fujii
- R&D-Safety Science, Kao Corporation, Japan,R&D-Strategy, Kao Corporation, Japan
| | - Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China,Corresponding author: Nan Zhang, Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Room 204, Pingleyuan 100, Chaoyang District, Beijing, China, Telephone: +86 18210064566
| |
Collapse
|
6
|
Kittigul L, Pombubpa K, Rupprom K, Thasiri J. Detection of Norovirus Recombinant GII.2[P16] Strains in Oysters in Thailand. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:59-68. [PMID: 35075605 DOI: 10.1007/s12560-022-09508-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Human norovirus causes sporadic and epidemic acute gastroenteritis worldwide, and the predominant strains are genotype GII.4 variants. Recently, a novel GII.17[P17] and a recombinant GII.2[P16] strain have been reported as the causes of gastroenteritis outbreaks. Outbreaks of norovirus are frequently associated with foodborne illness. In this study, each of 75 oyster samples processed by a proteinase K extraction method and an adsorption-elution method were examined for noroviruses using RT-nested PCR with capsid primers. Thirteen (17.3%) samples processed by either method tested positive for norovirus genogroup II (GII). PCR amplicons were characterized by DNA sequencing and phylogenetic analysis as GII.2 (n = 6), GII.4 (n = 1), GII.17 (n = 3), and GII.unclassified (n = 3). Norovirus-positive samples were further amplified by semi-nested RT-PCR targeting the polymerase-capsid genes. One nucleotide sequence revealed GII.17[P17] Kawasaki strain. Five nucleotide sequences were identified as belonging to the recombinant GII.2[P16] strains by recombination analysis. The collected oyster samples were quantified for norovirus GII genome copy number by RT-quantitative PCR. Using the proteinase K method, GII was found in 13/75 (17.3%) of samples with a range of 8.83-1.85 × 104 genome copies/g of oyster. One sample (1/75, 1.3%) processed by the adsorption-elution method was positive for GII at 5.00 × 101 genome copies/g. These findings indicate the circulation of a new variant GII.17 Kawasaki strain and the recombinant GII.2[P16] in oyster samples corresponding to the circulating strains reported at a global scale during the same period of time. The detection of the recombinant strains in oysters emphasizes the need for continuing systematic surveillance for control and prevention of norovirus gastroenteritis.
Collapse
Affiliation(s)
- Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
| | - Kannika Pombubpa
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Kitwadee Rupprom
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Jinthapha Thasiri
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| |
Collapse
|
7
|
Løvdal T, Lunestad BT, Myrmel M, Rosnes JT, Skipnes D. Microbiological Food Safety of Seaweeds. Foods 2021; 10:foods10112719. [PMID: 34829000 PMCID: PMC8619114 DOI: 10.3390/foods10112719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 12/13/2022] Open
Abstract
The use of seaweeds in the human diet has a long history in Asia and has now been increasing also in the western world. Concurrent with this trend, there is a corresponding increase in cultivation and harvesting for commercial production. Edible seaweed is a heterogenous product category including species within the green, red, and brown macroalgae. Moreover, the species are utilized on their own or in combinatorial food products, eaten fresh or processed by a variety of technologies. The present review summarizes available literature with respect to microbiological food safety and quality of seaweed food products, including processing and other factors controlling these parameters, and emerging trends to improve on the safety, utilization, quality, and storability of seaweeds. The over- or misuse of antimicrobials and the concurrent development of antimicrobial resistance (AMR) in bacteria is a current worldwide health concern. The role of seaweeds in the development of AMR and the spread of antimicrobial resistance genes is an underexplored field of research and is discussed in that context. Legislation and guidelines relevant to edible seaweed are also discussed.
Collapse
Affiliation(s)
- Trond Løvdal
- Nofima–Norwegian Institute of Food, Fisheries and Aquaculture Research, Department of Process Technology, Richard Johnsens Gate 4, P.O. Box 8034, NO-4021 Stavanger, Norway; (J.T.R.); (D.S.)
- Correspondence:
| | - Bjørn Tore Lunestad
- Institute of Marine Research, Section for Contaminants and Biohazards, Nordnesgaten 50, P.O. Box 1870, NO-5005 Bergen, Norway;
| | - Mette Myrmel
- Virology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, P.O. Box 5003, NO-1433 Ås, Norway;
| | - Jan Thomas Rosnes
- Nofima–Norwegian Institute of Food, Fisheries and Aquaculture Research, Department of Process Technology, Richard Johnsens Gate 4, P.O. Box 8034, NO-4021 Stavanger, Norway; (J.T.R.); (D.S.)
| | - Dagbjørn Skipnes
- Nofima–Norwegian Institute of Food, Fisheries and Aquaculture Research, Department of Process Technology, Richard Johnsens Gate 4, P.O. Box 8034, NO-4021 Stavanger, Norway; (J.T.R.); (D.S.)
| |
Collapse
|
8
|
Seaweeds as a “Palatable” Challenge between Innovation and Sustainability: A Systematic Review of Food Safety. SUSTAINABILITY 2021. [DOI: 10.3390/su13147652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Moderate or severe food insecurity affect 2 billion people worldwide. The four pillars of food security (availability, access, use and stability) are in danger due to the impact of climatic and anthropogenic factors which impact on the food system. Novel foods, like seaweeds, have the potential to increase food yields so that to contribute in preventing or avoiding future global food shortages. The purpose of this systematic review was to assess microbiological, chemical, physical, and allergenic risks associated with seaweed consumption. Four research strings have been used to search for these risks. Preferred Reporting Item for Systematic Reviews and Meta-analysis (PRISMA) guidelines were applied. Finally, 39 articles met the selected criteria. No significant hazards for microbiological, allergenic, and physical risks were detected. Regarding chemical risk, algae can accumulate various heavy metals, especially when harvested in polluted sites. Cultivating seaweeds in a controlled environment allows to avoid this risk. Periodic checks will be necessary on the finished products to monitor heavy metals levels. Since the consumption of algae seems to be on the rise everywhere, it seems to be urgent that food control authorities establish the safety levels to which eating algae does not represent any risk for human health.
Collapse
|
9
|
Martelli F, Marrella M, Lazzi C, Neviani E, Bernini V. Microbiological Contamination of Ready-to-Eat Algae and Evaluation of Bacillus cereus Behavior by Microbiological Challenge Test. J Food Prot 2021; 84:1275-1280. [PMID: 33725095 DOI: 10.4315/jfp-20-407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/15/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Consumption of seaweeds (forms of algae), often categorized as a superfood, is becoming popular in western countries. Algae can be marketed fresh, but are usually sold dehydrated to ensure longer shelf life. Their consumption, often as ready-to-eat, opens up possible risks for public health because of foodborne pathogens that can contaminate the raw material during harvesting or manipulation. In this study, 14 ready-to-eat foods based on dehydrated algae, representative of the most consumed species, were considered. The microbial content, with a focus on Listeria monocytogenes and Bacillus cereus, was investigated by plate counts, and B. cereus strains were isolated and identified by 16S rRNA gene sequencing. The microbiological quality was heterogeneous among the samples and, in particular, marine bacteria, Listeria spp., B. cereus, and coliforms were detected. To contribute to related risk assessment, the ability of B. cereus to grow during refrigerated storage was evaluated, to our knowledge for the first time, by a microbiological challenge test on two ready-to-eat foods based on Undaria pinnatifida and Palmaria palmata. Despite this study demonstrating the inability of B. cereus to proliferate in seaweed-based food, its presence in dehydrated foodstuffs cannot rule out replication after rehydration before consumption, making it necessary to elucidate the possible risks for consumers. HIGHLIGHTS
Collapse
Affiliation(s)
- Francesco Martelli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, Parma 43124, Italy
| | - Martina Marrella
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, Parma 43124, Italy
| | - Camilla Lazzi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, Parma 43124, Italy
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, Parma 43124, Italy
| | - Valentina Bernini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, Parma 43124, Italy
| |
Collapse
|
10
|
Nasheri N, Harlow J, Chen A, Corneau N, Bidawid S. Survival and Inactivation by Advanced Oxidative Process of Foodborne Viruses in Model Low-Moisture Foods. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:107-116. [PMID: 33501613 PMCID: PMC7882587 DOI: 10.1007/s12560-020-09457-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Enteric viruses, such as human norovirus (NoV) and hepatitis A virus (HAV), are the major causes of foodborne illnesses worldwide. These viruses have low infectious dose, and may remain infectious for weeks in the environment and food. Limited information is available regarding viral survival and transmission in low-moisture foods (LMF). LMFs are generally considered as ready-to-eat products, which undergo no or minimal pathogen reduction steps. However, numerous foodborne viral outbreaks associated with LMFs have been reported in recent years. The objective of this study was to examine the survival of foodborne viruses in LMFs during 4-week storage at ambient temperature and to evaluate the efficacy of advanced oxidative process (AOP) treatment in the inactivation of these viruses. For this purpose, select LMFs such as pistachios, chocolate, and cereal were inoculated with HAV and the norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV), then viral survival on these food matrices was measured over a four-week incubation at ambient temperature, by both plaque assay and droplet-digital RT-PCR (ddRT-PCR) using the modified ISO-15216 method as well as the magnetic bead assay for viral recovery. We observed an approximately 0.5 log reduction in viral genome copies, and 1 log reduction in viral infectivity for all three tested viruses following storage of select inoculated LMFs for 4 weeks. Therefore, the present study shows that the examined foodborne viruses can persist for a long time in LMFs. Next, we examined the inactivation efficacy of AOP treatment, which combines UV-C, ozone, and hydrogen peroxide vapor, and observed that while approximately 100% (4 log) inactivation can be achieved for FCV, and MNV in chocolate, the inactivation efficiency diminishes to approximately 90% (1 log) in pistachios and 70% (< 1 log) in cereal. AOP treatment could therefore be a good candidate for risk reduction of foodborne viruses from certain LMFs depending on the food matrix and surface of treatment.
Collapse
Affiliation(s)
- Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Angela Chen
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Nathalie Corneau
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Sabah Bidawid
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
11
|
|
12
|
Rajiuddin SM, Jensen T, Hansen TB, Schultz AC. An Optimised Direct Lysis Method for Viral RNA Extraction and Detection of Foodborne Viruses on Fruits and Vegetables. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:226-239. [PMID: 32651775 DOI: 10.1007/s12560-020-09437-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Detection of norovirus (NoV) and hepatitis A virus (HAV) on fruits and vegetables using current standard methodologies can be inefficient. Method optimisation focussing on ease, rapidity and increased viral RNA recovery is needed for efficient reverse transcription (RT)-qPCR detection of viruses. A simple and quick direct lysis method for RNA extraction was optimised (method A) to achieve increased viral RNA recovery and minimised RT-qPCR inhibition by increasing the volume of lysis buffer and inclusion of pectinase, Plant RNA Isolation Aid and OneStep PCR Inhibitor Removal Kit. Method A and an internal method structurally comparable to the ISO 15216 standard (method B) were compared for their efficiencies to recover viral RNA from the process controls, mengovirus (MC0) and murine norovirus (MNV), spiked in 13 types of fruits, vegetables, compound foods or seeds/nuts. All extracts (> 61) were also analysed for RT-qPCR inhibition and for natural contamination of NoV and HAV. The overall mean extraction efficiencies of MC0 and MNV were 36 ± 31 and 44 ± 38%, respectively, for method A and 9 ± 16 and 5 ± 11%, respectively, for method B. Inhibition of RT-qPCR amplification of RNA from NoV genogroup (G)I, NoV GII, and HAV ranged from 5 ± 10 to 13 ± 14% for method A and 34 ± 36 to 48 ± 40% for method B. NoV GII was detected in samples of strawberries and seaweed processed by both methods. In conclusion, the new direct lysis method showed an overall better performance compared to the modified ISO 15216 standard and should be validated for implementation in analysis of viruses in foods of plant origin.
Collapse
Affiliation(s)
- Sheikh Md Rajiuddin
- Division for Microbiology and Production, National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, 2800, Kgs. Lyngby, Denmark
| | - Tenna Jensen
- Division for Food and Feed Safety, Danish Veterinary and Food Administration, Stationsparken 31-33, 2600, Glostrup, Denmark
| | - Tina Beck Hansen
- Division for Microbiology and Production, National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, 2800, Kgs. Lyngby, Denmark
| | - Anna Charlotte Schultz
- Division for Microbiology and Production, National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
13
|
Interaction between norovirus and Histo-Blood Group Antigens: A key to understanding virus transmission and inactivation through treatments? Food Microbiol 2020; 92:103594. [PMID: 32950136 DOI: 10.1016/j.fm.2020.103594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Human noroviruses (HuNoVs) are a main cause of acute gastroenteritis worldwide. They are frequently involved in foodborne and waterborne outbreaks. Environmental transmission of the virus depends on two main factors: the ability of viral particles to remain infectious and their adhesion capacity onto different surfaces. Until recently, adhesion of viral particles to food matrices was mainly investigated by considering non-specific interactions (e.g. electrostatic, hydrophobic) and there was only limited information about infectious HuNoVs because of the absence of a reliable in vitro HuNoV cultivation system. Many HuNoV strains have now been described as having specific binding interactions with human Histo-Blood Group Antigens (HBGAs) and non-HBGA ligands found in food and the environment. Relevant approaches to the in vitro replication of HuNoVs were also proposed recently. On the basis of the available literature data, this review discusses the opportunities to use this new knowledge to obtain a better understanding of HuNoV transmission to human populations and better evaluate the hazard posed by HuNoVs in foodstuffs and the environment.
Collapse
|
14
|
Banach JL, Hoek‐van den Hil EF, Fels‐Klerx HJ. Food safety hazards in the European seaweed chain. Compr Rev Food Sci Food Saf 2020; 19:332-364. [DOI: 10.1111/1541-4337.12523] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/19/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Affiliation(s)
- J. L. Banach
- Wageningen Food Safety ResearchWageningen University and Research Wageningen The Netherlands
| | - E. F. Hoek‐van den Hil
- Wageningen Food Safety ResearchWageningen University and Research Wageningen The Netherlands
| | - H. J. Fels‐Klerx
- Wageningen Food Safety ResearchWageningen University and Research Wageningen The Netherlands
| |
Collapse
|
15
|
Ozaki K, Matsushima Y, Nagasawa K, Aso J, Saraya T, Yoshihara K, Murakami K, Motoya T, Ryo A, Kuroda M, Katayama K, Kimura H. Molecular Evolution of the Protease Region in Norovirus Genogroup II. Front Microbiol 2020; 10:2991. [PMID: 31993031 PMCID: PMC6971112 DOI: 10.3389/fmicb.2019.02991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
Noroviruses are a major cause of viral epidemic gastroenteritis in humans worldwide. The protease (Pro) encoded in open reading frame 1 (ORF1) is an essential enzyme for proteolysis of the viral polyprotein. Although there are some reports regarding the evolutionary analysis of norovirus GII-encoding genes, there are few reports focused on the Pro region. We analyzed the molecular evolution of the Pro region of norovirus GII using bioinformatics approaches. A time-scaled phylogenetic tree of the Pro region constructed using a Bayesian Markov chain Monte Carlo method indicated that the common ancestor of GII diverged from GIV around 1680 CE [95% highest posterior density (HPD), 1607-1749]. The GII Pro region emerged around 1752 CE (95%HPD, 1707-1794), forming three further lineages. The evolutionary rate of GII Pro region was estimated at more than 10-3 substitutions/site/year. The distribution of the phylogenetic distances of each genotype differed, and showed genetic diversity. Mapping of the negative selection and substitution sites of the Pro structure showed that the substitution sites in the Pro protein were mostly produced under neutral selection in positions structurally adjacent to the active sites for proteolysis, whereas negative selection was observed in residues distant from the active sites. The phylodynamics of GII.P4, GII.P7, GII.P16, GII.P21, and GII.P31 indicated that their effective population sizes increased during the period from 2005 to 2016 and the increase in population size was almost consistent with the collection year of these genotypes. These results suggest that the Pro region of the norovirus GII evolved rapidly, but under no positive selection, with a high genetic divergence, similar to that of the RNA-dependent RNA polymerase (RdRp) region and the VP1 region of noroviruses.
Collapse
Affiliation(s)
- Keita Ozaki
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Niitaka Co., Ltd., Osaka, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | | | - Jumpei Aso
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Keisuke Yoshihara
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Koichi Murakami
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Graduate School of Infection Control Sciences, Kitasato Institute for Life Sciences, Kitasato University, Minato, Japan
| | - Hirokazu Kimura
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
16
|
Evaluation of porcine gastric mucin assay for detection and quantification of human norovirus in fresh herbs and leafy vegetables. Food Microbiol 2019; 84:103254. [DOI: 10.1016/j.fm.2019.103254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022]
|
17
|
Abstract
BACKGROUND Based on the impact public health of norovirus and the current progress in norovirus vaccine development, it is necessary to continuously monitor the epidemiology of norovirus infection, especially in children who are more susceptible to norovirus. OBJECTIVES To monitor the activity and genotypes of norovirus infection in sporadic diarrhea in Shanghainese children during 2014-2018. STUDY DESIGN Acute diarrheal cases were prospectively enrolled in the outpatient setting. Real-time reverse transcription-polymerase chain reaction was used for screening norovirus GI and GII genogroups. Dual norovirus genotypes were identified based on the partial capsid and polymerase gene sequences. RESULTS Of the 3422 children with diarrhea, 510 (14.9%) were positive for noroviruses with 13 (2.5%) strains being GI genogroup and 497 (97.5%) strains being GII genogroup. Five distinct capsid GII genotypes were identified, including GII.4-Sydney/2012 (71.8%), GII.3 (13.8%), GII.17 (7.8%), GII.2 (6.0%), GII.6 (0.3%) and GII.8 (0.3%). Seven polymerase GII genotypes were identified, including GII.Pe (77.0%), GII.P12 (11.0%), GII.P17 (9.0%), GII.P16 (2.1%), and GII.P7, GII.P8 and GII.P2 in each (0.3%). Eleven distinct polymerase/capsid genotypes were identified with GII.Pe/GII.4-Sydney/2012 (74.2%), GII.P12/GII.3 (11.7%) and GII.P17/GII.17 (7.7%) being common. GII.P17/GII.17 strains were detected since September 2014. Recombinant GII.P16/GII.2 strains were detected since December 2016. CONCLUSIONS Norovirus is a major pathogen causing diarrhea in Shanghainese children. GII.Pe/GII.4-Sydney/2012 strains remained the predominant genotype. The emergence of GII.P17/GII.17 and GII.P16/GII.2 strains in sporadic diarrhea was consistent with norovirus-associated outbreaks attributable to these 2 novel variants in China. Continuous monitoring norovirus genotypes circulating in pediatric population is needed for current vaccine development.
Collapse
|
18
|
Matsushima Y, Mizukoshi F, Sakon N, Doan YH, Ueki Y, Ogawa Y, Motoya T, Tsukagoshi H, Nakamura N, Shigemoto N, Yoshitomi H, Okamoto-Nakagawa R, Suzuki R, Tsutsui R, Terasoma F, Takahashi T, Sadamasu K, Shimizu H, Okabe N, Nagasawa K, Aso J, Ishii H, Kuroda M, Ryo A, Katayama K, Kimura H. Evolutionary Analysis of the VP1 and RNA-Dependent RNA Polymerase Regions of Human Norovirus GII.P17-GII.17 in 2013-2017. Front Microbiol 2019; 10:2189. [PMID: 31611853 PMCID: PMC6777354 DOI: 10.3389/fmicb.2019.02189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023] Open
Abstract
Human norovirus (HuNoV) GII.P17-GII.17 (Kawasaki2014 variant) reportedly emerged in 2014 and caused gastroenteritis outbreaks worldwide. To clarify the evolution of both VP1 and RNA-dependent RNA polymerase (RdRp) regions of GII.P17-GII.17, we analyzed both global and novel Japanese strains detected during 2013-2017. Time-scaled phylogenetic trees revealed that the ancestral GII.17 VP1 region diverged around 1949, while the ancestral GII.P17 RdRp region diverged around 2010. The evolutionary rates of the VP1 and RdRp regions were estimated at ~2.7 × 10-3 and ~2.3 × 10-3 substitutions/site/year, respectively. The phylogenetic distances of the VP1 region exhibited no overlaps between intra-cluster and inter-cluster peaks in the GII.17 strains, whereas those of the RdRp region exhibited a unimodal distribution in the GII.P17 strains. Conformational epitope positions in the VP1 protein of the GII.P17-GII.17 strains were similar, although some substitutions, insertions and deletions had occurred. Strains belonging to the same cluster also harbored substitutions around the binding sites for the histo-blood group antigens of the VP1 protein. Moreover, some amino acid substitutions were estimated to be near the interface between monomers and the active site of the RdRp protein. These results suggest that the GII.P17-GII.17 virus has produced variants with the potential to alter viral antigenicity, host-binding capability, and replication property over the past 10 years.
Collapse
Affiliation(s)
- Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Fuminori Mizukoshi
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yo Ueki
- Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, Sendai, Japan
| | - Yasutaka Ogawa
- Division of Virology, Saitama Institute of Public Health, Saitama, Japan
| | - Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi, Japan
| | | | - Naoki Shigemoto
- Hiroshima Prefectural Technology Research Institute Public Health and Environment Center, Hiroshima, Japan
| | - Hideaki Yoshitomi
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Japan
| | | | - Rieko Suzuki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Japan
| | - Rika Tsutsui
- Aomori Prefecture Public Health and Environment Center, Aomori, Japan
| | - Fumio Terasoma
- Wakayama Prefectural Research Center of Environment and Public Health, Wakayama, Japan
| | - Tomoko Takahashi
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku, Japan
| | - Hideaki Shimizu
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Nobuhiko Okabe
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | | | - Jumpei Aso
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Kitasato University, Minato, Japan
| | - Hirokazu Kimura
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
19
|
Pissuwan D, Gazzana C, Mongkolsuk S, Cortie MB. Single and multiple detections of foodborne pathogens by gold nanoparticle assays. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1584. [PMID: 31532914 DOI: 10.1002/wnan.1584] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
A late detection of pathogenic microorganisms in food and drinking water has a high potential to cause adverse health impacts in those who have ingested the pathogens. For this reason there is intense interest in developing precise, rapid and sensitive assays that can detect multiple foodborne pathogens. Such assays would be valuable components in the campaign to minimize foodborne illness. Here, we discuss the emerging types of assays based on gold nanoparticles (GNPs) for rapidly diagnosing single or multiple foodborne pathogen infections. Colorimetric and lateral flow assays based on GNPs may be read by the human eye. Refractometric sensors based on a shift in the position of a plasmon resonance absorption peak can be read by the new generation of inexpensive optical spectrometers. Surface-enhanced Raman spectroscopy and the quartz microbalance require slightly more sophisticated equipment but can be very sensitive. A wide range of electrochemical techniques are also under development. Given the range of options provided by GNPs, we confidently expect that some, or all, of these technologies will eventually enter routine use for detecting pathogens in food. This article is categorized under: Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Dakrong Pissuwan
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok, Thailand.,Nanobiotechnology and Nanobiomaterials Research Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand.,School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Camilla Gazzana
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Michael B Cortie
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Motoya T, Umezawa M, Saito A, Goto K, Doi I, Fukaya S, Nagata N, Ikeda Y, Okayama K, Aso J, Matsushima Y, Ishioka T, Ryo A, Sasaki N, Katayama K, Kimura H. Variation of human norovirus GII genotypes detected in Ibaraki, Japan, during 2012-2018. Gut Pathog 2019; 11:26. [PMID: 31143245 PMCID: PMC6533662 DOI: 10.1186/s13099-019-0303-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background Human norovirus (HuNoV) is the major cause of viral acute gastroenteritis for all age groups in various countries. HuNoV GII in particular accounted for the majority of norovirus outbreaks, among which GII.4 caused repeated outbreaks for a long time. Besides GII.4, other norovirus genotypes, GII.2, GII.6, and GII.17, have also been prevalent in various contexts in recent years, but few detailed epidemiological studies of them have been performed and are poorly understood. We thus conducted an epidemiological analysis of HuNoV GII in Ibaraki Prefecture, Japan, by performing surveillance in the six seasons from September 2012 to August 2018. Results HuNoV GI occurred almost sporadically for all genotypes; however, each genotype of GII exhibited its typical epidemiological characteristics. Although the number of outbreaks of GII.4 decreased season by season, it reemerged in 2017/2018 season. The timing of the epidemic peak in terms of number of cases for GII.17 differed from that for the other genotypes. The patients age with GII.2 and GII.6 were younger and outbreak of GII.17 occurred frequently as food poisoning. Namely, the primarily infected outbreak group differed for each genotype of HuNoV GII. Moreover, the viral load of patients differed according to the genotype. Conclusions Various HuNoV genotypes including GII.2, GII.4, GII.6, and GII.17 were shown to be associated with various types of outbreak sites (at childcare and educational facilities, involving cases of food poisoning, and at elderly nursing homes) in this study. These genotypes emerged in recent years, and their prevalence patterns differed from each other. Moreover, differences in outbreak sites and viral load of patients among the genotypes were identified.
Collapse
Affiliation(s)
- Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan.,2Faculty of Veterinary Medicine, Kitasato University, Aomori, Japan
| | | | - Aoi Saito
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Keiko Goto
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Ikuko Doi
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Setsuko Fukaya
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Noriko Nagata
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Yoshiaki Ikeda
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Kaori Okayama
- Gunma Paz University Graduate School of Health Science, Gunma, 370-0006 Japan
| | - Jumpei Aso
- Gunma Paz University Graduate School of Health Science, Gunma, 370-0006 Japan.,4Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Yuki Matsushima
- Kawasaki City Institute for Public Health, Kawasaki, Kanagawa Japan
| | | | - Akihide Ryo
- 7Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Nobuya Sasaki
- 2Faculty of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kazuhiko Katayama
- 8Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Hirokazu Kimura
- Gunma Paz University Graduate School of Health Science, Gunma, 370-0006 Japan.,7Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.,9Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|