1
|
Peterson AC, Jacobson D, Richins T, Barratt J, Qvarnstrom Y. Assessing the sequencing success and analytical specificity of a targeted amplicon deep sequencing workflow for genotyping the foodborne parasite Cyclospora. J Clin Microbiol 2025:e0181124. [PMID: 40366167 DOI: 10.1128/jcm.01811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/21/2025] [Indexed: 05/15/2025] Open
Abstract
Epidemiological investigations of the foodborne parasitic illness cyclosporiasis can be aided by molecular techniques that enable the identification of genetically related clusters of Cyclospora isolates. At the Centers for Disease Control and Prevention (CDC), routine Cyclospora genotyping for the purpose of informing epidemiological outbreak investigations has occurred since 2018 using clinical stool specimens from case patients diagnosed with cyclosporiasis. This approach involves targeted amplicon deep sequencing of eight genotyping markers, followed by bioinformatic processing through a custom clustering algorithm. However, not all stool specimens submitted to the CDC for genotyping successfully amplify for at least five of the eight genotyping markers, the minimum required to be bioinformatically processed through the clustering algorithm. In this study, we utilized information from clinical stool specimens sent to the CDC from the years 2019 to 2023 to assess if the type of preservative, the age of the specimen, or the method used to diagnose the patient influenced the probability of successfully genotyping parasites from a fecal specimen. Additionally, we assessed the analytical specificity of the Cyclospora genotyping workflow by analyzing samples positive for other intestinal parasites, including closely related non-human infecting Cyclospora species and other coccidia. We found that stool specimens stored in preservatives had a greater likelihood of sequencing success over time relative to specimens without preservatives or those stored in non-nutritive transport media. Additionally, stool specimens from case patients diagnosed via microscopy-based methods were more likely to yield DNA of sufficient quality and quantity for genotyping compared to PCR or multiplex panels. Lastly, we determined that the genotyping workflow has an analytical specificity of 100%, as no non-human-infecting Cyclospora or other parasites yielded sequence data at >1 of the genotyping markers. This knowledge will help strengthen the quality of Cyclospora genotyping data produced in the future, improving the utility of this data for supporting epidemiological investigations.IMPORTANCEDetermining the genetic relatedness among parasites causing foodborne illness, such as Cyclospora, is a valuable tool to complement outbreak investigations. However, this molecular genotyping approach is limited by the quality and quantity of genetic data obtained from the samples being investigated. In this study, we demonstrate that the storage conditions of clinical stool specimens are correlated to the quality of sequence data produced for Cyclospora genotyping. Our insights can be used to guide storage recommendations for stool specimens, which can improve the quality of foodborne illness outbreak investigations conducted in the future. Additionally, we showed that the current Cyclospora genotyping tool used by the Centers for Disease Control (CDC) is highly specific to human-infecting Cyclospora parasites; this valuable information indicates that the CDC's Cyclospora investigations are not negatively impacted by false-positive detections.
Collapse
Affiliation(s)
- Anna C Peterson
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Parasitic Diseases and Malaria, Laboratory Science and Diagnostics Branch, Atlanta, Georgia, USA
| | - David Jacobson
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Parasitic Diseases and Malaria, Laboratory Science and Diagnostics Branch, Atlanta, Georgia, USA
| | - Travis Richins
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Parasitic Diseases and Malaria, Laboratory Science and Diagnostics Branch, Atlanta, Georgia, USA
| | - Joel Barratt
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Parasitic Diseases and Malaria, Laboratory Science and Diagnostics Branch, Atlanta, Georgia, USA
| | - Yvonne Qvarnstrom
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Parasitic Diseases and Malaria, Laboratory Science and Diagnostics Branch, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Leonard SR, Mammel MK, Almeria S, Gebru ST, Jacobson DK, Peterson AC, Barratt JLN, Musser SM. Evaluation of the Increased Genetic Resolution and Utility for Source Tracking of a Recently Developed Method for Genotyping Cyclospora cayetanensis. Microorganisms 2024; 12:848. [PMID: 38792677 PMCID: PMC11124223 DOI: 10.3390/microorganisms12050848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Cyclospora cayetanensis is a foodborne parasite that causes cyclosporiasis, an enteric illness in humans. Genotyping methods are used to genetically discriminate between specimens from cyclosporiasis cases and can complement source attribution investigations if the method is sufficiently sensitive for application to food items. A very sensitive targeted amplicon sequencing (TAS) assay for genotyping C. cayetanensis encompassing 52 loci was recently designed. In this study, we analyzed 66 genetically diverse clinical specimens to assess the change in phylogenetic resolution between the TAS assay and a currently employed eight-marker scheme. Of the 52 markers, ≥50 were successfully haplotyped for all specimens, and these results were used to generate a hierarchical cluster dendrogram. Using a previously described statistical approach to dissect hierarchical trees, the 66 specimens resolved into 24 and 27 distinct genetic clusters for the TAS and an 8-loci scheme, respectively. Although the specimen composition of 15 clusters was identical, there were substantial differences between the two dendrograms, highlighting the importance of both inclusion of additional genome coverage and choice of loci to target for genotyping. To evaluate the ability to genetically link contaminated food samples with clinical specimens, C. cayetanensis was genotyped from DNA extracted from raspberries inoculated with fecal specimens. The contaminated raspberry samples were assigned to clusters with the corresponding clinical specimen, demonstrating the utility of the TAS assay for traceback efforts.
Collapse
Affiliation(s)
- Susan R. Leonard
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - Mark K. Mammel
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - Sonia Almeria
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - Solomon T. Gebru
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - David K. Jacobson
- Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.K.J.); (A.C.P.); (J.L.N.B.)
| | - Anna C. Peterson
- Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.K.J.); (A.C.P.); (J.L.N.B.)
| | - Joel L. N. Barratt
- Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.K.J.); (A.C.P.); (J.L.N.B.)
| | - Steven M. Musser
- Office of the Center Director, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA;
| |
Collapse
|
3
|
González-Gómez JP, Lozano-Aguirre LF, Medrano-Félix JA, Chaidez C, Gerba CP, Betancourt WQ, Castro-Del Campo N. Evaluation of nuclear and mitochondrial phylogenetics for the subtyping of Cyclospora cayetanensis. Parasitol Res 2023; 122:2641-2650. [PMID: 37676306 DOI: 10.1007/s00436-023-07963-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Cyclospora cayetanensis is an enteric coccidian parasite responsible for gastrointestinal disease transmitted through contaminated food and water. It has been documented in several countries, mostly with low-socioeconomic levels, although major outbreaks have hit developed countries. Detection methods based on oocyst morphology, staining, and molecular testing have been developed. However, the current MLST panel offers an opportunity for enhancement, as amplification of all molecular markers remains unfeasible in the majority of samples. This study aims to address this challenge by evaluating two approaches for analyzing the genetic diversity of C. cayetanensis and identifying reliable markers for subtyping: core homologous genes and mitochondrial genome analysis. A pangenome was constructed using 36 complete genomes of C. cayetanensis, and a haplotype network and phylogenetic analysis were conducted using 33 mitochondrial genomes. Through the analysis of the pangenome, 47 potential markers were identified, emphasizing the need for more sequence data to achieve comprehensive characterization. Additionally, the analysis of mitochondrial genomes revealed 19 single-nucleotide variations that can serve as characteristic markers for subtyping this parasite. These findings not only contribute to the selection of molecular markers for C. cayetanensis subtyping, but they also drive the knowledge toward the potential development of a comprehensive genotyping method for this parasite.
Collapse
Affiliation(s)
- Jean P González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, México
| | - Luis F Lozano-Aguirre
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A, 62210, Cuernavaca, Morelos, México
| | - José A Medrano-Félix
- Investigadoras e Investigadores por México-Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional Para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a El dorado km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, Mexico
| | - Cristobal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, México
| | - Charles P Gerba
- Department of Environmental Science, Water & Energy Sustainable Technology (WEST) Center, University of Arizona, 2959 W, Calle Agua Nueva, Tucson, AZ, 85745, USA
| | - Walter Q Betancourt
- Department of Environmental Science, Water & Energy Sustainable Technology (WEST) Center, University of Arizona, 2959 W, Calle Agua Nueva, Tucson, AZ, 85745, USA
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, México.
| |
Collapse
|
4
|
Peterson A, Richins T, Houghton K, Mishina M, Sharma S, Sambhara S, Jacobson D, Qvarnstrom Y, Cama V. The limit of detection of the BioFire® FilmArray® gastrointestinal panel for the foodborne parasite Cyclospora cayetanensis. Diagn Microbiol Infect Dis 2023; 107:116030. [PMID: 37572510 PMCID: PMC10530562 DOI: 10.1016/j.diagmicrobio.2023.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/20/2023] [Accepted: 07/15/2023] [Indexed: 08/14/2023]
Abstract
Cyclosporiasis is a foodborne diarrheal illness caused by the parasite Cyclospora cayetanensis. The BioFire® FilmArray® gastrointestinal (FilmArray GI) panel is a common method for diagnosing cyclosporiasis from clinical stool samples. The currently published limit of detection (LOD) of this panel is in genome equivalents; however, it is unclear how this relates to the number of C. cayetanensis oocysts in a clinical sample. In this study, we developed a technique to determine the LOD in terms of oocysts, using a cell sorter to sort 1 to 50 C. cayetanensis oocyst(s) previously purified from three human stool sources. We found the FilmArray GI panel detected samples with ≥20 C. cayetanensis oocysts in 100% of replicates, with varying detection among samples with 1, 5, or 10 C. cayetanensis oocysts. This method provides a parasitologically relevant LOD that should enable comparison among C. cayetanensis detection techniques, including the FilmArray GI panel.
Collapse
Affiliation(s)
- Anna Peterson
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Centers for Disease Control and Prevention, Global Health Center, Division of Parasitic Diseases and Malaria, Laboratory Science and Diagnostic Branch, Atlanta, GA, USA.
| | - Travis Richins
- Centers for Disease Control and Prevention, Global Health Center, Division of Parasitic Diseases and Malaria, Laboratory Science and Diagnostic Branch, Atlanta, GA, USA
| | - Katelyn Houghton
- Centers for Disease Control and Prevention, Global Health Center, Division of Parasitic Diseases and Malaria, Laboratory Science and Diagnostic Branch, Atlanta, GA, USA
| | - Margarita Mishina
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Influenza Division, Immunology and Pathogenesis Branch, Atlanta, GA, USA
| | - Suresh Sharma
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Influenza Division, Immunology and Pathogenesis Branch, Atlanta, GA, USA
| | - Suryaprakash Sambhara
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Influenza Division, Immunology and Pathogenesis Branch, Atlanta, GA, USA
| | - David Jacobson
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Centers for Disease Control and Prevention, Global Health Center, Division of Parasitic Diseases and Malaria, Laboratory Science and Diagnostic Branch, Atlanta, GA, USA
| | - Yvonne Qvarnstrom
- Centers for Disease Control and Prevention, Global Health Center, Division of Parasitic Diseases and Malaria, Laboratory Science and Diagnostic Branch, Atlanta, GA, USA
| | - Vitaliano Cama
- Centers for Disease Control and Prevention, Global Health Center, Division of Parasitic Diseases and Malaria, Laboratory Science and Diagnostic Branch, Atlanta, GA, USA
| |
Collapse
|
5
|
Jacobson DK, Peterson AC, Qvarnstrom Y, Barratt JL. Novel insights on the genetic population structure of human-infecting Cyclospora spp. and evidence for rapid subtype selection among isolates from the USA. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100145. [PMID: 37841306 PMCID: PMC10569985 DOI: 10.1016/j.crpvbd.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
Human-infecting Cyclospora was recently characterized as three species, two of which (C. cayetanensis and C. ashfordi) are currently responsible for all known human infections in the USA, yet much remains unknown about the genetic structure within these two species. Here, we investigate Cyclospora genotyping data from 2018 through 2022 to ascertain if there are temporal patterns in the genetic structure of Cyclospora parasites that cause infections in US residents from year to year. First, we investigate three levels of genetic characterization: species, subpopulation, and strain, to elucidate annual trends in Cyclospora infections. Next, we determine if shifts in genetic diversity can be linked to any of the eight loci used in our Cyclospora genotyping approach. We observed fluctuations in the abundance of Cyclospora types at the species and subpopulation levels, but no significant temporal trends were identified; however, we found recurrent and sporadic strains within both C. ashfordi and C. cayetanensis. We also uncovered major shifts in the mitochondrial genotypes in both species, where there was a universal increase in abundance of a specific mitochondrial genotype that was relatively abundant in 2018 but reached near fixation (was observed in over 96% of isolates) in C. ashfordi by 2022. Similarly, this allele jumped from 29% to 82% relative abundance of isolates belonging to C. cayetanensis. Overall, our analysis uncovers previously unknown temporal-genetic patterns in US Cyclospora types from 2018 through 2022 and is an important step to presenting a clearer picture of the factors influencing cyclosporiasis outbreaks in the USA.
Collapse
Affiliation(s)
- David K. Jacobson
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anna C. Peterson
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yvonne Qvarnstrom
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel L.N. Barratt
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
6
|
Almeria S, Chacin-Bonilla L, Maloney JG, Santin M. Cyclospora cayetanensis: A Perspective (2020-2023) with Emphasis on Epidemiology and Detection Methods. Microorganisms 2023; 11:2171. [PMID: 37764015 PMCID: PMC10536660 DOI: 10.3390/microorganisms11092171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclospora cayetanensis infections are prevalent worldwide, and the parasite has become a major public health and food safety concern. Although important efforts have been dedicated to advance toward preventing and reducing incidences of cyclosporiasis, there are still several knowledge gaps that hamper the implementation of effective measures to prevent the contamination of produce and water with Cyclospora oocysts. Some of these data gaps can be attributed to the fact that access to oocysts is a limiting factor in C. cayetanensis research. There are no animal models or in vivo or in vitro culture systems to propagate the oocysts needed to facilitate C. cayetanensis research. Thus, researchers must rely upon limited supplies of oocysts obtained from naturally infected human patients considerably restricting what can be learnt about this parasite. Despite the limited supply of C. cayetanensis oocysts, several important advances have happened in the past 3 years. Great progress has been made in the Cyclospora field in the areas of molecular characterization of strains and species, generation of genomes, and development of novel detection methods. This comprehensive perspective summarizes research published from 2020 to 2023 and evaluates what we have learnt and identifies those aspects in which further research is needed.
Collapse
Affiliation(s)
- Sonia Almeria
- Center for Food Safety and Nutrition (CFSAN), Department of Health and Human Services, Food and Drug Administration, Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | | | - Jenny G. Maloney
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | - Monica Santin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| |
Collapse
|
7
|
Leonard SR, Mammel MK, Gharizadeh B, Almeria S, Ma Z, Lipman DJ, Torrence ME, Wang C, Musser SM. Development of a targeted amplicon sequencing method for genotyping Cyclospora cayetanensis from fresh produce and clinical samples with enhanced genomic resolution and sensitivity. Front Microbiol 2023; 14:1212863. [PMID: 37396378 PMCID: PMC10311907 DOI: 10.3389/fmicb.2023.1212863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Outbreaks of cyclosporiasis, an enteric illness caused by the parasite Cyclospora cayetanensis, have been associated with consumption of various types of fresh produce. Although a method is in use for genotyping C. cayetanensis from clinical specimens, the very low abundance of C. cayetanensis in food and environmental samples presents a greater challenge. To complement epidemiological investigations, a molecular surveillance tool is needed for use in genetic linkage of food vehicles to cyclosporiasis illnesses, estimation of the scope of outbreaks or clusters of illness, and determination of geographical areas involved. We developed a targeted amplicon sequencing (TAS) assay that incorporates a further enrichment step to gain the requisite sensitivity for genotyping C. cayetanensis contaminating fresh produce samples. The TAS assay targets 52 loci, 49 of which are located in the nuclear genome, and encompasses 396 currently known SNP sites. The performance of the TAS assay was evaluated using lettuce, basil, cilantro, salad mix, and blackberries inoculated with C. cayetanensis oocysts. A minimum of 24 markers were haplotyped even at low contamination levels of 10 oocysts in 25 g leafy greens. The artificially contaminated fresh produce samples were included in a genetic distance analysis based on haplotype presence/absence with publicly available C. cayetanensis whole genome sequence assemblies. Oocysts from two different sources were used for inoculation, and samples receiving the same oocyst preparation clustered together, but separately from the other group, demonstrating the utility of the assay for genetically linking samples. Clinical fecal samples with low parasite loads were also successfully genotyped. This work represents a significant advance in the ability to genotype C. cayetanensis contaminating fresh produce along with greatly expanding the genomic diversity included for genetic clustering of clinical specimens.
Collapse
Affiliation(s)
- Susan R. Leonard
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Mark K. Mammel
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | | | - Sonia Almeria
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Zhihai Ma
- Chapter Diagnostics, Menlo Park, CA, United States
| | - David J. Lipman
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Mary E. Torrence
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Chunlin Wang
- Chapter Diagnostics, Menlo Park, CA, United States
| | - Steven M. Musser
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
8
|
Abstract
The apicomplexan parasite Cyclospora cayetanensis causes seasonal foodborne outbreaks of the gastrointestinal illness cyclosporiasis. Prior to the coronavirus disease-2019 pandemic, annually reported cases were increasing in the USA, leading the US Centers for Disease Control and Prevention to develop a genotyping tool to complement cyclosporiasis outbreak investigations. Thousands of US isolates and 1 from China (strain CHN_HEN01) were genotyped by Illumina amplicon sequencing, revealing 2 lineages (A and B). The allelic composition of isolates was examined at each locus. Two nuclear loci (CDS3 and 360i2) distinguished lineages A and B. CDS3 had 2 major alleles: 1 almost exclusive to lineage A and the other to lineage B. Six 360i2 alleles were observed – 2 exclusive to lineage A (alleles A1 and A2), 2 to lineage B (B1 and B2) and 1 (B4) was exclusive to CHN_HEN01 which shared allele B3 with lineage B. Examination of heterozygous genotypes revealed that mixtures of A- and B-type 360i2 alleles occurred rarely, suggesting a lack of gene flow between lineages. Phylogenetic analysis of loci from whole-genome shotgun sequences, mitochondrial and apicoplast genomes, revealed that CHN_HEN01 represents a distinct lineage (C). Retrospective examination of epidemiologic data revealed associations between lineage and the geographical distribution of US infections plus strong temporal associations. Given the multiple lines of evidence for speciation within human-infecting Cyclospora, we provide an updated taxonomic description of C. cayetanensis, and describe 2 novel species as aetiological agents of human cyclosporiasis: Cyclospora ashfordi sp. nov. and Cyclospora henanensis sp. nov. (Apicomplexa: Eimeriidae).
Collapse
|
9
|
Li J, Xu F, Karim MR, Zhang L. Review on Cyclosporiasis Outbreaks and Potential Molecular Markers for Tracing Back Investigations. Foodborne Pathog Dis 2022; 19:796-805. [PMID: 36450125 DOI: 10.1089/fpd.2022.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cyclosporiasis is an emerging disease caused by Cyclospora cayetanensis, which induces protracting and relapsing gastroenteritis and has been linked to huge and complicated travel- and food-related outbreaks worldwide. Cyclosporiasis has become more common in both developing and developed countries as a result of increased global travel and the globalization of the human food supply. It is not just a burden on individual human health but also a worldwide public health problem. As a pathogen of interest, the molecular biological characteristics of C. cayetanensis have advanced significantly over the last few decades. However, only one FDA-approved molecular platform has been commercially used in the investigation of cyclosporiasis outbreaks. More potential molecular markers and genotyping of C. cayetanensis in samples based on the polymorphic region of the whole genomes might differentiate between separate case clusters and would be useful in tracing back investigations, especially during cyclosporiasis outbreak investigations. Considering that there is no effective vaccine for cyclosporosis, epidemiological investigation using effective tools is crucial for controlling cyclosporiasis by source tracking. Therefore, more and more epidemiological investigative studies for human cyclosporiasis should be promoted around the world to get a deeper understanding of its characteristics as well as management. This review focuses on major cyclosporiasis outbreaks and potential molecular markers for tracing back investigations into cyclosporiasis outbreaks.
Collapse
Affiliation(s)
- Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| | - Feifei Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Md Robiul Karim
- Department of Medicine, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| |
Collapse
|
10
|
Targeted next generation sequencing of Cyclospora cayetanensis mitochondrial genomes from seeded fresh produce and other seeded food samples. Heliyon 2022; 8:e11575. [DOI: 10.1016/j.heliyon.2022.e11575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/17/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022] Open
|
11
|
Tucker MS, Khan A, Jenkins MC, Dubey JP, Rosenthal BM. Hastening Progress in Cyclospora Requires Studying Eimeria Surrogates. Microorganisms 2022; 10:1977. [PMID: 36296256 PMCID: PMC9608778 DOI: 10.3390/microorganisms10101977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclospora cayetanensis is an enigmatic human parasite that sickens thousands of people worldwide. The scarcity of research material and lack of any animal model or cell culture system slows research, denying the produce industry, epidemiologists, and regulatory agencies of tools that might aid diagnosis, risk assessment, and risk abatement. Fortunately, related species offer a strong foundation when used as surrogates to study parasites of this type. Species of Eimeria lend themselves especially well as surrogates for C. cayetanensis. Those Eimeria that infect poultry can be produced in abundance, share many biological features with Cyclospora, pose no risk to the health of researchers, and can be studied in their natural hosts. Here, we overview the actual and potential uses of such surrogates to advance understanding of C. cayetanensis biology, diagnostics, control, and genomics, focusing on opportunities to improve prevention, surveillance, risk assessment, and risk reduction. Studying Eimeria surrogates accelerates progress, closing important research gaps and refining promising tools for producers and food safety regulators to monitor and ameliorate the food safety risks imposed by this emerging, enigmatic parasite.
Collapse
Affiliation(s)
| | | | | | | | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
12
|
Development of a Molecular Marker Based on the Mitochondrial Genome for Detection of Cyclospora cayetanensis in Food and Water Samples. Microorganisms 2022; 10:microorganisms10091762. [PMID: 36144364 PMCID: PMC9504131 DOI: 10.3390/microorganisms10091762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Cyclospora cayetanensis is a coccidian parasite that causes diarrheal illness outbreaks worldwide. The development of new laboratory methods for detection of C. cayetanensis is of critical importance because of the high potential for environmental samples to be contaminated with a myriad of microorganisms, adversely impacting the specificity when testing samples from various sources using a single molecular assay. In this study, a new sequencing-based method was designed targeting a specific fragment of C. cayetanensis cytochrome oxidase gene and developed as a complementary method to the TaqMan qPCR present in the U.S. FDA BAM Chapter 19b and Chapter 19c. The comparative results between the new PCR protocol and the qPCR for detection of C. cayetanensis in food and water samples provided similar results in both matrices with the same seeding level. The target region and primers in the protocol discussed in this study contain sufficient Cyclospora-specific sequence fidelity as observed by sequence comparison with other Eimeriidae species. The sequence of the PCR product appears to represent a robust target for identifying C. cayetanensis on samples from different sources. Such a sensitive method for detection of C. cayetanensis would add to the target repertoire of qPCR-based screening strategies for food and water samples.
Collapse
|
13
|
Jacobson D, Zheng Y, Plucinski MM, Qvarnstrom Y, Barratt JLN. Evaluation of various distance computation methods for construction of haplotype-based phylogenies from large MLST dataset. Mol Phylogenet Evol 2022; 177:107608. [PMID: 35963590 PMCID: PMC10127246 DOI: 10.1016/j.ympev.2022.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Multi-locus sequence typing (MLST) is widely used to investigate genetic relationships among eukaryotic taxa, including parasitic pathogens. MLST analysis workflows typically involve construction of alignment-based phylogenetic trees - i.e., where tree structures are computed from nucleotide differences observed in a multiple sequence alignment (MSA). Notably, alignment-based phylogenetic methods require that all isolates/taxa are represented by a single sequence. When multiple loci are sequenced these sequences may be concatenated to produce one tree that includes information from all loci. Alignment-based phylogenetic techniques are robust and widely used yet possess some shortcomings, including how heterozygous sites are handled, intolerance for missing data (i.e., partial genotypes), and differences in the way insertions-deletions (indels) are scored/treated during tree construction. In certain contexts, 'haplotype-based' methods may represent a viable alternative to alignment-based techniques, as they do not possess the aforementioned limitations. This is namely because haplotype-based methods assess genetic similarity based on numbers of shared (i.e., intersecting) haplotypes as opposed to similarities in nucleotide composition observed in an MSA. For haplotype-based comparisons, choosing an appropriate distance statistic is fundamental, and several statistics are available to choose from. However, a comprehensive assessment of various available statistics for their ability to produce a robust haplotype-based phylogenetic reconstruction has not yet been performed. We evaluated seven distance statistics by applying them to extant MLST datasets from the gastrointestinal parasite Cyclospora cayetanensis and two species of pathogenic nematode of the genus Strongyloides. We compare the genetic relationships identified using each statistic to epidemiologic, geographic, and host metadata. We show that Barratt's heuristic definition of genetic distance was the most robust among the statistics evaluated. Consequently, it is proposed that Barratt's heuristic represents a useful approach for use in the context of challenging MLST datasets possessing features (i.e., high heterozygosity, partial genotypes, and indel or repeat-based polymorphisms) that confound or preclude the use of alignment-based methods.
Collapse
Affiliation(s)
- David Jacobson
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Yueli Zheng
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA; Eagle Global Scientific, San Antonio, TX, USA
| | - Mateusz M Plucinski
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA; U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yvonne Qvarnstrom
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel L N Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
14
|
Genotyping Canadian Cyclospora cayetanensis Isolates to Supplement Cyclosporiasis Outbreak Investigations. Microorganisms 2022; 10:microorganisms10020447. [PMID: 35208901 PMCID: PMC8879297 DOI: 10.3390/microorganisms10020447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclospora cayetanensis is an emerging foodborne parasite that causes cyclosporiasis, an enteric disease of humans. Domestically acquired outbreaks have been reported in Canada every spring or summer since 2013. To date, investigations into the potential sources of infection have relied solely on epidemiological data. To supplement the epidemiological data with genetic information, we genotyped 169 Canadian cyclosporiasis cases from stool specimens collected from 2010 to 2021 using an existing eight-marker targeted amplicon deep (TADS) scheme specific to C. cayetanensis as previously described by the US Centers for Disease Control and Prevention (CDC). This is the first study to genotype Canadian Cyclospora cayetanensis isolates, and it focuses on evaluating the genotyping performance and genetic clustering. Genotyping information was successfully collected with at least part of one of the markers in the TADS assay for 97.9% of specimens, and 81.1% of cyclosporiasis cases met the minimum requirements to genetically cluster into 20 groups. The performance of the scheme suggests that examining cyclosporiasis cases genetically will be a valuable tool for supplementing epidemiological outbreak investigations and to minimize further infections. Further research is required to expand the number of discriminatory markers to improve genetic clustering.
Collapse
|
15
|
Dubey JP, Khan A, Rosenthal BM. Life Cycle and Transmission of Cyclospora cayetanensis: Knowns and Unknowns. Microorganisms 2022; 10:microorganisms10010118. [PMID: 35056567 PMCID: PMC8779055 DOI: 10.3390/microorganisms10010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
Although infections with Cyclospora cayetanensis are prevalent worldwide, many aspects of this parasite’s life cycle and transmission remain unknown. Humans are the only known hosts of this parasite. Existing information on its endogenous development has been derived from histological examination of only a few biopsy specimens. Its asexual and sexual stages occur in biliary-intestinal epithelium. In histological sections, its stages are less than 10 μm, making definitive identification difficult. Asexual (schizonts) and sexual (gamonts) are located in epithelial cells. Male microgamonts have two flagella; female macrogametes contain wall-forming bodies. Oocysts are excreted in feces unsporulated. Sporulation occurs in the environment, but there are many unanswered questions concerning dissemination and survival of C. cayetanensis oocysts. Biologically and phylogenetically, C. cayetanensis closely resembles Eimeria spp. that parastize chickens; among them, E. acervulina most closely resembles C. cayetanensis in size. Here, we review known and unknown aspects of its life cycle and transmission and discuss the appropriateness of surrogates best capable of hastening progress in understanding its biology and developing mitigating strategies.
Collapse
|
16
|
Barratt J, Ahart L, Rice M, Houghton K, Richins T, Cama V, Arrowood M, Qvarnstrom Y, Straily A. Genotyping Cyclospora cayetanensis from multiple outbreak clusters with an emphasis on a cluster linked to bagged salad mix - United States, 2020. J Infect Dis 2021; 225:2176-2180. [PMID: 34606577 PMCID: PMC9200147 DOI: 10.1093/infdis/jiab495] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Cyclosporiasis is a diarrheal illness caused by the foodborne parasite Cyclospora cayetanensis. Annually reported cases have been increasing in the United States prompting development of genotyping tools to aid cluster detection. A recently developed Cyclospora genotyping system based on 8 genetic markers was applied to clinical samples collected during the cyclosporiasis peak period of 2020, facilitating assessment of its epidemiologic utility. While the system performed well and helped inform epidemiologic investigations, inclusion of additional markers to improve cluster detection was supported. Consequently, investigations have commenced to identify additional markers to enhance performance.
Collapse
Affiliation(s)
- Joel Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lauren Ahart
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Marion Rice
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katelyn Houghton
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Travis Richins
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Vitaliano Cama
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael Arrowood
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yvonne Qvarnstrom
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anne Straily
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Investigation of US Cyclospora cayetanensis outbreaks in 2019 and evaluation of an improved Cyclospora genotyping system against 2019 cyclosporiasis outbreak clusters. Epidemiol Infect 2021; 149:e214. [PMID: 34511150 PMCID: PMC8506454 DOI: 10.1017/s0950268821002090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cyclosporiasis is an illness characterised by watery diarrhoea caused by the food-borne parasite Cyclospora cayetanensis. The increase in annual US cyclosporiasis cases led public health agencies to develop genotyping tools that aid outbreak investigations. A team at the Centers for Disease Control and Prevention (CDC) developed a system based on deep amplicon sequencing and machine learning, for detecting genetically-related clusters of cyclosporiasis to aid epidemiologic investigations. An evaluation of this system during 2018 supported its robustness, indicating that it possessed sufficient utility to warrant further evaluation. However, the earliest version of CDC's system had some limitations from a bioinformatics standpoint. Namely, reliance on proprietary software, the inability to detect novel haplotypes and absence of a strategy to select an appropriate number of discrete genetic clusters would limit the system's future deployment potential. We recently introduced several improvements that address these limitations and the aim of this study was to reassess the system's performance to ensure that the changes introduced had no observable negative impacts. Comparison of epidemiologically-defined cyclosporiasis clusters from 2019 to analogous genetic clusters detected using CDC's improved system reaffirmed its excellent sensitivity (90%) and specificity (99%), and confirmed its high discriminatory power. This C. cayetanensis genotyping system is robust and with ongoing improvement will form the basis of a US-wide C. cayetanensis genotyping network for clinical specimens.
Collapse
|
18
|
Dacal E, Köster PC, Carmena D. Diagnóstico molecular de parasitosis intestinales. Enferm Infecc Microbiol Clin 2021; 38 Suppl 1:24-31. [PMID: 32111362 DOI: 10.1016/j.eimc.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infections causes by parasites of the gastrointestinal tract are a global public health problem. In industrialised countries, their particular epidemiological (low general prevalence of enteroparasites), economic (high labour costs) and clinical characteristics (constant increase in the number of samples and diagnostic determinations to be performed) have led molecular techniques to progressively replace conventional microscopy as the first-line diagnostic method of these pathogens in modern clinical laboratories. PCR-based techniques, particularly those developed for the simultaneous detection of the various agents that can cause the same infectious disease (syndromic diagnosis), already represent a cost-effective option that allow process automisation, workflow optimisation, and comparison of results among different laboratories, and facilitate accreditation of diagnostic procedures. This review clearly and concisely discusses the current situation of the molecular diagnosis of the main species of intestinal parasites in humans, particularly the enteric protozoans causing diarrhoea (Cryptosporidium spp., Giardia duodenalis, Entamoeba histolytica), the most important members the Microsporidia phyla (Enterocytozoon bieneusi) and Stramenopiles phyla (Blastocystis sp.), as well as the helminths transmitted by soil (Ancylostoma spp., Ascaris lumbricoides, Necator americanus, Strongyloides stercoralis and Trichuris trichiura) and food (Anisakis spp., Clonorchis sinensis, Fasciola spp., Taenia solium, and Trichinella spiralis). Special attention is paid to the description of available techniques and formats, to their diagnostic benefits and the most widely used genetic markers for their detection, both in clinical laboratories and genotyping in referral and research centres.
Collapse
Affiliation(s)
- Elena Dacal
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, España
| | - Pamela C Köster
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, España
| | - David Carmena
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, España.
| |
Collapse
|
19
|
Abstract
Cyclospora is an intracellular, gastrointestinal parasite found in birds and mammals worldwide. Limited accessibility of the protozoan for experimental use, scarcity, genome heterogeneity of the isolates and narrow panel of molecular markers hamper zoonotic investigations. One of the significant limitation in zoonotic studies is the lack of precise molecular tools that would be useful in linking animal vectors as a source of human infection. Strong and convincing evidence of zoonotic features will be achieved through proper typing of Cyclospora spp. taxonomic units (e.g. species or genotypes) in animal reservoirs. The most promising method that can be employ for zoonotic surveys is next-generation sequencing.
Collapse
|
20
|
Hadjilouka A, Tsaltas D. Cyclospora Cayetanensis-Major Outbreaks from Ready to Eat Fresh Fruits and Vegetables. Foods 2020; 9:E1703. [PMID: 33233660 PMCID: PMC7699734 DOI: 10.3390/foods9111703] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclospora cayetanensis is a coccidian protozoan that causes cyclosporiasis, a severe gastroenteric disease, especially for immunocompromised patients, children, and the elderly. The parasite is considered as an emerging organism and a major contributor of gastroenteritis worldwide. Although the global prevalence of cyclosporiasis morbidity and mortality has not been assessed, global concern has arisen since diarrheal illness and gastroenteritis significantly affect both developing countries and industrialized nations. In the last two decades, an increasing number of foodborne outbreaks has been associated with the consumption of fresh produce that is difficult to clean thoroughly and is consumed without processing. Investigations of these outbreaks have revealed the necessity to increase the awareness in clinicians of this infection, since this protozoan is often ignored by surveillance systems, and to establish control measures to reduce contamination of fresh produce. In this review, the major cyclosporiasis outbreaks linked to the consumption of ready to eat fresh fruits and vegetables are presented.
Collapse
Affiliation(s)
- Agni Hadjilouka
- EMBIO Diagnostics LTD., Athalassas 8b, 2018 Nicosia, Cyprus;
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Archbishop Kyprianos 30, 3036 Limassol, Cyprus
| | - Dimitris Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Archbishop Kyprianos 30, 3036 Limassol, Cyprus
| |
Collapse
|
21
|
Evaluation of an ensemble-based distance statistic for clustering MLST datasets using epidemiologically defined clusters of cyclosporiasis. Epidemiol Infect 2020; 148:e172. [PMID: 32741426 PMCID: PMC7439293 DOI: 10.1017/s0950268820001697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Outbreaks of cyclosporiasis, a food-borne illness caused by the coccidian parasite Cyclospora cayetanensis have increased in the USA in recent years, with approximately 2300 laboratory-confirmed cases reported in 2018. Genotyping tools are needed to inform epidemiological investigations, yet genotyping Cyclospora has proven challenging due to its sexual reproductive cycle which produces complex infections characterized by high genetic heterogeneity. We used targeted amplicon deep sequencing and a recently described ensemble-based distance statistic that accommodates heterogeneous (mixed) genotypes and specimens with partial genotyping data, to genotype and cluster 648 C. cayetanensis samples submitted to CDC in 2018. The performance of the ensemble was assessed by comparing ensemble-identified genetic clusters to analogous clusters identified independently based on common food exposures. Using these epidemiologic clusters as a gold standard, the ensemble facilitated genetic clustering with 93.8% sensitivity and 99.7% specificity. Hence, we anticipate that this procedure will greatly complement epidemiologic investigations of cyclosporiasis.
Collapse
|
22
|
Houghton KA, Lomsadze A, Park S, Nascimento FS, Barratt J, Arrowood MJ, VanRoey E, Talundzic E, Borodovsky M, Qvarnstrom Y. Development of a workflow for identification of nuclear genotyping markers for Cyclospora cayetanensis. ACTA ACUST UNITED AC 2020; 27:24. [PMID: 32275020 PMCID: PMC7147239 DOI: 10.1051/parasite/2020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/02/2020] [Indexed: 01/29/2023]
Abstract
Cyclospora cayetanensis is an intestinal parasite responsible for the diarrheal illness, cyclosporiasis. Molecular genotyping, using targeted amplicon sequencing, provides a complementary tool for outbreak investigations, especially when epidemiological data are insufficient for linking cases and identifying clusters. The goal of this study was to identify candidate genotyping markers using a novel workflow for detection of segregating single nucleotide polymorphisms (SNPs) in C. cayetanensis genomes. Four whole C. cayetanensis genomes were compared using this workflow and four candidate markers were selected for evaluation of their genotyping utility by PCR and Sanger sequencing. These four markers covered 13 SNPs and resolved parasites from 57 stool specimens, differentiating C. cayetanensis into 19 new unique genotypes.
Collapse
Affiliation(s)
- Katelyn A Houghton
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Alexandre Lomsadze
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Subin Park
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Fernanda S Nascimento
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joel Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael J Arrowood
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Erik VanRoey
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mark Borodovsky
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yvonne Qvarnstrom
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
23
|
Cinar HN, Gopinath G, Murphy HR, Almeria S, Durigan M, Choi D, Jang A, Kim E, Kim R, Choi S, Lee J, Shin Y, Lee J, Qvarnstrom Y, Benedict TK, Bishop HS, da Silva A. Molecular typing of Cyclospora cayetanensis in produce and clinical samples using targeted enrichment of complete mitochondrial genomes and next-generation sequencing. Parasit Vectors 2020; 13:122. [PMID: 32143704 PMCID: PMC7060604 DOI: 10.1186/s13071-020-3997-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/26/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Outbreaks of cyclosporiasis, a diarrheal illness caused by Cyclospora cayetanensis, have been a public health issue in the USA since the mid 1990's. In 2018, 2299 domestically acquired cases of cyclosporiasis were reported in the USA as a result of multiple large outbreaks linked to different fresh produce commodities. Outbreak investigations are hindered by the absence of standardized molecular epidemiological tools for C. cayetanensis. For other apicomplexan coccidian parasites, multicopy organellar DNA such as mitochondrial genomes have been used for detection and molecular typing. METHODS We developed a workflow to obtain complete mitochondrial genome sequences from cilantro samples and clinical samples for typing of C. cayetanensis isolates. The 6.3 kb long C. cayetanensis mitochondrial genome was amplified by PCR in four overlapping amplicons from genomic DNA extracted from cilantro, seeded with oocysts, and from stool samples positive for C. cayetanensis by diagnostic methods. DNA sequence libraries of pooled amplicons were prepared and sequenced via next-generation sequencing (NGS). Sequence reads were assembled using a custom bioinformatics pipeline. RESULTS This approach allowed us to sequence complete mitochondrial genomes from the samples studied. Sequence alterations, such as single nucleotide polymorphism (SNP) profiles and insertion and deletions (InDels), in mitochondrial genomes of 24 stool samples from patients with cyclosporiasis diagnosed in 2014, exhibited discriminatory power. The cluster dendrogram that was created based on distance matrices of the complete mitochondrial genome sequences, indicated distinct strain-level diversity among the 2014 C. cayetanensis outbreak isolates analyzed in this study. CONCLUSIONS Our results suggest that genomic analyses of mitochondrial genome sequences may help to link outbreak cases to the source.
Collapse
Affiliation(s)
- Hediye Nese Cinar
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Gopal Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Helen R. Murphy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Sonia Almeria
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Mauricio Durigan
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Dajung Choi
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - AhYoung Jang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Eunje Kim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - RaeYoung Kim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Seonju Choi
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Jeongu Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Yurim Shin
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Jieon Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Yvonne Qvarnstrom
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Theresa K. Benedict
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Henry S. Bishop
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Alexandre da Silva
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| |
Collapse
|
24
|
Li J, Cui Z, Qi M, Zhang L. Advances in Cyclosporiasis Diagnosis and Therapeutic Intervention. Front Cell Infect Microbiol 2020; 10:43. [PMID: 32117814 PMCID: PMC7026454 DOI: 10.3389/fcimb.2020.00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cyclosporiasis is caused by the coccidian parasite Cyclospora cayetanensis and is associated with large and complex food-borne outbreaks worldwide. Associated symptoms include severe watery diarrhea, particularly in infants, and immune dysfunction. With the globalization of human food supply, the occurrence of cyclosporiasis has been increasing in both food growing and importing countries. As well as being a burden on the health of individual humans, cyclosporiasis is a global public health concern. Currently, no vaccine is available but early detection and treatment could result in a favorable clinical outcome. Clinical diagnosis is based on cardinal clinical symptoms and conventional laboratory methods, which usually involve microscopic examination of wet smears, staining tests, fluorescence microscopy, serological testing, or DNA testing for oocysts in the stool. Detection in the vehicle of infection, which can be fresh produce, water, or soil is helpful for case-linkage and source-tracking during cyclosporiasis outbreaks. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) can evidently cure C. cayetanensis infection. However, TMP-SMX is not suitable for patients having sulfonamide intolerance. In such case ciprofloxacin, although less effective than TMP-SMX, is a good option. Another drug of choice is nitazoxanide that can be used in the cases of sulfonamide intolerance and ciprofloxacin resistance. More epidemiological research investigating cyclosporiasis in humans should be conducted worldwide, to achieve a better understanding of its characteristics in this regard. It is also necessary to establish in vitro and/or in vivo protocols for cultivating C. cayetanensis, to facilitate the development of rapid, convenient, precise, and economical detection methods for diagnosis, as well as more effective tracing methods. This review focuses on the advances in clinical features, diagnosis, and therapeutic intervention of cyclosporiasis.
Collapse
Affiliation(s)
- Junqiang Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhaohui Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
25
|
Cyclospora cayetanensis infection in humans: biological characteristics, clinical features, epidemiology, detection method and treatment. Parasitology 2019; 147:160-170. [PMID: 31699163 DOI: 10.1017/s0031182019001471] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclospora cayetanensis, a coccidian parasite that causes protracted and relapsing gastroenteritis, has a short recorded history. At least 54 countries have documented C. cayetanensis infections and 13 of them have recorded cyclosporiasis outbreaks. Cyclospora cayetanensis infections are commonly reported in developing countries with low-socioeconomic levels or in endemic areas, although large outbreaks have also been documented in developed countries. The overall C. cayetanensis prevalence in humans worldwide is 3.55%. Among susceptible populations, the highest prevalence has been documented in immunocompetent individuals with diarrhea. Infections are markedly seasonal, occurring in the rainy season or summer. Cyclospora cayetanensis or Cyclospora-like organisms have also been detected in food, water, soil and some other animals. Detection methods based on oocyst morphology, staining and molecular testing have been developed. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) effectively cures C. cayetanensis infection, whereas ciprofloxacin is less effective than TMP-SMX, but is suitable for patients who cannot tolerate co-trimoxazole. Here, we review the biological characteristics, clinical features, epidemiology, detection methods and treatment of C. cayetanensis in humans, and assess some risk factors for infection with this pathogen.
Collapse
|
26
|
Almeria S, Cinar HN, Dubey JP. Cyclospora cayetanensis and Cyclosporiasis: An Update. Microorganisms 2019; 7:E317. [PMID: 31487898 PMCID: PMC6780905 DOI: 10.3390/microorganisms7090317] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal-oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients. Trimetoprim-sulfamethoxazole is the antibiotic of choice for the treatment of cyclosporiasis, but relapses may occur. Further research is needed to understand many unknown epidemiological aspects of this parasitic disease. Here, we summarize the biology, epidemiology, outbreaks, clinical symptoms, diagnosis, treatment, control and prevention of C. cayetanensis; additionally, we outline future research needs for this parasite.
Collapse
Affiliation(s)
- Sonia Almeria
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Hediye N Cinar
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Jitender P Dubey
- Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA.
| |
Collapse
|