1
|
Asfaw T, Metaferia Y, Weldehanna EG, Weldehanna DG. Bacterial pathogens and antimicrobial susceptibility in ocular infections: A study at Boru-Meda General Hospital, Dessie, Ethiopia. BMC Ophthalmol 2024; 24:342. [PMID: 39138386 PMCID: PMC11323621 DOI: 10.1186/s12886-024-03544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
INTRODUCTION The eye consists of both internal and external compartments. Several variables, including microbes, dust, and high temperatures can cause eye illnesses that can result in blindness. Bacterial eye infections continue to be a major cause of ocular morbidity and blindness, and their prevalence is periodically rising. The objective of the study was to detect bacterial pathogens and assess their susceptibility profiles to antibiotics in the ophthalmology unit of Boru-meda Hospital in Dessie, Ethiopia. METHODS A hospital-based cross-sectional study was conducted from February 1 to April 30, 2021, among 319 study participants with symptomatic ocular or peri-ocular infections who were enrolled using a consecutive sampling technique. After proper specimen collection, the specimen was immediately inoculated with chocolate, blood, and MacConkey agar. After pure colonies were obtained, they were identified using standard microbiological methods. The Kirby Bauer disk diffusion method was used to test antimicrobial susceptibility patterns, based on the guidelines of the Clinical and Laboratory Standards Institute. RESULTS The majority of participants developed conjunctivitis 126 (39.5%), followed by blepharitis 47 (14.73%), and dacryocystitis 45 (14.1%). Overall, 164 (51.4%) participants were culture positive, six (1.9%) participants had mixed bacterial isolates, giving a total of 170 bacterial isolates with an isolation rate of 53.3%. The predominant species was CoNS 47 (27.6%), followed by S. aureus 38 (22.4%) and Moraxella species 32 (18.8%). The overall Multi-Drug Resistance (MDR) rate was 62.9%, with 33 (44.6%) being gram-negative and 74 (77.1%) being gram-positive isolates. CONCLUSION Conjunctivitis was the dominant clinical case and CoNS, was the predominant isolate. A higher rate of MDR isolates, particularly gram-positive ones, was observed. Efficient peri-ocular or ocular bacterial infection surveillance, including microbiological laboratory data, is necessary for monitoring disease trends.
Collapse
Affiliation(s)
| | - Yeshi Metaferia
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | | | - Daniel Gebretsadik Weldehanna
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia.
| |
Collapse
|
2
|
Fletcher MA, Daigle D, Siapka M, Baay M, Hanquet G, del Carmen Morales G. Serotype distribution of invasive pneumococcal disease from countries of the WHO Africa, Americas, Eastern Mediterranean, South-East Asia, and Western Pacific regions: a systematic literature review from 2010 to 2021. Front Public Health 2024; 12:1402795. [PMID: 39050608 PMCID: PMC11266301 DOI: 10.3389/fpubh.2024.1402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Background Most publications on invasive pneumococcal disease (IPD) serotype distribution are from about 20 countries (Australia, Canada, China, European Union members, Japan, New Zealand, South Korea, and USA). Here, we reviewed the literature among underrepresented countries in the Americas (AMRO), Africa (AFRO), Eastern Mediterranean (EMRO), South-East Asia (SEARO), and Western Pacific (WPRO) WHO regions. Methods We performed a systematic review of the most recent IPD serotype surveillance publications (from 01/01/2010 to 31/12/2021, Medline/Embase) in those WHO regions. Selection criteria were delineated by contemporality, within-country geographical scope, and number of samples. Reported serotype distributions for each country were stratified by age group, pneumococcal conjugate vaccine (PCV) serotype category (considering undifferentiated serotypes), and PCV program period (pre-PCV, intermediate, or PCVhv [higher valency PCV formulation]). Pre-PCV period pooled data estimated PCV serotype category distribution by age group across WHO regions, while for the PCVhv period, country-level dataset tables were prepared. Results Of 2,793 publications screened, 107 were included (58 pediatric, 11 adult, 37 all ages, and one comprising every age group). One-third of eligible countries (51/135) published serotype distribution, ranging from 30 to 43% by WHO region. Considering number of samples per WHO region, a few countries prevailed: AMRO (Brazil), AFRO (South Africa, Malawi, and Burkina Faso), and WPRO (Taiwan). In the pre-PCV period, PCV13 formulation serotypes predominated: ranging from 74 to 85% in children and 58-86% in adults in the different WHO regions. The PCVhv period represented half of the most recent IPD surveillance by countries (26/51). Undifferentiated serotypes represented >20% of IPD from most countries (34/51). Conclusion Ubiquity of undifferentiated serotypes among the publications could constrain estimates of PCV program impact and of serotype coverage for newer PCVhv formulations; consequently, we recommend that countries favor techniques that identify serotypes specifically and, rather than reporting PCV formulation serotype distributions, provide serotype results individually. Systematic review registration The protocol has been prospectively registered at PROSPERO, identifier: CRD42021278501. https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=278501.
Collapse
Affiliation(s)
- Mark A. Fletcher
- Pfizer Vaccines Emerging Markets, Medical Affairs, Paris, France
| | - Derek Daigle
- Pfizer Vaccines Emerging Markets, Medical Affairs, New York, NY, United States
| | | | - Marc Baay
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium
| | | | | |
Collapse
|
3
|
Chen YY, Chi H, Liao WC, Li SW, Yang YC, Lin HC, Chang HP, Pan YJ, Chiang RL, Hsieh YC. Genomic analysis of penicillin-binding proteins and recombination events in an emerging amoxicillin- and meropenem-resistant PMEN3 (Spain 9V-3, ST156) variant in Taiwan and comparison with global descendants of this lineage. Microbiol Spectr 2023; 11:e0184023. [PMID: 37930013 PMCID: PMC10715136 DOI: 10.1128/spectrum.01840-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
From 2008 to 2020, the Taiwan National Notifiable Disease Surveillance System database demonstrated that the incidence of non-vaccine serotype 23A invasive pneumococcal disease (IPD) approximately doubled. In this study, 276 non-repetitive pneumococcal clinical isolates were collected from two medical centers in Taiwan between 2019 and 2021. Of these 267 pneumococci, 60 were serotype 23A. Among them, 50 (83%) of serotype 23A isolates belonged to the sequence type (ST) 166 variant of the Spain9V-3 clone. Pneumococcal 23A-ST166 isolates were collected to assess their evolutionary relationships using whole-genome sequencing. All 23A-ST166 isolates were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299, the newly identified PBP2x-299 in Taiwan. Transformation of the pbp1a, pbp2b, and pbp2x alleles into the β-lactam-susceptible R6 strain revealed that PBP2x-299 and PBP2b-11 increased the MIC of ceftriaxone and meropenem by 16-fold, respectively. Prediction analysis of recombination sites in PMEN3 descendants (23A-ST166 in Taiwan, 35B-ST156 in the United States, and 11A-ST838/ST6521 in Europe) showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displayed an evolutionary capacity for global dissemination and persistence, increasing IPD incidence, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases, and contributing to high antibiotic resistance. A clonal shift with a highly β-lactam-resistant non-vaccine serotype 23A, from ST338 to ST166, increased in Taiwan. ST166 is a single-locus variant of the Spain9V-3 clone, which is also called the PMEN3 lineage. All 23A-ST166 isolates, in this study, were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299. PBP2x-299 and PBP2b-11 contributed to the increasing MIC of ceftriaxone and meropenem, respectively. Prediction analysis of recombination sites in PMEN3 descendants showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displays the evolutionary capacity for dissemination, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases and contributing to high antibiotic resistance.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Hsin Chi
- Department of Medicine, MacKay Medicine College, New Taipei, Taiwan
- Department of Pediatrics, MacKay Children’s Hospital and MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Chao Liao
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Yu-Ching Yang
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Ho-Chen Lin
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Hsiao-Pei Chang
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ruei-Lin Chiang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
4
|
Li L, Ma J, Yu Z, Li M, Zhang W, Sun H. Epidemiological characteristics and antibiotic resistance mechanisms of Streptococcus pneumoniae: An updated review. Microbiol Res 2023; 266:127221. [DOI: 10.1016/j.micres.2022.127221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
|
5
|
Lee JT, Lin JW, Chen HM, Wang CY, Lu CY, Chang LY, Huang LM. Impact of pneumococcal conjugate vaccination on hospitalized childhood pneumonia in Taiwan. Pediatr Res 2022; 92:1161-1167. [PMID: 34937875 DOI: 10.1038/s41390-021-01772-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND A national 13-valent pneumococcal conjugate vaccine (PCV13) catch-up program among children aged 2-5 years in 2013, before routine infant immunization in 2015, successfully reduced serotype 19A-related invasive pneumococcal diseases in Taiwan. We aimed to investigate its impact on hospitalized childhood pneumonia. METHODS We analyzed the National Health Insurance Research Database, 2001-2017, for hospitalized children aged <18 years with the diagnoses of all-cause pneumonia, lobar/pneumococcal pneumonia, and pneumococcal parapneumonic diseases. The study period was divided into 2001-2005 (pre-PCV), 2006-2012 (private sectors), and 2013-2017 (universal PCV13 vaccination). RESULTS On pneumococcal parapneumonic diseases, the national PCV13 vaccination program was associated with an immediate decline in 2-4-year-old children and significant decreasing trends in all ages. The incidence rate ratios of 2016-2017/2011-2012 were 0.16 (95% confidence interval [CI], 0.06-0.40) and 0.18 (95% CI, 0.13-0.23) in children aged < 2 and 2-4 years, respectively. We observed an increase of lobar/pneumococcal pneumonia cases after an early decline. The intensive/invasive medical needs and the fatality of all-cause pneumonia decreased significantly in children of all ages. CONCLUSIONS Pneumococcal parapneumonic diseases and the disease burden of lobar/pneumococcal pneumonia and lower respiratory tract infections declined after the national PCV13 vaccination program. IMPACT The impact study of the PCV13 immunization program on childhood pneumonia in Asian countries remained limited. The unique PCV13 immunization program in Taiwan, catch-up before primary infantile series, reduced severe childhood pneumococcal pneumonia at 5 years post PCV13. The intensive and invasive medical needs and fatality of all-cause pneumonia decreased significantly in children of all ages. We observed an increase in lobar/pneumococcal pneumonia after an early decline.
Collapse
Affiliation(s)
- Jian-Te Lee
- National Taiwan University Hospital, Yunlin Branch, Yunlin, Taiwan
| | - Jou-Wei Lin
- National Taiwan University Hospital, Yunlin Branch, Yunlin, Taiwan
| | | | - Chen-Yu Wang
- National Taiwan University Hospital, Yunlin Branch, Yunlin, Taiwan
| | - Chun-Yi Lu
- National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Luan-Yin Chang
- National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Li-Min Huang
- National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Kawaguchiya M, Urushibara N, Aung MS, Kudo K, Ito M, Habadera S, Kobayashi N. Genetic characterization of penicillin-binding proteins of nonencapsulated Streptococcus pneumoniae in the postpneumococcal conjugate vaccine era in Japan. Int J Infect Dis 2022; 120:174-176. [PMID: 35470022 DOI: 10.1016/j.ijid.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES Nonencapsulated Streptococcus pneumoniae (NESp) is emerging after the introduction of pneumococcal conjugate vaccines (PCVs). This study aimed to elucidate the genetic characteristics of penicillin-binding proteins (PBPs; PBP1a, 2b, and 2x) associated with penicillin nonsusceptibility in emergent NESp. METHODS A total of 71 NESp isolates that were identified in our previous study during the PCV era in Japan (2011-2019) were analyzed for their amino acid sequences of transpeptidase domain in PBP 1a, 2b, and 2x. RESULTS Overall, we identified 21 different PBP profiles (1a-2b-2x), all of which represent novel PBP profiles. The dominant PBP profiles were 13-16-ne1 (32.4%, n = 23), ne1-16-ne2 (14.1%, n = 10), and 13-7-ne4 (7.0%, n = 5) (novel PBP type was numbered with "ne" denoting "nonencapsulated"), accounting for 53.5% of all isolates. All isolates with the PBP profiles 13-16-ne1 and 13-7-ne4 and those having PBP1a type-13 and -131, PBP2b type-7, -ne1, and -ne2 showed nonsusceptibility to penicillin. A high degree of genetic diversity was found in PBP2x, with most of them (81.7%) being new types. CONCLUSIONS Our current study identified the 21 novel PBP profiles and remarkable mutations in the PBPs, which may be potentially associated with penicillin nonsusceptibility in NESp.
Collapse
Affiliation(s)
- Mitsuyo Kawaguchiya
- Department of Hygiene, School of Medicine, Sapporo Medical University, S-1 W-17, Chuo-ku, Sapporo 060-8556, Japan.
| | - Noriko Urushibara
- Department of Hygiene, School of Medicine, Sapporo Medical University, S-1 W-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Meiji Soe Aung
- Department of Hygiene, School of Medicine, Sapporo Medical University, S-1 W-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Kenji Kudo
- Sapporo Clinical Laboratory, Inc., Sapporo, Japan
| | - Masahiko Ito
- Sapporo Clinical Laboratory, Inc., Sapporo, Japan
| | | | - Nobumichi Kobayashi
- Department of Hygiene, School of Medicine, Sapporo Medical University, S-1 W-17, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
7
|
Incidence rates, emerging serotypes and genotypes, and antimicrobial susceptibility of pneumococcal disease in Taiwan: A multi-center clinical microbiological study after PCV13 implementation. J Infect 2022; 84:788-794. [DOI: 10.1016/j.jinf.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/19/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
|
8
|
Varghese R, Basu S, Neeravi A, Pragasam A, Aravind V, Gupta R, Miraclin A, Ramaiah S, Anbarasu A, Veeraraghavan B. Emergence of Meropenem Resistance Among Cefotaxime Non-susceptible Streptococcus pneumoniae: Evidence and Challenges. Front Microbiol 2022; 12:810414. [PMID: 35185834 PMCID: PMC8853538 DOI: 10.3389/fmicb.2021.810414] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
The principal causative agent of acute bacterial meningitis (ABM) in children and the elderly is Streptococcus pneumoniae, with a widespread increase in penicillin resistance. Resistance is due to non-synonymous single-nucleotide polymorphisms (nsSNPs) that alter the penicillin-binding proteins (PBPs), the targets for all β-lactam drugs. Hence, resistance against one β-lactam antibiotic may positively select another. Since meropenem is an alternative to cefotaxime in meningeal infections, we aim to identify whether nsSNPs in the PBPs causing penicillin and cefotaxime resistance can decrease the pneumococcal susceptibility to meropenem. Comparison of the nsSNPs in the PBPs between the cefotaxime-resistant Indian (n = 33) and global isolates (n = 28) revealed that nsSNPs in PBP1A alone elevated meropenem minimal inhibitory concentrations (MICs) to 0.12 μg/ml, and nsSNPs in both PBP2X and 2B combined with PBP1A increases MIC to ≥ 0.25 μg/ml. Molecular docking confirmed the decrease in the PBP drug binding affinity due to the nsSNPs, thereby increasing the inhibition potential and the MIC values, leading to resistance. Structural dynamics and thermodynamic stability pattern in PBPs as a result of mutations further depicted that the accumulation of certain nsSNPs in the functional domains reduced the drug affinity without majorly affecting the overall stability of the proteins. Restricting meropenem usage and promoting combination therapy with antibiotics having non-PBPs as targets to treat cefotaxime non-susceptible S. pneumoniae meningitis can prevent the selection of β-lactam resistance.
Collapse
Affiliation(s)
- Rosemol Varghese
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Soumya Basu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | - V Aravind
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Richa Gupta
- Department of Respiratory Medicine, Christian Medical College, Vellore, India
| | - Angel Miraclin
- Department of Neurology, Christian Medical College, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | | |
Collapse
|
9
|
Li L, Zhou J, Li M, Yu Z, Gao K, Yang J, Cheng P, Yang J, Zhang W, Yu Z, Sun H. Comparative Genomic Analysis of Streptococcus pneumoniae Strains: Penicillin Non-susceptible Multi-drug-Resistant Serotype 19A Isolates. Curr Microbiol 2022; 79:49. [PMID: 34982234 DOI: 10.1007/s00284-021-02715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/11/2021] [Indexed: 11/03/2022]
Abstract
Streptococcus pneumoniae can cause several diseases including otitis media, sinusitis, pneumonia, sepsis and meningitis. The introduction of pneumococcal vaccines has changed the molecular epidemiological and antibiotic resistance profiles of related diseases. Analysis of molecular patterns and genome sequences of clinical strains may facilitate the identification of novel drug resistance mechanism. Three multidrug resistance 19A isolates were verified, serotyped and the complete genomes were sequenced combining the Pacific Biosciences and the Illumina Miseq platform. Genomic annotation revealed that similar central networks were found in the clinical isolates, and Mauve alignments indicated high similarity between different strains. The pan-genome analysis showed the shared and unique cluster in the strains. Mobile elements were predicted in the isolates including prophages and CRISPER systems, which may participate in the virulence and antibiotic resistance of the strains. The presence of 31 virulence factor genes was predicted from other pathogens for PRSP 19339 and 19343, while 30 for PRSP 19087. Meanwhile, 33 genes antibiotic resistance genes were predicted including antibiotic resistance genes, antibiotic-target genes and antibiotic biosynthesis genes. Further analysis of the antibiotic resistance genes revealed new mutations in the isolates. By comparative genomic analysis, we contributed to the understanding of resistance mechanism of the clinical isolates with other serotype strains, which could facilitate the concrete drug resistance mechanism study.
Collapse
Affiliation(s)
- Lifeng Li
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.,Departments of Neonatology, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Juanjuan Zhou
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Department of Laboratory Medicine, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Mingchao Li
- Departments of Neonatology, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zengyuan Yu
- Departments of Neonatology, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Kaijie Gao
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Department of Laboratory Medicine, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Junwen Yang
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Department of Laboratory Medicine, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ping Cheng
- Departments of Neonatology, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Junmei Yang
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Department of Laboratory Medicine, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Wancun Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Zhidan Yu
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Huiqing Sun
- Departments of Neonatology, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
10
|
Chen YY, Huang CT, Li SW, Pan YJ, Lin TL, Huang YY, Li TH, Yang YC, Gong YN, Hsieh YC. Bacterial factors required for Streptococcus pneumoniae coinfection with influenza A virus. J Biomed Sci 2021; 28:60. [PMID: 34452635 PMCID: PMC8395381 DOI: 10.1186/s12929-021-00756-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a common cause of post-influenza secondary bacterial infection, which results in excessive morbidity and mortality. Although 13-valent pneumococcal conjugate vaccine (PCV13) vaccination programs have decreased the incidence of pneumococcal pneumonia, PCV13 failed to prevent serotype 3 pneumococcal disease as effectively as other vaccine serotypes. We aimed to investigate the mechanisms underlying the co-pathogenesis of influenza virus and serotype 3 pneumococci. METHODS We carried out a genome-wide screening of a serotype 3 S. pneumoniae transposon insertion mutant library in a mouse model of coinfection with influenza A virus (IAV) to identify the bacterial factors required for this synergism. RESULTS Direct, high-throughput sequencing of transposon insertion sites identified 24 genes required for both coinfection and bacterial infection alone. Targeted deletion of the putative aminotransferase (PA) gene decreased bacterial growth, which was restored by supplementation with methionine. The bacterial burden in a coinfection with the PA gene deletion mutant and IAV in the lung was lower than that in a coinfection with wild-type pneumococcus and IAV, but was significantly higher than that in an infection with the PA gene deletion mutant alone. These data suggest that IAV infection alters host metabolism to benefit pneumococcal fitness and confer higher susceptibility to pneumococcal infection. We further demonstrated that bacterial growth was increased by supplementation with methionine or IAV-infected mouse lung homogenates. CONCLUSIONS The data indicates that modulation of host metabolism during IAV infection may serve as a potential therapeutic intervention against secondary bacterial infections caused by serotype 3 pneumococci during IAV outbreaks in the future.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Tai Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Yu Huang
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hsuan Li
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ching Yang
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, No. 5, Fuxing Street, Guishan District, Taoyuan City, 333, Taiwan.
| |
Collapse
|
11
|
Chien YC, Lee YL, Liu PY, Lu MC, Shao PL, Lu PL, Cheng SH, Lin CY, Wu TS, Yen MY, Wang LS, Liu CP, Lee WS, Shi ZY, Chen YS, Wang FD, Tseng SH, Chen YH, Sheng WH, Lee CM, Chen YH, Ko WC, Hsueh PR. National surveillance of antimicrobial susceptibilities to dalbavancin, telavancin, tedizolid, eravacycline, omadacycline and other comparator antibiotics and serotype distribution of invasive Streptococcus pneumoniae isolates in adults: results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) programme in 2017-2020. J Glob Antimicrob Resist 2021; 26:308-316. [PMID: 34289409 PMCID: PMC8437679 DOI: 10.1016/j.jgar.2021.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
Objectives The aim of this study was to investigate the trends in serotypes and in vitro antimicrobial susceptibility of Streptococcus pneumoniae causing adult invasive pneumococcal disease (IPD) to dalbavancin, telavancin, tedizolid, eravacycline, omadacycline and other comparator antibiotics from 2017–2020 following implementation of the 13-valent pneumococcal conjugate vaccine (PCV-13) and during the COVID-19 (coronavirus disease 2019) pandemic. Methods During the study period, 237 S. pneumoniae isolates were collected from non-duplicate patients, covering 15.0% of IPD cases in Taiwan. Antimicrobial susceptibility testing was performed using a Sensititre® system. A latex agglutination method (ImmuLex™ Pneumotest Kit) was used to determine serotypes. Results Susceptibility rates were high for vancomycin (100%), teicoplanin (100%) and linezolid (100%), followed by ceftaroline (non-meningitis) (98.3%), moxifloxacin (94.9%) and quinupristin/dalfopristin (89.9%). MIC50 and MIC90 values of dalbavancin, telavancin, tedizolid, eravacycline and omadacycline were generally low. Non-vaccine serotype 23A was the leading cause of IPD across the adult age range. Isolates of serotype 15B were slightly fewer than those of PCV-13 serotypes in patients aged ≥65 years. The overall case fatality rate was 15.2% (36/237) but was especially high for non-PCV-13 serotype 15B (21.4%; 3/14). Vaccine coverage was 44.7% for PCV-13 and 49.4% for the 23-valent pneumococcal polysaccharide vaccine (PPSV-23), but was 57% for both PCV-13 and PPSV-23. Conclusion The incidence of IPD was stationary after PCV-13 introduction and only dramatically decreased in the COVID-19 pandemic in 2020. The MIC50 and MIC90 values of dalbavancin, telavancin, tedizolid, eravacycline, omadacycline were generally low for S. pneumoniae causing adult IPD.
Collapse
Affiliation(s)
- Ying-Chun Chien
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, and Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Lan Shao
- Department of Pediatrics, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hsing Cheng
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, and School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ying Lin
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Muh-Yong Yen
- Division of Infectious Diseases, Taipei City Hospital, and National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Lih-Shinn Wang
- Division of Infectious Diseases, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan, and MacKay Medical College, New Taipei City, Taiwan
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, and Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhi-Yuan Shi
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Hui Tseng
- Center for Disease Control and Prevention, Ministry of Health and Welfare, Taiwan
| | - Yu-Hui Chen
- Infection Control Center, Chi Mei Hospital, Liouying, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Ming Lee
- Department of Internal Medicine, St Joseph's Hospital, Yunlin County, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yen-Hsu Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Po-Ren Hsueh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Tsai YT, Lee YL, Lu MC, Shao PL, Lu PL, Cheng SH, Ko WC, Lin CY, Wu TS, Yen MY, Wang LS, Liu CP, Lee WS, Shi ZY, Chen YS, Wang FD, Tseng SH, Lin CN, Chen YH, Sheng WH, Lee CM, Tang HJ, Lin CY, Chen YH, Hsueh PR. Nationwide surveillance of antimicrobial resistance in invasive isolates of Streptococcus pneumoniae in Taiwan from 2017 to 2019. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:215-224. [PMID: 34219043 DOI: 10.1016/j.jmii.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND/PURPOSE Streptococcus pneumoniae causes pneumonia and other invasive diseases, and is a leading cause of mortality in the elderly population. The present study aimed to provide current antimicrobial resistance and epidemiological profiles of S. pneumoniae infections in Taiwan. METHODS A total of 252 nonduplicate S. pneumoniae isolates were collected from patients admitted to 16 hospitals in Taiwan between January 2017 and December 2019, and were analyzed. The minimum inhibitory concentration of antibiotics was determined using the Vitek 2 automated system for antimicrobial susceptibility testing. Furthermore, epidemiological profiles of S. pneumoniae infections were analyzed. RESULTS Among the strains analyzed, 88% were recognized as invasive pneumococcal strains. According to the Clinical and Laboratory Standards Institute criteria for non-meningitis, the prevalence of penicillin-non-susceptible S. pneumoniae demonstrated a declining trend from 43.6% in 2017 to 17.2% in 2019. However, the rate of penicillin-non-susceptible S. pneumoniae was 85.7% based on the criteria for meningitis. Furthermore, the prevalence of ceftriaxone-non-susceptible S. pneumoniae was 62.7% based on the criteria for meningitis. Isolates demonstrated higher susceptibility toward doripenem and ertapenem than toward meropenem and imipenem. An increased rate of non-susceptibility toward levofloxacin was observed in southern Taiwan (15.1%) and elderly patients (≥65 years; 11.4%). Most isolates were susceptible to vancomycin and linezolid. CONCLUSION Empirical treatment with ceftriaxone monotherapy for pneumococcal meningitis should be carefully monitored owing to its high non-susceptibility rate. The susceptibility rates of most isolates to penicillin (used for treating non-meningitis pneumococcal diseases), carbapenems (ertapenem and doripenem), respiratory quinolones (moxifloxacin and levofloxacin), vancomycin, and linezolid suggested the potential of these antibiotics in treating pneumococcal diseases in Taiwan.
Collapse
Affiliation(s)
- Yu-Te Tsai
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Lan Shao
- Department of Pediatrics, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Po-Liang Lu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hsing Cheng
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan; School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Chi-Ying Lin
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Muh-Yong Yen
- Division of Infectious Diseases, Taipei City Hospital, and National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Lih-Shinn Wang
- Division of Infectious Diseases, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Medical College, New Taipei City, Taiwan
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhi-Yuan Shi
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Hui Tseng
- Center for Disease Control and Prevention, Ministry of Health and Welfare, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Taiwan; Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Hui Chen
- Infection Control Center, Chi Mei Hospital, Liouying, Taiwan
| | - Wang-Huei Sheng
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Ming Lee
- Department of Internal Medicine, St Joseph's Hospital, Yunlin County, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
13
|
Taniguchi T, Tsuha S, Shiiki S, Narita M. Point-of-care cerebrospinal fluid Gram stain for the management of acute meningitis in adults: a retrospective observational study. Ann Clin Microbiol Antimicrob 2020; 19:59. [PMID: 33287843 PMCID: PMC7722320 DOI: 10.1186/s12941-020-00404-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background Gram stain of cerebrospinal fluid (CSF) is widely used in the diagnosis of acute meningitis, however, it is often conducted in the laboratory, as only some hospitals have access to point-of-care Gram stain (PCGS). The purpose of this study was to demonstrate the clinical impact and utility of PCGS in diagnosing and treating both bacterial and aseptic meningitis in adults. Methods This was a hospital-based, retrospective observational study at a referral center in Okinawa, Japan. We reviewed the records of all patients aged 15 years or older who were admitted to the Division of Infectious Diseases between 1995 and 2015 and finally diagnosed with bacterial (n = 34) or aseptic meningitis (n = 97). For bacterial meningitis, we compared the treatments that were actually selected based on PCGS with simulated treatments that would have been based on the Japanese guidelines. For aseptic meningitis, we compared the rates of antibiotic use between real cases where PCGS was available and real cases where it was not. Results PCGS was the most precise predictor for differentiating between bacterial and aseptic meningitis (sensitivity 91.2%, specificity 98.9%), being superior in this regard to medical histories, vital signs and physical examinations, and laboratory data available in the emergency room (ER). In bacterial meningitis, PCGS reduced the frequency of meropenem use (1/34 = 3.0%) compared with simulated cases in which PCGS was not available (19/34 = 55.9%) (p< 0.001). In aseptic meningitis cases, the rate of antibiotic administration was lower when PCGS was used (38/97 = 39.2%) than when it was not (45/74 = 60.8%) (p = 0.006). Conclusions PCGS of CSF distinguishes between bacterial and aseptic meningitis more accurately than other predictors available in the ER. Patients with bacterial meningitis are more likely to receive narrower-spectrum antimicrobials when PCGS is used than when it is not. PCGS of CSF thus can potentially suppress the empiric use of antimicrobials for aseptic meningitis.
Collapse
Affiliation(s)
- Tomohiro Taniguchi
- Division of Infectious Diseases, Department of Internal Medicine, Okinawa Chubu Hospital, 281 Miyazato, Uruma, Okinawa, 904-2293, Japan. .,Division of General Internal Medicine and Infectious Diseases, Hiroshima Prefectural Hospital, 1-5-54 Ujinakanda, Minamiku, Hiroshima, 734-8530, Japan.
| | - Sanefumi Tsuha
- Division of Infectious Diseases, Department of Internal Medicine, Okinawa Chubu Hospital, 281 Miyazato, Uruma, Okinawa, 904-2293, Japan.,Division of General Internal Medicine and Infectious Diseases, Sakibana Hospital, 1-3-30 Nozomino, Izumi, Osaka, 594-1105, Japan
| | - Soichi Shiiki
- Division of Infectious Diseases, Department of Internal Medicine, Okinawa Chubu Hospital, 281 Miyazato, Uruma, Okinawa, 904-2293, Japan
| | - Masashi Narita
- Division of Infectious Diseases, Department of Internal Medicine, Okinawa Chubu Hospital, 281 Miyazato, Uruma, Okinawa, 904-2293, Japan
| |
Collapse
|