1
|
Lan Y, Rancu I, Chitwood MH, Sobkowiak B, Nyhan K, Lin HH, Wu CY, Mathema B, Brown TS, Colijn C, Warren JL, Cohen T. Integrating genomic and spatial analyses to describe tuberculosis transmission: a scoping review. THE LANCET. MICROBE 2025:101094. [PMID: 40228509 DOI: 10.1016/j.lanmic.2025.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 04/16/2025]
Abstract
Tuberculosis remains a leading cause of infection-related mortality, and efforts to reduce its incidence have been hindered by an incomplete understanding of local Mycobacterium tuberculosis transmission dynamics. Advances in pathogen sequencing and spatial analysis have created new opportunities to map M tuberculosis transmission patterns more precisely. In this scoping review, we searched for studies combining pathogen genetics and location data to analyse the spatial patterns of M tuberculosis transmission and identified 142 studies published between 1994 and 2024. Secular changes in genetic methods were observed, with genome sequencing approaches largely replacing lower-resolution genotyping methods since 2020. The included studies addressed four primary research questions: how are tuberculosis cases and M tuberculosis transmission clusters geographically distributed; do spatially concentrated M tuberculosis clusters exist, and where are these areas located; when spatial concentration occurs, what host, pathogen, or environmental factors contribute to these patterns; and do identifiable relationships exist between the spatial proximity of tuberculosis cases and the genetic similarity of the M tuberculosis isolates infecting these individuals? Collectively, in this Review, we examined the available study data, evaluated the analytical requirements for addressing these questions, and discussed opportunities and challenges for future research. We found that the integration of spatial and genomic data can inform a detailed understanding of local M tuberculosis transmission patterns, but improved study designs and new analytical methods to address gaps in sampling completeness and to integrate additional movement data are needed to fully realise the potential of these tools.
Collapse
Affiliation(s)
- Yu Lan
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - Isabel Rancu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Melanie H Chitwood
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Benjamin Sobkowiak
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Kate Nyhan
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Hsien-Ho Lin
- Institute of Epidemiology and Preventive Medicine, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Chieh-Yin Wu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Barun Mathema
- Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Tyler S Brown
- Section of Infectious Diseases, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Joshua L Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
2
|
Thipkrua N, Disrathakit A, Chongsuvivatwong V, Mahasirimongkol S, Ruangchai W, Palittapongarnpim P, Chaiprasert A, Pungrassami P, Kamolwat P, Suthum K, Tossapornpong K, Sriplung H. A large geno-spatial cluster of multi-drug resistant tuberculosis outbreak in a western district of Thailand. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 128:105715. [PMID: 39800207 DOI: 10.1016/j.meegid.2025.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/01/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The growing issue of drug resistance, particularly multidrug-resistant TB (MDR-TB), has exacerbated this problem. The rise of drug resistance TB is a severe global health concern. In Thailand, a persistent community outbreak of primary MDR-TB has been confirmed in the Tha Maka district of Kanchanaburi province, with an increasing prevalence of MDR-TB among newly diagnosed pulmonary tuberculosis cases. It was the first site in Thailand where a cluster of MDR-TB, caused by the Asian African 3 Modern Beijing strain, and XDR-TB, caused by L2.1, outbreaks were reported. This study aims to assess the MDR-TB outbreak in detail by characterizing the genomic profiles of the prevalent MDR-TB strains and examining their geographical distribution within the affected district. Through whole-genome sequencing (WGS) and bioinformatic analysis of 188 MTB isolates, the study identified three major phylogenetic lineages: the East Asian lineage (L2, 92 %), the Indo-Oceanic lineage (L1, 5.9 %), and the Euro-American lineage (L4, 2.1 %). The detailed sub-lineage distribution offers valuable insights into the predominant genetic clusters of M. tuberculosis within the sampled population. Notably, Lineage 2, specifically the L2.2.M3 sub-lineage, stood out as the dominant strain of MDR-TB, accounting for 77.7 % of the isolates. This finding underscores the significant prevalence of the L2.2.M3 sub-lineage and its potential role in the local transmission dynamics of tuberculosis. The high proportion and genetic homogeneity of the L2.2.M3 cluster among MDR-TB patients may indicate the strain's adaptation for more effective transmission within the Thai population. The increasing prevalence of this pathogenic strain could significantly impact tuberculosis control programs. Early diagnosis and contact tracing with chemotherapeutic preventive therapy for MDR-TB will be essential in inhibiting the spread and reactivation of these strains. Additionally, further studies are needed to prospectively identify transmission routes through contact tracing and real-time genotypic methods. It will also be crucial to ensure that future vaccines and/or recommended chemoprophylaxis therapy for MDR-TB will provide protection against these emerging strains.
Collapse
Affiliation(s)
- Natthakan Thipkrua
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand; Office of Prevention and Control Disease region 5, Ratchaburi, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand.
| | - Areeya Disrathakit
- Medical Genetics Center, Department of Medical Sciences, Ministry of Public Health, Bangkok, Thailand.
| | | | | | - Wuthiwat Ruangchai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Angkana Chaiprasert
- Office for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Petchawan Pungrassami
- Division of Tuberculosis, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand.
| | - Phalin Kamolwat
- Division of Tuberculosis, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand.
| | - Krairerk Suthum
- Office of Prevention and Control Disease region 5, Ratchaburi, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand.
| | | | - Hutcha Sriplung
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand.
| |
Collapse
|
3
|
Gao W, Wang W, Li J, Gao Y, Zhang S, Lei H, He L, Li T, He J. Drug-resistance characteristics, genetic diversity, and transmission dynamics of multidrug-resistant or rifampicin-resistant Mycobacterium tuberculosis from 2019 to 2021 in Sichuan, China. Antimicrob Resist Infect Control 2024; 13:125. [PMID: 39396971 PMCID: PMC11472436 DOI: 10.1186/s13756-024-01482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Multidrug- or rifampicin-resistant tuberculosis (TB; MDR/RR-TB) is a significant public health threat. However, the mechanisms involved in its transmission in Sichuan, China are unclear. To provide a scientific basis for MDR/RR-TB control and prevention, we investigated the drug-resistance characteristics, genetic diversity, and transmission dynamics and analyzed the demographic and clinical characteristics of patients to identify risk factors for the acquisition of MDR/RR-TB in Sichuan, Western China. METHODS Whole-genome sequencing was performed using a sample comprised of all MDR/RR-TB strains isolated from patients with pulmonary TB (≥ 15 years) at the 22 surveillance sites in Sichuan province between January 2019 and December 2021, to analyze genotypic drug resistance and genetic diversity. Moreover, we performed statistical analyses of the epidemiological characteristics and risk factors associated with the transmission dynamics of MDR/RR-TB. RESULTS The final analysis included 278 MDR/RR TB strains. Lineage 2.2, the major sub-lineage, accounted for 82.01% (228/278) of isolates, followed by lineage 4.5 (9.72%, 27/278), lineage 4.4 (6.83%, 19/278), and lineage 4.2 (1.44%, 4/278). The drug resistance rates, ranging from high to low, were as follows: isoniazid (229 [82.37%]), streptomycin (177 [63.67%]), ethambutol (144 [51.80%]), pyrazinamide (PZA, 119 [42.81%]), fluoroquinolones (FQs, 93 [33.45%]). Further, the clofazimine, bedaquiline, and delamanid resistance rates were 2.88, 2.88, and 1.04%, respectively. The gene composition cluster rate was 32.37% (90/278). In addition, 83.81% (233/278) of MDR/RR-TB cases were determined to be likely caused by transmission. Finally, patients infected with lineage two strains and strains with the KatG S315T amino acid substitution presented a higher risk of MDR/RR-TB transmission. CONCLUSION Transmission plays a significant role in the MDR/RR-TB burden in Sichuan province, and lineage 2 strains and strains harboring KatG S315T have a high probability of transmission. Further, high levels of FQ and PZA drug resistance suggest an urgent need for drug susceptibility testing prior to designing therapeutic regimens. New anti-TB drugs need to be used standardly and TB strains should be regularly monitored for resistance to these drugs.
Collapse
Affiliation(s)
- Wenfeng Gao
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Weina Wang
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Jing Li
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Yuan Gao
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Shu Zhang
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Hui Lei
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Lu He
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Ting Li
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Jinge He
- Sichuan Center for Disease Control and Prevention, Institute for Tuberculosis Control and Prevention, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
He W, Tan Y, Song Z, Liu B, Xia H, Zheng H, Liu D, Liu C, He P, Wang Y, Zhao Z, Ou X, Wang S, Guo J, Zhao Y. Transmission dynamics of tuberculosis in a high-burden area of China: An 8-year population-based study using whole genome sequencing. Int J Infect Dis 2024; 147:107210. [PMID: 39151786 DOI: 10.1016/j.ijid.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVES This study investigated the transmission patterns of tuberculosis (TB) and its associated risk factors in Hunan province to inform the development of prevention and control strategies in the region. METHODS An 8-year retrospective population-based genomic epidemiological study was conducted. Genomic clusters were defined using distance thresholds of 12-single-nucletide-polymorphisms. Risk factors associated with TB transmission were analyzed using logistic regression model. Kernel Density analysis was used to locate hotspots where transmission occurred. RESULTS Among 2649 TB cases included in this study, 275 clusters were identified, with an overall clustering rate of 24.7% (654/2649). Nearly 95% (620/654) of clustered strains were isolated from the same county. Of the 275 clusters, 23 (8.4%, 23/275) had differences in drug-resistant profiles, with FQs resistance mutations occurring most frequently (52.2%, 12/23). Multivariate analysis identified male TB patients, those aged 30-60 years, ethnic minorities, nonfarmers, retreated TB patients, and individuals infected with MDR/RR-TB as independent risk factors for TB transmission (P < 0.05). Kernel density analysis showed that among the 5 drug-resistant surveillance sites, Leiyang had the highest clustering rate, followed by Yongshun, Qidong, Hecheng, and Taojiang. CONCLUSION Recent transmission in the region is predominantly occurring within counties. The risk factors related to TB transmission and the hotspots where transmission occurs can provide a scientific basis for the formulation of targeted TB prevention and control strategies.
Collapse
Affiliation(s)
- Wencong He
- Department of Clinical Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yunhong Tan
- Hunan Provincial Chest Hospital, Tuberculosis Control Institution of Hunan Province, Changsha, Hunan, China
| | - Zexuan Song
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Binbin Liu
- Hunan Provincial Chest Hospital, Tuberculosis Control Institution of Hunan Province, Changsha, Hunan, China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huiwen Zheng
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Dongxin Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chunfa Liu
- Department of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ping He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiting Wang
- Beijing Centers for Disease Control and Prevention, Beijing, China
| | - Zeyuan Zhao
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xichao Ou
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shengfen Wang
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingwei Guo
- Hunan Provincial Chest Hospital, Tuberculosis Control Institution of Hunan Province, Changsha, Hunan, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
5
|
Hinwan Y, Chareonsudjai P, Reungsang P, Kraiklang R, Chetchotisakd P, Chareonsudjai S, Sirichoat A, Nithichanon A, Wonglakorn L, Sermswan RW, Blair D, Faksri K. Analysis of fine-scale phylogeny of Burkholderia pseudomallei in relation to regional geography and drug susceptibility in Thailand. Sci Rep 2024; 14:19961. [PMID: 39198570 PMCID: PMC11358268 DOI: 10.1038/s41598-024-70558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Melioidosis caused by Burkholderia pseudomallei (Bp) is a public health threat. Genomic-epidemiology research on this deadly disease is scarce. We investigated whole-genome sequences of Bp isolates in relation to environmental source and drug susceptibility. In total, 563 Bp isolates were collected from 11 Northeast Thai provinces during the period 2004-2021. Patients (n = 530 isolates), infected animals (n = 8), and environmental sources (n = 25) provided samples. Phylogenetic analysis revealed genetic diversity among the Bp isolates, including numerous well-supported clusters of varying sizes. Through in-depth analysis of 38 monophyletic clades (MCs), we found eleven associated with province of origin (p-value < 0.001). Closely related clusters (CRCs) within MCs resembled MLST-identified "sequence types" (STs). We found 102 known and 52 novel STs. ST-70 was the most prevalent in this area (n = 78; 13.85%). Sample type (human/environmental) and sampling time intervals were not correlated with genetic distance among clonal Bp isolates. Some members of 12 CRCs had acquired resistance to co-trimoxazole and one against amoxicillin-clavulanic acid. Within Northeast Thailand, there is an association between Bp genotype and geographical origin.
Collapse
Affiliation(s)
- Yothin Hinwan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Pisit Chareonsudjai
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Pipat Reungsang
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
- Department of Computer Science, College of Computing, Khon Kaen University, Khon Kaen, Thailand
| | - Ratthaphol Kraiklang
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
- Faculty of Public Health, Nutrition for Health Program, Khon Kaen University, Khon Kaen, Thailand
| | - Ploenchan Chetchotisakd
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Auttawit Sirichoat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Arnone Nithichanon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Lumyai Wonglakorn
- Clinical Laboratory Section, Faculty of Medicine, Srinagarind Hospital, Khon Kaen University, Khon Kaen, Thailand
| | - Rasana W Sermswan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - David Blair
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
6
|
Zhu J, Haanpera M, Mentula S, Vapalahti O, Soini H, Sironen T, Kant R, Zakham F. Transmission of drug-resistant Mycobacterium tuberculosis isolates between Finnish- and foreign-born cases, 2014-2021: A molecular epidemiological study. Tuberculosis (Edinb) 2024; 146:102492. [PMID: 38364331 DOI: 10.1016/j.tube.2024.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Data on the molecular epidemiology and transmission of drug-resistant Mycobacterium tuberculosis (MTB) in low-incidence settings with immigration from high-incidence settings is limited. METHOD We included 115 drug-resistant (DR) MTB isolates with whole-genome sequencing data isolated in Finland between 2014 and 2021. Potential transmission clusters were identified using a threshold of 12 single-nucleotide polymorphisms (SNPs). Highly related clusters were identified using a threshold of 5 SNPs. RESULT Of the 115 DR MTB isolates, 31 (27.0%) isolates were from Finnish-born cases and 84 (73.0%) were from foreign-born cases. The proportion of multidrug-resistant (MDR) MTB isolates (30/84, 35.7%) from foreign-born cases was higher than that of MDR MTB isolates from Finnish-born cases (8/31, 25.8%). Lineage 2 (40/115, 34.8%) and lineage 4 (40/115, 34.8%) were the most prevalent lineages. A total of 25 (21.7%) isolates were classified into eight potential transmission clusters (≤12 SNPs). Furthermore, five highly related clusters (≤5 SNPs) were identified, including three DR MTB isolates from Finnish-born cases and 14 DR isolates from foreign-born cases. CONCLUSION The risk of DR MTB transmission between Finnish- and foreign-born persons is not negligible. Further research on clustering analysis in drug-susceptible MTB is worth to inform tuberculosis management and control in low-incidence settings with increasing immigration.
Collapse
Affiliation(s)
- Jiahui Zhu
- Department of Virology, University of Helsinki, Helsinki, Finland.
| | - Marjo Haanpera
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Silja Mentula
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki, Finland; Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hanna Soini
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Helsinki, Finland; Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, University of Helsinki, Helsinki, Finland; Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland; Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdynia, Poland
| | - Fathiah Zakham
- Department of Virology, University of Helsinki, Helsinki, Finland; Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Li Y, Li Y, Wang T, Li Y, Tao N, Kong X, Zhang Y, Han Q, Liu Y, Li H. Multidrug-resistant Mycobacterium tuberculosis transmission in Shandong, China. Medicine (Baltimore) 2024; 103:e37617. [PMID: 38518003 PMCID: PMC10956945 DOI: 10.1097/md.0000000000037617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/23/2024] [Indexed: 03/24/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) has imposed a significant economic and health burden worldwide, notably in China. Using whole genome sequence, we sought to understand the mutation and transmission of MDR-TB in Shandong. A retrospective study of patients diagnosed with pulmonary tuberculosis in Shandong from 2009 to 2018 was conducted. To explore transmission patterns, we performed whole genome sequencing on MDR-TB isolates, identified genomic clusters, and assessed the drug resistance of TB isolates. Our study analyzed 167 isolates of MDR-TB, finding that 100 were clustered. The predominant lineage among MDR-TB isolates was lineage 2, specifically with a notable 88.6% belonging to lineage 2.2.1. Lineage 4 constituted a smaller proportion, accounting for 4.2% of the isolates. We discovered that Shandong has a significant clustering percentage for MDR-TB, with Jining having the highest percentage among all Shandong cities. The clustering percentages of MDR-TB, pre-extensively drug-resistant tuberculosis, and extensively drug-resistant tuberculosis were 59.9%, 66.0%, and 71.4%, respectively, and the clustering percentages increased with the expansion of the anti-TB spectrum. Isolates from genomic clusters 1 and 3 belonged to lineage 2.2.1 and showed signs of cross-regional transmission. The distribution of rrs A1401G and katG S315T mutations in lineage 2.2.1 and 2.2.2 strains differed significantly (P < .05). MDR-TB isolates with rpoB I480V, embA-12C > T, and rrs A1401G mutations showed a higher likelihood of clustering (P < .05). Our findings indicate a significant problem of local transmission of MDR-TB in Shandong, China. Beijing lineage isolates and some drug-resistant mutations account for the MDR-TB transmission in Shandong.
Collapse
Affiliation(s)
- Yingying Li
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifan Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tingting Wang
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yameng Li
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglong Kong
- Shandong Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yuzhen Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qilin Han
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huaichen Li
- Department of Chinese Medicine Integrated with Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
8
|
Prommi A, Wongjarit K, Petsong S, Somsukpiroh U, Faksri K, Kawkitinarong K, Payungporn S, Rotcheewaphan S. Co-resistance to isoniazid and second-line anti-tuberculosis drugs in isoniazid-resistant tuberculosis at a tertiary care hospital in Thailand. Microbiol Spectr 2024; 12:e0346223. [PMID: 38323824 PMCID: PMC10913473 DOI: 10.1128/spectrum.03462-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Isoniazid-resistant tuberculosis (Hr-TB) is an important drug-resistant tuberculosis (TB). In addition to rifampicin, resistance to other medications for Hr-TB can impact the course of treatment; however, there are currently limited data in the literature. In this study, the drug susceptibility profiles of Hr-TB treatment and resistance-conferring mutations were investigated for Hr-TB clinical isolates from Thailand. Phenotypic drug susceptibility testing (pDST) and genotypic drug susceptibility testing (gDST) were retrospectively and prospectively investigated using the Mycobacterium Growth Indicator Tube (MGIT), the broth microdilution (BMD) method, and whole-genome sequencing (WGS)-based gDST. The prevalence of Hr-TB cases was 11.2% among patients with TB. Most Hr-TB cases (89.5%) were newly diagnosed patients with TB. In the pDST analysis, approximately 55.6% (60/108) of the tested Hr-TB clinical isolates exhibited high-level isoniazid resistance. In addition, the Hr-TB clinical isolates presented co-resistance to ethambutol (3/161, 1.9%), levofloxacin (2/96, 2.1%), and pyrazinamide (24/118, 20.3%). In 56 Hr-TB clinical isolates, WGS-based gDST predicted resistance to isoniazid [katG S315T (48.2%) and fabG1 c-15t (26.8%)], rifampicin [rpoB L430P and rpoB L452P (5.4%)], and fluoroquinolones [gyrA D94G (1.8%)], but no mutation for ethambutol was detected. The categorical agreement for the detection of resistance to isoniazid, rifampicin, ethambutol, and levofloxacin between WGS-based gDST and the MGIT or the BMD method ranged from 80.4% to 98.2% or 82.1% to 100%, respectively. pDST and gDST demonstrated a low co-resistance rate between isoniazid and second-line TB drugs in Hr-TB clinical isolates. IMPORTANCE The prevalence of isoniazid-resistant tuberculosis (Hr-TB) is the highest among other types of drug-resistant tuberculosis. Currently, the World Health Organization (WHO) guidelines recommend the treatment of Hr-TB with rifampicin, ethambutol, pyrazinamide, and levofloxacin for 6 months. The susceptibility profiles of Hr-TB clinical isolates, especially when they are co-resistant to second-line drugs, are critical in the selection of the appropriate treatment regimen to prevent treatment failure. This study highlights the susceptibility profiles of the WHO-recommended treatment regimen in Hr-TB clinical isolates from a tertiary care hospital in Thailand and the concordance and importance of using the phenotypic drug susceptibility testing or genotypic drug susceptibility testing for accurate and comprehensive interpretation of results.
Collapse
Affiliation(s)
- Ajala Prommi
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanphai Wongjarit
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthidee Petsong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ubonwan Somsukpiroh
- Department of Microbiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand
| | - Kamon Kawkitinarong
- Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suwatchareeporn Rotcheewaphan
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Wang J, Yu C, Xu Y, Chen Z, Qiu W, Chen S, Pei H, Zhong Y. Analysis of Drug-Resistance Characteristics and Genetic Diversity of Multidrug-Resistant Tuberculosis Based on Whole-Genome Sequencing on the Hainan Island, China. Infect Drug Resist 2023; 16:5783-5798. [PMID: 37692467 PMCID: PMC10487742 DOI: 10.2147/idr.s423955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose Given the high burden of Tuberculosis (TB) in China, the prevalence of multidrug-resistant tuberculosis (MDR-TB) is significant. Whole-genome sequencing (WGS) of Mycobacterium tuberculosis (MTB) enables the identification of lineages, drug-resistant mutations, and transmission patterns, offering valuable insights for TB control, clinical diagnosis, and treatment. Methods We collected 202 MDR-MTB strains from 3519 suspected pulmonary TB patients treated at The Second Affiliated Hospital of Hainan Medical University between July 2019 and June 2021. Proportional drug-susceptibility testing was performed using 8 common anti-tuberculosis drugs. Subsequently, the genotypic drug resistance and genetic characteristics were analyzed by the WGS. Results Lineages are identified by TB-profiler revealed 202 MDR-MTB strains, showcasing three predominant lineages, with lineage 2 being the most prevalent. Close genomic relatedness analysis and evidence of MTB transmission led to the formation of 15 clusters comprising 42 isolates, resulting in a clustering rate of 20.8%. Novelty, lineage 2.1 (non-Beijing) accounted for 27.2% of the MDR-MTB strains, which is rare in China and Neighboring countries. Regarding first-line anti-TB drugs, genes associated with rifampicin resistance, primarily the rpoB gene, were detected in 200 strains (99.0%). Genes conferring resistance to isoniazid, ethambutol, and streptomycin were identified in 191 (94.5%), 125 (61.9%), and 100 (49.5%) strains, respectively. Among the second-line drugs, 97 (48.0%) strains exhibited genes encoding resistance to fluoroquinolones. Comparing the results to phenotypic drug susceptibility-based testing, the sensitivity of WGS for detecting resistance to each of the six drugs (rifampicin, isoniazid, ethambutol, ofloxacin, kanamycin, capreomycin) was 90% or higher. With the exception of ethambutol, the specificity of WGS prediction for the remaining drugs exceeded 88%. Conclusion Our study provides crucial insights into genetic mutation types, genetic diversity, and transmission of MDR-MTB on Hainan Island, serving as a significant reference for MDR-MTB surveillance and clinical decision-making.
Collapse
Affiliation(s)
- Jieying Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Chunchun Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Yuni Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Zhuolin Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Wenhua Qiu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Shaowen Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| | - Yeteng Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, People’s Republic of China
| |
Collapse
|
10
|
Liang D, Song Z, Liang X, Qin H, Huang L, Ye J, Lan R, Luo D, Zhao Y, Lin M. Whole Genomic Analysis Revealed High Genetic Diversity and Drug-Resistant Characteristics of Mycobacterium tuberculosis in Guangxi, China. Infect Drug Resist 2023; 16:5021-5031. [PMID: 37554542 PMCID: PMC10405913 DOI: 10.2147/idr.s410828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 08/10/2023] Open
Abstract
Background Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a major public health issue in China. Nevertheless, the prevalence and drug resistance characteristics of isolates vary in different regions and provinces. In this study, we investigated the population structure, transmission dynamics and drug-resistant profiles of Mtb in Guangxi, located on the border of China. Methods From February 2016 to April 2017, 462 clinical M. tuberculosis isolates were selected from 5 locations in Guangxi. Drug-susceptibility testing was performed using 6 common anti-tuberculosis drugs. The genotypic drug resistance and transmission dynamics were analyzed by the whole genome sequence. Results Our data showed that the Mtb in Guangxi has high genetic diversity including Lineage 1 to Lineage 4, and mostly belong to Lineage 2 and Lineage 4. Novelty, 9.6% of Lineage 2 isolates were proto-Beijing genotype (L2.1), which is rare in China. About 12.6% of isolates were phylogenetically clustered and formed into 28 transmission clusters. We observed that the isolates with the high resistant rate of isoniazid (INH, 21.2%), followed by rifampicin (RIF, 13.2%), and 6.7%, 12.1%, 6.7% and 1.9% isolates were resistant to ethambutol (EMB), streptomycin (SM), ofloxacin (OFL) and kanamycin (KAN), respectively. Among these, 6.5% and 3.3% of isolates belong to MDR-TB and Pre-XDR, respectively, with a high drug-resistant burden. Genetic analysis identified the most frequently encountered mutations of INH, RIF, EMB, SM, OFL and KAN were katG_Ser315Thr (62.2%), rpoB_Ser450Leu (42.6%), embB_Met306Vol (45.2%), rpsL_Lys43Arg (53.6%), gyrA_Asp94Gly (29.0%) and rrs_A1401G (66.7%), respectively. Additionally, we discovered that isolates from border cities are more likely to be drug-resistant than isolates from non-border cities. Conclusion Our findings provide a deep analysis of the genomic population characteristics and drug-resistant of M. tuberculosis in Guangxi, which could contribute to developing effective TB prevention and control strategies.
Collapse
Affiliation(s)
- Dabin Liang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| | - Zexuan Song
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiaoyan Liang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| | - Huifang Qin
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| | - Liwen Huang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| | - Jing Ye
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| | - Rushu Lan
- Department of Clinical Laboratory, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People’s Republic of China
| | - Dan Luo
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Mei Lin
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
11
|
Chaiyachat P, Kaewseekhao B, Chaiprasert A, Kamolwat P, Nonghanphithak D, Phetcharaburanin J, Sirichoat A, Ong RTH, Faksri K. Metabolomic analysis of Mycobacterium tuberculosis reveals metabolic profiles for identification of drug-resistant tuberculosis. Sci Rep 2023; 13:8655. [PMID: 37244948 DOI: 10.1038/s41598-023-35882-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/25/2023] [Indexed: 05/29/2023] Open
Abstract
The detection of pre-extensively (pre-XDR) and extensively drug-resistant tuberculosis (XDR-TB) is challenging. Drug-susceptibility tests for some anti-TB drugs, especially ethambutol (ETH) and ethionamide (ETO), are problematic due to overlapping thresholds to differentiate between susceptible and resistant phenotypes. We aimed to identify possible metabolomic markers to detect Mycobacterium tuberculosis (Mtb) strains causing pre-XDR and XDR-TB. The metabolic patterns of ETH- and ETO-resistant Mtb isolates were also investigated. Metabolomics of 150 Mtb isolates (54 pre-XDR, 63 XDR-TB and 33 pan-susceptible; pan-S) were investigated. Metabolomics of ETH and ETO phenotypically resistant subgroups were analyzed using UHPLC-ESI-QTOF-MS/MS. Orthogonal partial least-squares discriminant analysis revealed distinct separation in all pairwise comparisons among groups. Two metabolites (meso-hydroxyheme and itaconic anhydride) were able to differentiate the pre-XDR and XDR-TB groups from the pan-S group with 100% sensitivity and 100% specificity. In comparisons of the ETH and ETO phenotypically resistant subsets, sets of increased (ETH = 15, ETO = 7) and decreased (ETH = 1, ETO = 6) metabolites specific for the resistance phenotype of each drug were found. We demonstrated the potential for metabolomics of Mtb to differentiate among types of DR-TB as well as between isolates that were phenotypically resistant to ETO and ETH. Thus, metabolomics might be further applied for DR-TB diagnosis and patient management.
Collapse
Affiliation(s)
- Pratchakan Chaiyachat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Benjawan Kaewseekhao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Angkana Chaiprasert
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phalin Kamolwat
- Bureau of Tuberculosis, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Ditthawat Nonghanphithak
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Auttawit Sirichoat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
12
|
Li M, Lu L, Guo M, Jiang Q, Xia L, Jiang Y, Zhang S, Qiu Y, Yang C, Chen Y, Hong J, Guo X, Takiff H, Shen X, Chen C, Gao Q. Discrepancy in the transmissibility of multidrug-resistant Mycobacterium tuberculosis in urban and rural areas in China. Emerg Microbes Infect 2023; 12:2192301. [PMID: 36924242 DOI: 10.1080/22221751.2023.2192301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The fitness of multidrug-resistant tuberculosis (MDR-TB) is thought to be an important determinant of a strain's ability to be transmitted and cause outbreaks. Studies in the laboratory have demonstrated that MDR-TB strains have reduced fitness but the relative transmissibility of MDR-TB versus drug-susceptible (DS) TB strains in human populations remains unresolved. We used data on genomic clustering from our previous molecular epidemiological study in Songjiang (2011-2020) and Wusheng (2009-2020), China, to compare the relative transmissibility of MDR-TB versus DS-TB. Genomic clusters were defined with a threshold distance of 12-single-nucleotide-polymorphisms and the risk for MDR-TB clustering was analyzed by logistic regression. In total, 2212 culture-positive pulmonary TB patients were enrolled in Songjiang and 1289 in Wusheng. The clustering rates of MDR-TB and DS-TB strains were 19.4% (20/103) and 26.3% (509/1936), respectively in Songjiang, and 43.9% (29/66) and 26.0% (293/1128) in Wusheng. The risk of MDR-TB clustering was 2.34 (95% CI 1.38-3.94) times higher than DS-TB clustering in Wusheng and 0.64 (95% CI 0.38-1.06) times lower in Songjiang. Neither lineage 2, compensatory mutations nor rpoB S450L were significantly associated with MDR-TB transmission, and katG S315T increased MDR-TB transmission only in Wusheng (OR 5.28, 95% CI 1.42-19.21). MDR-TB was not more transmissible than DS-TB in either Songjiang or Wusheng. It appears that the different transmissibility of MDR-TB in Songjiang and Wusheng is likely due to differences in the quality of the local TB control programs. These results suggest that the most effective way to control MDR-TB is by improving local TB control programs.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.,National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Liping Lu
- Department of Tuberculosis Control, Songjiang District Center for Disease Control and Prevention, Shanghai, China
| | - Mingcheng Guo
- Department of Tuberculosis Control, Wusheng County Center for Disease Control and Prevention, Guang'an, China
| | - Qi Jiang
- School of Public Health, Renmin Hospital Public Health Research Institute, Wuhan University, Wuhan, China
| | - Lan Xia
- Institution for Tuberculosis Prevention and Control, Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| | - Yuan Jiang
- Tuberculosis Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Shu Zhang
- Institution for Tuberculosis Prevention and Control, Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| | - Yong Qiu
- Department of Tuberculosis Control, Wusheng County Center for Disease Control and Prevention, Guang'an, China
| | - Chongguang Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yiwang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.,National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Jianjun Hong
- Department of Tuberculosis Control, Songjiang District Center for Disease Control and Prevention, Shanghai, China
| | - Xiaoqin Guo
- Department of Tuberculosis Control, Songjiang District Center for Disease Control and Prevention, Shanghai, China
| | - Howard Takiff
- Laboratorio de Genética Molecular, CMBC, IVIC, Caracas, Venezuela
| | - Xin Shen
- Tuberculosis Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Chuang Chen
- Institution for Tuberculosis Prevention and Control, Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.,National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Rudeeaneksin J, Phetsuksiri B, Nakajima C, Fukushima Y, Suthachai W, Tipkrua N, Suthum K, Jekloh N, Bunchoo S, Srisungngam S, Klayut W, Hamada S, Suzuki Y. Molecular Characterization of Mutations in Isoniazid- and Rifampicin-Resistant Mycobacterium tuberculosis Isolated in Thailand. Jpn J Infect Dis 2023; 76:39-45. [PMID: 36047179 DOI: 10.7883/yoken.jjid.2022.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The control of drug-resistant tuberculosis (TB) is a major challenge. The frequency and mutation characteristics indicate the efficiency of molecular tests for the rapid detection of TB drug resistance. This study examined the existence of katG and inhA mutations for isoniazid (INH) resistance and rpoB mutations for rifampicin (RFP) resistance. In total, 178 drug-resistant Mycobacterium tuberculosis (MTB) isolates were analyzed. Mutations in katG encoding and inhA regulatory regions were detected in 136/168 (81.0%) and 29/168 (17.3%), respectively, with the most prominent mutation of Ser315Thr substitution in katG in 126/168 (75.0%), and -15 C to T substitution in the regulatory region of the inhA (26/168; 15.5%). Two distinct katG mutations (Tyr337Cys, 1003InsG) were identified. Of 125 RFP-resistant isolates, 118 (94.4%) carried mutations affecting the 81-bp RFP resistance-determining region, with the most commonly affected codons 450, 445, and 435 identified in 74 (59.2%), 26 (20.8%), and 12 (9.6%) isolates, respectively. Genetic mutations were highly associated with phenotypic INH and RFP resistance, and the majority shared similarities with those reported in previous studies in Thailand and other Asian countries. These data are useful for guiding the use and improvement of molecular tests for TB drug resistance.
Collapse
Affiliation(s)
- Janisara Rudeeaneksin
- Tuberculosis laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Benjawan Phetsuksiri
- Tuberculosis laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Japan.,The Global Station for Zoonosis Control, Hokkaido University, Japan
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Japan.,The Global Station for Zoonosis Control, Hokkaido University, Japan
| | - Worasak Suthachai
- The Office of Disease Prevention and Control Region 1, Department of Disease Control, Ministry of Public Health, Thailand
| | - Nattakan Tipkrua
- The Office of Disease Prevention and Control 5, Department of Disease Control, Ministry of Public Health, Thailand
| | - Krairerk Suthum
- The Office of Disease Prevention and Control 5, Department of Disease Control, Ministry of Public Health, Thailand
| | - Nasron Jekloh
- The Office of Disease Prevention and Control 12, Department of Disease Control, Ministry of Public Health, Thailand
| | - Supranee Bunchoo
- Tuberculosis laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Sopa Srisungngam
- Tuberculosis laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Wiphat Klayut
- Tuberculosis laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Shigeyuki Hamada
- Section of Bacterial Infections, Thai-Japan Research Collaboration Center on Emerging and Re-emerging Infectious Diseases, Osaka University, Thailand
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Japan.,The Global Station for Zoonosis Control, Hokkaido University, Japan
| |
Collapse
|
14
|
Trisakul K, Nonghanphithak D, Chaiyachat P, Kaewprasert O, Sakmongkoljit K, Reechaipichitkul W, Chaiprasert A, Blair D, Clark TG, Faksri K. High clustering rate and genotypic drug-susceptibility screening for the newly recommended anti-tuberculosis drugs among global extensively drug-resistant Mycobacterium tuberculosis isolates. EMERGING MICROBES & INFECTIONS 2022; 11:1857-1866. [PMID: 35792049 PMCID: PMC9336503 DOI: 10.1080/22221751.2022.2099304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) make TB difficult to control. Global susceptibility data for six newly recommended anti-TB drugs against M/XDR-TB are still limited. Using publicly available whole-genome sequences, we determined the proportion of 513 phenotypically XDR-TB isolates that carried mutations associated with resistance against these drugs (bedaquiline, clofazimine, linezolid, delamanid, pretomanid and cycloserine). Mutations of Rv0678 and Rv1979c were detected in 69/513 isolates (13.5%) for bedaquiline resistance and 79/513 isolates (15.4%) for clofazimine resistance with additional mmpL5 mutations. Mutations conferring resistance to delamanid were detected in fbiB and ddn genes for 11/513 isolates (2.1%). For pretomanid, a mutation was detected in the ddn gene for 3/513 isolates (0.6%). Nineteen mutations of pykA, cycA, ald, and alr genes, conferring resistance to cycloserine, were found in 153/513 isolates (29.8%). No known mutations associated with linezolid resistance were detected. Cluster analysis showed that 408/513 isolates fell within 99 clusters and that 354 of these isolates were possible primary drug-resistant TB (292 XDR-TB, 57 pre-XDR-TB and 5 MDR-TB). Clonal transmission of primary XDR isolates might contribute significantly to the high prevalence of DR-TB globally.
Collapse
Affiliation(s)
- Kanwara Trisakul
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Ditthawat Nonghanphithak
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Pratchakan Chaiyachat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Orawee Kaewprasert
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Kankanon Sakmongkoljit
- Department of Geotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Wipa Reechaipichitkul
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Angkana Chaiprasert
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David Blair
- James Cook University, Townsville, Queensland, Australia
| | - Taane G. Clark
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Dohál M, Dvořáková V, Šperková M, Pinková M, Spitaleri A, Norman A, Cabibbe AM, Rasmussen EM, Porvazník I, Škereňová M, Solovič I, Cirillo DM, Mokrý J. Whole genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates collected in the Czech Republic, 2005-2020. Sci Rep 2022; 12:7149. [PMID: 35505072 PMCID: PMC9062869 DOI: 10.1038/s41598-022-11287-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/11/2023] Open
Abstract
The emergence and spread of resistant tuberculosis (TB) pose a threat to public health, so it is necessary to diagnose the drug-resistant forms in a clinically short time frame and closely monitor their transmission. In this study, we carried out a first whole genome sequencing (WGS)-based analysis of multidrug resistant (MDR) M. tuberculosis strains to explore the phylogenetic lineages diversity, drug resistance mechanisms, and ongoing transmission chains within the country. In total, 65 isolates phenotypically resistant to at least rifampicin and isoniazid collected in the Czech Republic in 2005-2020 were enrolled for further analysis. The agreement of the results obtained by WGS with phenotypic drug susceptibility testing (pDST) in the determination of resistance to isoniazid, rifampicin, pyrazinamide, streptomycin, second-line injectables and fluoroquinolones was more than 80%. Phylogenetic analysis of WGS data revealed that the majority of MDR M. tuberculosis isolates were the Beijing lineage 2.2.1 (n = 46/65; 70.8%), while the remaining strains belonged to Euro-American lineage. Cluster analysis with a predefined cut-off distance of less than 12 single nucleotide polymorphisms between isolates showed 19 isolates in 6 clusters (clustering rate 29.2%), located mainly in the region of the capital city of Prague. This study highlights the utility of WGS as a high-resolution approach in the diagnosis, characterization of resistance patterns, and molecular-epidemiological analysis of resistant TB in the country.
Collapse
Affiliation(s)
- Matúš Dohál
- Department of Pharmacology and Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia.
| | - Věra Dvořáková
- National Reference Laboratory for Mycobacteria, National Institute of Public Health, Praha, Czech Republic
| | - Miluše Šperková
- National Reference Laboratory for Mycobacteria, National Institute of Public Health, Praha, Czech Republic
| | - Martina Pinková
- National Reference Laboratory for Mycobacteria, National Institute of Public Health, Praha, Czech Republic
| | - Andrea Spitaleri
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anders Norman
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Erik Michael Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Igor Porvazník
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovakia
- Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Mária Škereňová
- Department of Molecular Medicine and Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
- Department of Clinical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| | - Ivan Solovič
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovakia
- Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Juraj Mokrý
- Department of Pharmacology and Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| |
Collapse
|
16
|
Drug-Resistant Characteristics, Genetic Diversity, and Transmission Dynamics of Rifampicin-Resistant Mycobacterium tuberculosis in Hunan, China, Revealed by Whole-Genome Sequencing. Microbiol Spectr 2022; 10:e0154321. [PMID: 35171016 PMCID: PMC8849054 DOI: 10.1128/spectrum.01543-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To gain a deep insight into the additional drug-resistant profiles, genetic diversity, and transmission dynamics of rifampicin-resistant tuberculosis (RR-TB) circulating in Hunan province, drug susceptibility testing and whole-genome-sequencing were performed among RR-TB strains collected from Jan. 2013 to Jun. 2018 in Hunan province. A total of 124 RR-TB strains were recovered successfully and included into the final analysis. Lineage 2.2.1 was the dominant sublineage, accounting for 72.6% (90/124), followed by lineage 4.5 (11.3%, 14/124), lineage 4.4 (8.1%, 10/124), lineage 4.2 (6.5%, 8/124) and lineage 2.2.2 (1.6%, 2/124). Overall, 83.1% (103/124) and 3.2% (4/124) of RR-TB were MDR-TB and XDR-TB, respectively. Nearly 30% of RR-TB isolates were resistant to fluoroquinolones, and 26.6% (33/124) were pre-XDR-TB. Moreover, 30.6% (38/124) of RR-TB strains were identified as phenotypically resistance to pyrazinamide. Totally, 17 clusters containing 48 (38.7%, 48/124) RR-TB strains were identified, ranging in size from 2 to 10 isolates. No significant difference was detected in clustering rate between lineage 2 and lineage 4 (χ2 = 0.027, P = 0.870). Our study revealed the complexity of RR-TB strains circulating in Hunan province with complex additional drug-resistant profile and relatively higher clustering rates. Comprehensive information based on WGS should be used to guide the design of treatment regimens and tailor public interventions. IMPORTANCE Comprehensive information such as genetic background and drug-resistant profile of MTB strains could help to tailor public interventions. However, these data are limited in Hunan province, one of the provinces with high-TB burden in China. So, this study aimed to provide us with deep insight into the molecular epidemiology of RR-TB isolates circulating in Hunan province by combining phenotypic drug susceptibility testing and whole-genome sequencing. To our knowledge, this is the first study to use whole-genome sequencing data of RR-TB strains spanning more than 5 years for molecular epidemiology analysis in Hunan province, which allows us to identify genetic background information and clustered strains more accurately. Our study revealed the complexity of RR-TB strains circulating in Hunan province with complex additional drug-resistant profile and relatively higher clustering rates. Comprehensive information based on WGS should be used to guide the design of treatment regimens and tailor public interventions.
Collapse
|
17
|
Abstract
Clinical isolates of drug-resistant (isoniazid and/or rifampicin-resistant) Mycobacterium tuberculosis were obtained from 254 patients diagnosed with drug-resistant tuberculosis in Japan from April 2015 to March 2017 in National Hospital Organization hospitals. The 254 patients were approximately 32% of all 795 patients who were diagnosed with culture-confirmed drug-resistant tuberculosis from 2015 to 2016 nationwide in Japan. The whole-genome sequences of all the isolates from the 254 patients and the lineages of these isolates were determined, and phylogenetic trees were constructed based on single nucleotide polymorphism concatemers. Of these patients, 202 (79.5%) were born in Japan and 52 (20.5%) were born elsewhere. Of the 254 drug-resistant isolates, 54 (21.3%) were multidrug resistant, being resistant to both isoniazid and rifampicin. The percentages of multidrug-resistant isolates were significantly higher in foreign-born (38.5% [20/52]) than Japanese-born patients (16.8% [34/202]). Of the 54 multidrug-resistant isolates, nine were extensively drug resistant, which were all obtained from Japanese-born patients. Five extensively drug-resistant isolates were obtained from patients with incipient tuberculosis. A significant number of multidrug-resistant M. tuberculosis strains were isolated from foreign-born patients from Asian countries that have a high tuberculosis burden. Foreign-derived isolates affect the nationwide genetic diversity of drug-resistant M. tuberculosis in Japan. Extensively drug-resistant M. tuberculosis isolates were transmitted among the Japanese population. IMPORTANCE The incidence rate of tuberculosis (TB) in Japan was 11.5 per 100,000 of the population in 2019. Of TB patients in Japan, 61.1% were aged >70 years, and 10.7% were born outside Japan, mostly in Asian countries with a high burden of tuberculosis. Of the tuberculosis patients in the present study, 5.4% and 1.0% showed resistance to isoniazid and rifampicin, respectively, and 0.7% were multidrug resistant. The objective of this study was to clarify the molecular epidemiological properties of drug-resistant tuberculosis in Japan. Molecular epidemiology provides several clues to inform potential measures to control drug-resistant tuberculosis in Japan.
Collapse
|